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Supplementary modeling (SM) 

Supplementary modeling (SM) movie legends 
 
Supporting movie SM1 
Interactions between amylin (magenta) and the ECD of CTR in complex with RAMP1, during a 
SuMD simulation (SuMD simulation time 0-16 ns ca.) and the following unsupervised MD (16 ns 
ca. - end of the simulation). Right hand panel interactively shows the computed interaction energy 
during the simulation. The receptor is shown as ribbon, with key residues in stick and color-coded 
according to the number of contacts computed on overall 10 SuMD replicas: in blue are depicted 
residues never engaged by the peptide, while in red are highlighted residues frequently engaged (the 
color scale is normalized on the residue mostly engaged). 
 
Supporting movie SM2 
Interactions between amylin (magenta) and the ECD of CTR, during one SuMD simulation (SuMD 
simulation time 0-15 ns ca.) and the following unsupervised MD (15 ns - end of the simulation). 
Right hand panel interactively shows the computed interaction energy during the simulation. The 
receptors is shown as ribbon, with key residues in stick and color-coded according to the number of 
contacts computed on overall 12 SuMD replicas: in blue are depicted residues never engaged by the 
peptide, while in red are highlighted residues frequently engaged (the color scale is normalized on 
the residue mostly engaged). 
 
Supporting movie SM3 
Interactions between AMY1 (left hand panel) or CTR (right hand panel) with amylin (magenta), 
during a 250 ns long MD replica. Receptors are shown as ribbon, with key residues in stick and 
color-coded according to the number of contacts computed on overall 750 ns of simulations (3 MD 
replicas): in blue are depicted residues never engaged by the peptide, while in red are highlighted 
residues frequently engaged (the color scale is normalized on the residue mostly engaged). 
 
Supporting movie SM4 
Interactions between AMY1 (left hand panel) or CTR (right hand panel) with the N terminus portion 
of amylin (magenta), during a 250 ns long MD replica. Receptors are shown as ribbon, with key 
residues in stick and color-coded according to the number of contacts computed on overall 750 ns 
of simulations (3 MD replicas): in blue are depicted residues never engaged by the peptide, while in 
red are highlighted residues frequently engaged (the color scale is normalized on the residue mostly 
engaged). 
 
Supporting movie SM5 
Amylin (magenta) partial unbinding from AMY1 (left hand panel) or CTR (right hand panel) under 
the input of energy. Receptors are shown as ribbon, with key residues in stick and color-coded 
according to the number of contacts computed on overall 3 metadynamics replicas: in blue are 
depicted residues never engaged by the peptide, while in red are highlighted residues frequently 
engaged (the color scale is normalized on the residue mostly engaged). 
 
Supporting movie SM6 
Interactions between amylin Q10A mutant (magenta) and AMY1, during a 100 ns long MD replica. 
The receptor is shown as blue ribbon, with key residues in stick. 
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Supplementary modeling Fig. SM1 
Superposition of the equilibrated AMY1 receptor conformation (grey) and the average conformation 
(orange) from three MD replicas (total 750 ns).  
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Supplementary modeling Fig. SM2 
Ramachandran plots of amylin residue G33, during different MD simulations. (A) Amylin SuMD 
approach to the ECD of AMY1 receptor; (B) amylin SuMD approach to the ECD of CTR receptor; 
(C) and (D) states sampled during simulations of the bound amylin in presence (C) and absence (D) 
of RAMP1. The minor tick marks denote angles in radians. 
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Supplementary modeling Fig. SM3 
The molecular electrostatic potential (MEP) of the CTR. The MEP is colored between -2 kcal mol-1 
(red) and +2 kcal mol-1 (blue). (A). The MEP of CTR in the absence of a RAMP. Human amylin-
CONH2 (C-terminus as amide) is shown in the structure but was not used to generate the MEP. (B). 
The MEP of CTR in the presence of RAMP1; as above, human amylin-CONH2 is shown. (C). The 
MEP of CTR in the presence of RAMP3; as above, human amylin-CONH2 is shown. (D). The MEP 
of human calcitonin. (E). The MEP of human amylin-CONH2. (F). The MEP of human amylin-
CO2

-. For (A)–(C), the position of the C-terminal residue of amylin, Y37, is marked. For (A) this 
MEP is slightly positive (blue) at this position, which complements the somewhat negative potential 
at the C-terminus of human calcitonin shown in (D) (positions X (side chain) and Y (amide)). (B) 
Illustrates that in the presence of RAMP1, the MEP changes in several regions but becomes more 
negative in the region where Y37 binds; this complements the positive MEP on Y37 of amylin at 
position X shown in (E). The MEP remains negative around the amide of the peptide so that it is 
able to exploit the positive MEP around Ser129 on the ECD (Ser129 is the main amide anchor point 
amide); this region of positive MEP is reduced in the presence of RAMP1. (C) Illustrates that 
RAMP3 differentially effects the MEP on the receptor surface; the region around the Y37 binding 
site is less negative than in the presence of RAMP1. (F) Illustrates that the MEP around the C-
terminus of the amylin-CO2

- peptide is much more negative than for its amide counterpart.  
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Supplementary modeling Fig. SM4 
CTR/AMY1 – amylin-amide (magenta) contacts identified during MD simulations, plotted on the 
CTR/AMY1 molecular surface. The CTR/AMY1 residues least engaged by amylin (0% contact) are 
colored cyan, while residues most engaged by amylin (100% contact) are colored purple. (A) MD 
simulations of amylin bound to the AMY1 receptor. (B) MD simulations of amylin bound to CTR. 
(C) MD simulations of amylin after SuMD performed on the AMY1 receptor. (D) MD simulations 
of amylin after SuMD performed on the CTR . 
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Supplementary modeling Fig. SM5 
CTR/AMY1 - amylin (magenta) contacts identified after SuMD simulations of carboxy-amylin 
plotted on the CTR/AMY1 molecular surface. The CTR/AMY1 residues least engaged by carboxy-
amylin (0% contact) are colored cyan, while residues most engaged by amylin (100% contact) are 
colored purple. (A) MD simulations of carboxy-amylin after SuMD was performed on the AMY1 
receptor. (B) MD simulations of carboxy-amylin after SuMD was performed on the CTR.  
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 Modeling Methodology 
 
Model generation  
The CTR-RAMP1-amylin complex model was generated using the cryo-electron microscopy 
structure of the CTR1, the X-ray structure of the CTR ECD2 and the X-ray structure of the CLR-
RAMP1 ECD complex3, combined using Modeller4, as described elsewhere5, 6. The placement of 
the RAMP, described more fully elsewhere5, 7, was determined by docking the RAMP1, RAMP2 
and RAMP3 TM helix against active and inactive models of the calcitonin receptor-like receptor 
(CLR) using the Cluspro8, Patchdock9 and SwarmDock10 servers. Results incompatible with the 
membrane topology were eliminated and the remaining structures were clustered and 
representatives from each cluster were scored using Firedock11 so that the Cluspro, Patrhcdock and 
SwarmDock poses were treated equally. The best poses were redocked using Rosetta-Dock12 and 
the consensus showed a preference to dock to TM7 of CLR, in agreement with experiment13. The 
RAMP TM docking was repeated for RAMP1, RAMP2 and RAMP3 against the active cryo-
electron microscopy structure of CTR14 using the Cluspro2, SwarmDock and Haddock15 docking 
servers giving similar results. The basic model selected had the best DOPE score16 out of 1000 
models. The missing loop between the RAMP ECD and the RAMP transmembrane helix, ECL3 
and the loop in amylin (c.f. CGRP6) were modelled using Modeller (2000 models, to generate the 
full structure) and the DOPE score for each loop model was determined and scaled between 0 and 1, 
with 1 corresponding to the best score. The accessibility for each structure, determined using half-
sphere exposure17, was scaled between 0 and 1, with 0 being the most conserved. The Pearson 
correlation between accessibility and the conservation, (from an in-house CTR multiple sequence 
alignment) was determined and the resultant correlation coefficients were scaled between 0 and 1. 
The product of the scaled DOPE score and the scaled correlation coefficients were used to identify 
modelled loops that satisfied the constraint of a low predicted empirical energy for which the 
conserved residues generally faced inwards18 In order to improve the molecular dynamics (MD) 
simulation performance, the number of heavy atoms composing the AMY1 receptor homology 
model were reduced, as elsewhere5, 19, by retaining only the G protein atoms belonging to helix 5, 
the principle region responsible for activation. The RAMP C-terminus can affect signalling bias and 
so Ser141-Val148 were omitted from the RAMP1 to minimize any potential influence from this 
effect. The CTR coordinates were obtained by deleting RAMP1 from the AMY1 homology model. 
The amylin C-terminus was generated in both the amidic form and the carboxylate form for both 
the AMY1 and CTR receptors, giving a total of four different peptide - receptor complexes (Table 
SM1). The AMY3 model was generated from the AMY1 model using Modeller. Electrostatic 
potential calculations were carried out using APBSmem20, as described elsewhere6. 
 
Molecular dynamics (MD) simulations  
The systems were prepared for MD simulations by means of a multistep procedure that integrates 
both python htmd21 and tcl (Tool Command Language) scripts. More precisely, the pdb2pqr22 and 
propka23 software were used to check the protein’s structural integrity and to add hydrogen atoms 
(configurations of titratable amino acid side chains were visually inspected) appropriate for a 
simulated pH of 7.0. AMY1 and CTR were embedded in rectangular matrixes of a 1-palmitoyl-2-
oleyl-sn-glycerol-3-phospho-choline (POPC) bilayer (previously built by using the VMD 
Membrane Builder plugin 1.1, Membrane Plugin, Version 1.1. at 
http://www.ks.uiuc.edu/Research/vmd/plugins/membrane/) through an insertion method24: receptors 
were first oriented according to the CTR coordinates from the OPM database25, then lipids 
overlapping the protein were removed and TIP3P water molecules26 were added to the simulation 
box by means of the VMD Solvate plugin 1.5 (Solvate Plugin, Version 1.5. at 
<http://www.ks.uiuc.edu/Research/vmd/plugins/solvate/). Charge neutrality was finally reached by 
adding Na+/Cl- counter ions to a final concentration of 0.154 M, according to the VMD Autoionize 
plugin 1.3 (Autoionize Plugin, Version 1.3. at 
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<http://www.ks.uiuc.edu/Research/vmd/plugins/autoionize/). The CHARMM36 force field27 was 
used. 
 
Systems equilibration and classic MD run settings 
All the following MD simulation stages were performed by using Acemd28. Equilibration of the 
four systems was achieved in isothermal-isobaric conditions (NPT) using the Berendsen barostat29 
(target pressure 1 atm) and the Langevin thermostat30 (target temperature 300 K) with a low 
damping of 1 ps-1. A three-stage procedure with an integration time step of 2 fs was performed: in 
the first one, 2000 conjugate-gradient minimization steps were applied to reduce the clashes 
between protein and lipids. Then, a 10 ns long MD simulation was performed in the NPT ensemble, 
with a positional constraint of 1 kcal mol-1 Å-2 on protein and lipid phosphorus atoms. During the 
second stage, 30 ns of MD simulation in the NPT ensemble were performed constraining all protein 
atoms, but leaving the POPC residues free to diffuse in the bilayer. In the last equilibration stage, 
positional constraints were reduced by one half and applied only to the protein backbone alpha 
carbons, for a further 10 ns of MD simulation.  

For each amylin - receptor complex, three 250 ns long unbiased MD replicas were run, for a 
total of twelve trajectories (Table SM1). Production MD trajectories were computed with an 
integration time step of 4 fs in the canonical ensemble (NVT) at 300 K, using a thermostat damping 
of 0.1 ps-1 and the M-SHAKE algorithm31 to constrain the bond lengths involving hydrogen atoms. 
The cut off distance for electrostatic interactions was set at 9 Å, with a switching function applied 
beyond 7.5 Å. Long range Coulomb interactions were handled using the particle mesh Ewald 
summation method (PME) 32 by setting the mesh spacing to 1.0 Å. 
 
Metadynamics simulations. 
Despite the relatively high sequence identity between amylin and calcitonin (the template for 
amylin modeling in its bound state), the possibility that structural side chain differences may lead to 
slightly different binding modes should not be excluded. Unfortunately, during classic unbiased 
MD simulations alternative stable bound and metastable states cannot be easily sampled, due to the 
kinetic barriers that may separate two energy minima. Metadynamics simulations33, 34 were 
therefore performed to (i) investigate alternative bound amylin states and (ii) to model contacts with 
the receptor along the dissociation path. Metadynamics can be summarized as the seeding, at 
discrete time intervals, of a history–dependent energetic term centred along a predefined set of 
collective variables (CVs) able to describe the evolution of the system. When the energetic bias is 
added at a certain instant, the probability that the system will revisit that specific configuration is 
decreased according to the shape of the supplied energetic Gaussian function. Thanks to this 
theoretical approach it is possible to fill energy minimum on the energy surface defined by the CVs, 
therefore increasing the transition probability between different energy minima34. Before 
performing a metadynamics simulation it is therefore necessary to define one or more CVs able to 
describe the system transition of interest. Here the distance between the geometrical centres of the 
amylin N-terminal helical portion (residues 1 to 17) and the CTR transmembrane bundle domain 
(residues 140 to 395) was biased. The use of a similar ligand - receptor distance as CV during 
unbinding simulations has been successfully applied35 to class A GPCRs. Here, the Gaussian height 
and width were set at 0.01 kcal/mol and 0.1 Å respectively, with depositions done every 1 ps, using 
Plumed 2.336, as a plugin to Acemd28. Simulations proceeded until the peptide N-terminus distance 
from the starting bound state was at least 15 Å. The partial unbinding metadynamics replicas were 
collected on each amylin complex for a total of twelve trajectories (Table SM1).  
 
Supervised MD (SuMD) 
To generate the starting coordinates for SuMD, the last frame from one partial unbinding 
metadynamics simulation was extracted and the peptide was translated in the Cartesian space 
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according to the arbitrary vector (0 Å; -30 Å; 30 Å), by using VMD. Resulting systems were then 
prepared for simulations and equilibrated as reported in the previous section. 

The SuMD approach has been successfully applied to the binding of small molecules to their 
biological target37-40 and, more recently, it has been also proposed for modeling recognition events 
of peptides41. According to this MD-based approach, the timescale needed to reproduce complete 
intermolecular complex formation results in the time scale of nanoseconds, instead of hundreds of 
nanoseconds or microseconds usually necessary with unsupervised MD. Sampling is gained without 
the introduction of any bias by applying a tabu–like algorithm to monitor the distance between the 
centres of masses (or the geometrical centres) of the ligand and the binding site during short 
classical MD simulations. More precisely, SuMD considers the ligand atoms and the atoms of user-
defined protein residues to monitor the distance between the center of masses of the binder and the 
binding site. A series of unbiased MD simulations are performed and after each simulation the 
distance points (collected at regular time intervals) are fitted into a linear function. If the resulting 
slope is negative the next simulation step starts from the last set of coordinates and velocities 
produced, otherwise the simulation is restarted by randomly assigning the atomic velocities. From a 
general point of view, SuMD can be considered an adaptive sampling method42 during which 
unbiased simulation are run consecutively. In the present work, the target binding site was defined 
by the geometrical centres of CTR residues Asp77, Gly78, Trp79, Trp128, Ser129 and Tyr131, 
while amylin C-terminus residues T36 and Y37 were considered for the ligand. The duration of the 
time windows considered for supervision was set to 1 ns, while distance points were collected every 
10 ps using Plumed 2.3. For each replica, when the distance between the two centres of mass 
reached a value lower than 8 Å, a classic unsupervised MD simulation was performed for a further 
30 ns to allow the system to sample local energetic minima. 

For each peptide - receptor system, at least ten replicas were performed, as summarized in 
(Table SM1). 
 
SuMD Analysis 
SuMD trajectories were joined using the Prody43 python package.  Amylin contacts and hydrogen 
bonds were quantified using VMD44. A contact between two residues was considered productive if 
at least two atoms were detected at distances less than 3.5 Å. A distance between acceptor and 
donor atoms of 3 Å and an angle value of 20° were set as the geometrical cut-off for hydrogen 
bonds.  

The MMPBSA.py45 script, from the AmberTools17  suite (The Amber Molecular Dynamics 
Package. at http://ambermd.org/), was used to compute molecular mechanics energies combined 
with the generalized Born and surface area continuum solvation (MM/GBSA) method, after 
transforming the CHARMM psf topology files to an Amber prmtop format using Parmed (ParmEd 
— ParmEd documentation. at <http://parmed.github.io/ParmEd/html/index.html).  

Sequence alignments, equilibrated coordinates, topology files and tables reassuming the 
contacts computed during all the simulations are available from http://researchdata.essex.ac.uk/76/, 
doi:0.5526/ERDR-00000076. 

 
Analyzing differences in the bound amylin trajectories 
Differences in the distribution of the , torsional angles that define the protein backbone 
conformation were evaluated for each residue using the Hellinger distance (HD): 
 

ܦܪ ൌ	
1

√2
ሺ√ܲ െ ඥܳሻଶ 

 
where P, the distribution of  values in the simulations with no RAMP and Q, the distribution of  
values in the simulations with RAMP, were evaluated from the molecular dynamics trajectories of 
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the CTR-amylin-C-terminal helix of Gs complex in the presence and absence of RAMP1. A similar 
metric was evaluated for the  values. Figure 5 shows the higher computed value between  or , 
in order to highlight the most significant conformational differences,  Metrics for van der Walls 
contacts and hydrogen bonds were evaluated considering the difference between the total numbers 
of contacts during the simulations in presence and absence of RAMP1.  
 
 
Table SM1. Summary of all the MD simulations performed in the present work.  

SYSTEM AMY1 (CTR + RAMP1) CTR (no RAMP) 
Amylin C terminus Amide Carboxylate Amide Carboxylate 

Unbiased MD 
bound state 

3 replicas 
(750 ns) 

3 replicas 
(750 ns) 

3 replicas 
(750 ns) 

3 replicas 
(750 ns) 

Partial unbinding 
metadynamics 

3 replicas 
(79 ns) 

3 replicas 
(58 ns) 

3 replicas 
(55 ns) 

3 replicas 
(59 ns) 

Supervised MD 
 

10 replicas 
(242 ns / 705 ns 

tot) 

10 replicas 
(235 ns / 670 ns 

tot) 

12 replicas 
(239 ns / 630 ns 

tot) 

10 replicas 
(473 ns / 704 ns 

tot) 
Unsupervised MD 
(metastable states 

sampling) 

300 ns 
(10 x 30 ns) 

300 ns 
(10 x 30 ns) 

360 ns 
(12 x 30 ns) 

300 ns 
(10 x 30 ns) 
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