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Two Distinct Neuroanatomical Subtypes of Schizophrenia Revealed Using Machine 

Learning 

 
SI Methods 

Study sample 

Subjects for this consortium-based study were collected from previous studies conducted in three different sites 

(USA, Germany and China) (Satterthwaite et al., 2010; Wolf et al., 2014; Zhang et al., 2015; Zhu et al., 2016; 

Zhuo et al., 2016). Parts of these samples were also formerly used for a multisite standard case-control study by 

our group (Rozycki et al., 2018). 

Site 1 (USA): This study was approved by the Institutional Review Board of the University of Pennsylvania. 

Written informed consent was obtained from each participant. Recruitment and assessment were performed by 

trained clinical investigators. Diagnostic assessment utilized the Structured Clinical Interview for DSM-IV 

(SCID). Subjects were not enrolled if they had a history of substance abuse or dependence (excluding nicotine) in 

the past six months or a positive urine drug screen on the day of the study. Healthy control (HC) subjects were 

excluded if they met criteria for any DSM-IV psychiatric disorder. For patient samples, the Scale for the 

Assessment of Positive Symptoms (SAPS) (Andreasen, 1984) and the Scale for the Assessment of Negative 

Symptoms (SANS) (Andreasen, 1983) were used.  

Site 2 (Germany): Subjects were recruited at the Department of Psychiatry and Psychotherapy at Ludwig-

Maximilians University, Munich, Germany. The study protocols were approved by the ethics committee of 

Ludwig-Maximilians University. Subjects provided their written informed consent prior to MRI and clinical 

examination. Patient recruitment and assessment was performed by trained clinical investigators.  Assessment 

included the SCID for Axis I & II disorders (SCID-I/-II), a semi-standardized clinical interview for the 

assessment of medical and psychiatric history, review of medical records and psychotropic medications, and the 

evaluation of disease severity and psychopathology by means of the Positive and Negative Syndrome Scale 

(PANSS) (Kay et al., 1987). Patients received a consensus diagnosis by two experienced psychiatrists at study 
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inclusion. Participants were excluded if they had other psychiatric and/or neurological diseases, past or present 

regular alcohol abuse, and/or consumption of illicit drugs, past head trauma with loss of consciousness or 

electroconvulsive treatment, insufficient knowledge of German, IQ < 70, and age < 18 or > 65 years.   

Site 3 (China): The study was approved by the Ethics Committee of Tianjin Medical University General 

Hospital, Tianjin, China. Written informed consent was obtained from each subject before study enrollment. 

Diagnosis of schizophrenia was determined based on the consensus of two expert clinical psychiatrists using 

DSM-IV (SCID). Subject inclusion criteria were age (16–60 years) and right-handedness. Subject exclusion 

criteria were MRI contraindications, pregnancy, and histories of systemic medical illness, central nervous system 

disorder and head trauma, and substance abuse within the last 3 months or lifetime history of substance abuse or 

dependence. For HC, the additional exclusion criteria were a history of psychiatric disease and first-degree 

relatives with a psychotic disorder. PANSS scores were assessed for schizophrenia patients. 

 

Education Level 

Educational attainment was coded as follows: ordinal scale of 1 for education up to 12 years of age, 2 for 

education up to 16 years of age, and 3 for education up to 18 years of age. Education variables were not available 

in Site 3 (China).  

 

Positive symptoms and negative symptoms 

Disease severity and psychopathology were evaluated by means of the PANSS(Kay et al., 1987) in Site 2 

(Germany) and Site 3 (China) while SAPS (Andreasen, 1984) and SANS (Andreasen, 1983, 1989) were assessed 

in Site 1 (USA). These symptom rating scales have been widely used in schizophrenia research. PANSS consists 

of PANSS-positive, PANSS-negative and PANSS-general sub-domains (van Erp et al., 2014). For consistency of 

the symptom scales across sites, the SAPS and SANS were converted into the PANSS-positive and PANSS-

negative using an established method (van Erp et al., 2014).  

 

Image acquisition  
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In Site 1 (USA), images were acquired at a 3T TIM TRIO scanner (Siemens, Erlangen, Germany) using T1-

weighted 3D magnetization-prepared rapid acquisition with gradient echo sequences (MPRAGE) (TR = 1810 ms, 

TE= 3.51 ms, TI = 1100 ms, flip angle = 9 degree, FOV = 240 mm x 180 mm, matrix = 256 × 192, slices = 160, 

slice/skip thickness = 1 mm/0 mm).  

In Site 2 (Germany), T1-weighted MPRAGE (TR = 11.6 ms, TE = 4.9 ms, FOV = 230 mm, matrix = 512 x 512, 

126 contiguous axial slices of 1.5 mm thickness, voxel size = 0.45 x 0.45 x 1.5 mm) were acquired at a 1.5 T 

Magnetom Vision scanner (Siemens, Erlangen, Germany).  

In Site 3 (China), images were acquired at a 3T MR system (Discovery MR750, General Electric, Milwaukee, 

WI, USA). Sagittal 3D T1-weighted images were acquired using a brain volume sequence (BRAVO) (TR = 8.2 

ms, TE = 3.2 ms, TI = 450 ms, flip angle = 12 degree, FOV = 256 mm x 256 mm, matrix = 256 x 256, slice 

thickness = 1 mm, no gap, 188 sagittal slices).  

 

Image preprocessing 

A set of extensive quality assurance procedures were applied using both manual verification and automated flags. 

Raw T1-images were manually examined for motion, image artifacts, or restricted field-of-view. Images were 

corrected for magnetic field inhomogeneity (Tustison et al., 2010) and a multi-atlas, multi-warp segmentation 

method (MUSE) (Doshi et al., 2016) was used to segment each individual’s images into anatomical regions of 

interest (ROIs) consisting of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The voxel-

wise regional volumetric maps (Davatzikos et al., 2001) were generated for GM, WM and CSF tissues by 

registering skull-stripped T1-images to a template residing in the MNI-space using a deformable registration 

method (Ou et al., 2011). The processed images were also manually evaluated (authors D. S. and G. E.) for 

pipeline failures, such as for poor brain extraction, poor tissue segmentation, and registration errors. Furthermore, 

automated procedures flagged images based on outlying values of quantified metrics (i.e., regional volumes) and 

those flagged images were re-evaluated. 

 

HYDRA 
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In HYDRA (Varol et al., 2017), classification is performed through the separation of healthy controls from 

patients by a convex polytope formed by linear maximum-margin classifiers. Subtyping is carried out by 

clustering patients through their association with different faces of the polytope referred to as hyperplanes. 

HYDRA consists of the following main steps: an initialization followed by iterations of assignment and polytope 

solutions, and the consensus of clustering results. Specifically, HYDRA initializes the assignments of patients into 

clusters by sampling K unit length hyperplanes obtained considering the space of all pairwise differences between 

patients and HC. The K unique hyperplanes are chosen by employing determinantal point processes (DPP) 

(Kulesza and Taskar, 2012), a sampling technique that samples diverse directions of disease. The sampled 

hyperplanes are subsequently used to estimate the initial clustering assignments (S
-
). As the estimated solution 

may vary depending on the initialization, a multi-initialization strategy is implemented by the DPP. The final 

clustering results are achieved based on a consensus of clustering solutions. The HYDRA algorithm (Varol et al., 

2017) is summarized as:  

Input: X  R
n x d

, Y  {-1, +1}
n
 (training signals with n-subjects, d-imaging features), K (number of subtypes or 

hyperplanes)  

Output: W  R
d x K

, b  R
1 x K

 (classifier); S
- 
(clustering assignment) 

Initialization: Initialize S
- 

Loop: Repeat until convergence (or a fixed number of iterations) 

        Fix S
-
, solve for W and b  

        Fix W and b, solve for S
-
 

HYDRA analyses were carried out using the following parameters: 50 iterations between estimating hyperplanes 

and cluster estimation, 20 clustering consensus steps, 0.25 regularization parameter and 10 cross-validation folds. 

The clustering performance of HYDRA was assessed by taking into account the stability of the obtained 

solutions. The adjusted Rand index (Hubert and Arabie, 1985) was used to quantify the similarity between 

clustering results in a 10-folds cross-validated fashion by taking into account the clustering stability between 

folds. Hence, the ARI calculates how consistently common subjects are placed in the same clusters despite 
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variations in the sample composition across folds. The ARI corrects for grouping by chance, providing a more 

conservative estimation of the overlap. An ARI value equal to 1 indicates a perfect clustering. 

 

MIDAS 

MIDAS is a recently published and validated method for voxel-based group comparisons (Varol et al., 2018). It 

overcomes limitations of commonly used voxel-based analysis due to ad hoc filtering of image maps by arbitrary 

and fixed Gaussian filters prior to applying a general linear model. MIDAS effectively determines the regionally 

varying, anisotropic filtering of any image data that optimally captures group differences. Voxel-wise regional 

volumetric maps were compared between the groups using MIDAS. MIDAS parses any set of image maps 

(volumetric maps, herein), using a sufficiently large set of overlapping neighborhoods (P), and performs regional 

discriminative analysis based on least squares support vector machines (LS-SVM). LS-SVM aims to relate the 

imaging features X  R
n x v

 (n-subjects and v-dimensional imaging features) with group variable Y  R
n
 via a 

weight vector (w). The regional pattern that best discriminates between groups is equivalent to filtering locally by 

an optimal kernel whose coefficients are the weights of the discriminant. A statistic for a particular voxel is then 

computed by modulating the total contribution of each voxel to the estimated local activation patterns (a) with the 

total predictive power of the respective machine learners (Varol et al., 2018).  

si = 
∑ 𝑎𝑖

𝑝𝑃
𝑝=1

∑ ∥𝑤𝑝∥2
2𝑃

𝑝=1
   

where, 𝑎 ∝  
1

𝑛
(𝑋 − 𝑋̅)𝑇(𝑋 − 𝑋̅)𝑤, and ∑ ∥ 𝑤𝑝 ∥2

2𝑃
𝑝=1  is the sum of the inverse predictive power of all learners, in 

which voxel i participates. This voxel-wise statistic indicates the degree of participation of this voxel in all 

partially overlapping regional filters that contain that voxel. Finally, the p-value corresponding to the voxel 

statistic is analytically obtained by approximating permutation tests.  

In MIDAS, the voxel-wise regional volumetric maps (Davatzikos et al., 2001) of  GM, WM or CSF with 

dimensions 182 x 218 x 182 were used to assess the voxel-wise neuroanatomical differences between the groups. 

MIDAS analyses were carried out using the following parameters: 15 neighborhood radius in voxels, 500 

neighborhoods, and 0.1 regularization parameter. The voxel-wise statistical significance values (p-values) of 
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MIDAS were further corrected for multiple comparison by false discovery rate (FDR) (FDR-p < 0.05) and then 

used as a mask to show the effect size (Cohen’s d) maps between the groups. 

 

Permutation tests for the subtypes 

Permutation testing is a well-known framework, which is extensively used when the underlying null distribution 

is unknown or hard to estimate (Nichols and Homes, 2001). To examine the null distribution of the subtype 

stability, subtyping analyses were carried out in HC samples, where disease-related variability is not present. For 

this, the HC samples (n = 364) were randomly assigned to a HC group (~20%) and a pseudo-patient group 

(~80%), and HYDRA analysis was performed. These samples were permuted 50 times, and HYDRA was run 

each time. To fairly compare these results with the clustering results obtained using the actual patient group, we 

selected analogously-sized HC and patient groups (~20% and ~80% of 364, respectively) so that equal numbers 

were used as in the permutation tests. This was done so that the null distribution and the actual experiments were 

derived using the exact same sample sizes. Finally, the ARIs obtained in the actual experiment were compared 

with the null distribution of ARIs obtained in the random permutation experiments, in order to determine 

statistical significance. 

 

Split-sample reproducibility 

In order to investigate the reproducibility of schizophrenia subtypes, we implemented a split-sample analysis. 

This strategy has been widely used in the clustering literature (Ben-Hur et al., 2002; Lange et al., 2004). The HC 

samples and patient samples were divided into two halves and then HYDRA was applied in Split 1 and Split 2, 

independently. Voxel-wise volumetric profiles were further compared between the splits. 

 

Leave-one-site-out validation 

The main clustering results were further cross-validated using a leave-one-site-out (LOSO) method (Arlot and 

Celisse, 2010). In this method, HYDRA models were trained in the two data sites and then the trained models 

were tested in the remaining one site to identify the subtype labels (Subtype 1 or Subtype 2). This procedure was 
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repeated for all three possible combinations of sites, as shown schematically (Figure S6). LOSO-predicted 

Subtype 1 and Subtype 2 assignments from all three sites were compared with the original assignments obtained 

by taking all the sites together. The voxel-wise GM regional patterns between LOSO-predicted Subtype 1 and 

Subtype 2, as well as between each subtype and HC, were evaluated.  

 

Prevalence of the two subtypes 

In our main clustering results (Figure 1), the number of schizophrenia participants in Subtype 1 (n = 192) and 

Subtype 2 (n = 115) turned out to be different. To ensure that distinct volumetric profiles were not influenced by 

variations in sample size, which affects whether or not a given effect size is statistically significant, we evaluated 

GM volumetric patterns of schizophrenia Subtype 1 compared with HC by randomly selecting a part of Subtype 1 

samples equal in number to the number of samples in Subtype 2 (n = 115). 

 

 

Reproducibility of the subtypes within sexes 

Our overall sample consisted of ~40% female and ~60% male subjects. Although we applied a linear model to 

adjust for sex in all of the results, we further investigated the volumetric profiles of the two most reproducible 

subtypes in males and females separately, to ensure that our findings were not confounded by sex differences. 
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Table S1: List of brain regions used as features in HYDRA  
(L: Left hemisphere; R: Right hemisphere; WM: White matter) 

Brain regions (1-25) Brain regions (26-50) Brain regions (51-75) 

3rd ventricle Ventral diencephalon (R) Anterior insula (L) 

4th ventricle Ventral diencephalon (L) Anterior orbital gyrus (R) 

Accumbens area (R) Cerebellar vermal lobules I-V Anterior orbital gyrus (L) 

Accumbens area (L) Cerebellar vermal lobules VI-VII Angular gyrus (R) 

Amygdala (R) Cerebellar vermal lobules VIII-X Angular gyrus (L) 

Amygdala (L) Basal forebrain (R) Calcarine cortex (R) 

Brain Stem Basal forebrain (L) Calcarine cortex (L) 

Caudate (R) Frontal lobe WM (R) Central operculum (R) 

Caudate (L) Frontal lobe WM (L) Central operculum (L) 

Cerebellum exterior (R) Occipital lobe WM (R) Cuneus (R) 

Cerebellum exterior (L) Occipital lobe WM (R) Cuneus (L) 

Cerebellum WM (R) Parietal lobe WM (R) Entorhinal area (R) 

Cerebellum WM (L) Parietal lobe WM (L) Entorhinal area (L) 

Hippocampus (R) Temporal lobe WM (R) Frontal operculum (R) 

Hippocampus (L) Temporal lobe WM (L) Frontal operculum (L) 

Inferior lateral ventricle (R) Fornix (R)  Frontal pole (R) 

Inferior lateral ventricle (L) Fornix (L) Frontal pole (L) 

Lateral ventricle (R) Anterior limb of internal capsule (R) Fusiform gyrus (R) 

Lateral ventricle (L) Anterior limb of internal capsule (L) Fusiform gyrus (L) 

Pallidum (R) 
Posterior limb of internal capsule including 
cerebral peduncle (R) Gyrus rectus (R) 

Pallidum (L) 
Posterior limb of internal capsule including 
cerebral peduncle (L) Gyrus rectus (L) 

Putamen (R) Corpus callosum Inferior occipital gyrus (R) 

Putamen (L) Anterior cingulate gyrus (R) Inferior occipital gyrus (L) 

Thalamus proper (R) Anterior cingulate gyrus (L) Inferior temporal gyrus (R) 

Thalamus proper (L) Anterior insula (R) Inferior temporal gyrus (L) 

Brain regions (76-100) Brain regions (101-125) Brain regions (126-145) 

Lingual gyrus (R) Occipital fusiform gyrus (L) Subcallosal area (R) 

Lingual gyrus (L) Opercular part of inferior frontal gyrus (R) Subcallosal area (L) 

Lateral orbital gyrus (R) Opercular part of inferior frontal gyrus (L) Superior frontal gyrus (R) 

Lateral orbital gyrus (L) Orbital part of inferior frontal gyrus (R) Superior frontal gyrus (L) 

Middle cingulate gyrus (R) Orbital part of inferior frontal gyrus (L) Supplementary motor cortex (R) 

Middle cingulate gyrus (L) Posterior cingulate gyrus (R) Supplementary motor cortex (L) 

Medial frontal cortex (R) Posterior cingulate gyrus (L) Supramarginal gyrus (R) 

Medial frontal cortex (L) Precuneus (R) Supramarginal gyrus (L) 

Middle frontal gyrus (R) Precuneus (L) Superior occipital gyrus (R) 

Middle frontal gyrus (L) Parahippocampal gyrus (R) Superior occipital gyrus (L) 

Middle occipital gyrus (R) Parahippocampal gyrus (L) Superior parietal lobule (R) 

Middle occipital gyrus (L) Posterior insula (R) Superior parietal lobule (L) 

Medial orbital gyrus (R) Posterior insula (L) Superior temporal gyrus (R) 

Medial orbital gyrus (L) Parietal operculum (R) Superior temporal gyrus (L) 

Postcentral gyrus medial segment (R) Parietal operculum (L) Temporal pole (R) 

Postcentral gyrus medial segment (L) Postcentral gyrus (R) Temporal pole (L) 

Precentral gyrus medial segment (R) Postcentral gyrus (L) 
Triangular part of the inferior frontal 
gyrus (R) 

Precentral gyrus medial segment (L) Posterior orbital gyrus (R) 
Triangular part of the inferior frontal 
gyrus (L) 

Superior frontal gyrus medial segment 
(R) Posterior orbital gyrus (L) Transverse temporal gyrus (R) 

Superior frontal gyrus medial segment 
(L) Planum polare (R) Transverse temporal gyrus (L) 

Middle temporal gyrus (R) Planum polare (L) 

Middle temporal gyrus (L) Precentral gyrus (R) 

Occipital pole (R) Precentral gyrus (L) 

Occipital pole (L) Planum temporale (R) 

Occipital fusiform gyrus (R) Planum temporale (L) 
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Figure S1: Key regional volume differences between healthy controls (HC) (n = 364) and 

schizophrenia (SCZ) (n = 307): ROIs with the highest effect size (absolute effect size > 0.28 and FDR-p 

< 0.05) are displayed. Note that both volume decreases and increases are observed in this standard 

case-control comparison. 
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Figure S2: Cross-validated stability of schizophrenia subtypes: Adjusted Rand Index (ARI) vs. number 

of subtypes (K) indicating high reproducibility for K = 2. 
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Table S2 SCZ sample number distribution across the subtypes and data sites  
 

SCZ  
subtypes 

Total (n = 307) Site 1 (n = 96) Site 2 (n = 145) Site 3 (n = 66) 

K = 2 192 64 91 37 

115 32 54 29 

K = 3 147 63 47 37 

87 27 32 28 

73 6 66 1 

K = 4 71 7 61 3 

50 18 20 12 

111 46 36 29 

75 25 28 22 

K = 5 52 24 8 20 

48 15 19 14 

92 39 30 23 

67 3 64 0 

48 15 24 9 

K = 6 41 15 17 9 

68 27 24 17 

44 14 19 11 

42 16 18 8 

58 1 57 0 

54 23 10 21 

K = 7 34 11 15 8 

40 17 9 14 

51 5 44 2 

50 14 27 9 

60 23 19 18 

33 10 18 5 

39 16 13 10 

K = 8 37 12 21 4 

38 16 8 14 

29 4 18 7 

38 15 13 10 

43 18 10 15 

46 10 31 5 

35 0 33 2 

41 21 11 9 
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Table S3: Demographic comparison between K = 2 subtypes (SCZ1 and SCZ2) 
 

 Age Sex 

SCZ1 vs. SCZ2 p-value 0.109 0.910 
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Table S4: Demographic comparison among K = 3 (SCZ1, SCZ2 and SCZ3) 
 

 Age Sex 

SCZ1 vs. SCZ2 p-value 0.178 0.898 

SCZ1 vs. SCZ3 p-value 0.679 0.037 

SCZ2 vs. SCZ3 p-value 0.124 0.073 
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Table S5: Demographic comparison among K = 4 (SCZ1, SCZ2, SCZ3 and SCZ4) 
 

 Age Sex 

SCZ1 vs. SCZ2 p-value 0.166 0.189 

SCZ1 vs. SCZ3 p-value 0.327 0.349 

SCZ1 vs. SCZ4 p-value 0.084 0.029 

SCZ2 vs. SCZ3 p-value 0.024 0.565 

SCZ2 vs. SCZ4 p-value 0.006 0.505 

SCZ3 vs. SCZ4 p-value 0.378 0.141 
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Table S6: Demographic comparison among K = 5 (SCZ1, SCZ2, SCZ3, SCZ4 and SCZ5) 
 

 Age Sex 

SCZ1 vs. SCZ2 p-value 0.439 0.007 

SCZ1 vs. SCZ3 p-value 0.156 0.067 

SCZ1 vs. SCZ4 p-value 0.026 0.0002 

SCZ1 vs. SCZ5 p-value 0.370 0.101 

SCZ2 vs. SCZ3 p-value 0.650 0.195 

SCZ2 vs. SCZ4 p-value 0.275 0.440 

SCZ2 vs. SCZ5 p-value 0.933 0.275 

SCZ3 vs. SCZ4 p-value 0.447 0.021 

SCZ3 vs. SCZ5 p-value 0.918 0.949 

SCZ4 vs. SCZ5 p-value 0.308 0.050 
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Table S7: Demographic comparison among K = 6 (SCZ1, SCZ2, SCZ3, SCZ4, SCZ5 and SCZ6) 
 

 Age Sex 

SCZ1 vs. SCZ2 p-value 0.104 0.460 

SCZ1 vs. SCZ3 p-value 0.415 0.169 

SCZ1 vs. SCZ4 p-value 0.127 0.323 

SCZ1 vs. SCZ5 p-value 0.391 0.013 

SCZ1 vs. SCZ6 p-value 0.099 0.681 

SCZ2 vs. SCZ3 p-value 0.520 0.431 

SCZ2 vs. SCZ4 p-value 0.775 0.715 

SCZ2 vs. SCZ5 p-value 0.390 0.048 

SCZ2 vs. SCZ6 p-value 0.932 0.206 

SCZ3 vs. SCZ4 p-value 0.455 0.705 

SCZ3 vs. SCZ5 p-value 0.927 0.303 

SCZ3 vs. SCZ6 p-value 0.487 0.061 

SCZ4 vs. SCZ5 p-value 0.338 0.155 

SCZ4 vs. SCZ6 p-value 0.833 0.144 

SCZ5 vs. SCZ6 p-value  0.358 0.002 
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Table S8: Demographic comparison among K = 7 (SCZ1, SCZ2, SCZ3, SCZ4, SCZ5, SCZ6 and 
SCZ7) 
 

 Age Sex 

SCZ1 vs. SCZ2 p-value 0.442 0.023 

SCZ1 vs. SCZ3 p-value 0.715 0.919 

SCZ1 vs. SCZ4 p-value 0.814 0.797 

SCZ1 vs. SCZ5 p-value 0.501 0.104 

SCZ1 vs. SCZ6 p-value 0.906 0.539 

SCZ1 vs. SCZ7 p-value 0.582 0.191 

SCZ2 vs. SCZ3 p-value 0.585 0.008 

SCZ2 vs. SCZ4 p-value 0.488 0.005 

SCZ2 vs. SCZ5 p-value 0.832 0.368 

SCZ2 vs. SCZ6 p-value 0.513 0.101 

SCZ2 vs. SCZ7 p-value 0.158 0.307 

SCZ3 vs. SCZ4 p-value 0.871 0.862 

SCZ3 vs. SCZ5 p-value 0.708 0.049 

SCZ3 vs. SCZ6 p-value 0.822 0.437 

SCZ3 vs. SCZ7 p-value 0.287 0.118 

SCZ4 vs. SCZ5 p-value 0.591 0.034 

SCZ4 vs. SCZ6 p-value 0.926 0.353 

SCZ4 vs. SCZ7 p-value 0.354 0.086 

SCZ5 vs. SCZ6 p-value 0.593 0.346 

SCZ5 vs. SCZ7 p-value 0.161 0.820 

SCZ6 vs. SCZ7 p-value 0.495 0.502 

 
 
 
 
 
 
 
 
 
 
 
 
 
  



 19 

 
 
 
Table S9: Demographic comparison among K = 8 (SCZ1, SCZ2, SCZ3, SCZ4, SCZ5, SCZ6, SCZ7 
and SCZ8) 
 

 Age Sex 

SCZ1 vs. SCZ2 p-value 0.344 0.025 

SCZ1 vs. SCZ3 p-value 0.367 0.240 

SCZ1 vs. SCZ4 p-value 0.463 0.514 

SCZ1 vs. SCZ5 p-value 0.217 0.082 

SCZ1 vs. SCZ6 p-value 0.497 0.625 

SCZ1 vs. SCZ7 p-value 0.735 0.056 

SCZ1 vs. SCZ8 p-value 0.622 0.389 

SCZ2 vs. SCZ3 p-value 0.049 0.002 

SCZ2 vs. SCZ4 p-value 0.087 0.107 

SCZ2 vs. SCZ5 p-value 0.778 0.564 

SCZ2 vs. SCZ6 p-value 0.746 0.059 

SCZ2 vs. SCZ7 p-value 0.159 0.00008 

SCZ2 vs. SCZ8 p-value 0.094 0.148 

SCZ3 vs. SCZ4 p-value 0.874 0.078 

SCZ3 vs. SCZ5 p-value 0.022 0.006 

SCZ3 vs. SCZ6 p-value 0.091 0.099 

SCZ3 vs. SCZ7 p-value 0.525 0.817 

SCZ3 vs. SCZ8 p-value 0.567 0.050 

SCZ4 vs. SCZ5 p-value 0.043 0.277 

SCZ4 vs. SCZ6 p-value 0.137 0.845 

SCZ4 vs. SCZ7 p-value 0.675 0.012 

SCZ4 vs. SCZ8 p-value 0.714 0.842 

SCZ5 vs. SCZ6 p-value 0.535 0.179 

SCZ5 vs. SCZ7 p-value 0.084 0.0004 

SCZ5 vs. SCZ8 p-value 0.042 0.365 

SCZ6 vs. SCZ7 p-value 0.268 0.016 

SCZ6 vs. SCZ8 p-value 0.178 0.682 

SCZ7 vs. SCZ8 p-value 0.895 0.006 
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Figure S3: Cross-validated stability of split-half samples: Adjusted Rand Index (ARI) vs. number of 

subtypes (K) indicating that K = 2 yields highly reproducible subtypes in both Split 1 and Split 2. 

 

 

 

 



 21 

 

Figure S4: GM volumetric differences between each subtype and HC for K = 2 in Split 1 (left column) 

and Split 2 (right column). In both splits, the GM volumetric patterns (FDR-p < 0.05) are similar to the 

ones obtained using the full sample. 
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Figure S5: GM volumetric differences between each subtype and HC for K = 3 in Split 1 (left column) 

and Split 2 (right column). The volumetric profiles (FDR- p < 0.05) are not reproducible between Split 1 

and Split 2. 
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Figure S6: Schematic of the leave-one-site-out prediction: The two subtypes (SCZ1 and SCZ2) of each 

site were determined using the HYDRA-models trained on the other two sites. The percentage overlap 

of patients that were assigned to the same subtype was 86.72% (83.33% in Site1, 86.21% in Site2 and 

90.63% in Site3) when compared with the original assignments obtained by taking all the sites together. 
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Figure S7: GM volumetric differences between each subtype and HC in each site: Compared to HC, 

SCZ1 shows widespread smaller volumes prominently in the thalamus, nucleus accumbens, medial 

temporal, medial prefrontal/frontal and insular cortices, and SCZ2 shows larger volume in the basal 

ganglia. The displayed results are (FDR-p < 0.05). 
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Figure S8: Comparison of GM volumetric patterns between the two subtypes (FDR-p < 0.05).  
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Figure S9: Patterns of CSF volumetric differences between each subtype and HC (FDR-p < 0.05). 
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Figure S10: Comparison of GM volumetric patterns between the two subtypes estimated using leave-

one-site-out (FDR-p < 0.05). These results are consistent with those obtained using the entire sample 

together (Figure S8).  
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Figure S11: GM volumetric differences of SCZ1 compared with HC for A) full sample size and B) a 

subsample of the same size as that of SCZ2 (FDR-p < 0.05 results are displayed). This experiment 

indicates that the finding of smaller GM volumes observed in SCZ1 is not explained by the larger 

sample size of SCZ1. 
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Figure S12: GM volumetric patterns of each subtype relative to HC in male (left column) and female 

(right column) subjects, separately (FDR- p < 0.05). The patterns are consistent with the overall mixed-

sex pattern of volumetric differences, indicating that the subtype estimation was not driven by sex 

differences in the two subtypes.  
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Figure S13: Altered GM volumetric patterns of K = 2 Subtypes compared with HC after adjusting for 

CPZ-equivalent dose, for a subset of patients with CPZ-equivalent dose data [n = 125 SCZ1 and n = 87 

SCZ2]. These patterns are consistent with those obtained from the entire sample, albeit weaker, largely 

due to the smaller sample size (FDR- p < 0.05).  
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Figure S14: Comparison of GM volumetric differences between the two subtypes, after adjusting for 

CPZ-equivalent dose (FDR-p < 0.05). These results are consistent with those obtained without CPZ 

adjustment (Figure S8 and Figure S10). 

 

  



 32 

 

 

Figure S15: GM volumetric differences between each subtype and HC, restricted to patients who had 

illness duration less than 2 years (0.54 years average) (FDR-p < 0.05). The patterns are consistent with 

the findings from the larger group, except somewhat weaker, largely due to the smaller sample size.  
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Figure S16: Patterns of CSF volumetric differences between each subtype and HC, restricted to 

patients who had illness duration less than 2 years (FDR-p < 0.05). 
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Figure S17: Comparison of CSF volumetric patterns between the two subtypes, restricted to patients 

who had illness duration less than 2 years (FDR-p < 0.05). 
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Figure S18: Patterns of total brain tissue (GM+WM) volumetric differences between each subtype and 

HC (FDR-p < 0.05).  The results are consistent with GM and WM comparisons separately, thereby 

bolstering our confidence that the MRI contrast between GM and WM did not influence the tissue 

segmentation and then the clustering results. 
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