
Supplementary Information 

 

Analysis of KLHL14 mutations in patients with lymphoid malignancies 

Published whole exome and whole genome sequencing data were compiled from the following 

sources: 

 

BL (1-4) 

CLL (5-10) 

DLBCL (11-25) 

FL (26-32) 

MCL (33-36) 

MM (37, 38) 

MZL (39-46) 

Primary_CNS (47-50) 

Primary_cutaneous (17, 51) 

T_cell_lymphoma (52-72) 

 

Analysis of KLHL14 prevalence within DLBCL gene expression subgroups and genetic subtypes 

was based on data in ref. (18). 

 

www.pnas.org/cgi/doi/10.1073/pnas.1921187117
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Fig. S1. KLHL14 decreases stability of the immature BCR glycoforms in the ER 
(A) Western blot analysis of immunoprecipitated of endogenous KLHL14 in TMD8 cells. 
IgG antibody immunoprecipitates= negative control: IP, immunoprecipitated; WCL, 
whole cell lysates. (B) Diagram showing glycan processing in the ER and Golgi and 
lectin affinity chromatography. (C) Western blot analysis of PSA- and RCA- bound 
fractions of BCR in TMD8 cells treated with or without EndoH. (D) Western blot analysis 
of whole cell lysates from tetracycline repressor-expressing TMD8 cells retrovirally 
transduced with cDNAs encoding BioID2-HA-tagged KLHL14. Cells were treated with 
DOX (1µg/ml) for 16h. (E) Western blot analysis of whole cell lysates from TMD8-Cas9 
lentivirally transduced with sgRNA targeting KLHL14 or a non-targeting control. (F) Top, 
western blot analysis of PSA-bound fractions of Calnexin in tetracycline repressor-
expressing TMD8 cells retrovirally transduced with cDNAs encoding BioID2-HA-tagged 
KLHL14. Cells were pre-treated with DOX (1µg/ml) for 16h and treated with CHX 
(50 g/ml) for the indicated time points before fraction. Bottom, quantification of PSA-
bound fraction of Calnexin protein levels. (G) Top, western blot analysis of PSA-bound 
fractions of Calnexin in TMD8-Cas9 cells lentivirally transduced with sgRNA targeting 
KLHL14 or a non-targeting control. Cells were treated with CHX (50µg/ml) for the 
indicated time points before fraction. Bottom, quantification of PSA-bound fraction of 
Calnexin protein levels. Error bars represent SD of triplicates and data are 
representative of three independent experiments. 
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Dataset S1. Global Proteome SILAC enrichment ratio 

Differential protein expression upon KLHL14 expression (averaged normalized SILAC ratios 

(KLHL14/empty vector)) identified by quantitative mass spectrometry in TMD8 cells  

 

Dataset S2. Ubiquitinome SILAC enrichment ratio 

Differentially ubiquitinated proteins upon KLHL14 expression (averaged normalized SILAC 

ratios (KLHL14/empty vector)) identified by di-glycine remnant quantitative mass spectrometry 

in TMD8 cells 

 

Dataset S3. Brunello sgRNA library normalized read counts 

Normalized gRNA sequencing read counts from the genome-scale CRISPR-Cas9 screen in 

DMSO- or ibrutinib-treated KLHL14 wild-type (WT) and KLHL14 knockout (KO) TMD8 cells  

 

Dataset S4. Ibrutinib synergy score 

Average fold-change in the log2-transformed normalized gRNA sequencing read counts from 

Dataset S3 

 

Dataset S5. DGE for RNA-Seq 

The RNA-seq digital gene expression values in DMSO- or ibrutinib-treated KLHL14 wild-type 

(WT) and KLHL14 knockout (KO) TMD8 cells 
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