Cell Reports, Volume 30

Supplemental Information

MYC Dysregulates Mitosis, Revealing

Cancer Vulnerabilities

Julia Rohrberg, Daniel Van de Mark, Meelad Amouzgar, Joyce V. Lee, Moufida Taileb, Alexandra Corella, Seda Kilinc, Jeremy Williams, Marie-Lena Jokisch, Roman Camarda, Sanjeev Balakrishnan, Rama Shankar, Alicia Zhou, Aaron N. Chang, Bin Chen, Hope S. Rugo, Sophie Dumont, and Andrei Goga

Supplemental tables

Table S1. MYC regulates the expression of mitotic spindle genes, related to Figure 3 and

Table S2. Twenty-seven mitotic genes expressed in a MYC-dependent manner in different model systems and datasets (**see Figure 3G**). We examined occupancy of their promoters by MYC in three cell lines according to (Walz et al., 2014) and murine B-cell tumors according to (Sabò et al., 2014). CPC – Chromosomal passenger complex. SAC – spindle assembly checkpoint. APC – Anaphase promoting complex.

		MYC bound promoters					
		Walz et al.			Sabo et al.		
Gene	Function	T cells	MEFs	Pancre as cells	B-cell tumor		
Aurkb	kinase, CPC, SAC, chromatin-induced microtubule stabilization	+	+	+	+		
Birc5 (Survivin)	CPC, localizes TPX2 to microtubules	+	+	+	+		
Bub1	kinase, SAC	-	-	+	+		
Ccnb2	cyclin, activates CDK1	-	+	+	+		
Cdc20	activates APC	+	+	+	+		
Cdca5	sister chromatid cohesion	na	na	na	+		
Cdca8	chromatin-induced microtubule stabilization	+	+	+	+		
Cdt1	kinetochore-microtubule attachments	+	+	+	+		
Cenpa	centromere protein	+	+	-	+		
Cenpf	centromere protein	+	+	+	+		
Chek1	kinase, DNA damage checkpoint	+	+	+	+		
Kif11 (Eg5)	motor protein	+	+	+	+		
Kif14	motor protein	na	na	na	+		
Kif15	motor protein	-	-	+	+		
Kif18a	motor protein, microtubule depolymerase	+	-	+	+		
Kif20a	motor protein	-	+	-	+		
Kif2c	motor protein, microtubule depolymerase	+	+	+	+		
Kifc1	motor protein	+	+	+	-		
Melk	kinase	na	na	na	+		
Mybl2	transcription factor	+	+	+	+		
Plk1	mitotic kinase	-	+	+	+		
Psrc1	microtubule depolymerase recruitment	-	+	-	+		
Stmn1	microtubule destabilization	+	+	+	+		

Tpx2	acentrosomal microtubule nucleation, AURKA activation	+	+	+	+
Ttk	kinase, centrosome duplication, AURKB activation	+	+	+	+
Ube2c	ubiquitin ligase, APC	+	+	+	+
Ube2s	ubiquitin ligase, APC	+	+	+	+

Supplemental Figures

Figure S1

Figure S1. MYC reversibly induces CIN and characterization of the MTB-TOM cell line, related to Figure 1 and STAR Methods. A Mad1 localizes to kinetochores indicating an active SAC. Staining of RPE-MYC cells with anti-Mad1, anti-CREST (kinetochores) and DAPI (DNA). Co-localization of Mad1 and CREST staining is observed. **B** Growth curve of MTB-TOM MYC ON and MYC OFF. Mean +/- S.D., n=3. **C** Cell cycle profile of MTB-TOM MYC OFF for three days. Sub 2N DNA content, mean +- S.D., n=6. **D** Western blot of MYC in human RPE-NEO and RPE-MYC and murine MTB-TOM MYC ON and MYC OFF for three days. The anti-MYC

Y69 antibody recognizes a slightly smaller product for the human protein but has the same affinity for both mouse and human (Lehmann et al., 2012). **E** Relative expression of murine MYC measured by quantitative PCR in MTB-TOM MYC ON and MYC OFF. Mean, S.D., n=2. **F** MYC protein level in MDA-MB-231 cells three days after treatment with non-targeting (NT) siRNA or MYC siRNA normalized to beta-actin. Mean +/- S.D., unpaired t-test, n=4. **G-I** MYC protein level in HCC1143 three days after treatment with non-targeting (NT), two single (siRNA1 and 2) or pooled siRNA (siPool). **G** Representative western blot of MYC. **H** MYC level normalized to beta-actin. Mean +- S.D., unpaired t-test, n=3-7. **I** Percent of cells with micronuclei. Mean +/- S.D., Fisher's exact test, n=849-1437. **J** Correlation of MYC protein levels and percent of HCC1143 (1143) and MDA-MB-231 (231) cells and HMEC MYC OFF with micronuclei. Correlation coefficient was computed using Pearson correlation.

* p<0.05, ** p< 0.01, *** p<0.001, **** p<0.0001.

Figure S2. MYC impairs mitotic spindle formation, related to Figure 2. A-D Cells were fixed

at the indicated time points after nocodazole washout and stained with anti- α -tubulin, anti- γ -

tubulin, anti-CREST (kinetochores) and DAPI (DNA). A Percent RPE-NEO and RPE-MYC cells with non-centrosomal microtubule asters. Mean +/- S.E.M. Fisher's exact test, n=26-99 from three independent experiments. B Number of microtubule asters in HMEC MYC OFF and MYC ON. Mean +/- S.E.M. t-test, n=29-101 from three independent experiments. C Percent HMEC cells with non-centrosomal microtubule asters. Mean +- S.E.M. Fisher's exact test, n=29-101 from three independent experiments. **D** Percentage of HMEC cells with aligned chromosomes. Mean +- S.E.M. Fisher's exact test, n=29-101 from three independent experiments. At 30 minutes, $17\% \pm 8.8$ of HMEC MYC OFF cells enter anaphase. **E** Representative confocal micrographs of RPE-NEO and RPE-MYC cells stained with anti- α -tubulin, anti-centrin and DAPI (DNA). Insets show centrosomes with two centrioles (upper row, RPE-NEO), one centriole (middle row, RPE-MYC) and three centrioles (lower row, RPE-MYC). Arrow: free centriole that is not associated with a spindle pole. Scale bar 5 µm. F Percent multipolar RPE-MYC and HMEC MYC ON cells with free centrioles, two, more than two and less than two centrioles per pole quantified from confocal micrographs. Mean, n=59-141. G Percent MTB-TOM MYC ON and MYC OFF for three days with non-centrosomal microtubule asters. Mean +- S.E.M, Fisher's exact test, n=80-208 from three independent experiments. H-K Nocodazole wash-out assay in breast cancer cell lines. H Number of microtubule asters in MDA-MB-231 cells. Mean +- S.E.M. t-test, n=47-106 from three independent experiments. I Percentage of MDA-MB-231 cells with aligned chromosomes. Mean +/- S.D. Fisher's exact test, n=47-106 from three independent experiments. J Number of microtubule asters in HCC1143 cells. Mean +/-S.E.M. t-test, n=17-51 from three independent experiments. **K** Percentage of HCC1143 with aligned chromosomes. Mean +/- S.D. Fisher's exact test, n=17-51 from three independent experiments. * p<0.05, ** p< 0.01, *** p<0.001, **** p<0.0001.

Figure S3

Figure S3. Correlation betweenTPX2 and MYC expression, related to Figure 4. A MYC and TPX2 mRNA correlation in human breast cancer. Data were obtained from cBioportal, Breast Invasive Carcinoma (TCGA, provisional, 960 samples). **B** ChIP sequencing data for MYC and

MAX binding to the promoter region of TPX2 (chr20:31,734,166-31,744,376) from the ENCODE project (human Dec 2013 (GRCh38/hg38) assembly). **C-F** Representative western blots of MYC and TPX2 in **C** RPE-NEO and RPE-MYC, **D** MTB-TOM tumors from four mice on doxycycline diet (MYC ON), four tumors from mice that were off doxycycline for three days (MYC OFF) and two non-tumor mammary glands (N1 and N2), **E** patient-derived xenograft tumors and mouse mammary gland (N1 and N2) and **F** triple-negative (TN) and receptor positive (RP) breast cancer cell lines. **G** Micrographs of RPE-NEO (top) and RPE-MYC (bottom) cells taken every two hours after release from a double thymidine block. The appearance of mitotic cells is indicated with a bar for each cell line.

Figure S4

Figure S4. TPX2 is required for the survival of MYC high cells, related to Figure 5.

A and B Western blots (A) and cell cycle profiles with sub2N quantification (B) of RPE-MYC cells expressing three different doxycycline-inducible shRNAs against TPX2 (shTPX2 1 – 3) three days after adding doxycycline. C Micrographs of HMEC MYC OFF and MYC ON for two days, three days after transfection with control (ctrl) or TPX2 siRNA. D Western blot of breast cancer cell lines three days after transfection with control (ctrl) or TPX2 siRNA. E and F Western blots (E) and cell cycle profiles (F) of BT549 and HCC1143 cells expressing doxycycline-inducible shTPX2 1 three days after adding doxycycline. G Kaplan-Meier survival curve of BT549 xenograft tumor mice following the indicated shRNA expression.

Figure S5

Figure S5. TPX2 protects mitotic spindle function in MYC high cells, related to Figure 6. A and B Confocal micrographs of RPE-NEO (A) and RPE-MYC cells (B), fixed and stained with an antibody against TPX2 (green) and DAPI (white). C Representative confocal micrographs of asynchronously growing RPE-NEO (left) and RPE-MYC (right) 18 hours after transfection with TPX2 siRNA. Cells were fixed and stained with anti- α -tubulin, anti- γ -tubulin and DAPI (DNA). Scale bar, 10 µm. D Percent RPE-NEO and RPE-MYC cells with normal, small or no spindles 12 hours after transfection with TPX2 siRNA. Mean, Fisher's exact test, n=16 and 23 from two independent experiments. *** p<0.001, **** p<0.0001.