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Supplemental information

1.

Supplemental information presents detailed information of supplemental
results, supplemental Methods, supporting materials and programming
scripts for supplemental information.

Supplemental results include the description about Supplemental tables, the
legends of supplemental Figures, Supplemental tables and supporting data.
Supplemental Methods described in details about Feature Engineering and
sequence resampling.

Supplemental Figures were uploaded as independent files. Supplemental
Figure 19 with high resolution was provided at
https://github.com/Jamalijama/Predict_IAV_Host.

Supporting data for figures, supplemental figures and programming scripts

were also provided respectively.
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Supplemental results

1. Supplemental Tables

Supplemental table 1. List of the full-length IAV coding sequences within the
length range.

Sequence samples with the labels of Host, Subtype and Segment were listed, post the
dropout of 8,634 sequences, due to the length range or the repeated sequence IDs. The
length range was set as mean + 3 * std (2280 £9, 2274 +£9, 2151 £ 9, 1695 + 27, 1497
+ 9 and 1380 + 33, respectively for PB2, PB1, PA, HA, NP and NA).

Supplemental Table 2-7, cv_score and its rolling mean for ML models for 6
segments.

The cv_score and its rolling mean (moving average) 3 (MA3) were listed for the
model of GBRT, MLP, RFC and SVC respectively. For PB1 with MLP model, the
second downcross of cv_score with its MA3 (at the 11" feature number) was designated
as the threshold. In another word, the best feature number indicated by the MLP model
for PB1 was 10. For all models for the six segments, the cv_score and its MA3 value
were listed respectively.

2. Legends for supplemental Figures

Supplemental Figure 1. Numbers of the full-length IAV coding sequences from
different countries/areas, hosts, subtypes, segments and years.

List of all the full-length influenza A virus (IAV) coding sequences since December 31,
2018. Samples from different countries/areas (A), hosts (B), subtypes (C), segments (D)
and years (E) were counted and presented as histograms. Values were sorted on a
descending turn, and the y-axis was set with logarithmic tick for figure subpart A and
E, with linear tick for others.

Supplemental Figure 2. Distribution of the IAV sequences, post a random
resampling, in the labels of countries/areas, hosts, subtypes, segments and years.

A random resampling was performed to keep an approximate sample ratio of 1:1 for
the country of the USA and China. Samples from different countries/areas (A), hosts
(B), subtypes (C), segments (D) and years (E) were counted and presented as
histograms. Values were sorted with a descending turn, and the y-axis was set with
logarithmic tick for figure subpart A and E, with linear tick for others.

Supplemental Figure 3. Heatmap and hierarchical clustering of randomly-
sampled human and avian IAV sequences basing on the Euclidean distance of the
60 (d)nts.

59-61 sequence samples were randomly (random state = 1) selected from each
segment sequence set (3.59%o to 5.01%o of total sequences), and then were clustered
with heatmap and hierarchical clustering for PB2 (A) and the other 5 segments (B-F),
based on the Euclidean distance of the 48 di-nucleotides and the 12 mono-nucleotides
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respectively; Sequence identity and (d)nts were clustered respectively. Standardized
scaling was performed for data with the function of (x-x.mean)/x.std. Color in the
heatmap presented the value for each (d)nt in x-axis, as showing by the color bar in the
left-top. The hierarchical relationships for the sampled sequences and for (d)nts were
respectively indicated in the left and top side in each image. The red-blue column in the
left of heatmap was utilized to show the human (red) and avian (blue) group.

Supplemental Figure 4. Phylogenetic analysis of randomly-sampled IAV sequences
with maximum likelihood method.

59-61 sequence samples were randomly (random state = 1) selected from each
segment sequence set (3.59%o to 5.01%o of total sequences), and then were utilized for
phylogenetic analysis with MEGA software (MEGA 7.0.26), for PB2 (A), PB1 (B), PA
(C), HA (D), NP (E) and NA (F). The sequence ID was indicated as segment, subtype
and the strain name from left to right, respectively; the slash “/” in strain name was
automatically replaced with a blank by MEGA software.

Supplemental Figure 5. PCA analysis of the 60 (d)nts between human and avian
TAV sequences

The 48 dnts and the 12 nts for PB2 (A), PB1 (B), PA (C), HA (D), NP (E) or NA (F)
were converted into two principal components and then were plotted with pairplot
(seaborn package, python) (left-down and right-up in each figure subpart). The
distribution of principal component 1 (PCA 1) and 2 (PCA_2) of avian (blue) and
human (orange) sequences was indicated by kernel density estimation (KDE) (left-up
and right-down in each figure subpart), and the separability between avian and human
sequences was shown respectively for the six segments (A-F) , with the pairplot and
KDE.

Supplemental Figure 6. Sampling times for each of the 60 (d)nts for the PCA/SVC
optimizer for each segment.

Characterization of human adaption-associated nucleotide composition of [AVs from
the 60 (d)nts was performed with combined PCA and SVC. Independent performing
times for each (d)nt for the six segments (A-F) in the 3540 iterations of PCA/SVC.

Supplemental Figure 7. Sorting of the 60 (d)nts by the PCA / SVC optimizer for
each segment.

3540 iterations of PCA/SVC were performed with randomly-selected four of the 60
(d)nts reduced into one component classify avian and human IAV sequences. The

importance of each (d)nt was sorted according to their area under curve (AUC) score
of PCA/SVC (A-F).

Supplemental Figure 8. Difference in the PCA/SVC-optimized (d)nts between
avian and human IAV segment sequences.

The relative levels of the 9-13 optimized (d)nts for avian (A) and human (H)
sequences were plotted with boxplot, for PB2 (A), PBI (B), PA (C), HA (D), NP (E)

3



99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

and NA (F). The top whisker, the top boarder, the middle line, the bottom boarder and
the bottom whisker were respectively presented the maximum value, 75%-, 50%- and
25%- quantile values and the minimum value, and in which outliers were indicated as
diamonds.
Supplemental Figure 9. PCA analysis of the optimized (d)nts for PA and HA
between human and avian AV sequences

The optimized 11 and 13 (d)nts for PA (A) and HA (B), respectively, were converted
into two principal components and then were plotted with pairplot (seaborn package,
python) (left-down and right-up in each figure subpart). The distribution of principal
component 1 (PCA 1) and 2 (PCA 2) of avian (blue) and human (orange) sequences
was indicated by kernel density estimation (KDE) (left-up and right-down in each
figure subpart), and the separability between avian and human sequences was shown
respectively for PA (A) and HA (B), with the pairplot and KDE.

Supplemental Figure 10. PCA analysis of the optimized (d)nts for NP and NA
between human and avian AV sequences

The optimized 10 and 9 (d)nts for NP (A) and NA (B), respectively, were converted
into two principal components and then were plotted with pairplot (seaborn package,
python) (left-down and right-up in each figure subpart). The distribution of principal
component 1 (PCA_1) and 2 (PCA_2) of avian (blue) and human (orange) sequences
was indicated by kernel density estimation (KDE) (left-up and right-down in each
figure subpart), and the separability between avian and human sequences was shown
respectively for NP (A) and NA (B), with the pairplot and KDE.

Supplemental Figure 11-15. Heatmap and hierarchical clustering of human and
avian IAV sequences basing on the Euclidean distance of the optimized (d)nts.

59-61 sequence samples were randomly (random state = 1) selected from PB1, PA,
HA, NP and NA (respectively for Supplemental Figure 11-15) and then were clustered
with heatmap and hierarchical clustering, based on the Euclidean distance of the
optimized 12, 11, 13, 10 and 9 (d)nts, respectively for PB1, PA, HA, NP and NP;
Sequence identity and (d)nts were clustered respectively. Standardized scaling was
performed for data with the function of (x-x.mean)/x.std. Color in the heatmap
presented the value for each (d)nt in x-axis, as showing by the color bar in the left-top.
The hierarchical relationships for the sampled sequences and for (d)nts were
respectively indicated in the left and top side in each image. The red-blue column in the
left of heatmap was utilized to show the human (red) and avian (blue) group.

Supplemental Figure 16-18. The prediction of human adaption classes (True/False)
and the human adaption probability by the GBRT, MLP or RFC model, with
optimized (d)nts for the six segments.

The human adaption classes (True/False) and the human adaption probability of
avian and human sequences were predicted by SVC with the optimized (best) 9, 12, 11,
13, 10 and 9 (d)nts respectively for PB2, PB1, PA, HA, NP and NP, with same
optimized-(d)nt number of tail (worst) (d)nts as control, respectively. The confusion
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matrix of human adaption class prediction, the Receiver Operating Characteristic (ROC)
and Area Under ROC Curve (AUC) for the GBRT (Supplemental Figure 16), MLP
(Supplemental Figure 17) or RFC (Supplemental Figure 18), model with the worst or
with the best (d)nts were indicated respectively for PB2 (A), PB1 (B), PA (C), HA (D),
NP (E) and NA (F).

Supplemental Figure 19. Heatmap and hierarchical clustering of randomly-
sampled IAV sequences before with pd09H1N1 sequences basing on the Euclidean
distance of the 60 (d)nts.

1000 TAV sequences were randomly-resampled (random state = 1) from the [AV
sequences before 2009 for each segment, and then were clustered with the pdO9HIN1
sequences by the heatmap and hierarchical clustering methods for PB2 (A), PB1 (B),
PA (C), HA (D), NP (E) and NA (F), respectively, based on the Euclidean distance of
the optimized 9, 12, 11, 13, 10, 9 (d)nts respectively. HIN1 [AV virus strains isolated
on April, 2009 in USA were taken as example sequences. The labels of sequence ID,
host, subtype, year, country/area and human-adaption probability were isolated from
the sequence name and were indicted as a mixed sequence ID in the Heatmap and
hierarchical clustering. Host for all sequences was also indicated as blue (avian or
human), green (swine), red (avian or human) and white (pd0O9H1N1) respectively.



3. Supplemental tables

Supplemental table 1. Numbers of the sequence with the label of segment, host and subtype

Sequence number for each segment

Host Subtypes Total Total
PB2 PB1 PA HA NP NA
HIN1 387 380 354 275 328 363 2,087
Avian H3N2 223 225 230 198 199 207 1,282 68,739
Others 12,236 11,993 11,814 11,685 10,478 7,164 65,370
HIN1 7,274 7,043 7,379 13,426 5,949 7,960 49,031
Human H3N2 9,400 9,343 8,975 13,956 7,948 11,826 61,448 113,820
Others 505 470 502 776 488 600 3,341
HIN1 1,746 1,820 1,687 3579 1,832 3,409 14,073
Swine H3N2 1,293 1,303 1,212 2,336 1,274 2,203 9,621 34,990
Others 1,340 1,298 1,269 3,198 1,321 2,870 11,296
Total_Avian HIN1 12,846 12,598 12,398 12,158 11,005 7,734 68,739
Total Human  H3N2 17,179 16,856 16,856 28,158 14,385 20,386 113,820 217,549
Total Others  Others 4,379 4,421 4,168 9,113 4,427 8,482 34,990
Total / 34,404 33,875 33,422 49,429 29,817 36,602 217,549 /




Supplemental Table 2 Cross validation score and its moving average level for PB2
genomic sequences by Gradient Boosted Regression Trees (GBRT), Multiple Layer
Perception Classifier (MLP), Random Forest Classifier (RFC) and support vector

classifier (SVC).
GBRT MLP RFC SvC
(ntn cvsc MA3cv. cvsc MA3cv. cv.sc MA3cv. cv.sc MA3 cv_
um ore score ore score ore score ore score

0 0.872 0.872 0.839 0.839 0.872 0.872 0.571 0.571
1 0.964 0.918 0.941 0.89 0.963 0.918 0.891 0.731
2 0979 0.938 0.961 0914 0.98 0.939 0.865 0.776
3 0.992 0.978 0.983 0.962 0.993 0.979 0.913 0.89
4 0.993 0.988 0.977 0.974 0.993 0.989 0.934 0.904
5 0.99% 0.993 0.979 0.98 0.995 0.994 0.971 0.939
6 0.995 0.994 0.978 0.978 0.995 0.994 0.966 0.957
7 0.995 0.994 0.984 0.98 0.995 0.995 0.966 0.968
8 0.995 0.995 0.967 0.977 0.995 0.995 0.967 0.966
9 0.99 0.995 0.986 0.979 0.996 0.995 0.969 0.967
10 0.995 0.995 0.988 0.98 0.996 0.995 0.972 0.969
11 0.995 0.995 0.989 0.988 0.995 0.995 0.976 0.972
12 0.995 0.995 0.991 0.989 0.996 0.995 0.972 0.973
13 0.995 0.995 0.987 0.989 0.996 0.995 0.974 0.974
14 0.995 0.995 0.99 0.989 0.995 0.995 0.974 0.973
15 0.995 0.995 0.987 0.988 0.995 0.995 0.972 0.973
16 0.995 0.995 0.99 0.989 0.995 0.995 0.989 0.978
17 0.995 0.995 0.99 0.989 0.995 0.995 0.989 0.983
18 0.995 0.995 0.988 0.99 0.995 0.995 0.989 0.989
19 0.994 0.994 0.988 0.989 0.996 0.995 0.989 0.989
20 0.995 0.994 0.989 0.989 0.996 0.996 0.99 0.989
21  0.995 0.994 0.989 0.989 0.996 0.996 0.99 0.99
22 0.995 0.995 0.99 0.99 0.996 0.996  0.99 0.99
23 0.995 0.995 0.99 0.99 0.995 0.996 0.99 0.99
24 0.995 0.995 0.99 0.99 0.996 0.996 0.99 0.99
25 0.995 0.995 0.992 0.99 0.995 0.996 0.99 0.99
26 0.995 0.995 0.989 0.99 0.995 0.996 0.99 0.99
27 0.995 0.995 0.989 0.99 0.996 0.996 0.99 0.99
28 0.995 0.995 0.989 0.989 0.995 0.995 0.99 0.99
29  0.995 0.995 0.988 0.989 0.996 0.996 0.99 0.99
30 0.995 0.995 0.99 0.989 0.996 0.996 0.989 0.99
31 0.99 0.995 0.99 0.99 0.996 0.996 0.99 0.99
32 0.995 0.995 0.989 0.99 0.996 0.996 0.99 0.99
33 0.994 0.995 0.99 0.99 0.996 0.996 0.991 0.99
34 0.995 0.995 0.99 0.989 0.995 0.996 0.99 0.99
35 0.995 0.995 0.99 0.99 0.996 0.996 0.99 0.99

w
(o]

0.995 0.995 0.993 0.991 0.996 0.996 0.991 0.991
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37 0.995 0.995 0.992 0.992 0.996 0.996 0.991 0.991

38 0.995 0995  0.99 0.992 0.996 0.996 0.991 0.991
39 0.995 0.995 0.993 0.992 0.996 0.996 0.991 0.991
40 0.996 0.995 0.991 0.991 0.996 0.996 0.991 0.991
41 0.996 0.996 0.993 0.992 0.995 0.996 0.991 0.991
42 0.994 0.995 0.987 0.99 0.996 0.996 0.991 0.991
43 0.996 0.995 0.991 0.99 0.996 0.996 0.991 0.991
44 0.995 0995  0.99 0.989 0.996 0.996 0.991 0.991
45 0.995 0995  0.99 0.99 0.996 0.996 0.991 0.991
46  0.996 0.995 0.994 0.991 0.996 0.996 0.991 0.991
47  0.995 0.995 0.991 0.991 0.996 0.996 0.991 0.991
48 0.995 0.995 0.992 0.992 0.996 0.996 0.991 0.991
49 0.996 0.995 0.994 0.992 0.995 0.996 0.991 0.991
50 0.995 0.995 0.992 0.993 0.996 0.996 0.991 0.991
51 0.995 0.995 0.991 0.992 0.996 0.996 0.991 0.991
52 0.995 0.995 0.993 0.992 0.996 0.996 0.991 0.991
53 0.994 0.995 0.989 0.991 0.996 0.996 0.992 0.991
54 0.995 0.995 0.992 0.991 0.996 0.996 0.993 0.992
55 0.992 0.994 0.992 0.991 0.996 0.996 0.993 0.992
56 0.992 0.993 0.989 0.991 0.995 0.996 0.993 0.993
57 0.992 0.992 0.994 0.992 0.996 0.996 0.993 0.993
58 0.994 0.993 0.991 0.991 0.996 0.996 0.993 0.993
59  0.992 0.993 0.992 0.992 0.996 0.996 0.993 0.993

Supplemental Table 3 Cross_validation score and its moving average level for PB1
genomic sequences by GBRT, MLP, RFC and SVC.

GBRT MLP RFC SVvC
(ntn cvsc MA3cv. cvsc MA3cv. cv.sc MA3cv. cv.sc MA3 cv_
um ore score ore score ore score ore score
0 0912 0.912 0.88 0.88 092 092 0.878 0.878
1 097 0.941 0.963 0922 0971 0.946 0.931 0.904
2 0981 0.954 0.973 0.939 0.983 0.958 0.934 0.914
3 0984 0.978 0.972 0.969 0.985 0.98 0.935 0.933
4 00984 0.983 0.976 0.974 0.988 0.985 0.939 0.936
5 0.985 0.984 0.976 0.975 0.989 0.987 0.939 0.938
6 0.985 0.985 0.971 0.974 0.989 0.988 0.962 0.947
7 0.987 0.985 0.973 0973 0.99 0.989 0.965 0.955
8 0.989 0.987 098 0.974 0.992 0.99 0.975 0.967
9 0994 0.99 0.987 0.98 0.993 0.992 0.984 0.975
10 0.994 0.992 098 0.982 0.995 0.993 0.982 0.98
11 0.995 0.994 0.989 0.985 0.994 0.994 0.987 0.984
12 0.994 0.995 0.988 0.986 0.994 0.995 0.987 0.985
13 0.995 0.995 099 0.989 0.994 0.994 0.988 0.987
14 0.995 0.995 0.99 0.989 0.995 0.994 0.988 0.988
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59 0.996 0.996 0.996 0.994 0.996 0.996 0.992 0.992
* PB1, mlp,cv_score,rolling, amended value = 10

Supplemental Table 4 Cross validation score and its moving average level for PA
genomic sequences by GBRT, MLP, RFC and SVC.

GBRT MLP RFC SvC
(ntn cvsc MA3cv. cvsc MA3cv. cv.sc MA3cv. cv.sc MA3 cv_
um ore score ore score ore score ore score
0 0972 0.972 0.972 0972 0.972 0972 0573 0.573
1 0974 0.973 0.978 0.975 0.975 0.973 0573 0.573
2 0.989 0.979 0.957 0.969 0.987 0.978 0.787 0.644
3 099 0.984 0.937 0.957 0.989 0.984 0.854 0.738
4 0.989 0.989 0.963 0.952 0.989 0.989 0.855 0.832
5 0.987 0.989 094 0.947 0.99 0.989 0.843 0.851
6 0.987 0.988 0.939 0.947 0.99 0.99 0.865 0.854
7 0.988 0.987 0.96 0.946 0.991 0.99 0.933 0.88
8 0.987 0.988 0.963 0.954 0.99 0.99 0.934 0.91
9 099 0.989 0.966 0.963 0.992 0.991 0.929 0.932
10 0.988 0.989 0.966 0.965 0.991 0991 095 0.938
11 0.988 0.989 0.963 0.965 0.991 0.991 0.942 0.94
12 0.989 0.989 0.974 0.968 0.992 0.991 0.941 0.945
13 0.991 0.989 0.983 0.973 0.992 0992 096 0.948
14 0.993 0.991 0.984 0.98 0.993 0.993 096 0.954
15 0.992 0.992 0.978 0.981 0.992 0.993 096 0.96
16 0.993 0.992 0.978 0.98 0.993 0.993 096 0.96
17 0.993 0.993 0.981 0.979 0.993 0.993 0.967 0.962
18 0.992 0.993 0.988 0.982 0.993 0.993 0.971 0.966
19 0.993 0.993 0.985 0.984 0.993 0.993 0.972 0.97
20 0.993 0.993 0.987 0.987 0.993 0.993 0.978 0.974
21 0.994 0.993 0.983 0.985 0.994 0.993 0.978 0.976
22 0.994 0.994 0.986 0.985 0.993 0.993 098 0.979
23 0994 0.994 0.988 0.986 0.994 0.994 0.981 0.98
24 0.993 0.994 0.985 0.987 0.993 0.994 098 0.98
25 0.992 0.993 0.988 0.987 0.994 0.994 0.978 0.98
26 0.994 0.993 0.978 0.984 0.994 0.994 0.976 0.978
27 0.993 0.993 0.984 0.984 0.994 0.994 0.977 0.977
28 0.992 0.993 0.986 0.983 0.994 0.994 0.977 0.977
29 0.993 0.993 0.983 0.984 0.994 0.994 0.979 0.977
30 0.992 0.992 0.995 0.988 0.994 0.994 0.987 0.981
31 0.992 0.992 0.991 0.99 0.994 0.994 0.987 0.984
32 0.992 0.992 0.993 0.993 0.994 0.994 0.987 0.987
33 0.993 0.992 0.994 0.993 0.994 0.994 0.989 0.988
34 0.992 0.992 0.994 0.994 0.993 0.994 0.989 0.988
35 0.992 0.993 0.988 0.992 0.994 0.994  0.99 0.989
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36 0.992 0.992 0.995 0.992 0.994 0994  0.99 0.989

37 0.992 0.992 0.989 0.991 0.994 0.994 0991 0.99
38 0.992 0.992 0.994 0.993 0.994 0.994 0991 0.991
39 0.992 0.992 0.992 0.991 0.994 0.994 0991 0.991
40 0.992 0.992 0.994 0.993 0.994 0.994 0991 0.991
41 0.992 0.992 0.994 0.993 0.994 0.994 0991 0.991
42 0.992 0.992 0.994 0.994 0.994 0.994 0.993 0.992
43 0.991 0.992 0991 0.993 0.994 0.994 0.993 0.992
44 0.991 0.991 0.995 0.993 0.994 0.994 0.993 0.993
45 0.992 0.992 0.994 0.993 0.994 0.994 0.992 0.993
46 0.991 0.992 0.993 0.994 0.994 0.994 0.993 0.993
47 0.992 0.992 0.994 0.994 0.995 0.995 0.993 0.993
48 0991 0.991 0.994 0.994 0.994 0.994 0.993 0.993
49 099 0.991 0.994 0.994 0.994 0.994 0.993 0.993
50 0.99 0.991 0.993 0.994 0.994 0.994 0.993 0.993
51 0.991 0.991 0.995 0.994 0.994 0.994 0.993 0.993
52 0.992 0.991 0.995 0.994 0.994 0.994 0.993 0.993
53 0.992 0.992 0.993 0.994 0.994 0.994 0.993 0.993
54 0.992 0.992 0.992 0.993 0.994 0.994 0.993 0.993
55 0.991 0.992 0.995 0.993 0.994 0.994 0.993 0.993
56 0.991 0.991 0.995 0.994 0.994 0.994 0.993 0.993
57 0.992 0.991 0.993 0.994 0.994 0.994 0.993 0.993
58 0.992 0.991 0.994 0.994 0.994 0.994 0.994 0.993
59 0.992 0.992 0.996 0.994 0.995 0.994 0.994 0.994

Supplemental Table 5 Cross validation score and its moving average level for HA
genomic sequences by GBRT, MLP, RFC and SVC.

GBRT MLP RFC SVvC
(ntn cvsc MA3cv. cvsc MA3cv. cv.sc MA3cv. cv.sc MA3 cv_
um ore score ore score ore score ore score
0 0.785 0.785 0.647 0.647 0.895 0.895 0.696 0.696
1 0.881 0.833 0.827 0.737 0.935 0.915 0.800 0.748
2 0.960 0.875 0.871 0.781 0.976 0.936 0.814 0.770
3 0.965 0.936 0.888 0.862 0.980 0.964 0.840 0.818
4 0979 0.968 0.931 0.897 0.987 0.981 0.835 0.829
5 0.987 0.977 0.953 0.924 0.993 0.987 0.898 0.858
6 0991 0.986 0.962 0.949 0.994 0.991 0.906 0.880
7 0.993 0.990 0.962 0.959 0.995 0.994 0.917 0.907
8 0994 0.993 0.964 0.963 0.995 0.995 0.916 0.913
9 099 0.994 0.979 0.968 0.995 0.995 0.918 0.917
10 0.995 0.994 0.980 0.974 0.995 0.995 0.918 0.917
11 0.995 0.995 0.982 0.980 0.996 0.995 0.943 0.926
12 0.993 0.994 0.985 0.982 0.996 0.995 0.961 0.941
13 0.993 0.994 0.986 0.984 0.997 0.996 0.968 0.957

11



14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

0.993
0.992
0.995
0.995
0.995
0.994
0.995
0.995
0.995
0.995
0.995
0.992
0.996
0.995
0.995
0.995
0.996
0.996
0.996
0.996
0.996
0.996
0.997
0.996
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.996
0.996
0.997
0.997
0.996
0.997
0.996
0.996
0.997
0.997
0.997
0.997

0.993
0.993
0.993
0.994
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.994
0.994
0.994
0.995
0.995
0.995
0.996
0.996
0.996
0.996
0.996
0.996
0.996
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.996
0.996
0.997
0.997
0.997
0.996
0.996
0.996
0.997
0.997
0.997

0.985
0.989
0.992
0.993
0.989
0.992
0.992
0.990
0.993
0.993
0.994
0.994
0.993
0.993
0.993
0.988
0.993
0.993
0.994
0.994
0.990
0.994
0.993
0.995
0.996
0.996
0.994
0.994
0.995
0.995
0.994
0.995
0.994
0.996
0.995
0.996
0.994
0.996
0.994
0.995
0.995
0.996
0.996
0.995

0.985
0.987
0.989
0.992
0.991
0.991
0.991
0.991
0.992
0.992
0.994
0.994
0.994
0.993
0.993
0.991
0.991
0.991
0.993
0.994
0.993
0.993
0.992
0.994
0.995
0.996
0.995
0.995
0.994
0.994
0.995
0.994
0.994
0.995
0.995
0.996
0.995
0.995
0.995
0.995
0.995
0.995
0.996
0.996
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0.996
0.996
0.996
0.996
0.996
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.996
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.996
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997

0.996
0.996
0.996
0.996
0.996
0.996
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997

0.968
0.970
0.976
0.978
0.978
0.979
0.981
0.982
0.981
0.982
0.984
0.984
0.984
0.986
0.986
0.986
0.988
0.988
0.989
0.989
0.989
0.990
0.992
0.992
0.993
0.993
0.993
0.993
0.993
0.994
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.994
0.994
0.994
0.994

0.966
0.969
0971
0.975
0.978
0.978
0.979
0.981
0.982
0.982
0.983
0.983
0.984
0.985
0.985
0.986
0.987
0.987
0.988
0.989
0.989
0.990
0.990
0.991
0.992
0.992
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.993
0.994
0.994
0.994
0.994



58 0.996 0.996 0.995 0.995 0.997 0.997 0.994 0.994
59 0.997 0.996 0.996 0.995 0.997 0.997 0.994 0.994

Supplemental Table 6 Cross validation score and its moving average level for NP
genomic sequences by GBRT, MLP, RFC and SVC.

GBRT MLP RFC SvC
(ntn cvsc MA3cv. cvsc MA3cv. cv.sc MA3cv. cv.sc MA3 cv_
um ore score ore score ore score ore score
0 0.737 0.737 0.668 0.668 0.822 0.822 0.657 0.657
1 0916 0.827 0.829 0.749 0.952 0.887 0.664 0.661
2 00938 0.864 0.794 0.764 0.966 0913 0.673 0.665
3 0974 0.942 0.921 0.848 0.977 0.965 0.616 0.651
4 0991 0.968 0.967 0.894 0.993 0.979 0.859 0.716
5 0994 0.986 0.972 0.954 0.995 0.988 0.962 0.812
6 0.995 0.993 0.982 0.974 0.995 0.994 0.982 0.934
7 0.995 0.995 0.993 0.982 0.995 0.995 0.994 0.979
8 0994 0.994 0.993 0.989 0.995 0.995 0.994 0.99
9 0.993 0.994 0.994 0.993 0.995 0.995 0.995 0.994
10 0.993 0.993 0.994 0.994 0.995 0.995 0.995 0.995
11 0.994 0.993 0.994 0.994 0.995 0.995 0.995 0.995
12 0.994 0.994 0.994 0.994 0.995 0.995 0.995 0.995
13 0994 0.994 0.994 0.994 0.995 0.995 0.995 0.995
14 0.995 0.995 0.994 0.994 0.996 0.995 0.995 0.995
15 0.995 0.995 0.994 0.994 0.996 0.996 0.995 0.995
16 0994 0.995 0.994 0.994 0.995 0.995 0.995 0.995
17 0.994 0.994 0.993 0.994 0.996 0.995 0.995 0.995
18 0.994 0.994 0.994 0.994 0.996 0.996 0.995 0.995
19 0994 0.994 0.994 0.994 0.996 0.996 0.996 0.995
20 0.994 0.994 0.994 0.994 0.996 0.996 0.996 0.995
21 0.994 0.994 0.993 0.994 0.996 0.996 0.996 0.996
22 0.994 0.994 0.993 0.993 0.996 0.996 0.996 0.996
23 0.993 0.994 0.992 0.993 0.996 0.996 0.996 0.996
24 0.994 0.994 0.994 0.993 0.996 0.996 0.996 0.996
25 0.994 0.994 0.994 0.994 0.996 0.996 0.995 0.996
26 0.994 0.994 0.993 0.994 0.995 0.996 0.996 0.996
27 0.994 0.994 0.993 0.994 0.996 0.996 0.996 0.996
28 0.994 0.994 0.994 0.994 0.995 0.995 0.996 0.996
29 0.993 0.994 0.995 0.994 0.996 0.996 0.996 0.996
30 0.994 0.994 0.994 0.994 0.995 0.995 0.996 0.996
31 0.993 0.994 0.995 0.994 0.996 0.996 0.996 0.996
32 0.993 0.994 0.994 0.994 0.995 0.995 0.996 0.996
33 0.99%4 0.994 0.994 0.994 0.995 0.995 0.996 0.996
34 0994 0.994 0.995 0.994 0.995 0.995 0.995 0.996
35 0.993 0.994 0.994 0.994 0.996 0.995 0.995 0.995
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36 0.994 0.994 0.995 0.994 0.996 0.995 0.996 0.996

37 0.993 0.994 0.994 0.994 0.996 0.996 0.996 0.996
38 0.993 0.994 0.995 0.995 0.995 0.996 0.996 0.996
39 0.994 0.993 0.994 0.994 0.996 0.996 0.996 0.996
40 0.994 0.994 0.995 0.994 0.995 0.995 0.996 0.996
41 0.994 0.994 0.995 0.994 0.995 0.995 0.996 0.996
42 0.994 0.994 0.994 0.994 0.995 0.995 0.996 0.996
43 0.993 0.993 0.995 0.994 0.996 0.995 0.996 0.996
44 0.993 0.993 0.994 0.994 0.995 0.995 0.996 0.996
45 0.994 0.993 0.994 0.994 0.996 0.996 0.996 0.996
46 0.992 0.993 0.994 0.994 0.996 0.995 0.996 0.996
47 0.994 0.993 0.993 0.994 0.995 0.995 0.996 0.996

48 0.994 0.993 0.994 0.994 0.995 0.995 0.996 0.996
49 0.994 0.994 0.994 0.994 0.995 0.995 0.996 0.996
50 0.994 0.994 0.994 0.994 0.996 0.995 0.996 0.996
51 0.994 0.994 0.995 0.994 0.995 0.995 0.996 0.996

52 0.993 0.994 0.993 0.994 0.994 0.995 0.996 0.996
53 0.995 0.994 0.993 0.994 0.995 0.995 0.996 0.996
54 0.994 0.994 0.995 0.994 0.995 0.995 0.996 0.996
55 0.995 0.995 0.995 0.994 0.996 0.995 0.996 0.996
56 0.994 0.994 0.996 0.995 0.996 0.995 0.996 0.996
57 0.995 0.995 0.994 0.995 0.995 0.995 0.996 0.996
58 0.994 0.994 0.994 0.995 0.995 0.995 0.996 0.996
59 0.995 0.995 0.995 0.994 0.995 0.995 0.996 0.996

Supplemental Table 7 Cross_validation score and its moving average level for NA
genomic sequences by GBRT, MLP, RFC and SVC.

GBRT MLP RFC SVvC
(ntn cvsc MA3cv. cvsc MA3cv. cv.sc MA3cv. cv.sc MA3 cv_
um ore score ore score ore score ore score
0 093 0.93 0.909 0.909 0.943 0.943 0.905 0.905
1 0954 0.942 0.939 0.924 0.962 0.953 0.912 0.908
2 0.984 0.956 0.976 0.941 0.986 0.964 0.973 0.93
3 0.987 0.975 0.978 0.964 0.987 0.979 0.973 0.953
4 0987 0.986 0.978 0.978 0.988 0.987 0.978 0.975
5 0.992 0.989 0.988 0.981 0.993 0.99 0.988 0.98
6 0.993 0.991 0.989 0.985 0.994 0.992 0.989 0.985
7 0.993 0.993 0.989 0.989 0.994 0.994 0.989 0.988
8 0.993 0.993 0.989 0.989 0.994 0.994 0.989 0.989
9 0.993 0.993 0.988 0.989 0.994 0.994 0.988 0.989
10 0.993 0.993 0.987 0.988 0.994 0.994 0.989 0.989
11 0.994 0.993 0.988 0.988 0.995 0.994 0.989 0.989
12 0.994 0.994 0.991 0.989 0.995 0.995 0.991 0.99
13 0994 0.994 099 0.99 0.994 0.995 0.991 0.99
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14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

0.994
0.995
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.995
0.994
0.994
0.994
0.993
0.994
0.994
0.994
0.994
0.995
0.994
0.994
0.994
0.993
0.995
0.994
0.994
0.994
0.993
0.994
0.994
0.995
0.994
0.994
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.994
0.995

0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.993
0.994
0.994
0.994
0.994
0.994
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995

0.991
0.992
0.993
0.993

0.99
0.991
0.992
0.994
0.992
0.994
0.993
0.994
0.994
0.993
0.994
0.994
0.995
0.992
0.995
0.994
0.994
0.995
0.994
0.994
0.993
0.992
0.993
0.993
0.994
0.993
0.991
0.994
0.994
0.993
0.994
0.993
0.994
0.991
0.993
0.993
0.994

0.99
0.991
0.991

0.991
0.991
0.992
0.993
0.992
0.991
0.991
0.992
0.992
0.993
0.993
0.994
0.994
0.994
0.994
0.994
0.994
0.993
0.994
0.994
0.994
0.995
0.994
0.994
0.994
0.993
0.993
0.992
0.993
0.993
0.993
0.993
0.993
0.994
0.994
0.993
0.993
0.993
0.993
0.992
0.993
0.992
0.992
0.991
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0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.996
0.995
0.995
0.996
0.996
0.996
0.995
0.995
0.995
0.996
0.995
0.996
0.995
0.996
0.996
0.995
0.995
0.995
0.995
0.996
0.996
0.996
0.996
0.995
0.996
0.997
0.996
0.995
0.996
0.995
0.995
0.996
0.996
0.997
0.996

0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.996
0.996
0.996
0.996
0.996
0.995
0.995
0.995
0.995
0.995
0.995
0.996
0.996
0.996
0.996
0.995
0.995
0.995
0.996
0.996
0.996
0.995
0.996
0.996
0.996
0.996
0.995
0.995
0.996
0.996
0.996
0.996
0.996

0.991
0.994
0.994
0.994
0.994
0.994
0.994
0.994
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995

0.991
0.992
0.993
0.994
0.994
0.994
0.994
0.994
0.994
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995
0.995



58 0.995 0.995 0.993 0.992 0.996 0.996 0.995 0.995
59 0.995 0.995 0.992 0.992 0.996 0.996 0.995 0.995
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Supplemental Methods
Supplemental information about Feature Engineering and sequence resampling

Supplemental information about Feature Engineering

Feature engineering and feature selection were most important for machine learning
analysis. Biologically, there is a species barrier for human and avian influenza viruses,
and there should be a linear separability of genotype and phenotype between both
groups of viruses. Here, we supposed that the genomic composition of mono- or di-
nucleotide is associated with the linear separability. In another word, there should be a
hyper plane with a margin between avian and human viruses in genomic composition.
We supposed that the human/avian-IAV-separability should be consistently linear and
make sense biologically. In this context, support vector classifier (SVC) was the best
choice. In the case of SVC, data points are viewed as n-dimensional vectors multiply
m-number, and it is to separate such points with a hyperplane with maximum-margin.
The nonlinear separators, Gradient Boosted Regression Trees (GBRT), Random Forest
Classifier (RFC) and Multiple Layer Perception Classifier (MLP), which are based on
neural network (MLP) or decision tree (RFC and GBRT), are grown very deep tend to
learn highly irregular patterns, at the expense of a small increase in the bias and some
loss of interpretability, let alone the biological separability. However, to avoid over-
fitting, we adjusted the optimized (d)nt number of SVC, via averaging it with the
optimized (d)nt number with MLP, RFC and GBRT classifiers.

SVC was the optional model. Thus, SVC was used as main supervised machine
learning model for both feature selection and sample classification. SVC was used
firstly for (d)nt sorting, secondly for (d)nt optimization, along with principal component
analysis (PCA), thirdly as train final classifier with the optimized (d)nts. The (d)nt
optimization was performed using four types of machine learning approaches, SVC,
GBRT, RFC and MLP. methods.

As Supplementary Figure 3 shown, avian and human sequences were not well
classified separately with the 60 (d)nt features. Moreover, as compositional information,
the 60 (d)nt features were theoretically not independent of each other, and there was a
feature redundancy for the 60 (d)nts. Thus, PCA is used to reduce the dimensionality of
batches of (d)nt features before SVC analysis for the feature selection. If there was a
higher dependence/correlation between/among a batch of (d)nt features, the AUC score
of SVC would be lower post dimensionality reduction of (d)nt features by PCA. In
addition, it is time-saving for the calculation of only one PCA value, rather a feature
matrix.

Theoretically, to identify every possible dependence of (d)nt features, every possible
combination of (d)nt features, with various feature number (a combination of m features
from n features, 2< = m <= 30,since combination (60,m)= combination (60,(60-m))),
should be utilized for the PCA/SVC feature selection. However, it is a huge job to
exhaust all combinations. Here, we selected 2*combination (60, 2) (3,540) as sampling
times for a random sampling of four features from the 60 features for the feature
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selection with PCA/SVC. As shown in Supplementary Figure 6, more than 200 times
were sampled for each of the 60 features in such process. For each time of PCA/SVC
analysis, AUC score was taken as the feature importance value for each of the four
sampled features. According to the average (n>200) AUC score, the 60 (d)nt features
were sorted.

Finally, SVC, MLP, RFC and GBRT with accumulating (d)nt features were
performed again for (d)nt number optimization. The feature list was updated for each
round of SVC analysis, with top n (n =n +1 for n in range [1,59]) (d)nt features from
the sorted feature list. The 60 AUC score value of the 60 iteration of machine learning
analysis were utilized for the final (d)nt number optimization.

Supplemental information about sequence resampling

Resampling was performed via pandas.DataFrame.sample (Python) with a float ratio
multiplying the segment sequence number, and the final sequence number was an
integral number (the Integral function in python is just removing the float, not same as
the Rounding function). Thus, 59-61 segment sequence samples were produced for
phylogeny and hierarchical clustering analysis, 46, 042 human-adaptive sequences and
46, 488 human-inadaptive avian sequences were produced for feature extraction and
model building, with not the same sample number for avian and human sets.
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Supporting data

Supporting data includes the sequence ID table, the supporting data for Figures and
for supplementary Figures. Supporting data was available online:
https://github.com/Jamalijama/Predict IAV_Host.

Code availability

The project code available at following website:

https://github.com/Jamalijama/Predict IAV_Host.
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Supplemental Figure 1
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GBRT for NP, with the 10 worst (d)nts

Confusion matrix by gbrt for NP

ROC_AUC for NP by gbrt, with 10 worst (d)nts
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MLP for NP, with the 10 worst (d)nts

Confusion matrix by mip, for NP ROC_AUC for NP by mip, with 10 worst (d)nts
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Supplemental Figure 19
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