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Supporting Text 

LC-MS metabolomics. 
Metabolomics analysis was performed using human plasma samples obtained from Maastricht 

University (N=78) (Cohort 1) and the Human Functional Genomics Project (N=526) (Cohort 

2).1,2 All study protocols were approved and human samples collected with full participant 

consent and under Institutional Review Board authorization. For all samples, blood was 

collected into EDTA-tubes and centrifuged at 1,000xg. Plasma was isolated, snap-frozen and 

stored at -80∘C until analyses. 

Metabolites were extracted from human plasma samples using organic solvent consisting of 

methanol:acetonitrile at a 1:1 ratio (v/v). A volume of 80 𝜇L of cold extraction solvent was added 

to 20 𝜇L of plasma. Samples were then vortexed for 15 minutes at 4∘C followed centrifugation at 

4200 rpm and 4∘C for 10 minutes. Resulting supernatants were transferred to 96 well microtiter 

plates for analysis. 

Chromatographic separation of compounds was achieved on a Thermo Vanquish UHPLC 

system using a Merck-SeQuant ZIC-pHILIC PEEK coated HPLC column (100 x 2.1 mm, 5𝜇m 

particle size) fitted with a Phenomenex KrudKatcher ULTRA HPLC in-line filter (0.5 𝜇m filter x 

0.004 in ID) to protect the column from microparticulates. A gradient of mobile phases A (20 mM 

ammonium bicarbonate in water, titrated with ammonium hydroxide to a pH of 9.6) and B 

(acetonitrile) was used for chromatographic separation of metabolites. A constant flow rate of 

400 𝜇L min-1 and column temperature of 45∘C was used. The mobile phase ratio was held at 

10% mobile phase A from 0 to 0.25 min and linearly increased up to 45% at 4 min, and 

subsequently maintained for 2 min. Post-run the flow returned to 10% A and 90% B for 3.25 min 

to allow for column re-equilibration. During all analyses, the sample tray temperature was held 

at 4∘C. Sample injection volume was 2 𝜇L. 

The LC system was coupled to a Thermo Q-Exactive Orbitrap mass spectrometer (Thermo 

Fisher Scientific, Waltham, MA) equipped with a heated electrospray ionization source (HESI). 

The following HESI settings were used: sheath gas flow rate 40 arbitrary units, auxiliary gas flow 

rate 20 arbitrary units, sweep gas flow rate 2 arbitrary units, spray voltage 3.5 kV, capillary 

temperature 275∘C, S-lens RF level 45, auxiliary gas heater temperature 350∘C. A scan range 

of 65 to 975 m/z was used with a resolution of 35,000. All profile data was collected in negative 

ionization mode. 

Data Extraction 
Data acquisition for small molecule quantification was performed with the Xcalibur software. 

Raw MS/MS data were converted to mzXML files using MSConvert.3 All mzXML files were 

loaded into MZmine 2.4 MZmine 2 modules and settings used to preprocess the data, generate 

chromatograms, detect peaks, and align peaks can be found in Table S1 and Table S2. 

Data Preparation 
There were 2770 peak groups generated from 78 mzXML files and processed using the 

MZmine 2 workflow and settings listed in Table S1 for the typical (more restrictive) settings and 

Table S2 for the less restrictive settings. These peak groups were manually reviewed by a 

single expert reviewer and labeled as either good or bad (see Figure S1 for examples of good 

and bad peaks). Groups where all good quality peak shapes occurred near the noise intensity 
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for that chromatogram and peak groups that were near the decision threshold were excluded 

from the training data. 

The training data was partitioned using a training:validation:test ratio of 47%:27%:26%, such 

that 1304 of the peak groups were used to train the model, 740 were used for validation and 

726 were used for testing (Table S3). The training partition was balanced, including an equal 

number of examples in the good (true positive) and bad (false positive) classes. 

Models were also tested on 3000 peak groups selected from Cohort 2 (Table S3). 

Image based deep neural network 
The deep neural network model was trained using the dataset discussed in the previous 

section. Full peak shapes used for training the deep learning model were extracted from the LC-

MS data (mzXML format) with windows specifying upper and lower limits in m/z and retention 

time. Since the peak feature is judged in the context of its surrounding chromatographic 

landscape, we extended the observable retention time of each extracted ion chromatogram to 

capture the neighborhood information for each feature. 

The raw peak signals were discretized in the retention time dimension by equal width binning 

with a bin size of 0.01 minutes. This resulted in a total of 602 bins in the retention time 

dimension. The raw peak signals were converted to an image format where the Y dimension 

was comprised of samples while the X dimension was comprised of signal intensities in 

retention time bins as illustrated in Figure 2A–C in the main text. The image size chosen for this 

model was 64 sample bins x 64 retention time bins, because the majority of peaks spanned a 

width of less than 64 retention time bins. In each image, the sample rows 1 to 63 were filled by 

the top 63 samples with highest peak intensities and the last row was filled by a binary vector 

indicating the retention time range of the peak under consideration, labeled as “Window” in 

Figure 2A-C in the main text. Furthermore, each feature intensity is scaled so that the 

maximum intensity in each image is one (Figure 2A). 

The deep neural network model was trained using Keras libraries5 in Python.6 The model 

architecture was as follows: 

Layer 1: 2D convolution with 32 Filters, 3x3 Kernel Size, ReLU activation 

Layer 2: 2D MaxPooling with Pool Size 2x2, Stride 2x2 

Layer 3: Dropout 0.2 

Layer 4: 2D convolution with 16 Filters, 3x3 Kernel Size, ReLU activation 

Layer 5: 2D MaxPooling with Pool Size 2x2, Stride 2x2 

Layer 6: Dropout 0.2 

Layer 7: Fully Connected Layer with 64 neurons, ReLU activation 

Layer 8: Dropout 0.5 

Layer 9: Fully Connected Layer with 2 neurons, Softmax activation 

The model was applied at a threshold determined from the receiver-operator characteristic 

(ROC) curve of the calibration set using the “closest.topleft” method from the R Package 

“pROC”.7 The same method was used to determine the threshold for the multiple logistic 

regression and Random Forest models. 

Review of Neural Network Performance 
In order to evaluate the size of the training data set and its impact on model performance, the 

model was trained iteratively using progressively larger subsets of the full training data set. The 
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performance of the model was evaluated at each iteration using the metric of mean squared 

error (Figure S5) 

While we saw a very significant improvement in the data quality after applying the neural 

network model (retention of most true positive peak features and great reduction in false 

positive peak features), a fraction of peak features selected were still false hits. We investigated 

why this was the case by manually reviewing the peaks that the machine learning algorithm 

picked inaccurately. A common major source of errors in machine learning classification is the 

difference between data used for training and independent testing. Therefore, it is imperative to 

understand the data extraction procedure and recognize the differences in the data owing to the 

set of experiments that we performed here. 

In a typical MZmine 2 workflow, peaks are selected by an algorithm using a set of user-provided 

settings. MZmine 2 does not explicitly generate peak feature windows. In order to extract a 

feature from raw data, in-house written scripts were used to determine windows around the 

peaks grouped by MZmine 2’s join aligner module. Using these windows, data is then extracted 

from mzXML files. Either of the feature identification and window setting steps can sometimes 

erroneously result in two peaks being merged in one window, one peak being split into two 

windows and peaks being duplicated in the data. The prevalence of each type of windowing 

error is dependent on the peak selection settings used. 

Since the initial training data was developed using less restrictive settings in MZmine 2 (Table 

S2), we anticipated some difference in performance when the model was applied to data 

exported with restrictive settings (Table S1). We were able to categorize these errors in five 

broad categories, and representative examples from each type are shown in Figure S3. 

One surprising finding was that the model gave low scores to shoulder peaks in the restricted 

settings cohort (Figure S3A). Here shoulder peaks refer to smaller peaks occurring at the same 

retention time and m/z window as a larger peak, such that the peak shapes are not fully 

resolved to baseline. This error seems to come from the low abundance of shoulder peaks in 

our training dataset, where shoulders were often put in the same window as the higher intensity 

neighboring peak. Thus, the model did not have a prior basis of judging windows with just the 

shoulder peaks. As such, we do not anticipate peak losses if the data is consistently prepared 

with the same settings as data used for model training. 

In other cases, the background signal from some samples overwhelmed the peak signal (Figure 

S3B). These signals can occur when certain samples have a peak with the same m/z as the 

candidate peak that has a much higher intensity than the candidate peak. In these cases, the 

tail of the much larger peak in those files can be higher than the apex of the true peaks in other 

files. As illustrated by the listed scores, an acceptable peak overlaid by noise was rejected once 

and accepted the other time. Such peaks formed a negligible portion of total peaks in the 

dataset, and an expert may reject such peak features because the high intensity noise could 

create problems in subsequent statistical analyses. But the answer to the question of whether 

the window contains a peak would be yes, causing ambiguity in both annotation and 

classification. 

In the third category (Figure S3C) were wide peaks that were not Gaussian and had low signal 

to noise ratio. Upon reexamining these cases, the reviewers agree that these cases are 

ambiguous and these peaks could have been accepted. The fourth category of misclassification 

were broad square peaks with low signal to noise ratio (Figure S3D). These peaks were called 
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as ambiguous on the side of being rejected upon repeat examination by the expert. These 

peaks were scored low but acceptable by the model. In manual curation, experts often 

determine if the peak apex is captured in the given window. It is possible that this leads to some 

ambiguous labeling among reviewers, resulting in low confidence of the neural network 

classifier. 

The final category of misclassification was features that the neural network classifier got wrong, 

but were unequivocally rejected by the reviewers (Figure S3E). While we still do not understand 

the full reason behind why this was the case, it appears that the neural network classifier noted 

the slight bump in the noise as a possible peak. 

Peak group parameter model 
The following six peak shape attributes were exported from MZmine 2 for each peak group: 

peak duration, height, area, full-width half max (FWHM), tailing factor, and asymmetry factor. 

These attributes were used to define different peak group descriptive statistics (peak group 

parameters) intended to separate groups of true peaks from groups of noise or peaks of 

unacceptable quality. These peak group parameters were then used as variables in the 

predictive models. The peak group parameter definitions are provided in Table S4. 

Two separate models were generated and used for prediction, a multiple logistic regression 

model and a Random Forest8 model. The models were generated and implemented using 

scripts written in the R programming language.9 All code used in this paper has been provided 

to the scientific community at https://github.com/JainLab. 

The multiple logistic regression model variables are selected using a simple forward selection 

procedure. K-fold cross validation is used to determine which individual variable provides the 

best prediction. Additional variables are added one at a time using the same procedure, 

selecting the variable which improves performance the most as determined by k-fold cross 

validation of the training data. When the addition of new variables does not improve 

performance, variable selection is complete. The calibration data set is then used to prune 

variables from the model which do not improve prediction. The resulting multiple logistic 

regression model is parsimonious and unlikely to be an over-fit of the training data. 

For the data sets and MZmine 2 settings used, the final model included 15 different peak group 

parameters. These peak group parameters are indicated with an asterisk in Table S4. It should 

be noted that the selection of variables included in final model is dependent on both the LC-MS 

dataset as well as the MZmine 2 settings used for peak detection and alignment. 

The Random Forest algorithm as developed by Leo Breiman8 performs classification through 

the construction of a multitude of decision trees trained on random subsets of the training data. 

The algorithm implements this method via the R package randomForest10. The calibration data 

set was used to optimize the node size parameter. 

The basic workflow for both peak group parameter models is illustrated in Figure S2. 

Both models are independently evaluated on the test subset of the input data and results are 

output in the form of various plots including receiver operator curves (ROC) (Figure 3D in the 

main text) as well as histograms (Figure S4 A and B) and density plots comparing the 

distributions of true and false positives . 

When applying the models to an independent dataset, the script exports a histogram showing 

the distribution of predicted probability scores for the input peak group set to assist with 
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threshold selection. Tables are exported with peak groups above the user-set threshold in a 

format which can directly be used to label the peak groups in MZmine 2 using the “Custom 

database search” module. 
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Supporting Tables 
 

Table S1. MZmine 2 settings used for the typical (more restrictive) condition. 

Parameters Values 

Mass detection   

Scans MS level: 1 

Mass detector Centroid 

Chromatogram Builder   

Scans MS level: 1 

Min time span (min) 0.04 

Min height 3.00E+05 

m/z tolerance 0.0 m/z or 15.0 ppm 

Chromatogram deconvolution   

Algorithm Local minimum search 

Chromatographic threshold 0.00% 

Search minimum in RT range (min) 0.03 

Minimum relative height 1.00% 

Minimum absolute height 4.00E+05 

Min ratio of peak top/edge 1.5 

Peak duration range (min) 0.040-4.00 

Join aligner   

m/z tolerance 0.0 m/z or 15.0 ppm 

Weight for m/z 1 

Retention time tolerance 0.02 min 

Weight for RT 1 

Peak list rows filter   

Minimum peaks in a row 25 

Keep or remove rows 

Keep rows that match all 

criteria 
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Table S2. MZmine 2 settings used for the less restrictive condition. 

Parameters Values 

Mass detection   

Scans MS level: 1 

Mass detector Centroid 

Chromatogram Builder   

Scans MS level: 1 

Min time span (min) 0.04 

Min height 1.50E+05 

m/z tolerance 0.0 m/z or 15.0 ppm 

Chromatogram deconvolution   

Algorithm Local minimum search 

Chromatographic threshold 0.00% 

Search minimum in RT range 

(min) 0.025 

Minimum relative height 1.00% 

Minimum absolute height 1.50E+05 

Min ratio of peak top/edge 1.2 

Peak duration range (min) 0.025-4.00 

Join aligner   

m/z tolerance 0.0 m/z or 15.0 ppm 

Weight for m/z 1 

Retention time tolerance 0.02 min 

Weight for RT 1 

Peak list rows filter   

Minimum peaks in a row 3 

Keep or remove rows 

Keep rows that match all 

criteria 
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Table S3. Summary of training, calibration and test datasets 

Cohort 1 

Train 1304 peak groups 

Calibrate 740 peak groups 

Test 726 peak groups 

Cohort 2 Test 3000 peak groups 
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Table S4a. Definitions of peak group parameters used in multiple logistic regression and Random Forest models (1 

of 4). The 15 peak group parameters used in the final logistic regression model are indicated with an asterisk (*). 

Variable Name Formula 

propDetected 
𝑇𝑜𝑡𝑎𝑙𝐹𝑖𝑙𝑒𝑠𝑊𝑖𝑡ℎ𝑃𝑒𝑎𝑘𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙𝐹𝑖𝑙𝑒𝑠
 

logMaxHt 𝑙𝑜𝑔(𝑚𝑎𝑥(𝑝𝑒𝑎𝑘𝐻𝑒𝑖𝑔ℎ𝑡)) 

logMedHt 𝑙𝑜𝑔(𝑚𝑒𝑑(𝑝𝑒𝑎𝑘𝐻𝑒𝑖𝑔ℎ𝑡)) 

*logSdHeight 𝑙𝑜𝑔(𝑠𝑑(𝑝𝑒𝑎𝑘𝐻𝑒𝑖𝑔ℎ𝑡)) 

logMaxArea 𝑙𝑜𝑔(𝑚𝑎𝑥(𝑝𝑒𝑎𝑘𝐴𝑟𝑒𝑎)) 

logMedArea 𝑙𝑜𝑔(𝑚𝑒𝑑(𝑝𝑒𝑎𝑘𝐴𝑟𝑒𝑎)) 

*logSdArea 𝑙𝑜𝑔(𝑠𝑑(𝑝𝑒𝑎𝑘𝐴𝑟𝑒𝑎)) 

*logMaxDur 𝑙𝑜𝑔(𝑚𝑎𝑥(𝑝𝑒𝑎𝑘𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)) 

logMedDur 𝑙𝑜𝑔(𝑚𝑒𝑑(𝑝𝑒𝑎𝑘𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)) 

logStDevDur 𝑙𝑜𝑔(𝑠𝑑(𝑝𝑒𝑎𝑘𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)) 

CvDur 
𝑠𝑑(𝑝𝑒𝑎𝑘𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)

𝑚𝑒𝑎𝑛(𝑝𝑒𝑎𝑘𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)
 

custVarMeasDur 
𝑠𝑑(𝑝𝑒𝑎𝑘𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)

𝑚𝑎𝑥(𝑝𝑒𝑎𝑘𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)
 

logMaxFWHM 𝑙𝑜𝑔(𝑚𝑎𝑥(𝑝𝑒𝑎𝑘𝐹𝑊𝐻𝑀)) 

logMedFWHM 𝑙𝑜𝑔(𝑚𝑒𝑑(𝑝𝑒𝑎𝑘𝐹𝑊𝐻𝑀)) 

logMaxRelArea 𝑙𝑜𝑔 (𝑚𝑎𝑥 (
𝑝𝑒𝑎𝑘𝐴𝑟𝑒𝑎

𝑝𝑒𝑎𝑘𝐻𝑒𝑖𝑔ℎ𝑡
)) 

logMedRelArea 𝑙𝑜𝑔 (𝑚𝑒𝑑 (
𝑝𝑒𝑎𝑘𝐴𝑟𝑒𝑎

𝑝𝑒𝑎𝑘𝐻𝑒𝑖𝑔ℎ𝑡
)) 

logMinRelArea 𝑙𝑜𝑔 (𝑚𝑖𝑛 (
𝑝𝑒𝑎𝑘𝐴𝑟𝑒𝑎

𝑝𝑒𝑎𝑘𝐻𝑒𝑖𝑔ℎ𝑡
)) 
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Table S4b. Definitions of peak group parameters used in multiple logistic regression and Random Forest models (2 

of 4). The 15 peak group parameters used in the final logistic regression model are indicated with an asterisk (*). 

Variable Name Formula 

logSdRelArea 𝑙𝑜𝑔 (𝑠𝑑 (
𝑝𝑒𝑎𝑘𝐴𝑟𝑒𝑎

𝑝𝑒𝑎𝑘𝐻𝑒𝑖𝑔ℎ𝑡
)) 

*logCvRelArea 𝑙𝑜𝑔(
𝑠𝑑 (

𝑝𝑒𝑎𝑘𝐴𝑟𝑒𝑎
𝑝𝑒𝑎𝑘𝐻𝑒𝑖𝑔ℎ𝑡

)

𝑚𝑒𝑎𝑛 (
𝑝𝑒𝑎𝑘𝐴𝑟𝑒𝑎
𝑝𝑒𝑎𝑘𝐻𝑒𝑖𝑔ℎ𝑡

)
) 

custVarMeasRelArea 

𝑠𝑑 (
𝑝𝑒𝑎𝑘𝐴𝑟𝑒𝑎
𝑝𝑒𝑎𝑘𝐻𝑒𝑖𝑔ℎ𝑡

)

𝑚𝑎𝑥 (
𝑝𝑒𝑎𝑘𝐴𝑟𝑒𝑎
𝑝𝑒𝑎𝑘𝐻𝑒𝑖𝑔ℎ𝑡

)
 

*sdRatioAreaHt 
𝑠𝑑(𝐻𝑒𝑖𝑔ℎ𝑡)

𝑠𝑑(𝐴𝑟𝑒𝑎)
 

logMaxRelFWHM 𝑙𝑜𝑔(𝑚𝑎𝑥(
𝑝𝑒𝑎𝑘𝐹𝑊𝐻𝑀

𝑝𝑒𝑎𝑘𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
)) 

*medRelFWHM 𝑚𝑒𝑑𝑖𝑎𝑛(
𝑝𝑒𝑎𝑘𝐹𝑊𝐻𝑀

𝑝𝑒𝑎𝑘𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
) 

*logMedRelFWHM 𝑙𝑜𝑔(𝑚𝑒𝑑𝑖𝑎𝑛(
𝑝𝑒𝑎𝑘𝐹𝑊𝐻𝑀

𝑝𝑒𝑎𝑘𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
)) 

*minRelFWHM 𝑙𝑜𝑔(𝑚𝑖𝑛(
𝑝𝑒𝑎𝑘𝐹𝑊𝐻𝑀

𝑝𝑒𝑎𝑘𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
)) 

logSdRelFWHM 𝑙𝑜𝑔(𝑠𝑑(
𝑝𝑒𝑎𝑘𝐹𝑊𝐻𝑀

𝑝𝑒𝑎𝑘𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
)) 

logCvRelFWHM 𝑙𝑜𝑔(𝑠𝑑(
𝑝𝑒𝑎𝑘𝐹𝑊𝐻𝑀

𝑝𝑒𝑎𝑘𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
)/𝑚𝑒𝑎𝑛(

𝑝𝑒𝑎𝑘𝐹𝑊𝐻𝑀

𝑝𝑒𝑎𝑘𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
)) 

custVarMeasRelFWHM 𝑙𝑜𝑔(𝑠𝑑(
𝑝𝑒𝑎𝑘𝐹𝑊𝐻𝑀

𝑝𝑒𝑎𝑘𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
)/𝑚𝑎𝑥(

𝑝𝑒𝑎𝑘𝐹𝑊𝐻𝑀

𝑝𝑒𝑎𝑘𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
)) 

logSdSpecWidth 𝑙𝑜𝑔(𝑠𝑑(
𝑝𝑒𝑎𝑘𝐹𝑊𝐻𝑀

𝑝𝑒𝑎𝑘𝐴𝑟𝑒𝑎
)) 

logMaxTfact 𝑙𝑜𝑔(𝑚𝑎𝑥(𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟)) 
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Table S4c. Definitions of peak group parameters used in multiple logistic regression and Random Forest models (3 

of 4). The 15 peak group parameters used in the final logistic regression model are indicated with an asterisk (*). 

Variable Name Formula 

logMedTfact 𝑙𝑜𝑔(𝑚𝑒𝑑𝑖𝑎𝑛(𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟)) 

logMinTfact 𝑙𝑜𝑔(𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟)) 

sdTfact 𝑠𝑑(𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟) 

logSdTfact 𝑙𝑜𝑔(𝑠𝑑(𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟)) 

CvTfact 
𝑠𝑑(𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟)

𝑚𝑒𝑎𝑛(𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟)
 

logCvTfact 𝑙𝑜𝑔 (
𝑠𝑑(𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟)

𝑚𝑒𝑎𝑛(𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟)
) 

custVarMeasTfact 
𝑠𝑑(𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟)

𝑚𝑎𝑥(𝑠𝑑(𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟))
 

logMaxAfact 𝑙𝑜𝑔(𝑚𝑎𝑥(𝑝𝑒𝑎𝑘𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟)) 

logMedAfact 𝑙𝑜𝑔(𝑚𝑒𝑑𝑖𝑎𝑛(𝑝𝑒𝑎𝑘𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟)) 

AsymLngFact 
if peak Assymetry Factor < 1, then 𝐴𝑠𝑦𝑚𝐿𝑛𝑔𝐹𝑎𝑐𝑡 =

−1

𝑝𝑒𝑎𝑘𝐴𝑠𝑠𝑦𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟
 else 𝐴𝑠𝑦𝑚𝐿𝑛𝑔𝐹𝑎𝑐𝑡 = 𝑝𝑒𝑎𝑘𝐴𝑠𝑠𝑦𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟 

logMaxAbsAsymLngFact 𝑙𝑜𝑔(𝑚𝑎𝑥(|𝐴𝑠𝑦𝑚𝐿𝑛𝑔𝐹𝑎𝑐𝑡|)) 

*medLogAbsAsymLngFact 𝑙𝑜𝑔(𝑚𝑒𝑑𝑖𝑎𝑛(|𝐴𝑠𝑦𝑚𝐿𝑛𝑔𝐹𝑎𝑐𝑡|)) 

logMinAbsAsymLngFact 𝑙𝑜𝑔(𝑚𝑖𝑛𝑖𝑚𝑢𝑚(|𝐴𝑠𝑦𝑚𝐿𝑛𝑔𝐹𝑎𝑐𝑡|)) 

*sdAsymLngFact 𝑠𝑑(𝐴𝑠𝑦𝑚𝐿𝑛𝑔𝐹𝑎𝑐𝑡) 

logSdAsymLngFact 𝑙𝑜𝑔(𝑠𝑑(𝐴𝑠𝑦𝑚𝐿𝑛𝑔𝐹𝑎𝑐𝑡) 

CvAsymLngFact 

𝑠𝑑(𝐴𝑠𝑦𝑚𝐿𝑛𝑔𝐹𝑎𝑐𝑡)

𝑚𝑒𝑎𝑛(𝐴𝑠𝑦𝑚𝐿𝑛𝑔𝐹𝑎𝑐𝑡)
 if peak Assymetry Factor < 1, then 

𝐴𝑠𝑦𝑚𝐿𝑛𝑔𝐹𝑎𝑐𝑡 =
−1

𝑝𝑒𝑎𝑘𝐴𝑠𝑠𝑦𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟
 else 𝐴𝑠𝑦𝑚𝐿𝑛𝑔𝐹𝑎𝑐𝑡 =

𝑝𝑒𝑎𝑘𝐴𝑠𝑠𝑦𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟 
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Table S4d. Definitions of peak group parameters used in multiple logistic regression and Random Forest models (4 

of 4). The 15 peak group parameters used in the final logistic regression model are indicated with an asterisk (*). 

Variable Name Formula 

logCvAsymLngFact 𝑙𝑜𝑔 (
𝑠𝑑(𝐴𝑠𝑦𝑚𝐿𝑛𝑔𝐹𝑎𝑐𝑡)

𝑚𝑒𝑎𝑛(𝐴𝑠𝑦𝑚𝐿𝑛𝑔𝐹𝑎𝑐𝑡)
) 

custVarMeasAsymLngFact 
𝑠𝑑(𝐴𝑠𝑦𝑚𝐿𝑛𝑔𝐹𝑎𝑐𝑡)

𝑚𝑎𝑥(𝐴𝑏𝑠𝐴𝑠𝑦𝑚𝐿𝑛𝑔𝐹𝑎𝑐𝑡)
 

logMaxT_Afact 𝑙𝑜𝑔 (𝑚𝑎𝑥 (
𝑝𝑒𝑎𝑘𝐴𝑠𝑠𝑦𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟

𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟
)) 

logMedT_Afact 𝑙𝑜𝑔 (𝑚𝑒𝑑𝑖𝑎𝑛 (
𝑝𝑒𝑎𝑘𝐴𝑠𝑠𝑦𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟

𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟
)) 

logMinT_Afact 𝑙𝑜𝑔 (𝑚𝑖𝑛𝑖𝑚𝑢𝑚(
𝑝𝑒𝑎𝑘𝐴𝑠𝑠𝑦𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟

𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟
)) 

sdT_Afact 𝑠𝑑 (
𝑝𝑒𝑎𝑘𝐴𝑠𝑠𝑦𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟

𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟
) 

logSdT_Afact 𝑙𝑜𝑔 (𝑠𝑑 (
𝑝𝑒𝑎𝑘𝐴𝑠𝑠𝑦𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟

𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟
)) 

CvT_Afact 

𝑠𝑑 (
𝑝𝑒𝑎𝑘𝐴𝑠𝑠𝑦𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟
𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟

)

𝑚𝑒𝑎𝑛 (
𝑝𝑒𝑎𝑘𝐴𝑠𝑠𝑦𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟
𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟

)
 

*logCvT_Afact 𝑙𝑜𝑔(𝐶𝑣𝑇𝐴𝑓𝑎𝑐𝑡) 

*custVarMeasT_Afact 

𝑠𝑑 (
𝑝𝑒𝑎𝑘𝐴𝑠𝑠𝑦𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟
𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟

)

𝑚𝑎𝑥 (
𝑝𝑒𝑎𝑘𝐴𝑠𝑠𝑦𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟
𝑝𝑒𝑎𝑘𝑇𝑎𝑖𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟

)
 

*logCombFact1 𝑙𝑜𝑔((𝑚𝑖𝑛𝑅𝑒𝑙𝐹𝑊𝐻𝑀)(𝑚𝑒𝑑𝑇𝑓𝑎𝑐𝑡)(𝑚𝑒𝑑𝐴𝑓𝑎𝑐𝑡)) 

*combVarMeas1 
𝑐𝑢𝑠𝑡𝑉𝑎𝑟𝑀𝑒𝑎𝑠𝑅𝑒𝑙𝐴𝑟𝑒𝑎

𝑐𝑢𝑠𝑡𝑉𝑎𝑟𝑀𝑒𝑎𝑠𝐷𝑢𝑟
 

*combVarMeas2 𝑙𝑜𝑔 (
𝑐𝑢𝑠𝑡𝑉𝑎𝑟𝑀𝑒𝑎𝑠𝑅𝑒𝑙𝐴𝑟𝑒𝑎

𝑐𝑢𝑠𝑡𝑉𝑎𝑟𝑀𝑒𝑎𝑠𝐷𝑢𝑟
) 
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Supporting Figures 
 

 

Figure S1 Peak shape examples that were accepted (green box on the left) and rejected (red box on the right) by the 

human reviewer. 
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Figure S2. Peak group parameter workflow illustrating the progression from exporting peak shape attributes to 

generating multiple logistic regression and Random Forest models. 
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Figure S3 Peak shape examples and the corresponding model scores. (A) “Shoulder peaks” lower intensity peaks 

occurring on the tail of a higher intensity peak. (B) The background signal from certain samples has a higher intensity 

than the intensity of the peak occurring in the window. (C) Peaks with unusual (non-gaussian) shapes. (D) Broad 

peaks with low signal to noise ratios. (E) Incorrect classification by the model. High scoring signal that should have 

been rejected as a non-peak. 
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Figure S4. Performance of Multiple Logistic Regression and Random Forest models (A) A stacked-bar histogram of 

peak probability scores predicted by the multiple logistic regression model for ground truth false positive (red) and 

true positive (black) peak groups in the test set. (B) Histogram for the Random Forest Model (C) A plot of the 

proportion of true positive (black line) and false positive (red line) peaks retained at each score threshold from zero to 

one. Optimum score threshold was selected using the point on the corresponding ROC curve closest to the top left 

corner (sensitivity = 1, specificity = 1) (D) Corresponding plot for the Random Forest Model. 
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Figure S5 Training set size evaluation. Mean squared error of the model predictions for the training and calibration 

data sets vs. training set size. 

  


