
Supplement to “Comparing Spatial Regression to Random Forests for
Large Environmental Data Sets”

S1 Covariate Selection Procedure

The procedure we used to select a SLM for MMI with StreamCat covariates:

1. Fit an LM using the full set of covariates.

2. Use the AIC to select an LM with a subset of the covariates using a backwards stepwise
algorithm (i.e., the step() function from R Core Team (2016)).

3. Fit an SLM with the covariates selected for the LM in the previous step. Use ML estimation
with reduced rank method.

4. Remove the covariate in the SLM with the largest absolute t-statistic (for the coefficient) and
then re-estimate the SLM using the reduced rank method. Continue to remove covariates from
the SLM, one at a time, until the AIC of the SLM increases by a significant margin. Select
the most parsimonious SLM with AIC score within 2 points of the minimum. An illustration
of this process is provided in Figure S1.

5. Fit an SLM with the variables selected in previous step. Use REML estimation with the
full-rank covariance matrix.

In steps 3 and 4 we used ML to estimate the SLM since this allowed use of the AIC; however,
REML was used to estimate the final model in step 5. For the reduced rank method we used 300
knots evenly spaced across the CONUS. In preliminary analyses, we also found that approximately
100 knots were necessary for parameter estimates to coverage using optim(), and that with 300
knots the cross-validation RMSPE was only sightly less than the full-rank model. Also note that
the reduced rank method was only used to speed-up estimation during covariate selection (steps 3
and 4) since the final SLM (step 5) was estimated with the full-rank covariance matrix.

To deal with potential collinearity issues, we used the findCorrelation() function from the
caret package of Kuhn (2016) to reduce the pairwise correlations between covariates below a
threshold of 0.75. This function screened out 100 of the 209 StreamCat covariates before application
of the stepwise selection procedure described above. Thus, to fit the initial LM in step 1 we used
109 StreamCat covariates as well as the ecoregion dummy variables. Note that for the LASSO
model we did not initially screen out correlated covariates, and so all 209 covariates were used when
estimating a LASSO model with the glmnet package.
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Figure S1: Covariate selection for the SLM with transformations (step 4). The initial SLM was
estimated with the 66 covariates that were selected for the LM (step 3). The covariates with the
largest absolute t-statistics were then removed one at a time until the AIC increased significantly.
The selected SLM contained 48 covariates and had an AIC of 15679.99. Note that the model with
50 covariates attained the minimum AIC value of 15678.3, however models with an AIC difference
within 2 points are not significantly different (Burnham and Anderson, 2002); thus, due to the large
number of covariates, we selected the more parsimonious model.
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S2 Random Forest Regression Kriging Computations

Let Y − ŶRF = e′ = (e(s1), · · · , e(sn))′ be a random vector of residuals, where ŶRF are the RF
predictions of Y . Assume that E(e(si)) = 0 and cov(e) = Σ; also assume an exponential covariance
model such that the (i, j) entry of Σ is given by C(si, sj) = σ2

z exp(−‖si − sj‖/α) + I(i = j)σ2
ε ,

where θ = (σε, σz, α) are unknown parameters (nugget, partial sill, and range). Then, for a given
realization of the residuals, the negative log-likelihood is given by

l(θ) = 0.5{n log(2π) + log(|Σ|) + e′Σ−1e}.

ML estimates θ̂ are found by minimizing the negative log-likelihood with respect to θ. Note that, in
practice, we use the RF out-of-bag predictions from the randomForest package (Liaw and Wiener,

2002) to compute the vector of predicted values, ŶRF , at observed locations s1, · · · , sn. Also, note
that we use the full-rank covariance matrix for ML estimation.

Once ML estimates for the covariance parameters are obtained, spatial predictions for the resid-
uals can be computed using simple kriging (Cressie, 1993, p. 110; Cressie and Wikle, 2011, pp.
136–139). Under the zero-mean assumption, the simple-kriging predictor of the residual at a new
location s0 is given by ê(s0) = c′Σ−1e, where c′ = (C(s0, s1), · · · , C(s0, sn)). The simple-kriging
variance (minimized mean-square-prediction error) is also given by var(ê(s0)) = C(s0, s0)−c′Σ−1c;
note that C(s0, s0) = σ2

z + σ2
ε is commonly referred to as the sill. Then the RFRK prediction is

Ŷ (s0) = ŶRF (s0) + ê(s0) and 90% prediction interval is Ŷ (s0)± 1.645
√

var(ê(s0)), where ŶRF (s0)
is the RF prediction at s0.

S3 Additional Figures and Tables

Table S1: Regression coefficient summary for the SLM with transformations.
Estimated Box-Cox transformations parameters λ1 (exponent) and λ2 (shifting)
are also shown. Note that transformed covariates were standardized before
fitting the model (subtracted mean and divided by standard deviation). Top 5
covariates, ranked in terms of absolute t-statistics, are in bold face.

λ1 λ2 Est. SE t p-val.
Intercept 55.79 3.06 18.24 2.42e-68

NAP -6.08 3.28 -1.85 6.43e-02
NPL 10.31 3.15 3.28 1.07e-03
SAP -12.56 2.18 -5.77 9.34e-09
TPL 5.61 2.28 2.46 1.38e-02

WMT -19.77 2.92 -6.78 1.65e-11
XER -5.34 2.91 -1.83 6.68e-02

AvgTmaxCat BC 0.1 0 -2.07 0.94 -2.20 2.77e-02
AvgWetIndxCat BC 0.0 0 -3.82 0.63 -6.04 1.89e-09

AvgWetIndxWs BC 0.0 0 -3.70 0.80 -4.65 3.51e-06
CanalDensCat Bin 3.57 1.73 2.06 3.95e-02

CBNFWs BC01 1.3 0 0.78 0.45 1.73 8.36e-02
ClayCat BC2 0.0 1 -1.34 0.72 -1.85 6.40e-02
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FertCat BC01 0.0 1e-10 1.01 0.59 1.72 8.60e-02
FertWs Bin -3.95 1.92 -2.06 3.95e-02

MineDensWsRp100 BC01 1.1 0 3.25 0.88 3.71 2.13e-04
NABD NrmStorWs Bin -3.89 1.35 -2.89 3.94e-03

NABD NrmStorWs BC01 0.3 0 -1.54 0.60 -2.55 1.09e-02
NH4Cat BC 1.3 0 -1.46 0.99 -1.48 1.40e-01

NPDESDensWs BC01 0.1 0 -2.01 0.83 -2.43 1.53e-02
OmCat BC 0.3 0 -1.58 0.63 -2.50 1.25e-02
OmWs BC 0.0 0 2.18 0.75 2.90 3.81e-03

PctAg2006Slp10Cat BC01 0.2 0 -1.17 0.68 -1.72 8.65e-02
PctAg2006Slp20Ws BC01 0.0 0.01 -1.50 0.75 -2.01 4.50e-02

PctCrop2006CatRp100 Bin -2.15 1.01 -2.14 3.27e-02
PctCrop2006CatRp100 BC01 2.0 0 -1.87 0.71 -2.62 8.90e-03

PctFrstLoss06 09Cat BC01 0.0 1e-10 -1.60 0.67 -2.38 1.73e-02
PctFrstLossWsRp100 Bin 5.45 1.46 3.73 2.00e-04

PctGlacLakeFineWs BC01 1.8 0 -2.30 0.98 -2.35 1.89e-02
PctGlacTilCrsWs BC01 0.0 0.1 -5.57 1.46 -3.82 1.36e-04

PctHbWet2006Cat BC01 3.0 0 -1.59 0.66 -2.39 1.71e-02
PctImp2006CatSlp10 BC01 0.4 0 -2.01 0.68 -2.96 3.09e-03

PctNonCarbResidCat Bin -2.46 1.08 -2.29 2.21e-02
PctUrbHi2006Cat Bin -2.43 1.49 -1.63 1.03e-01

PctUrbLo2006WsRp100 Bin -4.45 1.38 -3.24 1.23e-03
PctUrbMd2006WsRp100 Bin 4.11 1.35 3.06 2.28e-03

PctUrbMd2006WsRp100 BC01 0.1 0 -1.88 0.66 -2.83 4.69e-03
PctWdWet2006CatRp100 BC01 0.0 1e-10 1.62 0.54 3.00 2.73e-03

PermCat BC 0.0 1 6.95 2.00 3.47 5.36e-04
PermCat BC2 0.0 1 -7.02 2.08 -3.38 7.41e-04

Pestic97Ws Bin -9.07 2.48 -3.66 2.61e-04
Pestic97Ws BC01 0.0 0.6 -2.05 0.72 -2.85 4.47e-03

RdCrsSlpWtdCat BC01 0.0 1e-10 2.46 0.70 3.51 4.63e-04
RdDensCatRpBf100 Bin -4.13 1.31 -3.15 1.68e-03

RdDensCatRpBf100 BC01 1.8 0 -0.98 0.52 -1.88 5.97e-02
RunoffCat BC 0.0 0.2 4.35 0.77 5.64 1.97e-08

WsAreaSqKm BC 0.0 0 22.12 2.02 10.97 3.82e-27
WsAreaSqKm BC2 0.0 0 -20.27 1.89 -10.71 5.17e-26

NOTE: The tags at the end of the covariates names indicate the type of transformation: ‘BC’ indi-
cates Box-Cox transformation g(x, λ1, λ2), ‘BC2’ indicates a quadratic transformation (g(x, λ1, λ2))2,
‘Bin’ indicates a zero/nonzero dummy variable I(x 6= 0), and ‘BC01’ indicates the interaction
g(x, λ1, λ2)I(x 6= 0). The types of transformations are described in detail in Section 2.2 of the
paper. The spatial regression model also includes dummy variables for the following ecoregions:
Northern Appalachians (NAP), Northern Plains (NPL), Southern Appalachians (SAP), Temperate
Plains (TPL), Westerm Mountain (WMT), and Xeric (XER). StreamCat covariate descriptions are
provided in Table S2.
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Figure S2: Variable importance plot for random forest model with top 30 predictor variables.
Variable importances were computed using the importance() function from the randomForest

package and setting the argument type=1. This gives the permutation-based measure (increase in
MSE when each variable is permuted in the out-of-bag data). StreamCat covariate descriptions are
provided in Table S2.
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Figure S3: Map of the squared residuals from the SLM with covariate transformations. Residuals
were computed as ê = Y −Xβ̂, where β̂ = (X ′Σ−1X)−1X ′Σ−1Y are the generalized least squares
estimates.
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Figure S4: Directional semivariograms of the residuals from the SLM with covariate transforma-
tions. The plot was created using the R package gstat (Gräler et al., 2016).
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Table S2: Descriptions of StreamCat covariates shown in the spatial regression summary (Ta-
ble S1) and RF variable importance plot (Figure S2). Further details about the StreamCat data set
can be found at ftp://newftp.epa.gov/EPADataCommons/ORD/NHDPlusLandscapeAttributes/

StreamCat/WelcomePage.html.

Covariate Name Description
AvgTmaxCat PRISM climate data - 30-year normal maximum temperature (C):

Annual period: 1981-2010 within the catchment
AvgTmaxWs PRISM climate data - 30-year normal maximum temperature (C):

Annual period: 1981-2010 within the watershed
AvgTmeanWs PRISM climate data - 30-year normal mean temperature (C): Annual

period: 1981-2010 within the watershed
AvgTminWs PRISM climate data - 30-year normal minimum temperature (C):

Annual period: 1981-2010 within the watershed
AvgWetIndxCat Mean topographic (30m DEMs) wetness index

(https://en.wikipedia.org/wiki/Topographic Wetness Index) within
the catchment

AvgWetIndxWs Mean topographic (30m DEMs) wetness index
(https://en.wikipedia.org/wiki/Topographic Wetness Index) within
the watershed

CanalDensCat Density of NHDPlus line features classified as canal, ditch, or pipeline
within the catchment (km/ square km)

CBNFWs Mean crop biological nitrogen fixation within the upstream watershed
ClayCat Mean % clay content of soils (STATSGO) within catchment
ClayWs Mean % clay content of soils (STATSGO) within watershed
DamNIDStorWs Volume all reservoirs (NID STORA in NID) per unit area of water-

shed (cubic meters/square km)
DamNrmStorWs Volume all reservoirs (NORM STORA in NID) per unit area of wa-

tershed (cubic meters/square km)
FertCat Mean rate of synthetic nitrogen fertilizer application to agricultural

land in kg N/ha/yr, within the catchment
FertWs Mean rate of synthetic nitrogen fertilizer application to agricultural

land in kg N/ha/yr, within watershed
HUDen2010Cat Mean housing unit density (housing units/square km) within catch-

ment
HUDensRpBf100Cat Mean housing unit density (housing units/square km) within catch-

ment and within 100-m buffer of NHD stream lines
MineDensWsRp100 Density of mines sites within watershed and within 100-m buffer of

NHD stream lines (mines/square km)
NABD NrmStorWs Volume all reservoirs (NORM STORA in NID) per unit area of wa-

tershed (cubic meters/square km)
NH4Cat Annual gradient map of precipitation-weighted mean deposition for

ammonium ion concentration wet deposition in kg of NH4/ha/yr,
within catchment

NPDESDensWs Density of permitted NPDES (National Pollutant Discharge Elimina-
tion System) sites within watershed (sites/square km)
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OmCat Mean organic matter content (% by weight) of soils (STATSGO)
within catchment

OmWs Mean organic matter content (% by weight) of soils (STATSGO)
within watershed

PctAg2006Slp10Cat % of catchment area classified as ag land cover (NLCD 2006 classes
81-82) occurring on slopes > 10%

PctAg2006Slp20Ws % of catchment area classified as ag land cover (NLCD 2006 classes
81-82) occurring on slopes > 20%

PctCrop2006CatRp100 % of catchment area classified as crop land use (NLCD 2006 class 82)
within a 100-m buffer of NHD streams

PctExtruVolWs % of watershed area classified as as lithology type: extrusive volcanic
rock

PctFrstLoss06 09Cat % of catchment area that experienced forest loss (yrs. 2006-2009)
PctFrstLoss08 09Ws % of watershed area that experienced forest loss (yrs. 2008-2009)
PctFrstLossWsRp100 % of watershed area that experienced forest loss (all years) within

100-m buffer of NHD stream lines
PctGlacLakeFineWs % of watershed area classified as as lithology type: glacial lake sedi-

ment, fine-textured
PctGlacTilCrsWs % of watershed area classified as as lithology type: glacial till, coarse-

textured
PctHbWet2006Cat % of catchment area classified as herbaceous wetland land cover

(NLCD 2006 class 95)
PctImp2006CatSlp10 Mean imperviousness of anthropogenic surfaces (NLCD 2006) within

catchment occuring on slopes > 10%
PctImp2006Ws Mean imperviousness of anthropogenic surfaces (NLCD 2006) within

watershed
PctImp2006WsSlp20 Mean imperviousness of anthropogenic surfaces (NLCD 2006) within

catchment occuring on slopes > 20%
PctNonCarbResidCat % of catchment area classified as lithology type: non-carbonate resid-

ual material
PctNonnativeCat % of catchment area classified as non-native vegetation based on

LandFire classes (http://www.landfire.gov/)
PctNonnativeWs % of watershed area classified as non-native vegetation based on Land-

Fire classes (http://www.landfire.gov/)
PctUrbAg2006Ws % of watershed area classified as urban and agricultural land uses

(NLCD 2006 classes 21-24, 81-82) NHD stream lines
PctUrbHi2006Cat % of catchment area classified as developed, high-intensity land use

(NLCD 2006 class 24)
PctUrbLo2006WsRp100 % of watershed area classified as developed, low-intensity land use

(NLCD 2006 class 22) within a 100-m buffer of NHD streams
PctUrbMd2006WsRp100 % of watershed area classified as developed, medium-intensity land

use (NLCD 2006 class 23) within a 100-m buffer of NHD streams
PctWdWet2006CatRp100 % of catchment area classified as woody wetland land cover (NLCD

2006 class 90) within a 100-m buffer of NHD streams
PermCat Mean permeability (cm/hour) of soils (STATSGO) within catchment
Pestic97Ws Mean pesticide use (kg/km2) in yr. 1997 within watershed
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PopDen2010Cat Mean populating density (people/square km) within catchment
PopDen2010Ws Mean populating density (people/square km) within watershed
PRISMppt08 09Ws PRISM climate data - mean precipitation (mm): Annual period:

2008-2009 within the watershed
PRISMPrecipWs PRISM climate data - 30-year normal mean precipitation (mm): An-

nual period: 1981-2010 within the watershed
RdCrsSlpWtdCat Density of roads-stream intersections (2010 Census Tiger Lines-NHD

stream lines) multiplied by NHDPlusV21 slope within catchment
(crossings*slope/square km)

RdDensCatRpBf100 Density of roads (2010 Census Tiger Lines) within catchment and
within a 100-m buffer of NHD stream lines (km/square km)

RdDensWs Density of roads (2010 Census Tiger Lines) within watershed
(km/square km)

RunoffCat Mean runoff (mm) within catchment
RunoffWs Mean runoff (mm) within watershed
WsAreaSqKm Watershed area (square km) at NHDPlus stream segment outlet, i.e.,

at the most downstream location of the vector line segment
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