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Supplementary Information 

 

1.Theoretical model for EMT 

In this EMT network, microRNA, mRNA and protein affect each other via different mechanisms. 

According to the framework built by Lu. et al (13), the deterministic equations for miR-200/ZEB 

circuit with the external signal as SNAIL are: 

𝜇̇#$$ = 𝑔'())𝐻
+,𝑍, 𝜆0,'())1𝐻
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and those for miR-34/SNAIL circuit with I as an external signal are: 
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So, the combined circuit is driven by I is given by: 
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where 𝑔  is the innate synthesis rate for corresponding microRNA/mRNA/protein, 𝑘  is the 

corresponding innate degradation rate. Here 𝐻3  represents the shifted Hill function which is 

defined as: 

𝐻+(𝐵) =
1 + 𝜆 H 𝐵𝐵$

I
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where 𝜆 is the fold change regulated by protein B. 𝜆>1 for activation and 𝜆<1 for inhibition. The 

function 𝑌 represents degradation of microRNA or mRNA due to microRNA-mRNA binding (𝑛 

is the number of binding sites). The function 𝐿 represents translational inhibition. They can be 

written as: 
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Here 𝑙O, 𝛾:O, 𝛾'O correspond to the individual translation rate of mRNA, individual degradation 

rate for mRNA and microRNA respectively. All details of microRNA-mediated regulation can 

be found in Lu et al. (13). 

 

 

 

 

 

 

 



2.Parameters for the EMT model 

Table SI 1. List of parameters used in shifted Hill functions 

Description Fold 

change 

Value # of 

binding 

sites 

Value Threshold Value (K 

molecules) 

Inhibition on miR-200 

by ZEB 

𝜆<,'()) 0.1 𝑛<,'()) 3 𝑍'())
$  220 

Inhibition on miR-200 

by SNAIL 

𝜆3,'()) 0.1 𝑛3,'()) 2 𝑆'())
$  180 

Self-activation of ZEB 𝜆<,:; 7.5 𝑛<,:; 2 𝑍:;
$  25 

Activation on ZEB by 

SNAIL 

𝜆3,:; 10.0 𝑛3,:; 2 𝑆:;
$  180 

Inhibition on miR-34 by 

SNAIL 

𝜆3,'@A 0.1 𝑛3,'@A 1 𝑆'@A
$  300 

Inhibition on miR-34 by 

ZEB 

𝜆<,'@A 0.2 𝑛<,'@A 2 𝑍'@A
$  600 

Self-inhibition of 

SNAIL 

𝜆3,:B 0.1 𝑛3,:B 1 𝑆:B
$  200 

Activation on SNAIL by 

external signal I 

𝜆D,:B 10 𝑛D,:B 2 𝐼:B
$  50 

 

Table SI 2. List of parameters for function 𝒀 and 𝑳. 



n (# of miRNA binding sites) 0 1 2 3 4 5 6 

𝑙O(hour-1) 1 0.6 0.3 0.1 0.05 0.05 0.05 

𝛾:O(hour-1) 0 0.04 0.2 1 1 1 1 

𝛾'O(hour-1) 0 0.005 0.05 0.5 0.5 0.5 0.5 

𝑛'()) 6 𝑛'@A 2 

𝜇#$$$  10K 𝜇>?$  10K 

 

 

Table SI 3. List of other parameters used in EMT model. 

Synthesis 

rate 

Value 

(molecules/hour) 

Degradation 

rate 

Value 

(hour-1)  

Translation 

rate 

Value 

(hour-1)  

𝑔'()) 2.1K 𝑘'()) 0.05 𝑔0 0.1K 

𝑔:; 11 𝑘:; 0.5 𝑔+ 0.1K 

𝑔'@A 1.35K 𝑘0 0.1  

𝑔:B 90 𝑘'@A 0.05 

 𝑘:B 0.5 

𝑘+ 0.125 

 

 

 

 



3.External signal noise on SNAIL 

The external signal I that we use here can be written as the stochastic differential equation: 

𝐼̇ = 𝛽(𝐼$ − 𝐼) + 𝜂(𝑡) 

where 𝜂(𝑡)  satisfies the condition that < 𝜂(𝑡), 𝑛(𝑡[) ≥ Γ𝛿(𝑡 − 𝑡[) . Here 𝐼$  is set at 50 K 

molecules, 𝛽 as 0.04 hour-1, and Γ as 50 (K molecules/hour)2. 

The initial value of I is fixed to lie at the middle of the tristable region (E, E/M, M). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Epigenetic feedback regulation term 

In the EMT model, we tested epigenetic feedback through two different pathways. The dynamic 

equation of epigenetic feedback on ZEB’s self-activation is: 

𝑍̇:;
$ =

𝑍:;
$ (0) − 𝑍:;

$ − 𝛼𝑍
𝜁  

Simialry,  epigenetic feedback on ZEB’s inhibition on miR-200 is modeled via: 

𝑍̇'())
$ =

𝑍'())
$ (0) − 𝑍'())

$ − 𝛼𝑍
𝜁  

 

where 𝜁  is a timescale factor and chosen to be 100 (hours). 𝛼  represents the strength of 

epigenetic feedback. Larger 𝛼  corresponds to stronger epigenetic feedback. 𝛼  has an upper 

bound because of the restriction that the numbers of all molecules must be positive. For ZEB’s 

self-activation, high level of ZEB can activate the expression of ZEB itself due to this epigenetic 

regulation. Meanwhile, for ZEB’s inhibition on miR-200, high levels of ZEB can suppress the 

synthesis of miR-200. 

 

In our EMT model, we used 𝜁 = 100 hours as the unit of time, because the timescale in our 

feedback-dependent simulations depends on not only the noise, but also the value of 𝜁.  

 

 

 

 

 

 



5. Simple model for understanding EMT: The SATS model 

 
Figure S1. The regulatory network of self-activating toggle switch----SATS (36). 

 
To gain more confidence in our results regarding the EMT circuit, we begin with a simpler case 

– the self-activating toggle switch (SATS). A SATS consists of two mutually inhibiting 

transcription factors (TFs) and has two states – ‘A’ state (A high, B low), and ‘B’ state (A low, B 

high) (Fig S1). The dynamics of a SATS is given by: 

bc
bd
= 𝑔c𝐻3ee(𝐴, 𝜆cc, 𝑛cc, 𝐴c$)𝐻gc(𝐵, 𝜆gc, 𝑛gc, 𝐵c$) − 𝑘c𝐴      

𝑑𝐵
𝑑𝑡 = 𝑔g𝐻3KK(𝐵, 𝜆gg, 𝐵g$)𝐻cg(𝐴, 𝜆cg, 𝑛cg, 𝐴g$ ) − 𝑘g𝐵 

          

The epigenetic feedback in SATS can be represented by: 

𝐴c$̇ =
(ce
) ($)ice

)ijc)
k

																																																																																																																																						(∗)   

 𝐵c$̇ =
(ge

)($)ige
)ijg)

k
 

We studied two cases:1. feedback on the self-activation of A; 2. feedback on the inhibition on A 

by B. The term 𝛼 · 𝐴	 or 𝛼 · 𝐵	 represents the epigenetic feedback. Because of this epigenetic 

feedback, for example in equation (*), if A is expressed, the threshold decreases, which finally 

causes A to be expressed at a higher level. Here, 𝛼 has maximum values due to the minus sign 

(i.e. the threshold can not be negative), and for each case, the maximum value of 𝛼 is different.  

 

 

A B



6.Methods used in SATS model study 
 
ODE simulations 

Here we added a Gaussian white noise term to the dynamic equations to trigger transitions 

between the two states. When we started from all cells in A state, we can observe the transitions 

by simply using the Euler method. We simulated this for 1000 times, counted the number of 

trajectories leading to state A and state B for each time point, and calculated the percentage of 

these two states. By varying 𝛼, we can see how the population distribution changes. Increasing 𝛼 

means a stronger epigenetic feedback. 

 

Stochastic method 

The chemical rate equations for a SATS model: 

𝑑𝐴
𝑑𝑡 = −𝑟cg𝐴 + 𝑟gc𝐵 

𝑑𝐵
𝑑𝑡 = −𝑟gc𝐵 + 𝑟cg𝐴 

                                                                                                         

And the corresponding solution is: 

𝐴(𝑡) =
𝑟gc + 𝑟cg𝑒i(qeKrqKe)d

𝑟cg + 𝑟gc
 

                           

By fitting the population distribution curve, we can get the fitting values of 𝑟cg  and 𝑟gc . 

According to the Gillespie method, here we can generate two random numbers to determine 

when the next transition would happen and which one (A to B or B to A). Given a constant time, 

we can count the number of transitions, and plot it as a function of 𝛼. 



7.Results of SATS model 
 
Epigenetic feedback on A’s self-activation 
 

 
Figure S2. (A) A sample showing the population change as a function of time, for epigenetic 
feedback added to self-activation of transcription factor A. The percentage is calculated based on 
1000 independent simulations. Dashed lines represent no epigenetic feedback case (𝛼 = 0), and 
solid lines are with feedback (𝛼 value is marked by arrow in Fig. S2(B), 𝛼 = 0.18). (B) The 
difference between the frequency of solutions converging to the (A high, B low) state, as a 
function of 𝛼. (C) Chemical reaction rates as a function of 𝛼. (D) Transition times as a function 
of 𝛼 (from Gillespie method). In all the three figures here, same simulation was repeated 10 
times (trajectories plotted here to quantify the error, and the different color in each plot 
represents the average result. 

 
When the epigenetic feedback is on the self-activation of A, it does not largely change the steady 

state distribution of the system. The reaction rates as well as the transition times during same 

time period remain almost constant, even if the feedback is very strong.  

 

A B
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Epigenetic feedback on B’s inhibition on A 
 

 
Figure S3. Similar data analysis method as shown in Fig. S2, but for epigenetic feedback added 
to the inhibition of . (A) A sample showing the population change as a function of time. The 
percentage is calculated based on 1000 times independent simulations. Dashed lines represent no 
epigenetic feedback case (𝛼 = 0), and solid lines are with feedback (𝛼 value is marked by arrow 
in SI 3(B), 𝛼 = 0.5). (B) The difference between A’s distribution population as a function of 𝛼. 
(C) Chemical reaction rates as a function of 𝛼. After reaching certain point, 𝑟cg (rate from state 
A to B) <𝑟gc (rate from state B to A). (D)Transition times as a function of 𝛼 (from Gillespie 
method). 

 

When the epigenetic feedback in incorporated in the inhibtion of A by B, the equilibrium 

population distribution tends to move towards a higher percentage of cells in (B high, A low) 

state as compared to that in (A high, B low) state. This shift can be understood as following:  a 

stronger inhibition of B on A would prevent the cells which are already in (B high, A low) state 

from transitioning to (A high, B low) state. Asymptotically, when the feedback is strong enough, 

A B

C D



all cells will be in the B state. From the perspective of reaction rates, this epigenetic feedback 

would significantly reduce the transition rate from (B high, A low) to (A high, B low). 

The results of SATS model indicate that when the epigenetic feedback is on the self-activation of 

the TF, the system remains almost unchanged. But when this feedback is on the mutual 

inhibition between two TFs or innate transcription rate, the system would change with the 

strength of the feedback and show some “stabilized” states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8.Parameters used for SATS model 

Table SI 4. List of parameters in SATS model 

 Production rate Value Degradation rate Value 

TF A 𝑔c 5 𝑘c 0.1 

TF B 𝑔g 5 𝑘g 0.1 

 Fold change Value # of binding sites Value Threshold Molecules 

Inhibition of B by 

A 

𝜆c,g 0.1 𝑛c,g 1 𝐴g$  120 

Inhibition of A by 

B 

𝜆g,c 0.1 𝑛g,c 1 𝐵c$ 120 

Self-activation of A 𝜆c,c 10 𝑛c,c 4 𝐴c$ 80 

Self-activation of B 𝜆g,g 10 𝑛g,g 4 𝐵g$ 80 

External signal S=600 

𝑛3,c = 𝑛3,g = 1, 𝑆c$ = 𝑆g$ = 500, 𝜆3,c = 𝜆3,g = 1 

 

 

 

 

 

 

 



9.The effects of noise 
 
In order to test the effects of external signal noise in EMT model, we tried 10 different values of 

standard deviation for a given initial condition and analyzed the results. The initial condition is 

that 100 % cells are in a M state and there is strong epigenetic feedback on ZEB’s inhibition on 

miR-200 (𝛼 = 0.2). The mean value of I used here is 51.3 K molecules, which corresponds to 

tristable phase {E, E/M, M} (Fig S4). 

 

Starting from the M state for low standard variation (σ < 50)  case, almost no transition is 

observed (Fig. S4A, B, C). When standard deviation is too large, a large percentage of cells 

maintain themselves in an M state (Fig. S4G, H), because cell can go left(E/M or E) or 

right(more M), when the standard deviation of noise is not too large, ‘left' is dominant, while if 

the standard deviation is large enough, ‘left' would become matured and ‘right’ is dominant now. 

When the value of standard deviation is suitable, cells can maintain in all three states (Fig. S4D, 

E, F). From these results, if the noise is mostly in tristable region, it's not enough to trigger all the 

transitions. Meanwhile, the magnitude of noise would affect the population distribution and time 

needed to reach it. It’s kind of trade-off between these factors.  

 

In our simulation, we chose 𝛾 = 50, 𝜏 = 0.01, 𝜎 = z{
|
≈ 70, so we can observe the reasonable 

timescale as well as stable distribution compared with our preliminary experimental results. 

 



 
 

Figure S4. Population distribution results. (A) The standard deviation σ < 30. (B) σ = 40. 
(C)	σ = 50. (D) σ = 70. (E) σ = 100. (F) σ = 120.  (G) σ = 150. (H) σ = 200.  
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10.Experiment methods 

MCF10A cells were maintained in DMEM/F12 (Gibco) supplemented with 5 % horse serum, 20 

ng/mL epidermal growth factor (EGF), 0.5 μ g/mL hydrocortisone, 5 μ g/mL insulin, 100 ng/mL 

cholera toxin, and antibiotic. The MCF10A cells containing the Z-CAD sensor were obtained 

from Dr. Jefferey Rosen (Baylor College of Medicine, Houston, TX) (48). The Z-CAD cells 

were treated with TGF-β (5 ng/mL) to induce EMT over the course of several days. Flow 

cytometry analysis were performed every 3rd Day to demonstrate the E-M transition. 

Importantly, we were able to identify changes over time in a transitioning population, 

demonstrating the ability to observe dynamic changes displaying reversible EMT characteristics. 

Finally, we also showed that a with prolonged TGF-β treatment, Z-CAD cells have permanently 

undergone EMT and are irreversible, as identified by their Z-cad sensor fluorescence pattern. 

 

 

 

 

 

 

 

 

 

 

 



11.Experimental morphology results 

 
A 
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Figure S5. (A)Morphology pictures of TGFβ1-treated MCF10A breast cancer cells vs untreated 
cells. (B)Morphology pictures of TGFβ1-treated MCF10A breast cancer cells vs results after 
withdrawing TGFβ1 for 3-9 days. 


