Machine Learning Analysis of Motor Evoked Potential Time Series
to Predict Disability Progression in Multiple Sclerosis: Additional
file 1

Jan Yperman, Thijs Becker, Dirk Valkenborg, Veronica Popescu, Niels Hellings,
Bart Van Wijmeersch, and Liesbet Peeters

1 Highest ranking features

We provide the top 20 most important features for the disability progression task, both for APB (Table 1)
and AH (Table 2). Their ranking is derived as follows: For each split we have 10 ranked features. For each
unique feature that occurs across the splits we assign a score from 0 to 9 based on its position in a particular
split (0 for being in first place, 9 for being in 10th). If it does not occur in a split it receives a score of 10.
We add the scores of each of these features for all splits. The feature with the lowest score will be considered
the most important. This score is included in the tables in the column score.

In the tables we also included the HCTSA ID, which can be used to get a description of the feature, as
well as retrieve the code used to generate this feature. Instructions on how to do this can be found online’.

The remaining columns are the name of the feature (as generated by HCTSA) and the percentage of splits
where the feature occurs in the top n.

2 Alternative feature selection

In the manuscript we outlined a data analysis pipeline which includes a couple of initial steps that cut down
on the number of features from roughly 5000 to a couple hundred (See Figure 2 in the main text). We
achieve this by retaining only the top 10% best features, based on their mutual information with the target.
Features that are highly correlated with one another are then discarded using hierarchical clustering based
on the correlation distance. This step could have a great impact on the end result, so we check how other
feature reduction techniques affect the performance.

To address this issue, we ran the complete pipeline again, this time using some other frequently employed
techniques to replace both the mutual information step and the hierarchical clustering step. We opted for
an ANOVA F-value to replace the mutual information, and a greedy feature selection based on the Pearson
correlation to replace the hierarchical clustering. The Pearson correlation and the correlation distance are
closely related, but the way of clustering the features differs: For hierarchical clustering we build a rooted
tree (dendrogram) based on the correlation distance using the UPGMA algorithm, which we subsequently
flatten using a cophenetic distance cutoff of 0.1. For the greedy feature selection based on the Pearson
correlation, on the other hand, we calculate the correlation matrix between the features and start removing
features (keeping one of each pair) starting from the most highly correlated features and continuing until
there are no more pairs of features that are correlated more than 0.9. We ran the pipeline again for the case
where 80% of the data set is used for training as this would lead to the most stable feature selection. The
results are shown in Table 3.

Thttps://hctsa-users.gitbook.io/hctsa-manual/analyzing_visualizing/interpreting-features

name hctsaid | top 1 | top 3 | top 5 | top 10 | score
SY SlidingWindow m s2 2 561 43.4% | 74.7% | 80.7% | 83.9% 2414
SY LocalGlobal 1500.absmean 762 3.8% | 26.0% | 50.5% | 82.8% | 5027
CO AddNoise 1 gaussian.ami at 5 1264 2.4% | 24.1% | 50.5% | 79.4% | 5174
SY SlidingWindow m s 4 1 554 4.4% | 26.7% | 42.8% | 59.6% | 6062
SP Summaries pgram hamm.fpoly2 sse 4307 14.5% | 38.2% | 43.4% | 45.3% | 6078
PP Compare poly2.swms10 1 5795 3.6% | 17.2% | 32.5% | 51.4% | 6804
PP Compare spline44.statav4 5912 15.9% | 27.0% | 30.7% | 33.3% | 7128
PP Compare spline24.statav6 5882 0.3% | 5.8% | 15.8% | 43.6% | 8008
SP Summaries pgram hamm.peakPower 2 4271 0.9% | 4.3% | 14.1% | 42.0% | 8163
SY TISEAN nstat z 4 1 3.mean 4778 4.8% | 12.1% | 16.0% | 19.5% | 8507
SY SlidingWindow s ent2 10 597 0.1% | 0.8% | 5.3% | 31.0% | 8915
SP Summaries pgram hamm.fpoly2csS p1l 4304 0.3% | 2.6% | 8.6% | 19.6% | 9049
PP Compare spline64.statav4 5943 0.8% | 52% | 85% | 14.1% | 9127
CO Embed?2 tau.eucdsl 1928 01% | 0.9% | 4.0% | 20.5% | 9259
SY TISEAN nstat z 4 1 3.std 4783 0.2% 2.3% 5.8% 15.6% 9272
FC Surprise T1 100 5 udq 500.uq 2405 0.1% | 21% | 6.2% 13.1% 9316
SP Summaries pgram hamm.fpoly2csS p2 4305 0.0% | 1.3% | 4.6% | 15.7% | 9325
PP Compare medianf3.swms2 2 6040 0.1% 1.9% 5.5% 14.1% 9337
MF AR arcov 4.res AC1 3861 0.0% | 0.5% | 3.1% | 19.0% | 9340
SY SpreadRandomLocal 100 100.stdstd 2136 0.0% | 1.0% | 4.4% | 16.5% | 9353

Table 1: The 20 most important features across all 1000 train/test splits for APB

Looking at the cause for the performance drop, we can see that in the case of the F' value, the best APB
feature is almost always discarded, most likely due to the fact that the F value is only sensitive to linear
dependencies®>. When using mutual information however, it is picked up in 85% of the splits. For the AH
feature on the other hand, it does not get discarded by either mutual information or the F value, indicating
there is a linear dependency between it and the target.

The AH feature may, however, get discarded during the removal of highly correlated features. Looking
into this more closely it turns out this happens due to the fact that the best AH feature is highly correlated
with a feature that does not perform quite as well. The features in question are:

o MF_CompareTestSets_y_ar_best_uniform_25_01_1.acls_-mean
o MF_CompareTestSets_y_ar_best_uniform_25_01_1.ac1s-median

where the median feature performs worse for our prediction task. The difference between the two features is
only minor, causing them to be highly correlated. Due to their correlation they end up in the same cluster, at
which point it depends on which feature is chosen from each cluster. In our case, we chose the first occurring
feature for convenience, which turned out beneficial as this is the best performing feature of the two. This
is not the case, however, when using the Pearson correlation matrix, causing the best feature to be dropped
during this step. This results in a performance drop to 0.738. It’s interesting to note that in absence of the
mean feature, the median feature is selected to be the most informative by Boruta.

To verify that we haven’t missed any important features due to a similar process, we ran the pipeline
again, this time removing the highly correlated feature filter altogether. This results in the same features
being found as the original pipeline, with the same performance.

Another popular feature selection technique is the Fast Correlation Based Filter (FCBF), first proposed
by Yu and Liu [2003]. We will now compare its performance with that of the pipeline outlined in the main

2This is illustrated nicely at https://scikit-learn.org/stable/auto_examples/feature_selection/plot_f_test_vs_mi.
html

name hctsaid | top 1 | top 3 | top 5 | top 10 | score
MF CompareTestSets y ar best uniform 25 01 7062 69.3% | 90.6% | 94.4% | 97.5% 861

l.acls mean

SB BinaryStats iqr.longstretch0 3490 5.8% | 36.8% | 51.2% | 61.3% | 5420
PH ForcePotential sine 1 1 1.median 1655 1.6% | 14.9% | 31.9% | 53.7% | 6886
FC Surprise T2 20 2 q 500.std 2310 0.7% | 17.9% | 31.5% | 47.3% 7106
FC Surprise dist 20 2 q 500.mean 2242 04% | 8.9% | 25.0% | 52.2% | 7297
EN Randomize statdist.statavbdiff 2854 4.3% | 19.1% | 27.9% | 38.2% | 7357
MF CompareTestSets y ar 4 rand 25 01 1.acls 7042 1.5% | 16.5% | 28.5% | 39.9% | 7394
mean

WL DetailCoeffs db3 max.maxlon2 median 6526 0.9% | 10.5% | 21.1% | 31.3% | 8052
FC Surprise dist 50 3 q 500.mean 2250 0.0% | 1.8% | 8.8% | 31.1% | 8704
FC Surprise dist 50 3 q 500.std 2254 02% | 3.9% | 88% | 23.4% | 8927
MF FitSubsegments arsbe uniform 25 01.sbcs 6981 0.0% | 3.8% | 7.8% | 22.8% | 8980
range

EN Randomize statdist.statavbhp 2855 2.5% | 8.0% | 10.6% | 13.7% | 8989
EN Randomize permute.statavbfexpr2 2978 02% | 24% | 6.0% | 21.4% | 9050
MF GP hyperparameters covSEiso covNoise 1 6396 1.1% | 5.0% | 87% | 12.4% | 9160
50 random i.meanS

MF GP hyperparameters covSEiso covNoise 1 6389 0.8% | 6.0% | 84% | 10.6% | 9261
50 random i.mlikelihood

FC LocalSimple mean3.tauresrat 3017 3.7% | 6.6% | 7.0% 7.4% 9334
SP Summaries pgram hamm.linfitsemilog all a2 4340 02% | 3.9% | 6.2% | 104% | 9376
Stat Av1500 550 0.2% 1.6% 4.9% 12.5% 9430
SP Summaries fft logdev.linfitsemilog all al 4587 0.0% | 1.7% | 4.6% | 12.1% | 9452
FC LocalSimple lfittau.tauresrat 3137 01% | 1.7% | 4.7% | 10.7% | 9481

Table 2: The 20 most important features across all 1000 train/test splits for AH

Feature selection Performance

Mutual information + Hierarchical clustering 0.745 + 0.071
Mutual information + Greedy selection w. Pearson correlation | 0.738 +0.072
F value + Hierarchical clustering 0.738 £0.073
F value + Greedy selection w. Pearson correlation 0.733 £ 0.073
FCBF 0.738 £0.07

Table 3: Results for the alternative preselection steps, with standard deviations. Except for FCBF, all
pipelines include the Boruta step. The values after ‘+’ indicate the standard deviation.

manuscript, i.e., the mutual information filtering followed by hierarchical clustering on the correlation dis-
tance and finally the Boruta feature selection algorithm. The main advantage of the FCBF is its speed,
running in mere seconds whereas the Boruta pipeline takes well over an hour on a single core. However, we
find that performance-wise, the Boruta pipeline is superior for our task.

Running the pipeline with the FCBF feature selection, we obtain a performance of 0.738 £+ 0.07 (mean
and standard deviation), to be compared with 0.745 + 0.07 obtained by the Boruta pipeline, also shown
in Table 3. In Table 5 and 6 we show the top ranked features selected by the FCBF algorithm for APB
(arms) and AH (legs) respectively, similar to those shown in Section 1. Looking at these tables, there is
certainly an overlap in the chosen features. For the AH features, the best feature, as determined by the
Boruta algorithm, is also recovered using FCBF. However, the best feature for APB is not recovered, which
most likely explains the difference in performance on the test set.

We also find that the FCBF algorithm seems to be less sensitive to feature importance. We illustrate
this in Table 4. There we show how often the literature features (latency, EDSS at Tj and age) are labeled
as important by both algorithms. These features have been shown to be relevant by various works in the
literature, yet it seems FCBF marks them as important far less consistently than the Boruta algorithm. This
makes the fact that FCBF recovers the best AH feature in 83% of splits rather impressive.

FCBF | Mutual inf + correlation + Boruta
Latency | 3.38% 74.80%
EDSS Ty | 6.75% 83.80%
Age 7.65% 47.10%

Table 4: Comparison of the recovery of known literature features by both feature selection algorithms. The
percentage of splits is shown where the feature in question was labeled to be important.

3 Hyperparameter choice

In this section we will further discuss the choice of hyperparameters for the model. In particular, the following
parameters were set:

e maximum # features to be passed to the classifier [N.FEAT RETAIN]: As discussed in
the main text we use a validation set to determine how many of the top-n features (as ranked by the
boruta alogorithm) are passed to the model. We set an upper limit to this number as for some splits
the validation scores may be somewhat noisy, leading to a high number of features being passed to the
classifier. For our final results we set this value to 6.

e # trees in the random forest [N_EST]: This value is a trade-off between classifier performance
and computational intensity. We set this to 100 for our final results.

name hctsaid | top 1 | top 3 | top 5 | top 10 | score
EN Randomize permute.ac3fexpb 561 21.0% | 26.2% | 26.2% | 26.2% | 7438
SP Summaries pgram hamm.fpoly2 rmse 762 22.0% | 22.0% | 22.0% | 22.0% | 7800
PH ForcePotential sine 1 1 1.acl 1264 2.7% | 20.3% | 20.3% | 20.3% 8197
EN Randomize dyndist.sampen2 015fexpr2 554 0.0% | 9.4% | 23.5% | 25.2% | 8226
PH Walker runningvar 15 50.sw maxrat 4307 0.0% | 92% | 22.2% | 23.7% | 8308
SB TransitionpAlphabet 20 ac.trfexp a 5795 4.2% | 16.4% | 16.4% | 16.4% | 8488
MD rawHRVmeas.trisqrt 5912 9.8% | 11.8% | 11.8% | 11.8% | 8840
MD rawHRVmeas.SD1 5882 45% | 121% | 121% | 12.1% 8876
PH Walker biasprop 05 01.w ac2 4271 82% | 9.1% | 9.1% 9.1% 9099
MD rawHRVmeas.SD2 4778 0.0% | 1.6% | 11.8% | 13.4% | 9124
TSTL delaytime 01 1.taul 597 0.0% 7.2% 8.4% 8.4% 9286
WL dwtcoeff sym2 5.mind 13 4304 04% | 7.8% | 7.9% 7.9% 9319
DN RemovePoints max 01.ac3rat 5943 1.7% | 7.0% | 7.0% 7.0% 9356
MF arfit 1 8 sbc.maxImS 1928 0.0% | 2.3% | 8.4% 9.6% 9360
DN RemovePoints max 01.ac3diff 4783 1.0% | 6.8% | 6.8% 6.8% 9382
EN Randomize statdist.ac2fexpb 2405 4.7% | 5.8% | 5.8% 5.8% 9431
WL coeffs db3 4.wb50m 4305 0.0% 0.5% 6.1% 8.7% 9474
SP Summaries welch rect.numPeaks 6040 0.0% | 1.5% | 6.3% 7.2% 9516
PP Compare poly2.statavd 3861 0.0% | 2.5% | 5.3% 5.4% 9602
CO Embed?2 tau.eucds3 2136 3.3% | 3.9% | 3.9% 3.9% 9616

Table 5: The 20 most important features across all 1000 train/test splits for APB, for the FCBF algorithm

name hctsaid | top 1 | top 3 | top 5 | top 10 | score
MF CompareTestSets y ar best uniform 25 01 7062 83.3% | 83.3% | 83.3% | 83.3% 1670
l.acls mean

MF GP hyperparameters covSEiso covPeriodic 3490 0.0% | 25% | 37.7% | 454% | 7121
covNoise 1 200 resample.meanS

MF StateSpace ndsid 1 05 1.acmnd0 1655 0.0% | 25.1% | 30.8% | 30.8% | 7476
EN Randomize statdist.statavbfexpr2 2310 0.0% | 24.0% | 24.4% | 24.4% | 7845
PP Compare rav4.olbt sb 2242 0.0% | 14.8% | 26.2% | 27.7% | 7942
MF armax 2 2 05 1.ac2 2854 0.0% | 16.0% | 21.7% | 21.8% 8226
SB TransitionMatrix 2ac.T1 7042 0.0% | 2.7% | 18.4% | 24.4% | 8475
MF AR arcov 5.a5 6526 0.0% | 10.5% | 14.5% | 14.6% 8857
EN Randomize dyndist.statavbfexpr2 2250 0.0% | 10.8% | 11.4% | 11.4% | 9031
CO AddNoise 1 gaussian.ami at 20 2254 0.0% | 7.0% | 12.3% | 12.5% | 9058
CO AddNoise 1 gaussian.ami at 10 6981 0.0% | 6.9% | 11.0% | 11.1% | 9140
PP Compare spline44.swss10 1 2855 0.0% | 5.9% | 9.2% 9.4% 9290
MF armax 2 2 05 1.acmnd0 2978 0.0% 7.2% 7.2% 7.2% 9368
MF armax 1105 1.p4 5 6396 0.0% 6.6% 7.7% 7.7% 9370
SY SpreadRandomLocal 200 100.stdtaul 6389 0.5% | 6.8% | 6.9% 6.9% 9384
SY DriftingMeann5.mean 3017 0.0% | 1.0% | 5.8% 7.3% 9528
MF StateSpace n4sid 1 05 1.ftbth 4340 0.0% | 1.6% | 5.7% 6.0% 9579
NL DVV 3 100 2 50 10 default.meanDiffSurr 550 0.0% | 0.1% | 3.4% 6.1% 9648
MF GP hyperparameters covSEiso covPeriodic 4587 0.0% | 0.4% | 4.3% 5.2% 9671
covNoise 1 200 resample.max$S

PH Walker momentum 5.sw aclrat 3137 0.0% | 35% | 3.7% 3.7% 9675

Table 6: The 20 most important features across all 1000 train/test splits for AH, for the FCBF algorithm

Feature % important
Type of MS 0.05

Gender 0

PPA L 4.60

PPA R 16.55

Table 7: Percentage of splits for which additional metadata is marked as being important by the feature
selection pipeline, for APB and AH together.

e minimum samples split [MIN_SAMPLES_SPLIT]: This value determines how many samples are
required to warrant the split of an internal node of the random forest, and is used prune the forest and
subsequently avoid overfitting. For our final results we set this value to 0.1 (10% of the total number
of samples).

e literature features [LIT_FEAT]: Our choice of which features from the literature to use. For our
final result we used the latency of the left and right limb, the EDSS at T;, and the age.

To avoid having different hyperparameters for each of the splits, we set these values to the same value for all
splits. These global parameters were chosen using trial and error based on the average of the cross-validation
scores (4-fold grouped k-fold) on the training sets of all the splits. However, as this average score covers the
entire dataset, this could still lead to overfitting. To minimize this risk, only a few hyperparameter values
were evaluated this way while picking a roughly functional value for each of the hyperparameters. To assess
the likelihood of these choices having led to an overfit we plot the performance of the model for a range of
values of these hyperparameters in Figure 1. It is clear the graph that the model performance is robust to
different values of the hyperparameters, bar any extreme values. For the N.FEAT _RETAIN feature and the
N_EST feature the final chosen value was not actually the best choice for this dataset, but the difference is
negligible.

We also ran the model again while choosing the MIN_SAMPLES_SPLIT value based on 4-fold cross-
validation on the training set for each split individually (as opposed to choosing one global value which is
set across all splits, which is what we did for the main results). The possible values were 0.01, 0.05, 0.1, 0.15
and 0.2. The model then performs slightly worse (0.740 as opposed to 0.745). Similarly, when doing this
with the model that contains only the literature features, we see a performance drop from 0.725 to 0.716.
Therefore we see that adding the additional time series features to the model increases the performance when
we use cross-validation to determine the hyperparameters for each split individually, in line with the main
results. We opted not to do this for the main results as discussing the hyperparameters would have become
intractable, since each split would have a different set of hyperparameters.

For the LIT_FEAT hyperparameter we selected the latencies, the EDSS at T and the age based on
the fact that they were marked as being important in the literature. As an indication of their importance,
we show in how many splits these are marked as important by the feature selection pipeline in Table 7.
A few other extra features were added to the feature selection pipeline along with the timeseries features.
Comparing these results to those of the literature features we did include, as shown in Table 4, it’s clear that
these values can be safely discarded. It should be noted that the type of MS variable has a lot of missing
data, and while the missing values were inferred from various other metadata, it may not be sufficiently
accurate.

References

L. Yu and H. Liu. Feature selection for high-dimensional data: A fast correlation-based filter solution. In
Proceedings of the 20th international conference on machine learning (ICML-03), pages 856-863, 2003.

N_FEAT_RETAIN

o] T T o
<:(1
0.73 i
Ir T kl+ 4I 1 T
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
n_feat_retain
N_EST
4'
0741 o— = I
S) 1
<D(1
ﬂ]
0.72 T T T T T T T T
25 50 75 100 125 150 175 200
n_est

MIN_SAMPLES_SPLIT

© oas _M
| I

< 0.700

0.0 0.1 0.2 0.3 0.4 0.5
min_samples_split

Figure 1: The effect of various hyperparameters on the performance of the model, for the model with (red) or
without (green) extra EPTS features. The hyperparameters used for the final model are shown by vertical,
dashed lines.

