Supplementary Biology (SB)

Figure SB1. Activation of four different signaling pathways (cAMP, IP₁, ERK1/2 and CREB phosphorylation) at four different receptors (CTR, AMY₁₋₃) with four different ligands (amylin, CGRP, calcitonin and pramlintide). Data are mean \pm s.e.m. of 3-5 biological replicates, as detailed in Tables SB1-4. Data were normalized to human amylin (hAMY) in each experiment. pERK1/2 data are the 15 minute time point.

Supplementary biology data tables 1-4

Data are mean \pm s.e.m. of *n* biological replicates, reporting activation of four different signaling pathways (cAMP, IP₁, ERK1/2 and CREB phosphorylation) at four different receptors (CTR, AMY₁₋₃) with four different ligands (amylin, CGRP, calcitonin and pramlintide). Data were normalised to hAMY in each experiment and E_{max} values are % hAMY.

Table SB1. Signaling Pathways CT_(a)

		c	AMP					IP1				ERK1	/2 (7 min))			ERK1/	2 (15 mir	ı)			C	REB		
	pEC ₅₀	SEM	Emax	SEM	n	pEC ₅₀	SEM	Emax	SEM	n	pEC50	SEM	Emax	SEM	n	pEC50	SEM	Emax	SEM	n	pEC50	SEM	Emax	SEM	n
hCT	10.2	0.07	149	23.2	5	8.16	0.02	132	12.1	4	8.29	0.12	147	13.8	4	8.68	0.08	145	10.0	4	10.9	0.18	94.4	6.90	4
hAMY	8.73	0.21	100		5	6.49	0.04	100		4	7.08	0.14	100		4	7.48	0.26	100		4	9.06	0.10	100		5
Pramlintide	8.85	0.22	127	20.2	5	6.41	0.06	84.2	12.1	4	7.04	0.18	137	15.4	4	7.50	0.29	128	32.2	4	9.47	0.22	95.5	15.9	5
haCGRP	7.49	0.13	66.0	6.20	5	<5	5			4	<5				4	7.76	0.28	33.6	9.20	4	7.77	0.33	82.6	25.2	5

Table SB2. Signaling Pathways AMY_{1(a)}

		C.	AMP					IP1				ERK1	/2 (7 min)			ERK1/	2 (15 mir	ı)			С	REB		
	pEC50	SEM	Emax	SEM	n	pEC ₅₀	SEM	Emax	SEM	n	pEC50	SEM	Emax	SEM	n	pEC50	SEM	Emax	SEM	n	pEC50	SEM	Emax	SEM	n
hCT	9.62	0.11	118	12.7	5	7.35	0.09	142	5.80	4	8.36	0.10	158	16.9	4	8.55	0.17	146	22.0	4	10.6	0.24	93.7	6.60	5
hAMY	8.77	0.37	100		5	6.76	0.13	100		4	8.14	0.11	100		4	8.40	0.15	100		4	9.99	0.28	100		5
Pramlintide	9.53	0.17	102	13.0	5	7.09	0.17	76.1	5.90	4	8.22	0.16	161	14.4	4	8.43	0.17	122	11.7	4	10.9	0.21	95.8	17.6	4
haCGRP	9.39	0.28	76.2	7.10	5	7.05	0.10	34.5	5.80	4	8.39	0.14	99.9	9.50	4	8.55	0.19	101	15.0	4	10.4	0.15	80.7	24.0	5

Table SB3. Signaling Pathways AMY_{2(a)}

		C.A	AMP					IP1				ERK1	/2 (7 min))			ERK1/	2 (15 mir	ı)			С	REB		
	pEC ₅₀	SEM	Emax	SEM	n	pEC ₅₀	SEM	Emax	SEM	n	pEC ₅₀	SEM	Emax	SEM	n	pEC ₅₀	SEM	Emax	SEM	n	pEC ₅₀	SEM	Emax	SEM	n
hCT	10.1	0.17	126	10.0	5	7.36	0.18	195	49.1	4	8.22	0.05	172	5.90	4	8.56	0.21	171	15.7	4	10.6	0.24	133	7.70	5
hAMY	8.66	0.11	100		5	5.90	0.24	100		4	7.50	0.20	100		4	7.67	0.09	100		4	9.14	0.22	100		5
Pramlintide	9.23	0.17	91.4	6.60	5	5.95	0.05	75.0	14.4	4	7.39	0.26	126	19.7	4	7.70	0.16	132	9.30	4	9.77	0.47	133	12.4	5
haCGRP	8.21	0.18	62.0	6.90	5	<5	5			4	7.49	0.38	49.3	11.7	4	7.64	0.29	57.9	12.0	4	8.45	0.29	92.0	6.80	4

Table SB4. Signaling Pathways AMY_{3(a)}

		C.A	AMP					IP1				ERK1	/2 (7 min))			ERK1/	2 (15 mir	ı)			С	REB		
	pEC ₅₀	SEM	Emax	SEM	n	pEC ₅₀	SEM	Emax	SEM	n	pEC50	SEM	Emax	SEM	n	pEC ₅₀	SEM	Emax	SEM	n	pEC50	SEM	Emax	SEM	n
hCT	9.85	0.17	111	5.70	5	7.62	0.20	132	13.1	4	8.31	0.12	151	7.70	5	8.73	0.18	175	17.3	4	10.5	0.15	123	13.8	5
hAMY	9.32	0.18	100		5	6.33	0.10	100		4	7.96	0.16	100		5	8.30	0.33	100		4	10.0	0.14	100		5
Pramlintide	9.65	0.14	102	4.10	5	6.46	0.18	72.8	3.70	4	7.72	0.29	115	7.20	5	8.67	0.35	151	28.2	4	11.0	0.21	112	7.40	5
haCGRP	8.39	0.23	66.9	5.80	5	<5	5			3	7.95	0.49	60.3	18.5	5	7.97	0.41	58.2	1.90	4	9.13	0.07	84.3	12.2	5

Figure SB2. Amino acid sequence alignment of amylins from different species. The majority of sequences are of pre-pro amylin with only the predicted mature fully processed sequence listed. Sequences that are not complete correspond to partial. The residues are color-coded according to their properties as follows: dark blue/purple, positive; red, negative or small polar; purple, polar; blue/cyan, aromatic; green large hydrophobic; yellow, small hydrophobic. This corresponds to the 'Taylor' scheme, as implemented in Jalview¹. The annotations indicate the conservation, quality of the alignment and the consensus.

				10			2	0			30		
Human:	KCN	T A T	CA	TQ	LA	N F L V	HSS	NN	FGAI	LSS	TNV	GSN	I T Y
Bovine:	KCG	ГАТ	CE	TQ	LA	N F L A	PSS	NK	LGAI	FSP	ткм	GSN	<mark>IT</mark> Y
Wild Yak:	KCG	ГАТ	CE	TQ		N F L A	PSS	NK	LGAI	SSP	ткм	GSN	<mark>IT</mark> Y
Rat:	KCN	ГАТ	CA	то			RSS	NN	LGPV		TNV	GSN	N T Y
Naked Mole Rat	KCN	ГΔТ	CT	IOF			RSS	HN	GAV		TDV	GS	J T Y
Mouse	KCN	ГАТ	C A	то			RSS	NN	GPV		TNV	GS	i t v
Garnett's Greater Bushhahv	KCN	ГАТ	CA	TO			PSS	NN	EGAN	HEP	TNV	GS	i t v
Gray Short-tailed Onossum	KCN		CV	TO D				N N			TNV		itv
Goldon Homotor:	KCN		C A	tõ	122						TNV		i + 🗸
Chinaga Hamatari	KCN	.		+ ~	1.2	1210							
	KCN												
Degu	KCN						RSS					GSI	11.
Ferret:	KCN		CV				RSS	NN	GAI			GSI	<u>. </u>
Thirteen-lined_Ground_Squirrel:	KCN		CA	TQ	LA		RSS	HN	LGAV	LST	TNV	GSI	AT Y
Chinese_Tree_Shrew:	KCN		CA	TQ	LA		RSS	NN	LGAV	LPP	TNV	GSN	AT Y
Horse:	KCD		cv	TQ			HSS	NN	L <mark>GA</mark> I	LSP	TSV	GSN	1 T Y
Porcine:	KCN	I A T	CA	TQI			RSR	N N		FSP	TKV	GSN	IT Y
Guinea	KCN		CA	TQ			RSS	HN			TDV	GSN	IT Y
Green_Monkey:	KCN		CA	TQ			RSS	NN	FGTI	LSS		GSN	1 T Y
Rhesus_Macaque:	KCN		CA	TQ			RSS	NN	FGTI	LSS	TNV	GSN	I T Y
Crab-eating_Macaque:	KCN		CA	TQ			RSS	NN	FGTI	LSS	тп∨	GSN	I T Y
Hamadryas_Baboon:	ICN		CA	TQ	R L A I		RSS	NN	FGTI	LSS	ТΝ∨	GSN	I T Y
Olive			CA	TQ			RSS	NN	FGTI	LSS	TNV	GSN	1 T Y
Chimpanzee:	KCN		CA	τQ			RSS	NN	F G A I	LSS	тп∨	GSN	I T Y
Gorilla:	KCN	r v t	CA	TQ			RSS	NN	F <mark>G</mark> A I	LSS	TN∨	GSN	I T Y
Northern_White-cheeked_gibbon			CA	TQ			RSS	NN	F <mark>G</mark> A I	LSS	TNV	GSN	A T Y
Cat:	KCN	r a t	CA	TQ			RSS	NN	L <mark>G</mark> A I	LSP	TNV	GSN	I T Y
Dog:	KCN	ΓΑΤ	CA	TQ			RTS	NN	L <mark>G</mark> A I	LSP	TNV	GSN	N T Y
Bears:	KCN	ΓΑΤ	CA	TQ			RSG	NN	L <mark>G</mark> A I	LSP	TN∨	GSN	I T Y
Spectacled_Bear:	KCN	ΓΑΤ	CA	TQ			RSS	NN	L <mark>G</mark> A I	LSP	TNV	GSN	A T Y
Giant_Panda:	KCN	ΓΑΤ	CA	TQ			R S S	NN	L <mark>GA</mark> I	LSP	TNV	GSN	I T Y
Puffer_Fish:	KCN	ΓΑΤ	cv	TQ	R L A		RSS	NT	IGTV	(YAP	TN∨	G S 1	ΓT <mark>Υ</mark>
Spotted_Green_Pufferfish:	KCN	ΓΑΤ	cv	TQ	R L A		R S S	NT	IGTV	'YAP	TN∨	G <mark>S</mark> /	A T Y
Gold_Fish:	KCN	Γ <mark>Α</mark> Τ	CV	TQ	R L A	FLV	RSS	NT	<mark>R</mark> G T V	Y A P	TΝV	GA	IT Y
Nile_Tilapia:	KCN	ГАТ	CV	TQ	LA	FLV	RSS	NT	IGTV	Υ <mark>ΑΡ</mark>	TNV	GS/	λ T Y
Beira_Killifish:	KCN	ГАТ	cv	TQ	R L A	FLV	RSS	N T	IGTV	Y V P	TNV	GSS	5 T Y
Chicken:	KCN	ГАТ	CV	TQ	LA	FLV	RSS	S N	I <mark>G</mark> A I	YSP	TNV	GSN	N T Y
Common_Turkey:	KCN	ГАТ	CV	TQ	R L A	FLV	RSS	S N	I <mark>G</mark> A I	YSP	TNV	GSN	N T Y
Common_Cuckoo:	KCN	ГАТ	cv	TQ	LA	FLV	RSS	NS	I <mark>G</mark> A I	YPP	T N ∨	GSN	N T Y
Common_Ostrich:	KCN	ГАТ	cv	TQ	R L A	FLV	RSS	ΝN	I <mark>G</mark> A I	YSP	T N V	GSN	<mark>IT</mark> Y
Emperor_Penguin:	KCN	ГАТ	cv	TQ	LA	FLV	RSS	ΝN	I <mark>G</mark> A I	YSP	T N ∨	GSN	N T Y
Zebra_Finch:	KCN	ГАТ	cv	TQ	LA	FLV	RSS	SS	LGAL	Y P P	T N ∨	GSN	N T Y
Bengalese Finch:	KCN	ГАТ	cv	TQ	LA	FLV	RSS	SS	LGAL	Y P P	T N V	GSN	<mark>IT</mark> Y
Rifleman Bird:	KCN	ГАТ	cv	TQ	LA	FLV	RSS	SH	I <mark>G</mark> A I	YSP	TNV	GSN	<mark>IT</mark> Y
Mallard:	KCN	ГАТ	cv	TQ	LA	FLV	RSS	SN	I <mark>G</mark> A I	YSP	T N V	GSN	<mark>IT</mark> Y
Crested_Crane:	KCN	ГАТ	cv	TQ	LA	FLV	RSS	NN	I <mark>G</mark> A I	YSP	T N ∨	GSN	<mark>IT</mark> Y
Chinese_Softshell_Turtle:	KCN	ГАТ	cv	TQ	LA	FLV	RSS	ΝN	I <mark>G</mark> A I	YSP	T N ∨	GSN	<mark>IT</mark> Y
Green_Anole:	RCN	ГАТ	cv	TQ	LA	FLV	RSS	NT	I <mark>G</mark> A I	YSP	TNV	GSN	<mark>IT</mark> Y
American_alligator:	KCN	ГАТ	cv	TQ	LA	FLV	RSS	NH	I <mark>G</mark> A I	YSP	T N ∨	GSN	N T Y
King_Cobra:	KCN	ГАТ	cv	TQ	LA	FLV	RSS	NT	IGTI	YAP	T N ∨	GSN	<mark>IT</mark> Y
Rabbit:	KCN	г <mark>ит</mark>	CA	TQ	LA	N F L I	HS S	NN	F <mark>G</mark> A I	FSP	PSV	GS-	
Western_European_Hedgehog:	RCN	ГАТ	CA	TQ	R L V	N F L S	RSS	NN	L <mark>G</mark> A I	LSP	TDV	<mark>G</mark>	
Sheep:	G	ГАТ	CE	TQ	LA	N F L A	PSS	NK	L <mark>G</mark> A I	FSP	ткм	GS -	
Cotton-top_Tamarin:	N	ГАТ	CS	MHF	LA	FLG	RSS	NN	F <mark>G</mark> A I	LSP	TNV	G <mark>S</mark> -	
Hare:				TQ	LA	N F L I	HS S	NN	F <mark>G</mark> AF	LPP	Т		
Red Kangaroo:				TQ	LA	FLV	RSN	INN	MGAI	FSP	T N V	<mark>G</mark>	
Salmon:		· - 🗖	CA	TQ	LA	FLT	RSS	NT	I G T V	YAP	TNV	G <mark>S</mark> -	
Zebrafish:						T	RSS	SP	IGTV	' <mark>N</mark> AP	TΝV	GS-	
_			1										
Conservation	021	222	20		. * 7 *	2 * * 5	3 + 0	4.4	8 * 6 7	747	+ 1 9	• 2 4	122
	5214		20							141	- 40	-	23
Quality	-												
-			_		_		_	_	-	_			
Consensus													
2011000	KCN	TAT	CA	TQF	RLAI	NFLV	RSS	NNI	LGAI	LSP	TNV	GSN	ITY

Figures SB3-21. cAMP production by peptide analogues or competition binding data, as indicated. Data are mean \pm s.e.m. of *n* biological replicates as shown. **P* <0.05 by unpaired *t*-test for pEC₅₀ or pIC₅₀ or where 95% confidence intervals did not include 100 for E_{max}.

Figure SB3. C-terminal Alanine Analogues: hCT_(a)

-25

-50 ŏ -12 -11 -10 -9 -8 log [peptide] (M)

-7 -6 -5

Figure SB8. C-terminal Exchange Between CGRP and Amylin: F37Y CGRP

Figure SB9. *C*-terminal Exchange Between human calcitonin and amylin: P32Y hCT, Y37P hAMY. a) cAMP production and b) Binding for hAMY and Y37P hAMY or hCT and P32Y hCT at the AMY₁ receptor.

а

Figure SB10. *N*-terminal Loop Analogues hCT_(a). DR, second synthesis of this peptide in DR laboratory.

Figure SB11. N-terminal Loop Analogues: hAMY_{1(a)}

Figure SB17. Alanine to Serine Substitution: Position 5

Figure SB18. Predicted helical propensity of selected peptides at 5 or 25°C, pH 7.4, and an ionic strength of .14 M

Supplementary data tables 5-7

Data are mean \pm s.e.m. of *n* biological replicates, reporting cAMP production for three different receptors by peptide analogues. Data were normalized to hAMY in each experiment and E_{max} values are % hAMY, or pramlintide for the relevant analogue. For Table SB6, binding data are also shown. **P* <0.05 by unpaired *t*-test for pEC₅₀ and pIC₅₀ or where 95% confidence intervals did not include 100 for E_{max} . Statistically significant increases or decreases are shaded as indicated. ND, not done.

	decrease			increase		
	pEC50	SEM	Fold change	Emax	SEM	n
hAMY	8.60	0.32	13	100		6
K1A	8.70	0.18	1.5	89.3	10.8	0
hAMY	8.86	0.11	2.0	100		7
N3A	8.56*	0.07	-2.0	103	8.65	/
hAMY	8.65	0.18	4.1	100		7
T4A	8.04*	0.08	-4.1	92.3	6.45	/
hAMY	8.12	0.17	1.4	100		5
A5G	7.97	0.19	-1.4	118	28.7	5
hAMY	8.23	0.13	16	100		5
T6A	7.04*	0.17	-10	41.8*	3.64	5
hAMY	8.58	0.24	10	100		6
A8G	7.57*	0.13	-10	79.2*	6.27	0
hAMY	8.83	0.20	15	100		5
T9A	7.65*	0.23	-13	98.9	13.3	5
hAMY	8.71	0.15	15	100		0
Q10A	9.88*	0.28	15	169*	18.5	0
hAMY	8.55	0.31	2.4	100		6
R11A	8.02	0.50	-3.4	113	14.0	0
hAMY	8.73	0.14		100		5
L12A	7.09*	0.10	-++	151	28.4	5
hAMY	8.62	0.15	7 2	100		6
A13G	7.67*	0.18	-7.5	134	26.6	0
hAMY	8.38	0.16	6.5	100		0
N14A	9.19*	0.11	0.5	146	25.5	9
hAMY	8.69	0.33	57	100		6
F15A	7.93	0.10	-3.7	74.1*	7.31	0
hAMY	8.33	0.16	2.0	100		7
L16A	8.02	0.35	-2.0	119	14.7	/
hAMY	8.40	0.16	8 5	100		10
V17A	9.33*	0.26	8.5	164*	26.7	10
hAMY	8.67	0.14	2.2	100		5
I26A	8.31	0.08	-2.3	101	6.12	3
hAMY	8.53	0.14	-3.0	100		5
L27A	8.06	0.16	-5.0	98.7	5.31	5
hAMY	8.53	0.14	1.5	100		5
S28A	8.37	0.15	-1.5	113	17.7	3
hAMY	8.60	0.17	-2.0	100		5
S29A	8.30	0.18	-2.0	102	5.92	3
hAMY	8.89	0.26	-5.6	100		4
T30A	8.14*	0.10	-5.0	132	19.4	7
hAMY	8.89	0.26	-47	100		4
N31A	8.22*	0.09	/	114	14.7	•
hAMY	8.76	0.25	-2.5	100		5
V32A	8.37	0.15	2.0	112	5.08	ž
hAMY	8.42	0.13	-1.6	100	_	4
G33A	8.23	0.05		113	5.55	
hAMY	8.43	0.10	1.2	100		5
S34A	8.50	0.06		109	7.57	-
hAMY	8.23	0.15	-1.6	100	40.5	4
N35A	8.02	0.23		107	12.2	
hAMY	8.23	0.15	-1.4	100		4
T36A	8.10	0.06		123	9.20	
hAMY	8.23	0.15	1.1	100		4
Y37A	8.25	0.07	-	101	3.36	
hAMY	8.84	0.19	-13	100		3
hAMY1-17	6.72*	0.27		65*	6.27	5

Table SB5. Analogues CT_(a).

Г

T

	pEC ₅₀	SEM	Fold change	Emax	SEM	n
hAMY	8.68	0.16	260	100		5
hAMY8-37	6.26*	0.19	-200	64.3*	7.70	3
hAMY	8.55	0.18	12	100		2
hAMYAc8-37	6.93*	0.06	-42	80.2	6.13	3
hAMY	8.89	0.29	690	100		6
C2S-C7S	6.06*	0.10	-080	65.5*	13.3	0
hAMY	8.55	0.18	56	100		2
CAM	6.80*	0.08	-30	81.2	4.7	3
hAMY	8.44	0.16	14	100		7
A5S	9.58*	0.17	14	157*	18	/
hAMY	8.14	0.19	26	100		4
hAMY-COOH	7.72	0.17	-2.0	102	20.9	4
Pramlintide	8.82	0.23	2.0	100		6
PramQ10A	9.29	0.16	2.9	139	20.1	0

de	ecrease		increa	se						
	pEC ₅₀	SEM	Fold change	Emax	SEM	n	pIC50	SEM	Fold change	
hAMY	9.49	0.24	1.3	100		6		ND		
K1A	9.61	0.25	1.5	113	14.8	0		ПЪ		
hAMY	9.45	0.08	-1.5	100		6	7.87	0.04	-1.1	
N3A	9.27	0.12	-1.5	111	7.25	0	7.84	0.07	-1.1	
hAMY	9.14	0.16	2.2	100		0	8.25	0.01	26	
T4A	8.63*	0.13	-3.2	87.6	5.59	0	6.83*	0.06	-20	
hAMY	9.46	0.34	2.2	100		6	7.87	0.04	1.5	
A5G	8.94	0.27	-3.5	84.8	7.64	0	7.68	0.16	-1.5	
hAMY	8.83	0.21	21	100		5	8.16	0.28	10	
T6A	7.50*	0.15	-21	41.6*	5.89	2	7.16*	0.07	-10	
hAMY	9.22	0.14	0.5	100		0	8.23	0.01	20	
A8G	8.29*	0.18	-8.5	96.2	13.8	8	6.75*	0.11	-30	
hAMY	9.36	0.21	0.5	100		(8.20	0.04		-
Т9А	8.38*	0.15	-9.5	90.7	11.8	6	7.40*	0.27	-6	
hAMY	9.38	0.13		100			8.13	0.28		
O10A	10.4*	0.29	10.5	154*	15.2	9	9.08*	0.03	9	
hAMY	9.26	0.17		100	-		8.23	0.01		
R11A	8.48*	0.15	-6.0	150*	17.4	5	7.46*	0.24	-6	
hAMY	9.30	0.16		100			8.13	0.28		
L12A	7.54*	0.12	-58	97.4	6.57	5	6.17*	0.08	-91	
hAMY	9.28	0.14		100	,		8.39	0.13		
A13G	8.26*	0.16	-11	133	21.8	5	7.04*	0.16	-22	
hAMY	9.17	0.12		100	2110		8.35	0.08		-
N14A	9.60	0.2	2.7	142*	9 31	13	8 64	0.14	2	
hAMV	9.29	0.2		100	9.51		7.87	0.04		
F15A	8 70	0.19	-3.9	86.1	6.03	7	7.01*	0.13	-7.2	
hAMV	9.34	0.12		100	0.05		8 36	0.08		
I 16A	8 72	0.38	-4.2	126*	8 28	11	8 59	0.12	1.7	
hAMV	9.20	0.14		120	0.20		8.48	0.12		-
V17A	9.73*	0.14	3.4	130*	0.1	9	8.76	0.13	2	
hAMV	9.71	0.10		100	7.1		7.52	0.13		-
1764	0.26*	0.12	-2.8	115	03	5	8 53*	0.05	10.2	
h A MV	9.20	0.00		100	7.5	-	7.48	0.05		-
1 27 A	9.01	0.11	-7.1	153	20.6	5	7.40 8.22	0.15	5.5	
	0.70	0.19		100	29.0		7.50	0.49		
HAIVI Y S29A	9.03	0.15	-2.1	100	15	5	/.39	0.17	9.8	
528A	9.30	0.07		113	13		0.30	0.23		
nAIVLY	9.75	0.09	-2.6	100	0.52	5	/.88	0.13	2.3	

Table SB6. Analogues $AMY_{1(a)}$

	pEC ₅₀	SEM	Fold change	Emax	SEM	n	pIC ₅₀	SEM	Fold change	n
hAMY	9.35	0.16	12	100		4	7.67	0.26	27	4
T30A	8.27*	0.18	-12	82.1	12.8	4	6.24*	0.19	-27	4
hAMY	9.35	0.16	2.2	100		4	7.68	0.07	1.2	2
N31A	8.84*	0.13	-3.2	108	11.9	4	7.76	0.37	-1.2	3
hAMY	9.52	0.16	15	100		4	7.40	0.18	8.0	2
V32A	8.36*	0.13	-13	117	17.9	4	6.45*	0.23	-8.9	3
hAMY	9.50	0.18	15	100		4	7.37	0.15	1.0	2
G33A	8.33*	0.23	-13	107	12.5	4	7.10	0.13	-1.9	3
hAMY	9.50	0.18	2.4	100		4	7.52	0.21	10	2
S34A	9.12	0.39	-2.4	108	11.5	4	8.77*	0.16	-18	3
hAMY	9.40	0.1	26	100		4	7.52	0.21	1.0	2
N35A	8.98*	0.09	-2.0	112	8.61	4	7.78	0.10	-1.8	3
hAMY	9.40	0.1	1.0	100		4	7.60	0.13	6.5	2
T36A	9.12	0.06	-1.9	116	7.82	4	8.41	0.18	0.3	3
hAMY	9.40	0.1	4.4	100		4	7.59	0.17	2 0	2
Y37A	8.76*	0.11	-4.4	101	8.58	4	7.01	0.20	-3.8	3
hAMY	9.72	0.06	010	100		5		ND		
hAMY1-17	6.76*	0.15	-910	68.2*	5.34	5		ND		
hAMY	9.77	0.07	500	100		5	8.48	0.11	129	2
hAMY8-37	7.07*	0.14	-300	51.6*	6.44	3	6.34*	0.02	-138	3
hAMY	9.21	0.13	-250	100		6		ND		
hAMY8-37(DR)	6.81*	0.19	-230	53.5*	12.4	0		ND		
hAMY	9.47	0.24	-32	100		3		ND		
hAMYAc8-37	7.97*	0.09	-52	82.8	10.4	5		TLD		
hAMY	9.21	0.13	-360	100		6	8.34	0.09	-398	3
C2S-C7S	6.66*	0.32	200	49.5*	9.09	Ű	5.74*	0.05	570	5
hAMY	9.47	0.24	-71	100		3		ND		
CAM	7.62*	0.31	/1	100	1.42	5		T(D		
hAMY	9.48	0.26	21	100		9		ND		
A58	9.80	0.23	2.1	128*	8.8	,		T(D		
hAMY	9.53	0.2	-58	100		4	7.69	0.09	-91	4
hAMY-COOH	7.77*	0.13	-50	93.5	13	Ŧ	5.73*	0.19	-71	Ŧ
Pramlintide	9.74	0.13	-19 -	100		7	8.54	0.12	2.6	3
PramQ10A	9.46	0.19	-1.7	129*	9.84	/	8.96	0.09	2.0	5

	decrease			increase		
	pEC ₅₀	SEM	Fold change	Emax	SEM	n
hAMY K1A	9.08	0.08	-2.2	100	16.8	5
hAMV	9.58	0.10		128	10.8	
N3A	9.17	0.27	-2.6	88.8	7.59	6
hAMY	8.86	0.14	1.4	100		Q
T4A	8.71	0.20	-1.4	107	16.4	8
hAMY	8.97	0.12	-1.2	100		7
A5G	9.03	0.10		109	14.5	
hAMY T6A	8.95	0.12	-12	100	11.2	7
hAMY	9.40	0.10		100	11.2	_
A8G	8.34*	0.13	-12	92.3	5.44	7
hAMY	9.06	0.08	-7.1	100		5
Т9А	8.21*	0.09	-7.1	79.5	7.90	5
hAMY	9.14	0.17	1.9	100	5.90	7
Q10A bAMV	9.42	0.20		134*	5.89	
R11A	8.43*	0.10	-6.8	96.4	8.71	7
hAMY	8.74	0.25	1.5	100	01/1	(
L12A	7.57*	0.17	-15	77.3	15	6
hAMY	9.00	0.13	-7.6	100		5
A13G	8.12*	0.05	7.0	108	7.04	5
hAMY N14A	9.03	0.15	3.2	100	11.6	9
hAMV	8.93	0.24		100	11.0	
F15A	8.35*	0.12	-3.8	87.6	6.93	6
hAMY	9.19	0.20	4.0	100		0
L16A	8.59	0.43	-4.0	122	12.7	8
hAMY	8.99	0.15	3.2	100		7
V17A	9.49	0.18		121	13.2	
126A	9.30 8.86*	0.13	-3.2	100	16.0	5
hAMY	9.26	0.13	2.1	100	10.0	-
L27A	8.77*	0.16	-3.1	101	8.24	5
hAMY	9.23	0.11	-3.1	100		5
S28A	8.74	0.24	5.1	142*	9.09	5
hAMY	9.34	0.13	-2.6	100	7.04	5
hAMY	9.19	0.17		100	/.74	
T30A	8.13*	0.13	-12	110	6.97	5
hAMY	9.22	0.13	4.0	100		4
N31A	8.62	0.22	-4.0	126	19.3	4
hAMY	9.19	0.11	-13	100	10.2	6
V32A	8.05*	0.13		139	18.3	
G33A	8.42*	0.18	-6.0	120*	8.03	4
hAMY	9.18	0.13	1.4	100		5
\$34A	9.02	0.19	-1.4	126*	8.73	3
hAMY	8.99	0.06	-3.9	100		4
N35A	8.40*	0.15		124	16.0	
nAMIY T36A	8.99	0.06	-1.4	112*	5.09	4
hAMY	8.99	0.06	a :	100	5.07	,
Y37A	8.46*	0.18	-3.4	122	7.31	4
hAMY	9.27	0.28	-280	100		3
hAMY1-17	6.82*	0.14	200	49.3*	11.2	5
hAMY	9.04	0.14	-230	100	5 20	6
hAMY	8.86	0.04		100	5.20	
hAMYAc8-37	7.55*	0.17	-20	71.7*	4.09	3
hAMY	9.27	0.28	-480	100		3
C2S-C7S	6.59*	0.07		55.5*	9.90	-
hAMY CAM	8.86	0.15	-20	100	6 99	3
hAMY	8.92	0.14		100	0.00	
A5S	9.88*	0.16	9.1	125	20.4	8

Table SB7. Analogues AMY_{3(a)}

	pEC ₅₀	SEM	Fold change	Emax	SEM	n
hAMY	9.12	0.09	20	100		4
hAMY-COOH	7.83*	0.43	-20	90.5	11.8	4
Pramlintide	9.75	0.19	1.4	100	-	7
PramQ10A	9.89	0.20	1.4	129*	11.4	/

Table SB8. *C*-terminal exchange peptides. Data are mean \pm s.e.m. of *n* biological replicates, reporting the effect of *C*-terminal residue exchange at different receptors. Data were normalized to the relevant control in each experiment. **P* <0.05 by unpaired *t*-test for pEC₅₀ or where 95% confidence intervals did not include 100 for E_{max}. Statistically significant increases or decreases are shaded as indicated.

	decreas	e	i	ncrease										
					hAN	MY and l	haCC	GRP C-terminal excha	ange					
Receptor		pEC ₅₀	SEM	Fold change	Emax	SEM	n		pEC ₅₀	SEM	Fold change	Emax	SEM	n
СТ	hAMY	8.38	0.12	5.4	100		2	haCGRP	7.58	0.19	1.4	100		2
CI	Y37F	7.65*	0.17	-5.4	110	4.5	5	haCGRP F37Y	7.44	0.16	-1.4	160	15.2	5
AMV	hAMY	9.49	0.17	4.9	100		4	haCGRP	9.82	0.22	26	100		4
Alvi i l(a)	Y37F	8.80	0.33	-4.9	101	3.8	4	haCGRP F37Y	9.40	0.24	-2.0	123	9.9	4
AMV	hAMY	9.24	0.24	7.1	100		4	haCGRP	8.58	0.07	1.4	100		4
A1VI I 3(a)	Y37F	8.39*	0.25	-7.1	107	4.0	4	haCGRP F37Y	8.42	0.23	-1.4	175*	16.4	4
CCDD	hAMY	6.49	0.09	2.8	100		5	haCGRP	10.29	0.11	1.0	100		4
UGKP	Y37F	5.91	0.15	-3.8	92.5	10.1	5	haCGRP F37Y	10.27	0.16	-1.0	96.5	8.3	4
AM.	hAMY	<5					2	haCGRP	6.83	0.13	4.0	100		4
AMI	Y37F	<5					3	haCGRP F37Y	7.44*	0.19	4.0	180	30.5	4
AM	hAMY	6.27	0.05	1.9	100		4	haCGRP	6.87	0.14	1.0	100		4
Alvi2	Y37F	5.59*	0.13	-4.8	48.9*	12.8	4	haCGRP F37Y	7.16	0.25	1.9	119	20.6	4
					h	AMY an	d hC	T C-terminal exchang	ge					
Receptor		pEC ₅₀	SEM	Fold change	E _{max}	SEM	n		pEC ₅₀	SEM	Fold change	E _{max}	SEM	n
СТ	hAMY	8.22	0.25	5.6	100		4	hCT	9.85	0.37	6.2	100		2
CI	Y37P	8.97*	0.15	5.0	106	11.3	4	hCT P32Y	9.05	0.19	-0.5	87.4	9.2	5
AMX	hAMY	9.01	0.09	2.0	100		4	hCT	9.63	0.27	10	100		2
AlVI Y 1(a)	Y37P	9.47*	0.05	2.9	109	6.8	4	hCT P32Y	8.63*	0.19	-10	94.0	4.5	3
AMX	hAMY	8.61	0.21	26	100		2	hCT	9.37	0.23	5.0	100		2
AIVI Y 3(a)	Y37P	9.02	0.36	2.0	120	18.6	3	hCT P32Y	8.60	0.22	-3.9	81.3*	5.4	3

Figure SB19. Specificity of anti-CTR antibody 188/10 and expression of CTR in brainstem cultures. HEK293S cells were plated into 96-well plates then transiently transfected with (a) vector only, (b) rat CTR, (c) rat CTR/rat RAMP1 or (d) CTR expression was determined in rat brainstem cultures. Cells were blocked with goat serum, then incubated with 188/10 rabbit polyclonal antibody against rat CTR (4° C overnight, 1:500 dilution) in (a)-(d) or monoclonal antibody 9B4 against CTR (4° C overnight, 1:100) in (d) only, as indicated. The secondary antibodies used were goat anti-rabbit AlexaFluor568 or goat antimouse Alexa Fluor 594 (Life Technologies, 1:200). Images were taken using a PerkinElmer Operetta imaging system using the 20x high numerical aperture lens. HEK293S images shown in (a)-(c) are representative of three independent experiments performed in duplicate wells. Brainstem culture images in (d) are representative of duplicate wells from one experiment, which was repeated with two (188/10) or three (9B4) other independently prepared brainstem cultures with a similar staining pattern. Scale bar shown in (a)-(c) 50 µm. DAPI is blue, antibody staining is orange.

Figure SB20. Activation of four different signaling pathways at three different receptors by Q10A hAMY. Data are mean \pm s.e.m. of *n* biological replicates. Data were normalized to hAMY in each experiment. **P* <0.05 by unpaired *t*-test for pEC₅₀ or where 95% confidence intervals did not include 100 for E_{max}.

Figure SB21. Radial plots summarizing the analysis of ligand bias for hAMY, T6A, Q10A and V17A with four different signaling pathways (cAMP, IP₁, ERK1/2 and CREB phosphorylation) at four different receptors (CTR, AMY₁₋₃). (A) The relative effectiveness of the analogues compared to the reference ligand (hAMY) are expressed as $\Delta Log(\tau/K_A)$. (B) Signaling bias of the analogues compared to the reference pathway (cAMP) are expressed as $\Delta Log(\tau/K_A)$. T6A did not induce detectable activation of IP₁ accumulation and therefore could not be analyzed. Data points are the mean of 3-22 biological replicates. The control peptide (hAMY) was compared to the analogue by one-way ANOVA with a post-hoc Dunnet's test; **P* <0.05 hAMY vs. T6A; **P* <0.05 hAMY vs. Q10A; ^*P* <0.05 hAMY vs. V17A.

Supplementary data tables 9-12

Data are mean \pm s.e.m. of *n* biological replicates, reporting activation of four different signaling pathways (cAMP, IP₁, ERK1/2 [15 minutes] and CREB phosphorylation) at four different receptors (CTR, AMY₁-3) by selected peptide analogues. Data were normalized to the relevant control in each experiment and E_{max} values are % hAMY, or pramlintide for the relevant analogue. **P* <0.05 by unpaired *t*-test for pEC₅₀ or where 95% confidence intervals did not include 100 for E_{max} . Statistically significant increases or decreases are shaded as indicated.

decrease			increase			
			cAMP			
	pEC ₅₀	SEM	Fold-Change	Emax	SEM	n
hAMY	8.23	0.13	-16	100		5
T6A	7.04*	0.17	-10	41.8*	3.60	5
hAMY	8.71	0.15	15	100		8
Q10A	9.88*	0.29	15	169*	18.5	0
hAMY	8.40	0.16	8.5	100		10
V17A	9.33*	0.26	0.5	164*	26.7	10
Pramlintide	8.82	0.23	2.0	100		6
PramQ10A	9.29	0.16	2.9	139	20.1	0
			IP1			
	pEC ₅₀	SEM	Fold-Change	Emax	SEM	n
hAMY	5.85	0.08		100		5
T6A	<5					5
hAMY	5.85	0.08	80	100		5
Q10A	6.80*	0.09	0.9	94	5.82	5
hAMY	5.85	0.08	8.0	100		5
V17A	6.79*	0.07	8.0	107	5.49	5
Pramlintide	5.97	0.07	2.5	100	5.98	4
PramQ10A	6.52*	0.05	5.5	112		4
			ERK1/2 (15 min)			
	pEC ₅₀	SEM	Fold-Change	Emax	SEM	n
hAMY	7.64	0.18	1.2	100		5
T6A	7.66	0.33		18.2*	4.07	5
hAMY	7.67	0.16	3.4	100		6
Q10A	8.20	0.24	5.4	134	18.8	0
hAMY	7.67	0.16	10	100		6
V17A	8.36*	0.13	4.7	133	14.3	0
Pramlintide	7.74	0.13	4.2	100		6
PramQ10A	8.21*	0.09	4.2	119	11.4	0
			CREB			
	pEC ₅₀	SEM	Fold-Change	Emax	SEM	n
hAMY	9.12	0.28	-60	100		4
T6A	7.34*	0.33	-00	62.6	17.0	7
hAMY	9.01	0.23	81	100		6
Q10A	9.91*	0.16	0.1	105	9.33	0
hAMY	8.95	0.20	6.0	100		6
V17A	9.73*	0.19	0.0	127*	10.1	0
Pramlintide	9.15	0.17	8.0	100		6
PramQ10A	10.1*	0.20	0.7	99.4	10.9	U

Table SB9. Analogue Signaling CT_(a)

	0 0	0	·(u)			
(lecrease			increase		
			cAMP			
	pEC ₅₀	SEM	Fold-Change	Emax	SEM	n
hAMY	8.83	0.21	21	100		5
T6A	7.50*	0.15	-21	41.6*	5.90	3
hAMY	9.38	0.13	10.5	100		0
Q10A	10.4*	0.29		154*	15.2	9
hAMY	9.20	0.14	2.4	100		0
V17A	9.73*	0.16	5.4	139*	9.10	9
Pramlintide	9.74	0.13	1.0	100		7
PramQ10A	9.46	0.19	-1.9	129*	9.84	/
			IP1			
	pEC50	SEM	Fold-Change	Emax	SEM	n
hAMY	6.21	0.11		100		5
T6A	<5					5
hAMY	6.21	0.11	7.2	100		5
Q10A	7.07*	0.13	1.2	97	3.95	5
hAMY	6.21	0.11	6.6	100		5
V17A	7.03*	0.13	0.0	110*	3.23	5
Pramlintide	6.32	0.15	4.5	100		4
PramQ10A	6.97*	0.06	4.5	113	7.69	4
			ERK1/2 (15 min)			
	pEC50	SEM	Fold-Change	Emax	SEM	n
hAMY	8.21	0.12		100		5
T6A	8.06	0.30	-1.4	11*	1.99	3
hAMY	8.43	0.14		100		6
Q10A	8.63	0.15	1.6	134*	9.91	0
hAMY	8.43	0.14	1.4	100		6
V17A	8.59	0.10	1.7	134*	10.6	0
Pramlintide	8.61	0.10	0	100		5
PramQ10A	8.61	0.10	0	109	5.33	5
			CREB			
	pEC ₅₀	SEM	Fold-Change	Emax	SEM	n
hAMY	9.77	0.18	_45	100		1
T6A	8.11*	0.27	-4.5	60*	11.9	4
hAMY	9.79	0.17	26	100		6
Q10A	10.2	0.12	2.0	110	5.03	0
hAMY	9.79	0.17	2.6	100		6
V17A	10.2	0.12	2.0	110	11.1	0
Pramlintide	10.2	0.34	2.2	100		5
PramO10A	10.7	0.30	3.2	101	6.00	3

Table SB10. Analogue Signaling AMY_{1(a)}

d	ecrease	_	increase			
			cAMP			
	pEC50	SEM	Fold-Change	Emax	SEM	n
hAMY	8.86	0.01	-52	100		3
T6A	7.14	0.07		38.0	4.50	5
hAMY	8.86	0.01	37	100		3
Q10A	9.38	0.07	517	141*	13.7	5
hAMY	8.86	0.01	37	100		3
V17A	9.43	0.29	5.1	110	15.3	5
Pramlintide	8.87	0.09	6.8	100		3
PramQ10A	9.70*	0.03	0.8	96.4	4.10	5
			IP1			
	pEC50	SEM	Fold-Change	Emax	SEM	n
hAMY	5.94	0.10		100		4
T6A	<5					-
hAMY	5.94	0.10	7.0	100	10.8	5
Q10A	6.84*	0.13	7.9	99.7		
hAMY	5.94	0.10	0.1	100	15.9	5
V17A	6.90*	0.09	9.1	117		
Pramlintide	5.87	0.10		100		
PramQ10A	6.61*	0.09	5.5	97.6	9.64	2
	•		ERK1/2 (15 min)			
	pEC ₅₀	SEM	Fold-Change	Emax	SEM	r
hAMY	7.72	0.10	1.0	100		
T6A	7.45	0.24	-1.9	18*	3.41	4
hAMY	8.01	0.35	1.0	100		
Q10A	8.27	0.30	1.8	122	11.1	2
hAMY	8.01	0.35	1.0	100		
V17A	8.26	0.19	1.8	125	28.6	4
Pramlintide	8.08	0.31	2.5	100		,
PramQ10A	8.48	0.30	2.5	117	16.4	2
	•		CREB			
	pEC ₅₀	SEM	Fold-Change	Emax	SEM	I
hAMY	8.94	0.65	17	100		
T6A	7.70	0.17	-1/	53*	4.62	2
hAMY	9.63	0.33	2.7	100		
Q10A	10.2	0.18	3.7	120	8.16	4
hAMY	9.57	0.34		100		
V17A	10.1	0.23	3.4	110	6.63	3
Deamlintida		0.00		100		
гташшице	9.89	0.26	• /	100		

Table SB11. Analogue Signaling AMY_{2(a)}

Ċ	lecrease	increase				
			cAMP			
	pEC50	SEM	Fold-Change	Emax	SEM	n
hAMY	8.95	0.12	12	100		7
T6A	7.87*	0.10	-12	43.2*	11.2	/
hAMY	9.14	0.17	1.0	100	5.90	7
Q10A	9.42	0.20	1.9	134*		/
hAMY	8.99	0.15	2.2	100		7
V17A	9.49	0.18	3.2	121	13.2	/
Pramlintide	9.75	0.19	1.4	100		7
PramQ10A	9.89	0.20	1.4	129*	11.4	/
			IP1			
	pEC50	SEM	Fold-Change	Emax	SEM	n
hAMY	6.01	0.11		100		5
T6A	<5					3
hAMY	6.01	0.11	11	100	2.20	5
Q10A	7.04*	0.16	11	105		
hAMY	6.01	0.11	0.1	100	4.58	F
V17A	6.97*	0.10	9.1	100		3
Pramlintide	6.31	0.15	5.4	100	3.97	4
PramQ10A	7.04*	0.08	5.4	128*		
			ERK1/2 (15 min)			
	pEC50	SEM	Fold-Change	Emax	SEM	n
hAMY	8.14	0.08		100		4
T6A	7.94	0.35		17*	5.79	4
hAMY	8.29	0.10	1.0	100		5
Q10A	8.57	0.11	1.9	148	17.9	5
hAMY	8.29	0.10	17	100		5
V17A	8.52	0.15	1.7	173	29.6	5
Pramlintide	8.21	0.24	26	100		5
PramQ10A	8.63	0.15	2.0	124	19.5	5
			CREB			
	pEC50	SEM	Fold-Change	Emax	SEM	n
hAMY	9.45	0.26	32	100		4
T6A	7.94*	0.22	-32	49.2*	8.00	4
hAMY	9.63	0.33	27	100		5
Q10A	10.2	0.18	3./	104	5.39	5
hAMY	9.31	0.15	4.8	100		4
V17A	9.99*	0.19	4.0	109	6.52	4
Pramlintide	10.2	0.28	25	100		6
PramQ10A	10.6	0.21	2.5	91.3	11.6	0

Table SB12. Analogue Signaling AMY_{3(a)}

Figure SB22. Competition binding data at AMY₁, comparing pramlintide and DAGAR1. Data are mean \pm s.e.m. of *n* biological replicates. The control peptide was compared to the analogue by unpaired t test, * *P* <0.05.

Figure SB23. Indication of variation between experiments. a) shows data for ten typical independent experiments with the AMY₁ receptor transiently transfected into Cos 7 cells and stimulated with hAMY. Each data point is an experimental replicate within an experiment b) shows the corresponding E_{max} values for each of those experiments and c) shows the corresponding pEC₅₀ values.

Figure SB24. ¹²⁵I-Calcitonin gene-related peptide (CGRP) binding to whole cells transfected with different receptors. hCGRP is the CGRP receptor comprising RAMP1 with the calcitonin-like receptor. Data are mean \pm s.e.m. of duplicate or triplicate technical replicates from a single experiment. Similar results were obtained in at least four other experiments. NS, non-specific.

[1] Clamp, M., Cuff, J., Searle, S. M., and Barton, G. J. (2004) The Jalview Java alignment editor, *Bioinformatics* 20, 426-427. 10.1093/bioinformatics/btg430