Supplementary Material

Table S1: Cation-dependency: MIC gentamicin [µg/ml] of GAR in different media. Strain: *E. coli* C600Z1, induction: 250 ng/ml anhydrotetracycline. Median of two – four biological replicates.

	Induced	Increase of MIC	Not induced	Increase of MIC
LB plates, E-test				
pZE21-gar	128	171	0.625	2
pZE21-MCS1	0.75		0.345	
MH plates, E-test				
pZE21-gar	64	1000	0.157	2
pZE21-MCS1	0.064		0.064	
LB broth, BMD				
pZE21-gar	5.76	3	4.32	2
pZE21-MCS1	2.16		2.16	
MH broth, BMD				
pZE21-gar	184	657	0.4	2
pZE21-MCS1	0.28		0.2	
Cation-adjusted MH b	oroth, BMD			
pZE21-gar	121	2017	0.1	2
pZE21-MCS1	0.06		0.05	

In order to further confirm and quantify the level of gentamicin resistance conferred by GAR, we determined MIC values by standard broth microdilution in LB medium (Table S1). Here, MIC values were raised only by factor 3. It was shown earlier that divalent cations increase aminoglycoside MIC values [1, 2]. Consequently, the addition of agar in the first test, containing an unknown amount of cations, resulted in increased resistance. A hypothesis behind this phenomenon is that mono- and divalent cations, especially Mg²⁺ and Ca²⁺, antagonize the antibiotic effect most likely by displacement of the aminoglycoside from a site at the cell wall thereby stopping uptake, as shown for both Gramnegative and Gram-positive bacteria [3, 4]. We then performed broth microdilution (BMD) in MH broth and E-test on MH plates, which both led to a more than 600x increase of the MIC. The highest resistance level was measured in the medium with the highest cation concentration, cation-adjusted MH broth (20-25 mg Ca²⁺/L and 10-12.5 mg Mg²⁺/L, equalling about 500 µM of each) [5]. However, this increase in MIC could not be found in the negative controls without resistance gene suggesting that this is not the complete explanation. The observation that the MIC was only changed in a cation-dependent fashion for strains expressing gar indicates a more direct interaction. GAR contains an AAA domain and shares similarities with nucleotide and gluconate kinases (Fig. 2, main article). These, the known aminoglycoside nucleotidyltransferases and aminoglycoside phosphotransferases as well as other P-loop containing NTPases are Mg²⁺-dependent enzymes [6-10]. Ideally, the concentration of free Mg²⁺ in the cytosol is kept stable between 1-5 mM and, additionally, a large amount of Mg²⁺ is bound and required by the ribosomes [11]. Intracellular free Mg^{2+} can vary between 1 μM and 10 mM depending on the extracellular concentration [12]. The concentration of divalent cations in cation-adjusted MH medium is sufficient for all cellular functions but requires active enrichment of Mg²⁺ in the cells. We cannot exclude that extremely low concentrations in the medium might cause lower levels of free Mg²⁺ in the cytosol and lead to the observed decrease in resistance by limiting GAR activity, although this remains to be shown.

Since cation concentrations influenced MIC values profoundly, we decided to perform all subsequent experiments in cation-adjusted MH broth. In order to reliably compare GAR activity against a broad palette of aminoglycosides, we additionally chose to change vector and bacterial strain. The vector pZE21 includes an APH(3') kanamycin resistance (although not active against gentamicin) and thus all mentioned MIC determinations were performed in presence of 50 μ g/ml kanamycin. The strain *E. coli* C600Z1 also harbours a chromosomal spectinomycin resistance determinant, making it less suitable. We therefore cloned the ORF *gar* into pUC19 replacing the ampicillin resistance gene. The plasmid pUC19-*gar* was then transformed into *E. coli* BL21(DE3), which contains no internal resistance gene and requires no induction of *gar* expression. The resulting strain showed a 2760x gentamicin MIC increase in cation-adjusted MH (Fig. 1, main article).

Table S2: Chemical structure of the tested aminoglycosides and resistance profile conveyed by GAR. Suspected target garosamine is marked. Chemical structures were prepared using ACD/ChemSketch (Freeware) 2018.1.1.

Antibiotic	Structure	Manufacturer and catalog number	MIC increase (fold-change)
Netilmicin	H_3C OH H_3C HO H_3C HO H_2N	Sigma 1460500 USP	5140
G418	H_3C OH H_3C NH H_0 HO H_2N OH H_2N OH H_2N OH H_2N OH H_2N OH H_2N OH H_2N OH H_2N OH	Sigma G1279	4850
Isepamicin	$H_{3}C \rightarrow H \rightarrow H_{3}C \rightarrow H \rightarrow $	TOKU-E I042	4110
Sisomicin	H_3C OH H_3C H_3C OH H_3C H_2 H_2N H_2 H_2 NH_2 NH_2	Sigma 1612801 USP	3430

Antibiotic	Structure	Manufacturer and catalog number	MIC increase (fold-change)
Micronomicin	H_3C OH H_3C H_2N H_2N H_2N H_2N H_2N H_2N H_2 H_3 H_2N H_2 H_3	TOKU-E M018	3080
Gentamicin	$H_{3}C$ OH $H_{3}C$ OH $H_{3}C$ OH $H_{3}C$ OH $H_{2}C$ OH H_{2	Sigma G3632	2760
Tobramycin	HO H ₂ N HO HO HO HO HO H ₂ N H ₂ N	Sigma T4014	16
Kanamycin	HO HO HO HO HO HO HO HO HO HO HO HO HO H	Sigma K4000	8

Antibiotic	Structure	Manufacturer and catalog number	MIC increase (fold-change)
Amikacin	HO H	Sigma A3650	8
Paromomycin	$HO \qquad OH \qquad H_2N \qquad HO \qquad OH \qquad H_2N \qquad HO \qquad OH \qquad H_2N \qquad HO \qquad OH \qquad HO \qquad HO \qquad HO \qquad HO \qquad HO \qquad H$	Sigma P5057	8
Ribostamycin	$HO \rightarrow OH \rightarrow HO \rightarrow$	Sigma R2255	4
Apramycin	HO + O + OH + OH + OH + OH + OH + OH +	Sigma A2024	4

Antibiotic	Structure	Manufacturer and catalog number	MIC increase (fold-change)
Hygromycin B	HO + OH +	Sigma H3274	3
Streptomycin	$HO + HO + HO + HO + N + NH_2$ $HO + O + O + O + NH_2$ $H_3C - NH + O + O + NH_2$ $H_2N + O + O + O + NH_2$	Sigma S6501	2
Spectinomycin	H_3C NH O HO HO CH ₃ OH CH ₃	Sigma S4014	1

Table S3: Predicted and determined resistances of *Pseudomonas aeruginosa* **105MG**. This isolate (sequenced in this study) contains five aminoglycoside resistance genes including *gar*. It is also resistant against cabapenems, cephalosporins, penicillins and fluoroquinolones [13] and harbours resistance genes against chloramphenicol, fosfomycin, sulfonamides, trimethoprim and tetracycline.

	aph(3)-IIb	aac(6)-31	aadA6	aac(6)-Il	gar	Determined resistance
Kanamycin	Х	Х	-	Х	-	Х
Gentamicin	-	Х	-	Х	Х	Х
Netilmicin	-	Х	-	Х	Х	Х
Sisomicin	-	Х	-	Х	Х	Х
G418	Х	-	-	-	Х	Х
Micronomicin	-	-	-	-	Х	Х
Isepamicin	Х	Х	-	Х	Х	Х
Amikacin	Х	Х	-	Х	-	Х
Tobramycin	-	Х	-	Х	-	Х
Paromomycin	Х	-	-	-	-	Х
Ribostamycin	Х	Х	-	Х	-	Х
Hygromycin B	?	?	-	?	-	Х
Apramycin	?	?	-	?	-	-
Spectinomycin	?	-	Х	-	-	Х
Streptomycin	?	-	Х	-	-	Х

Resistance profiles of the listed aminoglycoside modifying enzymes: [14] and references therein.

Table S4: Predicted resistances of *Luteimonas* sp. 83-4.

This isolate (complete genome, accession CP029556.1) contains two aminoglycoside resistance genes including *gar*.

	aph(3')-XV	gar
Kanamycin	Х	-
Gentamicin	-	Х
Netilmicin	-	Х
Sisomicin	-	Х
G418	Х	Х
Micronomicin	-	Х
Isepamicin	Х	Х
Amikacin	Х	-
Tobramycin	-	-
Paromomycin	Х	-
Ribostamycin	Х	-
Hygromycin B	?	-
Apramycin	?	-
Spectinomycin	?	-
Streptomycin	Х	-

Table S5: Occurrence of gar in 1251 metagenomic datasets.

The number of paired-end reads mapping to *gar* with 100 % identity over the length of at least 20 amino acids are shown. Reads from selected metagenomic datasets (ERR1713392, ERR1713378) were mapped to DNA sequences containing *gar* and surrounding attachment sites. Paired-end reads covered *gar* and the adjacent attachment site unambiguously, confirming that *gar* is present as a gene cassette in both metagenomes.

ERR1713392 15 Wastewater/sludge Sweden 57.7089 11.97 ERR1713378 13 Wastewater/sludge Nigeria 7.3775 3.94
ERR1713378 13 Wastewater/sludge Nigeria 7.3775 3.94
ERR1726005 7 Wastewater/sludge Sweden 57.7089 11.97
ERR1726006 6 Wastewater/sludge Sweden 57.7089 11.97
ERR1725942 5 Wastewater/sludge Australia -37.9145 144.64
ERR1414237 4 Wastewater/sludge Sweden 59.3107 18.10
ERR1725996 4 Wastewater/sludge Nigeria 7.3775 3.94
ERR1713407 3 Wastewater/sludge Viet Nam 10.8231 106.62
104 2 Sediment India 18.5104 73.83
ERR2592328 2 Wastewater/sludge Australia -35.3452 149.09
ERR1713369 2 Wastewater/sludge Kenya 1.2921 36.82
ERR1414243 1 Wastewater/sludge Sweden 59.3556 18.22
ERR1414272 1 Wastewater/sludge Sweden 59.3556 18.22
111 1 Wastewater/sludge India 19.0760 72.87
ERR1713332 1 Wastewater/sludge Australia -35.3452 149.09
ERR1713333 1 Wastewater/sludge Australia -37.9145 144.64
ERR1713372 1 Wastewater/sludge Luxembourg 49.5096 5.92

Table S6: Composition of the 1251 metagenomics datasets. See Additional file 2 for the extensive list.

Source	Nr. of metagenomes
Wastewater/sludge	453
Human, individuals	339
Marine environments	203
Hydrothermal vent	143
River/lake sediment	46
Estuary	19
River/lake sediment, pharmaceutical impact	16
Soil	16
Thermophilic anaerobic methanogenic reactor	5
Cold seep sediment	3
Alkaline water	3
Oyster gut	2
Crater lake (stromatolite)	2
Hot spring	1

References

1. Garrod LP, Waterworth PM. Effect of medium composition on the apparent sensitivity of Pseudomonas aeruginosa to gentamicin. J Clin Pathol. 1969;22:534-8. doi: 10.1136/jcp.22.5.534.

2. D'Amato RF, Thornsberry C, Baker CN, Kirven LA. Effect of calcium and magnesium ions on the susceptibility of Pseudomonas species to tetracycline, gentamicin polymyxin B, and carbenicillin. Antimicrob Agents Chemother. 1975;7:596-600. doi: 10.1128/aac.7.5.596.

3. Bryan LE, Van Den Elzen HM. Effects of membrane-energy mutations and cations on streptomycin and gentamicin accumulation by bacteria: a model for entry of streptomycin and gentamicin in susceptible and resistant bacteria. Antimicrob Agents Chemother. 1977;12:163-77. doi: 10.1128/aac.12.2.163.

4. Beggs WH, Andrews FA. Inhibition of dihydrostreptomycin binding to Mycobacterium smegmatis by monovalent and divalent cation salts. Antimicrob Agents Chemother. 1976;9:393-6. doi: 10.1128/aac.9.3.393.

5. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: M07-A9; approved standard. 9. ed. Wayne, PA 19087 USA: Committee for Clinical Laboratory Standards Institute; 2012.

6. Das U, Wang LK, Smith P, Munir A, Shuman S. Structures of bacterial polynucleotide kinase in a michaelis complex with nucleoside triphosphate (NTP)-Mg2+ and 5'-OH RNA and a mixed substrate-product complex with NTP-Mg2+ and a 5'-phosphorylated oligonucleotide. J Bacteriol. 2014;196:4285-92. doi: 10.1128/JB.02197-14.

7. Kraft L, Sprenger GA, Lindqvist Y. Conformational changes during the catalytic cycle of gluconate kinase as revealed by X-ray crystallography. J Mol Biol. 2002;318:1057-69. doi: 10.1016/S0022-2836(02)00215-2.

8. Cox G, Stogios PJ, Savchenko A, Wright GD. Structural and molecular basis for resistance to aminoglycoside antibiotics by the adenylyltransferase ANT(2")-Ia. MBio. 2015;6. doi: 10.1128/mBio.02180-14.

9. Labby KJ, Garneau-Tsodikova S. Strategies to overcome the action of aminoglycosidemodifying enzymes for treating resistant bacterial infections. Future Med Chem. 2013;5:1285-309. doi: 10.4155/fmc.13.80.

10. Miller JM, Enemark EJ. Fundamental Characteristics of AAA+ Protein Family Structure and Function. Archaea. 2016;2016:9294307. doi: 10.1155/2016/9294307.

11. Nierhaus KH. Mg2+, K+, and the ribosome. J Bacteriol. 2014;196:3817-9. doi: 10.1128/JB.02297-14.

12. Hurwitz C, Rosano CL. The intracellular concentration of bound and unbound magnesium ions in *Escherichia coli*. J Biol Chem. 1967;242:3719-22. http://www.ncbi.nlm.nih.gov/pubmed/5341484.

13. Giske CG, Libisch B, Colinon C, Scoulica E, Pagani L, Füzi M, et al. Establishing clonal relationships between VIM-1-like metallo-beta-lactamase-producing Pseudomonas aeruginosa strains from four European countries by multilocus sequence typing. J Clin Microbiol. 2006;44:4309-15. doi: 10.1128/JCM.00817-06.

14. Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010;13:151-71. doi: 10.1016/j.drup.2010.08.003.