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SUMMARY

In mitochondria, the carrier translocase (TIM22 com-
plex) facilitates membrane insertion of multi-span-
ning proteins with internal targeting signals into the
inner membrane [1–3]. Tom70, a subunit of TOM
complex, represents the major receptor for these
precursors [2, 4–6]. After transport across the outer
membrane, the hydrophobic carriers engage with
the small TIM protein complex composed of Tim9
and Tim10 for transport across the intermembrane
space (IMS) toward the TIM22 complex [7–12].
Tim22 represents the pore-forming core unit of the
complex [13, 14]. Only a small subset of TIM22 cargo
molecules, containing four or six transmembrane
spans, have been experimentally defined. Here, we
used a tim22 temperature-conditional mutant to
define the TIM22 substrate spectrum. Along with car-
rier-like cargo proteins, we identified subunits of the
mitochondrial pyruvate carrier (MPC) as unconven-
tional TIM22 cargos. MPC proteins represent sub-
strates with atypical topology for this transport
pathway. In agreement with this, a patient affected
in TIM22 function displays reduced MPC levels. Our
findings broaden the repertoire of carrier pathway
substrates and challenge current concepts of
TIM22-mediated transport processes.

RESULTS

Inactivation of TIM22 for Quantitative Proteomic
Analyses
Multi-spanning inner mitochondrial membrane (IMM) proteins

with internal targeting signals utilize the carrier import pathway

(Figure 1A). However, only a few of these cargo molecules
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have been experimentally defined by in vitro import analyses

(AAC, Mir1, Tim22, Mrs3, Tim17, Tim23, and DiC) [9, 14–17].

To broaden the substrate spectrum of this pathway, we estab-

lished a quantitative proteomic approach following the concept

of importomics [18] by using a tim22 temperature-conditional

(ts) yeast mutant tim22-14 [19]. tim22-14 mitochondria that

were shifted to the non-permissive temperature prior to import

analyses display assembly defects for the well-defined sub-

strates Mir1 and Tim23 (Figures 1B and 1C). This import defect

was also apparent in vivo, where an N-terminally GFP-tagged

Mir1 mislocalized frommitochondria upon shift of tim22-14 cells

to the non-permissive temperature (Figure S1A). To this end,

mitochondria were isolated from wild-type (WT) and tim22-14

cells after growing them either at 25�C or 37�C. At the non-

permissive temperature, tim22-14 mitochondria displayed

reduced levels of Mir1 (36.5% of WT) and Aac2, whereas the

mutant Tim22 was undetectable (Figure S1B). Components of

other mitochondrial complexes were not significantly affected.

Therefore, we subjected tim22-14 cells to extended growth

times (15, 25, and 40 h) at the non-permissive temperature for

subsequent proteomic analyses of purified mitochondria. Mito-

chondria isolated from all eight conditions were analyzed for

steady-state protein levels (Figure 1D). As expected, Tim22

was moderately reduced at the 0 h time point in tim22-14 and

could not be detected at longer time points. The carriers Mir1

and Aac2 displayed reduced levels with increasing growth time

at the non-permissive temperature (48.8% and 45.7% of WT at

25 h, respectively). However, other substrates of the TIM22 com-

plex, Tim17 and to a lesser extent Tim23 were affected (54.2%

and 80.3% of WT at 25 h, respectively). Blue native (BN)-PAGE

analyses revealed that the levels of Aac2 and Mir1 were reduced

in mitochondria isolated from tim22-14 cells grown at the non-

permissive temperature, whereas complex V was not affected

(Figure 1E).

Purified mitochondria isolated under the conditions described

above were subjected to differential stable isotope dimethyl-

based labeling and mass spectrometric analyses. Under non-

permissive conditions, Tim22 was more than ten times less
ch 23, 2020 ª 2020 The Author(s). Published by Elsevier Ltd. 1119
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Figure 1. tim22-14 Displays Defective Mitochondrial Carrier Protein Import under Non-permissive Conditions

(A) Hydrophobic proteins with internal signals translocate through the TOM complex. In the IMS, the small TIM complex directs cargo to the TIM22 complex for

membrane potential-dependent membrane insertion.

(B and C) [35S]-labeled Mir1 (6TM) (B) and Tim23 (4TM) (C) were imported into wild-type (WT) and tim22-14mitochondria. Membrane insertion was monitored by

BN-PAGE and digital autoradiography.

(D) Mitochondria from cells grown at the non-permissive temperature for indicated times were analyzed by western blotting.

(E) WT and tim22-14 mitochondria from cells grown at 37�C for 15 h analyzed by BN-PAGE and immunodecoration.

(legend continued on next page)
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abundant in tim22-14 mitochondria than in the WT control.

Among the most severely affected proteins were the mitochon-

drial inner membrane carrier proteins (Figure S1C; Table S1).

On average, most of the known carrier proteins were significantly

less abundant in tim22-14 than the WT (Figure 1F), supporting

the idea that potential cargo candidates for the TIM22 complex

should be reduced. In agreement with the mass spectrometric

data, the citrate and oxoglutarate carrier (Yhm2) displayed

reduced protein levels in tim22-14 mitochondria with increasing

time at 37�C (Figure 1G). We conclude that the mass-spectrom-

etry-based analyses of tim22-14 mitochondria enabled us to

identify known and new potential substrates of the TIM22

complex.

Identification of Potential Carrier Cargo Proteins
To confirm that selected putative carrier substrates identified by

proteomic analyses depended on the TIM22 pathway, we

analyzed the import into purified mitochondria from cells grown

at a permissive temperature. To exclude indirect effects of the

tim22 mutant on the presequence pathway, we imported the

model matrix proteins Su9-DHFR and Atp5. Both precursors

were efficiently imported into WT and tim22-14mitochondria af-

ter heat shock (Figure S2A). Moreover, imported Atp5 assem-

bled with similar efficiency into the F1Fo-ATP synthase in both

strains (Figure S2B).

The import of the carrier proteins Yhm2, Crc1 (carnitine car-

rier), Odc1 (oxodicarboxylate carrier), and the glycine transporter

Hem25 (Heme synthesis by SLC25 family member), which

display standard six transmembrane topology, has not been

investigated. Since they were identified as candidate cargo pro-

teins, we performed in vitro import and assembly assays of [35S]-

labeled proteins into WT and tim22-14 mitochondria combined

with BN-PAGE analyses. As assessed by western blot and as-

sembly analysis, Yhm2 steady-state levels and import were

reduced in tim22-14mitochondria (Figures 2A and 2B). Similarly,

Crc1, Odc1, and Hem25 assembly were affected in tim22-14

mitochondria (Figures 2C–2E). To assess dependence on the re-

ceptor Tom70 and the small TIM chaperone complex, these pro-

teins were imported into tim10-2 [10] and tom70/71DD [20] mito-

chondria. In both cases, reduced assembly was apparent

(Figures 2F and S2C). These results confirmed themass spectro-

metric data that Yhm2, Crc1, Odc1, andHem25 are substrates of

the carrier transport pathway.

Two uncharacterized mitochondrial proteins, Yfr045w and

Ypr011c, displayed reduced levels in tim22-14 (Figure 1F). In

silico analyses suggested both proteins as members of the mito-

chondrial transporter family [21]. However, metazoan homologs

were not apparent. Transmembrane domain prediction algo-

rithms suggest that Yfr045w contains six transmembrane spans.

In contrast, the same algorithms failed to predict transmembrane

domains in Ypr011c. Nevertheless, based on protein alignments

with Aac3, six transmembrane segments could be suggested
(F) Proteomic analyses of tim22-14 versusWTmitochondria. Mean log2 ratio-inten

of loss of Tim22 function on the abundance of mitochondrial carrier proteins (in re

abundance.

(G) Immunodetection of selected proteins inWT and tim22-14mitochondria.Dc, m

mitochondrial membrane; IMM, inner mitochondrial membrane; IMS, intermemb

See also Figure S1 and Table S1.
with a similar topology to Yfr045w (Figure S2D). yfr045wD and

ypr011cD mutant cells displayed reduced growth on glycerol-

containing media in comparison with WT cells (Figure S2E).

This suggested that both proteins were required for mitochon-

drial activity. Recombinantly expressed Ypr011c was suggested

to be a mitochondrial transporter for adenosine 50-phosphosul-
fate and 30-phospho-adenosine 50-phosphosulfate, whereas

in vivo studies suggested a role in thermotolerance of yeast

[22]. When we addressed the import of [35S]-labeled Yfr045w

and Ypr011c, we found it to be reduced in tim22-14 and

tim10-2 mutant mitochondria (Figures 2G–2I), indicating that

both proteins are inserted into the IMM by the TIM22 complex

with contribution of the small Tim proteins.

Pyruvate Carrier Subunits Are Imported along the
Carrier Pathway
The mitochondrial pyruvate carrier (MPC) is a conserved hetero-

oligomeric complex that transports pyruvate across the mito-

chondrial innermembrane [23, 24]. In yeast, depending on the car-

bon source, the functional complex contains Mpc1-Mpc2 as a

‘‘fermentative’’ complex andMpc1-Mpc3 as a ‘‘respiratory’’ com-

plex. Mpc1 and Mpc3 levels were reduced in mitochondria upon

inactivation of Tim22 (Figures 1F and 1G; Table S1).We confirmed

this reduction by BN-PAGE analyses (Figure 3A). A low-molecu-

lar-mass Mpc1 form (MPC1*), potentially representing a free

Mpc1 pool, was also decreased in mutant mitochondria.

As described above, a hallmark of TIM22-dependent cargo

proteins is the even number (four or six) of transmembrane spans

with N and the C termini facing the intermembrane space (IMS)

[25, 26]. Interestingly, Mpc1 contains two, whereas Mpc2 and

Mpc3 contain three putative transmembrane spanning regions

(Figure S3A). Mpc1 exposes both N and C termini into thematrix,

whereas in the case of Mpc2 andMpc3 the N and the C terminus

are exposed to the matrix and the IMS, respectively [27]. This to-

pology and number of transmembrane spans differ significantly

from known TIM22 cargo proteins.

When [35S]-labeled Mpc1 was imported into WT mitochondria,

it failed to incorporate into the MPC complex. Interestingly, in

mpc1Dmitochondria, the imported Mpc1 protein assembled effi-

ciently into the MPC complex (Figure 3B). This is similar to a phe-

nomenon observed before, where radiolabelled Tim18, Tim22,

Tim54, and Tim23 showed an improved incorporation into the

TIM22 and TIM23 complexes when the corresponding endoge-

nous protein was downregulated or absent [19, 28]. To address

whether Mpc1 import and assembly depend on the carrier

pathway, the MPC1 gene was deleted in WT, tim22-14, and

tim10-2 mutants. When [35S]-labeled Mpc1 was imported in

tim22-14and tim10-2mitochondria,Mpc1 assemblywas affected

(Figure 3C), whereas import and assembly of the presequence

pathway substrate Atp5 were not compromised (Figure 3D).

Moreover, the mutant cells did not display a significant difference

in inner membrane potential in comparison to the WT (Figure 3E).
sity plotmitochondria are shown. The ratio-intensity mean plot shows the effect

d, blue for MPC subunits). Filled circles indicate proteins significantly altered in

embrane potential; N, N terminus; C, C terminus; Cyt., cytoplasm; OMM, outer

rane space; Matr., matrix.
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Figure 2. Mitochondrial Carrier Biogenesis Is Affected in tim22-14 and tim10-2 Mutants
(A) BN-PAGE analysis of Yhm2 in mitochondria isolated from cells grown for 15 h at the non-permissive temperature (37�C).
(B–F) [35S]-labeled (B) Yhm2, (C) Crc1, (D) Odc1, and (E) Hem25 were imported into WT and tim22-14 mitochondria and (F) into WT and tim10-2 mitochondria.

(G and H) [35S]-labeled (G) Yfr045w and (H) Ypr011c were imported into WT and tim22-14 mitochondria.

(I) Both proteins were imported intoWT and tim10-2mitochondria. In all import experiments, analyses were carried out by BN-PAGE and digital autoradiography.

See also Figure S2.
Mpc3 and Mpc2 imports were also affected in tim22-14

(73.4% and 51.1% of WT, respectively) and tim10-2 (59.7%

and 51.8%, respectively) mitochondria (Figures 3F, 3H, and

S3B). Furthermore, Mpc3 and Mpc2 import was reduced in

tom70/71DD receptor mutant mitochondria, supporting the
1122 Current Biology 30, 1119–1127, March 23, 2020
idea that these proteins are imported along the carrier pathway

(Figure S3C). To exclude that the reduction of Mpc3 assembly

in tim22-14 was due to inactivation of Tim22 and not indirectly

caused by reduced levels of Mpc1 in this strain, we imported

Mpc3 into mpc1D and tim22-14/mpc1D mitochondria. Indeed,
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Figure 3. MPC Subunits Are Imported along the Carrier Pathway

(A) Isolated mitochondria from WT and tim22-14 cells grown for 15 h at the non-permissive temperature (37�C) were solubilized and analyzed by BN-PAGE and

immunoblotting.

(legend continued on next page)
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Figure 4. MPC Assembly Is Affected upon

Defects in TIM22 in Human Mitochondria

(A) Topology of human MPC1 and MPC2.

(B) Isolated mitochondria from control and patient

fibroblast were analyzed by SDS-PAGE and

western blotting.

(C) HEK293T cells were treated with TIM22-spe-

cific small interfering RNA (siRNA) or non-targeting

siRNA (NT). Isolated mitochondria were subjected

to SDS-PAGE and western blotting.

(D and E) [35S]-labeled (D) MPC1 and (E) MPC2

were imported into isolated mitochondria from

HEK293T cells transfected either with non-

targeting (NT) or TIM22-specific siRNA (TIM22KD).

(F) Quantification of assembled MPC2 at

60 min (mean ± SEM, n = 3) (*p < 0.05, unpaired

t test, two tails). aa, amino acid; Dc, membrane

potential.
a reduction in assembly was observed in tim22-14/mpc1D

mutant mitochondria (72.79% of WT), indicating dependence

of Mpc3 import on Tim22 (Figure 3G). To corroborate that the

MPC subunit biogenesis was dependent on Tim22, a second

approach was established in which Tim22 levels were reduced

with the aid of the GAL1 promoter. Steady-state levels of

Tim22 and Mpc1 in mitochondria were drastically reduced, and

also the levels of Yhm2 dropped drastically upon Tim22 deple-

tion (Figure 3I). Because the mitochondrial membrane potential

was not affected in Tim22-depleted mitochondria (Figure 3J),

we imported radiolabelled Mpc2 and Crc1 in vitro into mutant

and WT mitochondria. Both Mpc2 (54.9% of WT) and Crc1 as-

sembly were reduced upon depletion of Tim22. Accordingly,

tim22-14mutant cells and Tim22-downregulated cells displayed

similar effects on carrier protein import (Figure 3K and 3L).

Finally, to confirm that the MPC subunit import was dependent

only on the carrier pathway, the Mpc3 import was carried out in

Tim23N150A mutant mitochondria. In this mutant, Mpc3 import

and assembly were not compromised. Instead, we observed a

slight increase in the Mpc3 assembly (Figure S3D). This effect

was similar to what was shown for the AAC assembly in the

same strain or other presequence translocase mutants [29–31].
(B and C) [35S]-labeled Mpc1 was imported into (B) WT and mpc1D mitochondria and (C) mpc1D, tim22-14

(D) [35S]-labeled Atp5 was imported into mpc1D and tim22-14/mpc1D mitochondria.

(E) Membrane potential measurement of mpc1D, tim22-14/mpc1D, and tim10-2/mpc1D mitochondria.

(F and G) [35S]-labeled Mpc3 was imported into (F) WT and tim22-14 mitochondria and (G) mpc1D and tim2

(H) [35S]-labeled Mpc2 was imported into WT and tim22-14 mitochondria.

(I) Purified mitochondria from WT and Tim22-downregulated (Tim22Y) cells were analyzed by SDS-PAGE an

(J) Membrane potential measurement of WT and Tim22-downregulated mitochondria.

(K and L) [35S]-labeled (K)Mpc2 and (L) Crc1 were imported intoWT and Tim22-downregulatedmitochondria.

by BN-PAGE and digital autoradiography. Dc, membrane potential.

See also Figure S3.
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Pyruvate Carrier Biogenesis Is
Affected in TIM22 Patient
Mitochondria
Human MPC1 and MPC2 are similar to

their yeast counterparts in that they

contain two and three putative TM seg-

ments, respectively (Figure 4A). The
composition of the human carrier translocase differs from

the yeast counterpart [32]. Recently, a mutation in the

conserved channel-forming TIM22 subunit has been associ-

ated with a human disorder [33]. Therefore, we analyzed

MPC1 and MPC2 steady-state levels in isolated mitochondria

from control and TIM22 patient fibroblasts. The amount of

MPC1 was slightly reduced, whereas MPC2 levels were

found to be significantly decreased in patient mitochondria

(Figure 4B). When we assessed MPC proteins under condi-

tions of TIM22 knockdown in HEK293T cells, we similarly

observed reduced amounts of MPC1 and MPC2 in compari-

son with the control (Figure 4C). Therefore, we assessed

in vitro import and assembly of MPC1 and MPC2 into iso-

lated HEK293T mitochondria after TIM22 knockdown.

Assembly of both proteins into the MPC complex was signif-

icantly reduced when TIM22 function was compromised (Fig-

ures 4D–4F). Accordingly, the import of MPC1 and MPC2

depends on the TIM22 complex in human mitochondria.

Despite the fact that the composition of the TIM22 complex

is different in yeast and human mitochondria, recognition

of non-canonical substrates appears to be a conserved

mechanism.
/mpc1D, and tim10-2/mpc1D mitochondria.

2-14/mpc1D mitochondria.

d western blotting.

In all import experiments, analyses were carried out



DISCUSSION

In this study, we performed proteomic analyses of tim22-14 yeast

mitochondria todefine substratesof the carrier transport pathway.

Our quantitative analyses identified functionally defined (Yhm2,

Crc1, Odc1, and Hem25) and undefined proteins (Yfr045w and

Ypr011c) as substrates of the carrier pathway. Transport of the

tested proteins was affected to varying degrees in different

pathway mutants in in vitro import analyses. It is conceivable that

differences in the biophysical properties of the transmembrane

spansof the individual protein or differences in their internal target-

ing signals are at the heart of these distinct requirements and that

conditional mutants display a certain substrate specificity. More-

over, our analyses identified pyruvate carrier subunits as non-ca-

nonical substrates of the carrier pathway. Reduced levels of

MPC1 and MPC2 were also apparent in a patient compromised

in carrier import and upon depletion of TIM22 in human cells.

Therefore, these proteins are substrates of the carrier pathway in

yeast and in human mitochondria despite the drastic differences

in the organization of the translocase. These precursors with two

or three transmembrane segmentsdonot fitwith current concepts

of a membrane insertion mechanism of polypeptides in hairpin

loopsmediated by TIM22 [34, 35]. A net positive charge of thema-

trix-facing loops has been considered as one of the driving factors

for carrier proteins across the membrane [34]. Sequence analysis

of the MPC proteins revealed that the matrix-facing N termini are

positively charged. It is tempting to speculate that these drive

the translocation across the inner membrane by the TIM22 com-

plex. Detailed biochemical analyseswill be required to understand

the translocation process in the light of these unexpected findings.
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H.E., Kühlbrandt, W., Wagner, R., Truscott, K.N., and Pfanner, N. (2003).

Protein insertion into the mitochondrial inner membrane by a twin-pore

translocase. Science 299, 1747–1751.

15. Sirrenberg, C., Bauer, M.F., Guiard, B., Neupert, W., and Brunner, M.

(1996). Import of carrier proteins into the mitochondrial inner membrane

mediated by Tim22. Nature 384, 582–585.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-Tim22 This paper #164

Rabbit polyclonal anti-Tim54 This paper #215

Rabbit polyclonal anti-Tim18 This paper #233

Rabbit polyclonal anti-Tim23 This paper #3846

Rabbit polyclonal anti-Tim17 This paper #4968

Rabbit polyclonal anti-Tim50 This paper #3314

Rabbit polyclonal anti-Tim21 This paper #3111

Rabbit polyclonal anti-Tim44 This paper #3869

Rabbit polyclonal anti-Tom40 This paper #4901

Rabbit polyclonal anti-Hsp70 This paper #4945

Rabbit polyclonal anti-Mir1 This paper #171

Rabbit polyclonal anti-Aac2 This paper #51

Rabbit polyclonal anti-Yhm2 This paper #3053 (Freiburg)

Rabbit polyclonal anti-Mpc1 This paper #5021 (Freiburg)

Rabbit polyclonal anti-Atp20 This paper #1517

Rabbit polyclonal anti-Mic10 This paper #345

Rabbit polyclonal anti-Atp5 This paper #1546

Rabbit polyclonal anti-MPC1 Thermo Fisher Scientific Cat# PA5-60929; RRID: AB_2638597

Rabbit polyclonal anti-MPC2 Proteintech Cat# 20049-1-AP

Rabbit polyclonal anti-TIM22 Proteintech Cat# 14927-1-AP; RRID: AB_11183050

Rabbit polyclonal anti-AGK This paper #5045

Rabbit polyclonal anti-ANT3 Proteintech Cat# 14841-1-AP; RRID: AB_2190371

Rabbit polyclonal anti-TIM23 This paper #1526

Rabbit polyclonal anti-LETM1 This paper #0538

Rabbit polyclonal anti-COX1 This paper #5120

Rabbit polyclonal anti-COX4-1 This paper #1522

Rabbit polyclonal anti-ATP5B This paper #4826

Goat anti Rabbit IgG (H+L) HRPO Jackson ImmunoResearch Labs Cat# 111-035-144; RRID: AB_2307391

Chemicals, Peptides, and Recombinant Proteins

Digitonin Merck Millipore Cat# 300410

MitoTrackerTM Orange CMTMRos Thermo Fisher Scientific Cat# M-7510

3,30-Dipropylthiadicarbocyanine Iodide (DiSC3) Invitrogen Cat# D306

deuterated cyanoborohyride NaBD3CN Sigma-Aldrich Cat# 190020

deuterated formaldehyde CD2O Sigma-Aldrich Cat# 492620

deuterated 13C-labeled formaldehyde 13CD2O Sigma-Aldrich Cat# 596388

[35S] methionine Hartmann Analytic Cat# SCM-01

Critical Commercial Assays

KOD Hot Start DNA Polymerase Merck Cat# 71086-3

mMessagemMachine SP6 transcription kit Invitrogen Cat# AM1340

Flexi Rabbit Reticulocyte Lysate System Promega Cat# L4540

Experimental Models: Cell Lines

HEK293-Flp-InTM T-RexTM (HEK293T)

Cell Line

ThermoFisher Scientific RRID: CVCL_U421

Control Fibroblasts (immortalized) [33] N/A

TIM22 Patient Fibroblasts (immortalized) [33] N/A

(Continued on next page)

e1 Current Biology 30, 1119–1127.e1–e5, March 23, 2020



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

YPH499 MATa ade2-101, his3-D200, leu2-D1,

ura3-52, trp1-D63, lys2-801

[36] Yeast collection# 13

BY4741 MATa his3D1, leu2D0, met15D0,

ura3D0

EUROSCARF http://euroscarf.de/index.php?name=News

BY4741 yfr045wD::KanMX4 EUROSCARF http://euroscarf.de/index.php?name=News

BY4741 ypr011cD::KanMX4 EUROSCARF http://euroscarf.de/index.php?name=News

BY4741 mpc1D::KanMX4 EUROSCARF http://euroscarf.de/index.php?name=News

tim22-14: YPH499 tim22-M4 [19] Yeast collection# 172

tim10-2: YPH499 tim10::ADE2 [10] Yeast collection# 173

YPH499 mpc1D: YPH499 mpc1D::KanMX4 This paper N/A

tim22-14/mpc1D: YPH499 tim22-M4

mpc1D::KanMX4

This paper N/A

tim10-2/mpc1D: YPH499 tim10::ADE2

mpc1D::KanMX4

This paper N/A

tom70/71 DD: YPH499 tom70D::HIS3,

tom71D::KanMX4

[20] Yeast collection# 796

Tim22Y: YPH499 KanMX-pGal1-Tim22 This paper N/A

Oligonucleotides

TIM22 siRNA GUG-AGG-AGC-AGA-AGA-UGA [37] N/A

Recombinant DNA

Plasmid: GFP-Mir1 This paper pRG3

pFA6a-KanMX6 [38] Plasmid# R66

Software and Algorithms

ImageQuantTL v8.1 GE Healthcare https://www.gelifesciences.com/en/us/shop/

protein-analysis/molecular-imaging-for-

proteins/imaging-software/imagequant-

tl-8-1-p-00110

ImageJ v1.47 NIH https://imagej.nih.gov/ij/download.html

Geneious v9.1.2 Biomatters Ltd https://www.geneious.com/download/

Prism 8 GraphPad Software https://www.graphpad.com/

scientific-software/prism/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Peter

Rehling (peter.rehling@medizin.uni-goettingen.de). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast growth and handling
S. cerevisiae strains used in this study were YPH499 and BY4741. The genotypes are listed in the Key Resources Table. Cells were

grown in YPmedia (1% yeast extract, 2% peptone) containing 2% glucose (YPD) or 3% glycerol (YPG) as a carbon source. YPH499,

BY4741, yfr045wD, ypr011cD and tom70/tom71 DD [20] strains were grown at 30�C with shaking. Temperature sensitive (ts) strains

tim22-14 [19] and tim10-2 [10] were cultivated at 24�C and 19�C, respectively. For proteomic analysis, incubation of temperature

conditional mutant strains was carried out at 37�C for indicated times. For growth on plates, 1.5% agar was added to synthetic

YPD, YPG or YPL (3% lactate, pH 5.0) media. For comparing growth of different strains, serial dilutions of an overnight growing cul-

ture were prepared and plated on appropriate plates. These plates were incubated at 24�C, 30�C, and 37�C for 3-5 days. GFP-Mir1

was expressed in YPH499 and tim22-14 cells. For thisMIR1was cloned into pUG36. The resulting plasmid (pRG3) was transformed

into yeast strains. Transformants were selected on SD-Ura (selective media lacking uracil). Deletion of theMPC1 open reading frame

in YPH499, tim10-2, and tim22-14 was achieved by homologous recombination following transformation of a PCR product contain-

ing the KanMX gene flanked by regions complementary to theMPC1UTRs and subsequent selection of Kan-resistant transformants.

For Tim22Y strain, the Gal1 promoter with a Kanamycin marker was integrated 50 upstream of the open reading frame of Tim22. The
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Gal1 promoter is activated in the presence of Galactose and repressed in Glucose. For downregulation of Tim22 expression, yeast

cells were pre-cultured in YPmedia with 3%Lactate, 1%Galactose and 1%Raffinose pH 5.0 for 25 hours at 30�C. Subsequently, the
cells were cultured in YP media with 3% Lactate and 0.1% Glucose pH 5.0 for 10 hours at 30�C.

Cell culture and knockdown experiments
Immortalized fibroblasts and HEK293T cells were cultured in DMEM, supplemented with 10% (v/v) heat-inactivated fetal bovine

serum (Biochrom, Berlin, Germany), 2 mM L-glutamine, 1 mM sodium pyruvate and 50 mg/ml uridine, and incubated at 37�C with

5% CO2. Mitochondria from control and patient fibroblast were isolated after incubating the cells at 50�C for 5 hours and were sub-

jected to SDS-PAGE and western blotting.

TIM22 knock down was performed as previously described [37]. An siRNA targeting TIM22 (GUG-AGG-AGC-AGA-AGA-UGA) and

the corresponding non-targeting control were purchased from Eurogentec (Liege, Belgium). A concentration of approximately

1.5x106 cells/25 cm2 flask were transfected with 16 nM siRNA. Lipofectamine RNAiMAX (Invitrogen, CA, USA) in OptiMEM-I medium

(GIBCO, Thermo Fisher Scientific, MA, USA) was used for transfection, following the manufacturer’s instructions. Cells were trans-

fected for 72 h and used for subsequent analyses.

METHOD DETAILS

Isolation of mitochondria
Differential centrifugation of yeast extracts was carried out to isolate mitochondria [39]. Unless otherwise stated, wild-type, tim22-14

and tim10-2 yeast cells were cultured in YPG at 30�C, 24�C, or 19�C to OD600 of 1.5-2.5 and harvested. The pellet was washed with

water and then treated in DTT buffer (10 mM DTT, 100 mM Tris/H2SO4, pH 9.4) for 30 min at appropriate temperature with shaking.

Subsequently, cells were washed and treated with Zymolyase buffer (20 mMKPO4, pH 7.4, 1.2 M sorbitol, and 0.57mg/L zymolyase)

for 1 h with shaking at the appropriate temperature. Cells were harvested and washed with zymolyase buffer. Cold homogenization

buffer (600 mM sorbitol, 10 mM Tris/HCl, pH 7.4, 1 g/L BSA, 1 mM PMSF, and 1 mM EDTA) was added to the pellet and cells were

homogenized using a homogenizer. Mitochondria were obtained by differential centrifugation and resuspended in SEM buffer

(250mMsucrose, 20mMMOPS/KOHpH 7.2, 1mMEDTA). Theywere aliquoted in appropriate volume, flash frozen in liquid nitrogen,

and stored at �80�C. Steady-state analysis of proteins was carried out using SDS-PAGE followed by immunodecoration.

For experiments involving human cells, mitochondria used for western blotting purposeswere isolated by differential centrifugation

as previously described [40]. Briefly, PBS recovered cells were dissolved in isolation buffer (300 mM trehalose, 10 mM KCl, 10 mM

HEPES pH 7.4, 2mg/ml BSA, and 2mM PMSF). Cells were subsequently homogenized on ice using a Potter S homogenizer. Cell

debris was removed by a first centrifugation step at 400 x g for 10 min at 4�C and after recovering the supernatant a second one

at 800 x g for 7 min at 4�C. Mitochondria were collected by centrifugation at 10,000 x g for 10 min at 4�C. Freshly isolated mitochon-

dria were washed in isolation buffer lacking BSA once and protein concentrations were determined by Bradford assay. For import

experiments, mitochondria were isolated as previously described [41]. Briefly, cells were resuspended in ice-cold isotonic buffer

(10 mM MOPS pH 7.2, 225 mM sucrose, 75 mM mannitol, and 1 mM EGTA) supplemented with 2 mM PMSF and 2 mg/ml BSA

and subjected to centrifugation at 1,000 x g for 5 min at 4�C. The cell pellet was subsequently resuspended in cold hypotonic buffer

(10 mMMOPS pH 7.2, 100mM sucrose, and 1mM EGTA) and incubated on ice for 7 min. The cell suspension was homogenized in a

Dounce glass homogenizer. Cold hypertonic buffer (1.25M sucrose and 10mMMOPS pH 7.2) was used to restore isotonic condition

and added to the cell homogenate. The homogenate was subjected to centrifugation at 1,000 x g for 10min at 4�C to pellet the cellular

debris, recovering the supernatant and repeating this step. Mitochondria were pelleted by centrifuging the supernatant at 10,000 x g

for 10 min at 4�C and washed once with isotonic buffer without BSA. Protein concentration of isolated mitochondria was determined

using the Bradford assay.

Microscopy of yeast cells
Wild-type and tim22-14 cells transformed with the GFP-Mir1 plasmid were grown in SD-Ura media at 25�C overnight. Next day,

0.5 mM MitoTrackerTM Orange CMTMRos (Thermo Fisher Scientific, MA, USA) was added to the culture. Cells were kept shaking

for 20 min. Afterward, cells were harvested, washed once with media and analyzed using a DeltaVision fluorescence microscope

(GEHealthcare, IL, USA). Cells grown overnight at 25�Cand temperature shifted to 37�C for 25 hwere treated and analyzed as above.

Import of precursor proteins
mMessagemMachine SP6 transcription kit (Invitrogen, CA, USA) was used to generate mRNAs in vitro based on the manufacturer’s

instructions. A DNA fragment for mRNA generation was obtained by PCR using a forward primer containing a SP6 Polymerase bind-

ing site (ATTTAGGTGACACTATAG) followed by bases from the 50 sequence of the gene and a reverse primer containing bases from

the 30 end. For synthesis of [35S] methionine labeled protein, in vitro translation was carried out using the Flexi Rabbit Reticulocyte

Lysate System (Promega, WI, USA). Prepared lysates were used directly for import reactions.

Import reactions were performed as previously described [31], with few modifications. Briefly, mitochondria were suspended in

import buffer (250 mM sucrose, 10 mMMOPS/KOH pH 7.2, 80 mMKCl, 2 mMKH2PO4, 5 mMMgCl2, 5 mMmethionine and 3% fatty

acid-free BSA) supplemented with 2 mMATP, 2 mMNADH, 5 mM creatine phosphate and 0.1 mg/ml creatine kinase. For all imports

into mitochondria from temperature sensitive strains, mitochondria (mutant and control) were subjected to 15min heat shock at 37�C
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prior to the import reaction. Import was performed at 25�C and terminated using AVO cocktail (final concentration 1 mM valinomyin,

8 mMantimycin A and 20 mMoligomycin) to disrupt themembrane potential. Sampleswere treated with 20 mg/ml Proteinase K (PK) for

10 min on ice. PK was inactivated with 2 mM phenylmethylsulphonyl fluoride (PMSF) for 10 min on ice. Mitochondria were subse-

quently sedimented and washed with SEM buffer. In Mpc1 and Mpc3 imports, the samples were resuspended in 100 mM sodium

carbonate pH 11,5 and incubated for 30 min on ice. The membranes were sedimented at 100,000 x g for 1 h in TLA55 rotor. For

BN-PAGE analyses of imported proteins, mitochondria were solubilized in 1.25% digitonin as described previously [42] or in

0.6% DDM for Atp5 imports. Imports into isolated human mitochondria were performed at 37�C in import buffer (250 mM sucrose,

80 mM potassium acetate, 5 mM magnesium acetate, 5 mM methionine, 10 mM sodium succinate, 5 mM adenosine triphosphate,

and 20mMHEPES/KOH pH 7.4) supplemented with 2mMATP, 1mMDTT, 5mMcreatine phosphate and 0.1mg/mL creatine kinase

and 10% of radioactive lysate.

Membrane potential measurement
Membrane potential measurements were carried out as previously described [31]. Briefly, isolated mitochondria were resuspended

in potential buffer (0.6M Sorbitol, 0.1% BSA, 10 mM MgCl2, 0.5 mM EDTA, 20 mM Kpi pH 7.2) in the presence of 2mM 3,30-Dipro-
pylthiadicarbocyanine iodide (DISC3) and changes of fluorescence (EX 622 nm/EM 670 nm) were recorded. Membrane potential was

dissipated using 1mM Valinomycin. Representative images are shown, measurements were done with n = 3.

Reduction and alkylation of proteins and tryptic digestion
Mitochondria prepared from wild-type and tim22-14 cells harvested after 0 h, 15 h, 25 h or 40 h after temperature shift to 37�C were

pelleted by centrifugation for 10 min at 12,000 x g and 4�C. Mitochondria were resuspended in 6 M urea dissolved in 50 mM ammo-

niumbicarbonate. Reduction and alkylation of cysteines was performed as described before [43]. Samples were diluted with H2O to a

final urea concentration of 1.5 M. Sequencing grade trypsin (Serva, Heidelberg, Germany) was added in a 1:30 (trypsin:protein) ratio

and samples were incubated at 37�C overnight. Tryptic digests were acidified by adding trifluoroacetic acid (TFA) to a final concen-

tration of 0.7% (v/v).

Dimethyl labeling of peptides on StageTips
StageTipswere assembled as described previously [44] using three discs of C18material (Empore 3M) per tip. StageTips were condi-

tioned with 25 ml of 100% methanol, equilibrated with 25 ml of 0.5% (v/v) acetic acid/80% (v/v) acetonitrile (ACN) and washed twice

with 25 ml of 100 mM triethylammonium bicarbonate (TEAB), each by centrifugation at 800 x g for 1-2 min. 10 mg of acidified peptides

were loaded onto each StageTip by centrifugation at 800 x g for 5 min. Labeling solutions were freshly prepared by mixing 70 ml of

50 mM monosodium phosphate with 245 ml of 50 mM disodium phosphate, 17.5 ml of 4% (v/v) formaldehyde in 100 mM TEAB and

17.5 ml of 0.6 M sodium cyanoborohydride in 100 mM TEAB. For labeling of peptides from wild-type cells, the light versions of form-

aldehyde and sodium cyanoborohydride (CH2O and NaBH3CN, Sigma-Aldrich) were used. For peptides from tim22-14 control cells

(grown at 25�C), deuterated formaldehyde (CD2O, Sigma-Aldrich) and light NaBH3CN were mixed. For peptides from tim22-14 cells

harvested 15 h, 25 h or 40 h after shift to 37�C, deuterated 13C-labeled formaldehyde (13CD2O, Sigma-Aldrich) and deuterated sodium

cyanoborohydride (NaBD3CN; Sigma-Aldrich, MO, USA) were used. For labeling, StageTips were loaded twice with 150 ml of the

respective labeling solution and centrifugation at 800 x g for 5-7 min. StageTips were washed twice with 25 ml of 100 mM TEAB. Pep-

tides were eluted twice with 20 ml of 0.5% (v/v) acetic acid/80%(v/v) ACN by centrifugation at 800 x g for 1 min. Light-, medium- and

heavy-labeled samples were mixed and dried in vacuo.

Desalting and fractionation of samples
StageTips were assembled as described previously [44] using three discs of C18 material (Empore 3M) per tip for each 17 to 20 mg of

mixed peptides. StageTips were conditioned and equilibrated as described above and washed twice with 25 ml of 0.5% (v/v) acetic

acid. Dried peptideswere resuspended in 50 ml of 0.5% (v/v) acetic acid and loaded onto the StageTips by centrifugation at 800 x g for

2-5min. StageTipswerewashed twicewith 25 ml of 0.5% (v/v) acetic acid. Each samplewas fractionated in eight fractions by sequen-

tial basic elution using 20 ml of 10mMammonium hydroxide (pH 10) with increasing concentrations of ACN (i.e., 0%, 2.7%, 5.4%, 9%,

11.7%, 14.4%, 22.5% and 64.8%; v/v each). Peptides were dried in vacuo and resuspended in 20 ml of 0.1%(v/v) TFA, of which 15 ml

were used for LC-MS/MS analysis.

LC-MS analysis
Nano-HPLC-ESI-MS/MS analyses were performed on an Orbitrap Elite mass spectrometer (Thermo Fisher Scientific, MA, USA) con-

nected to an UltiMate 3000 RSLCnano HPLC system (Thermo Fisher Scientific, MA, USA). Samples were washed and preconcen-

trated using C18 precolumns (nanoEaseTM M/Z Symmetry C18; length, 20 mm; inner diameter, 180 mm; Waters) with a flow rate of

5 ml/min for 5 min. Peptide separation was performed using a C18 reversed-phase nano LC column (nanoEaseTM M/Z HSS C18 T3;

length, 25 cm; inner diameter, 75 mm; particle size, 1.8 mm; pore size, 100 Å; Waters) at 40�C and a flow rate of 300 nl/min. Peptides

were separated using a binary solvent system consisting of 0.1% (v/v) FA/4% (v/v) dimethyl sulfoxide (DMSO) (solvent A) and 48%

methanol/30% ACN/0.1% (v/v) FA/4% (v/v) DMSO (solvent B). They were eluted with a gradient of 5%–65% B in 65 min and 65%–

80%B in 5min. Subsequently, the analytical columnwas washedwith 80%B for 5min before re-equilibration with 100%A. Peptides

eluting from the column were transferred to a fused silica picotip emitter (SilicaTipTM, NewObjective) via a DirectJunctionTM adaptor
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(Thermo Fisher Scientific) for electrospray ionisation (ESI, source voltage 1.5-1.8 kV, temperature of heated capillary 200�C) using a

nanospray flex ion source (Thermo Fisher Scientific). Mass spectra were acquired in a mass-to-charge (m/z) range of 370-1,700 with

a resolution (R) of 120,000 at m/z 400. Automatic gain control (AGC) was set to 1 3 106 with a maximum (max.) injection time of

200 ms. The 25 most intense peptide ions were selected for low-energy collision-induced dissociation experiments in the linear

ion trap with the following parameters: normalized collision energy, 35%; activation q, 0.25; activation time, 10 ms; AGC, 5,000;

max. injection time, 150ms; isolation width,m/z 2.0. The instrument was operated in the positive ionmode for data-dependent acqui-

sition of MS/MS spectra. The dynamic exclusion time of previously selected precursor ions was set to 45 s and only +2 or higher

charged ions were selected for MS/MS fragmentation.

MS data analysis
Raw files of LC-MS/MS analyses were jointly processed using MaxQuant v.1.6.0.1 [45]. For peptide identification, spectra were

correlated with the Saccharomyces cerevisiae protein database (UniProtKB canonical set including isoforms for strain AC204508/

S288c, Proteome ID UP000002311, release 01.02.2018, 6,757 entries) using Andromeda [46]. N-terminal and lysine dimethylation

were set as light (+28.03 Da), medium (+32.06 Da) and heavy (+36.08 Da) labels, respectively. Trypsin was set as the enzyme in spe-

cific digestion mode allowing twomissed cleavage sites. Oxidation of methionine was included as variable modification and cysteine

carbamidomethylation was set as fixed modification. The minimum peptide length was set to 6 amino acids. The precursor mass

tolerance was set to 20 ppm for the ‘‘first search’’ option of Andromeda and to 4.5 ppm for the main search. MSMS match tolerance

was set to 0.5 Da. A false discovery rate of 1% was applied to both peptide and protein lists using the decoy mode ‘‘Revert.’’ For

protein quantification, the option ‘‘Re-quantify’’ was checked and the option ‘‘Match between runs’’ was enabled with a retention

time window of 0.7 min. The minimum ratio count for protein quantification was set to two and only unique peptides were considered

for protein quantification. Normalized heavy-over-light ratios of the MaxQuant output file ‘‘proteingroups.’’txt (excluding entries

marked as contaminants, ‘reverse’ and ‘only identified by site’) were log-transformed. Light and heavy intensities for each protein

group were summed up and log-transformed. Mean log2 ratios andmean log2 intensities were calculated across the treated samples

(15 h, 25 h and 40 h after temperature shift to 37�C). Perseus v.1.5.5.3 [47] was used to determine significant outliers in the different

populations with the implemented algorithm ‘‘Significance B,’’ setting a P value significance threshold to 0.05. Proteins or protein

groups were annotated as ‘‘mitochondrial carrier protein’’ if the protein or at least one protein of the group was part of the high-con-

fidence mitochondrial proteome [48] and contained the term ‘‘carrier’’ in its protein description.

QUANTIFICATION AND STATISTICAL ANALYSIS

For steady-state analysis of proteins, quantifications were performed from the corresponding immunoblots using ImageQuant TL (GE

Healthcare, NJ, USA) using a rolling ball background subtraction.

For analysis of imports, after digital autoradiography, quantifications were performed using ImageJ. A threshold was applied to

select the area of interest and minimize non-specific signal. Integral intensities of these areas were acquired. For yeast, time points

in the linear range of import reaction were considered.

DATA AND CODE AVAILABILITY

The proteomic dataset generated in this study is included as Table S1 associated with this manuscript.
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Figure S1. Carrier protein import is reduced in temperature sensitive Tim22 mutant, Related to 
Figure 1. (A) Wild type (WT) and tim22-14 yeast cells expressing GFP-Mir1 were grown at 25°C or 
shifted to 37°C for 25 h. Cells were co-stained with MitoTracker Orange and analyzed by fluorescence 
microscopy. Merged green and red fluorescence images are shown (yellow/orange). (Scale bar: 5 μm). 
(B) Purified mitochondria from wild type (WT) and tim22-14 cells grown at the permissive temperature 
(25°C) or shifted to the non-permissive temperature (37°C) for 14 h were analyzed by SDS-PAGE and 
western blotting. *: non-specific band. (C) Proteomic analyses of tim22-14 versus WT mitochondria. log2 

ratio-intensity plots showing the effect of loss of Tim22 function on the abundance of mitochondrial 
carrier proteins (red) and MPC subunits (blue) after 15 h (i), 25 h (ii) and 40 h (iii) at 37°C. Filled circles 
indicate proteins significantly altered in abundance in each dataset.  



 
Figure S2. Presequence-containing precursor import is normal in tim22-14 mitochondria, 
Tom70/71-dependent import of carrier proteins Crc1 and Hem25, and uncharacterized proteins 
Yfr045w and Ypr011c are required for mitochondrial activity, Related to Figure 2. (A) [35S]-labelled 
Su9-DHFR and Atp5 were imported into purified wild type (WT) and tim22-14 mitochondria in the 
presence or absence of a membrane potential. Samples were analyzed by SDS-PAGE and digital 
autoradiography. p: precursor; m: mature. (B) [35S]-labelled Atp5 was imported in the presence or 
absence of a membrane potential into wild type (WT) and tim22-14 mitochondria. After Proteinase K 
treatment, assembly of Atp5 into complex V was analyzed by BN-PAGE followed by digital 
autoradiography. (C) [35S]-labelled Crc1 and Hem25 were imported into purified wild type (WT) and 
tom70/71DD mitochondria in the presence or absence of a membrane potential. After Proteinase K 
treatment and solubilization of the samples, proteins were separated by BN-PAGE followed by digital 
autoradiography. (D) (top) Representation of the predicted transmembrane organization of Yfr045w and 
Ypr011c. Membrane topology prediction (bottom) based on the typical six transmembrane span 
arrangement of the carrier family. (E) Growth test of wild type (WT), yfr045w∆, and ypr011c∆ cells on 
glucose (YPD), glycerol (YPG), or lactate (YPL) medium. N: N-terminus; C: C-terminus; aa: amino acid; 
IMM: inner mitochondrial membrane; IMS: intermembrane space; Matr.: matrix; dil.: dilution; Δy: 
membrane potential. 



 

Figure S3. Mpc2 and Mpc3 import is dependent on Tom70/71 and Tim10, Related to Figure 3. (A) 
Representation of predicted transmembrane segments and topology of mitochondrial pyruvate carrier 
subunits Mpc1, Mpc2 and Mpc3. (B) [35S]-labelled Mpc3 and Mpc2 were imported into wild type (WT) 
and tim10-2 mitochondria. (C) [35S]-labelled Mpc2 and Mpc3 were imported into purified wild type (WT) 
and tom70/71DD mitochondria in the presence or absence of a membrane potential. (D) [35S]-labelled 
Mpc3 was imported into wild type (WT) and Tim23N150A mutant mitochondria in the presence or absence 
of a membrane potential. After Proteinase K treatment and solubilization of the samples, proteins were 
separated by BN-PAGE followed by digital autoradiography. N: N-terminus; C: C-terminus; aa: amino 
acid; IMM: inner mitochondrial membrane; IMS: intermembrane space; Matr.: matrix; Δy: membrane 
potential. 
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