| Concepts and equations | |---| | The proportion of correctly classified subjects among all subjects; best intuitive measure for a balanced dataset (approximately the same positive and negative values) (TP+TN)/(TP+FP+FN+TN) | | The proportion of correctly classified subjects (e.g., subjects with a disease in reality) among positively classified subjects by the machine learning model TP/(TP+FP) | | The proportion of correctly classified subjects (classified as having a disease) among subjects with the disease in reality TP/(TP+FN) | | The harmonic mean of precision and recall. In the F1-score, precision and recall have the same weight (achieving the highest score in models with equally balanced precision and recall); useful for imbalance datasets (with a relatively high difference between positive and negative values). 2×(recall×precision)/(recall+precision) | | • F-score with different weights for recall and precision (β times the importance of recall relative to precision; F ₂ [weights recall than precision; emphasis on impact of FNs] or F _{0.5} [weights precision than recall; reducing the influence of FNs] are commonly used) • $(1+\beta^2)\times TP/[(1+\beta^2)\times TP+\beta^2\times FN+FP]$ | | The proportion of correctly classified subjects (not having a disease) among subjects without the disease in reality TN/(TN+FP) | | The proportion of incorrectly classified subjects (classified as having a disease) among subjects without the disease in reality FP/(FP+TN)=1-specificity | | The rate of type 1 error in statistical testing (it is important to control the FDR efficiently with the preservation of statistical power in multiple testing problems with a large number of variables, such as genomics studies) FP/(FP+TP)=1-PPV | | The area under the receiver operating characteristic curve (plotting TPR against FPR) A model with a curve close to the upper left corner has better classification performance, with more TPs and fewer FNs (higher AUROC, close to 1=better classifier). | | The area under the precision-recall curve (plotting precision against recall) A model with a curve close to the upper right corner has better classification performance, with more TPs, fewer FPs, and fewer FNs (higher AUPRC, close to 1=better classifier). May have an advantage over AUROC when comparing the performance of models in an imbalanced dataset [10]. | | Correlation coefficient between the true class and predicted class (MCC=1 for a perfect classifier [no F and FN]; MCC=-1 for a classifier that always misclassifies [no TP and TN]) (TP×TN-FP×FN)/sqrt[(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)] Provides a relatively robust performance measurement for an imbalanced dataset when accuracy, the F1-score, precision, and recall show asymmetric performance for positive and negative classes [11]. | | |