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SUMMARY

The C-terminal variants G1 and G2 of apolipoprotein
L1 (APOL1) confer human resistance to the sleeping
sickness parasite Trypanosoma rhodesiense, but
they also increase the risk of kidney disease. APOL1
and APOL3 are death-promoting proteins that are
partially associated with the endoplasmic reticulum
and Golgi membranes. We report that in podocytes,
either APOL1 C-terminal helix truncation (APOL1D)
or APOL3 deletion (APOL3KO) induces similar acto-
myosin reorganization linked to the inhibition of phos-
phatidylinositol-4-phosphate [PI(4)P] synthesis by the
Golgi PI(4)-kinase IIIB (PI4KB). Both APOL1 and
APOL3 can formK+ channels, but only APOL3 exhibits
Ca2+-dependent binding of high affinity to neuronal
calcium sensor-1 (NCS-1), promoting NCS-1-PI4KB
interaction and stimulating PI4KB activity. Alteration
of the APOL1 C-terminal helix triggers APOL1 unfold-
ing and increased binding to APOL3, affecting
APOL3-NCS-1 interaction. Since the podocytes of
G1 and G2 patients exhibit an APOL1D or
APOL3KO-like phenotype, APOL1 C-terminal variants
may induce kidneydisease bypreventing APOL3 from
activating PI4KB, with consecutive actomyosin reor-
ganization of podocytes.
Cell R
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INTRODUCTION

Like human resistance to malaria is associated with inherited

sickle cell anemia, innate immunity to sleeping sickness is genet-

ically linked to chronic kidney disease (CKD) (Genovese et al.,

2010). This unexpected connection involves apolipoprotein L1

(APOL1), a protein found only in primates, which belongs to a

family of apoptotic proteins involved in cell death induced by viral

stimuli (Nichols et al., 2015; Uzureau et al., 2016; Vanhollebeke

and Pays, 2006). APOL1 is the only family member containing

an N-terminal signal peptide for secretion, and it is also the

only member with a clearly identified function. The secreted frac-

tion of APOL1 is the trypanolytic factor of human serum, able to

kill different subspecies of the African parasite Trypanosoma

brucei, but not the sleeping sickness agents T. b. rhodesiense

and T. b. gambiense (Pays et al., 2014; Vanhamme et al.,

2003). APOL1 is a pore-forming protein requiring acidic pH for

insertion into membranes and exhibiting cation channel activity

at neutral pH (Pérez-Morga et al., 2005; Thomson and Finkel-

stein, 2015) (APOL1 structure in Figure 1A). Trypanolytic activity

results from the induction of an apoptotic-like process in the

parasite following the intracellular transfer of APOL1-containing

endosomal membranes to the mitochondrion (Vanwalleghem

et al., 2015). T. b. rhodesiense neutralizes the toxicity of

APOL1 through the interaction of its serum resistance-associ-

ated (SRA) protein with the C-terminal leucine zipper (LZ) helix

of APOL1 (SRA-interacting domain [SRID] in Figure 1A) (Lecor-

dier et al., 2009; Pays et al., 2014; Vanhamme et al., 2003). The
eports 30, 3821–3836, March 17, 2020 ª 2020 The Author(s). 3821
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Figure 1. APOLs Are Membrane-Associated Proteins Involved in Poly(I:C)-Induced Podocyte Death

(A) APOL1 domains and mutations relevant for the study. SP, signal peptides (amino acids [aa] 1–27 and 28–53), PFD, pore-forming domain (aa 60–235), MAD,

membrane-addressing domain (aa 238–304), hinge (aa 305–339), SRID, SRA-interacting domain (aa 340–398), HC/LZ 1/2, pairs of associated hydrophobic

cluster and leucine zipper (aa 79–88/100–122 and 343–354/368–392), SID1/2, smallest interacting domains defined by Y2H interactions with the indicated bait

sequences (aa 78–121 and 346–390).

(B) APOLs immunodetection in total extracts from cells treated or not with poly(I:C). The arrows point to APOL3, located under a non-specific band. The bottom

panel shows the immunodetection of endogenous V5- or TriFLAG-tagged APOL3 in the relevant cell lines. Actin immunodetection serves as a loading control.

(C) Poly(I:C)-induced cell death in the different podocyte lines (error bars, SDs). See Figure S1 for additional data. WT, n = 11; 1KO, n = 7; 1Dhet, n = 7; 1Dhom,

n = 10; 3KO, n = 5; 1+3KO, n = 5; 2KO, n = 3; WT3V5, n = 6; 1Dhom3V5, n = 6.

(D) Immunodetection of recombinant APOLs (0.5 mg/mL) association with various lipids spotted on membrane strips. LPA, lysophosphatidic acid; LPC, lyso-

phosphocholine; PI, phosphatidylinositol; PE, phosphatidylethanolamine; PC, phosphatidylcholine; S1p, sphingosine-1-phosphate; PA, phosphatidic acid; PS,

phosphatidylserine; TG, triglyceride; DAG, diacylglycerol; PG, phosphatidylglycerol; CL, cardiolipin; Chol, cholesterol; SM, sphingomyelin. Blank, no lipid.

(E) Distribution of APOLs in cellular extracts from poly(I:C)-treated APOL3FLAG or APOL1Dhet podocytes, fractionated as indicated. Anti-FLAG antibodies were

used to detect APOL3. Calnexin and Golgin97 are representative ER transmembrane and peripheral trans-Golgi membranemarkers, which become soluble with,

respectively, 0.1% NP-40 (N) and carbonate pH 10 (C). The loading of ‘‘s’’ lanes corresponds to half that of ‘‘p’’ lanes.

(F) Distribution of APOLs in phosphatidylcholine liposomes containing or not containing 10% PI(4)P, following centrifugation at 10,000 3 g. S, supernatant;

p, pellet; equal amounts of initial material.
naturally occurring APOL1 variants G1 andG2 contain mutations

in the C-terminal LZ, which affect the LZ structure and binding of

SRA and thus escape SRA-mediated neutralization (Genovese

et al., 2010; Sharma et al., 2016). Presumably due to their ability

to kill T. b. rhodesiense following SRA escape, these APOL1 var-

iants are frequently found in African populations (Genovese

et al., 2010). Unfortunately, the G1 and G2 variants also cause

kidney disease (KD) through an unclear mechanism involving

perturbation of podocyte vesicular traffic (Genovese et al.,
3822 Cell Reports 30, 3821–3836, March 17, 2020
2010; Beckerman et al., 2017; Madhavan et al., 2017). Although

the secreted fraction of the APOL1 variants was presented as

responsible for the disease (Hayek et al., 2017), the variants pre-

sent intracellularly must be involved in podocyte dysfunction,

because circulating APOL1 levels do not correlate with the dis-

ease and because poor kidney allograft outcomes are associ-

ated with the APOL1 genotype of the transplanted kidney, but

not of the recipient patient (Beckerman and Susztak, 2018; Mad-

havan et al., 2017). Since some APOL1 transcripts encode



isoforms that cannot be secreted (Cheatham et al., 2018), at

least a fraction of intracellular APOL1 could exert a function in

the cytosol rather than within the secretory pathway.

Despite the clear involvement of APOL1 G1 and G2 in KD, in-

dividuals lacking APOL1 due to mutations in both APOL1 alleles

(Vanhollebeke et al., 2006) appear to be healthy (Johnstone et al.,

2012). Therefore, KD must result from negative effects of the

APOL1 variants rather than APOL1 inactivation. In accordance

with this conclusion, mice, which do not have the APOL1 gene,

exhibit KD following transgenic expression of human APOL1

C-terminal variants, and not wild-type (WT) APOL1 (Beckerman

et al., 2017).

Thus far, apart from the role of secreted APOL1 in innate im-

munity against African trypanosomes, the function of APOLs is

unknown. However, roles in the defense against pathogens are

likely (Smith and Malik, 2009; Vanhollebeke and Pays, 2006).

The expression of different APOLs, particularly APOL1 and

APOL3, is highly stimulated under inflammatory conditions, pri-

marily those activating the Toll-like receptor 3 (TLR3) such as

viral infection, which is mimicked in vitro by cell incubation with

poly(I:C) (Nichols et al., 2015; Uzureau et al., 2016). Concordant

with this observation, the risk of KD associated with the expres-

sion of C-terminal APOL1 variants is increased following viral

infection (Kasembeli et al., 2015; Kopp et al., 2017).

Various molecular mechanisms have been proposed to

explain the role of APOL1 C-terminal variants in podocyte

dysfunction (Beckerman et al., 2017; Bruggeman et al., 2016;

Cheng et al., 2015; Chun et al., 2019; Fu et al., 2017; Granado

et al., 2017; Hayek et al., 2017; Jha et al., 2019; Kruzel-Davila

et al., 2017; Kumar et al., 2019; Lan et al., 2014; Lee et al.,

2018; Madhavan et al., 2017; Mikulak et al., 2016; Okamoto

et al., 2018; Olabisi et al., 2016; O’Toole et al., 2018; Ryu et al.,

2019; Wen et al., 2018; Zhang et al., 2018), but the heteroge-

neous nature of these mechanisms, together with drawbacks

linked to non-specific toxicity due to APOL1 overexpression

(O’Toole et al., 2018), suggested that the fundamental explana-

tion remained undiscovered. Therefore, we undertook a detailed

analysis of several human podocyte cell lines whose genomes

were edited for the alteration of APOL1 and APOL3 genes, delib-

erately avoiding strategies of ectopic APOL expression. This

resulted in the identification of a function of APOLs in the regula-

tion of PI(4)P synthesis by PI4KB, hence in the control of actomy-

osin activity, which may explain the KD association of APOL1 G1

and G2.

RESULTS

APOL1 and APOL3 are Poly(I:C)-Induced Proteins
Partially Associated with Endoplasmic Reticulum (ER)
and Golgi Membranes
Incubation of podocytes with poly(I:C) strongly increased APOL1

and APOL3 expression (Figure 1B) and triggered cell death (WT

lanes in Figures 1C, S1A, and S1B). In contrast, poly(I:C) only

weakly increased APOL2 expression (Figure 1B).

APOL1 and APOL3 shared intranuclear and perinuclear distri-

butions, the latter involving important co-localization with ER and

trans-Golgi markers (Figures S2A–S2C). APOL3 co-localization

with the Golgi was higher than that of APOL1, but this difference
was erased by poly(I:C) (Figure S2C). Like APOL1, APOL3 and

APOL1 C-terminal variants exhibited in vitro binding to anionic

phospholipids, particularly phosphatidic acid, cardiolipin, and

several phosphoinositides (Figure 1D). In fractionated cellular

extracts, the APOL1 and APOL3 distribution resembled more

that of ER transmembranar calnexin than trans-Golgi mem-

brane-associated Golgin97, also with a minor cytosolic fraction

(Figure 1E). Finally, both APOLs exhibited increased binding to

liposomes that contained PI(4)P (Figure 1F).

We conclude that in podocytes, APOL1 and APOL3 are

poly(I:C)-induced phosphoinositide-binding proteins associ-

ating with ER and Golgi membranes.

Either APOL1 C-Terminal Helix Truncation or APOL3KO
Induces Actomyosin Reorganization
We used CRISPR-Cas9-mediated gene targeting to generate

different clones of APOL1KO, APOL3KO, and APOL1+3KO po-

docytes, together with clones encoding a C-terminally truncated

APOL1 (APOL1D, ending at V353, 36 kDa), either in only one

allele (APOL1Dhet) or both (APOL1Dhom) (Figures 1A, 1B, and

S3). We also generated APOL2KO cells as controls. Whole-

genome sequencing of representative clones did not reveal sig-

nificant off-target editing (Table S1). In addition, given that all of

the anti-APOL3 antibodies tested exhibited a non-specific inter-

action (Figure 1B, APOL3 top band), to enable specific APOL3

analysis, we usedCRISPR-Cas9 genome editing to generate po-

docyte cell lines expressing the V5 or TriFLAG tag in C-terminal

fusion with endogenous APOL3.

APOL1D shared the cellular fractionation pattern of APOL1

(Figure 1E). Furthermore, synthesis of APOL1D and tagged

APOL3was still stimulated by poly(I:C), suggesting no significant

alteration of gene expression due to APOL editing (Figure 1B).

In accordance with the involvement of APOLs in apoptosis

triggered by TLR3 activation (Uzureau et al., 2016), poly(I:C)-

induced cell death was reduced in both APOL1KO and

APOL3KO podocytes (Figures 1C, S1A, and S1B). In APOL1D

cell lines, poly(I:C)-induced cell death almost disappeared, sug-

gesting that APOL1D inhibits the death-promoting activity of

APOLs (Figures 1C, S1A, and S1B). In contrast, APOL2 was

not significantly involved in poly(I:C)-induced cell death (Fig-

ure 1C). Finally, cells with in situ-tagged APOL3 behaved like

WT podocytes, suggesting no influence of the tag on APOL3

function (Figure 1C).

We compared the observable cytological characteristics

of the different cell lines. The phenotypes of APOL1D and

APOL3KO cells, but not of APOL1KO, APOL1+3KO, and

APOL2KO cells, were characterized by changes in cell surface

area and perimeter (Figures 2A, S1C, and S1D), decrease in

cellular adherence to fibronectin (Figure 2B), increase in motility

linked to larger focal adhesion size (Figures 2C and S4A), and

loss of actin stress fibers associated with tropomyosin accumu-

lation in the perinuclear region (Figure 2D). In APOL1D cells, add-

back APOL1 expression reversed the increase in motility, con-

firming that the phenotypic differences resulted from APOL1

alteration (Figures 2C and S4A). The APOL1D-APOL3KO pheno-

type also included the surface area reduction of mitochondria

(Figure 2E), Golgi apparatus (Figure 2F), and ER tubules

(Figure S4B), suggestive of increased membrane fission.
Cell Reports 30, 3821–3836, March 17, 2020 3823
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Figure 2. APOL1D Expression or APOL3KO Triggers Actomyosin Reorganization

(A) Cellular area and perimeter of the different podocyte cell lines. WT, n = 96; 1KO, n = 84; 1Dhom, n = 127; 3KO, n = 98; 1+3KO, n = 84; 2KO, n = 61.

(B) Cellular adhesion of the different podocyte cell lines on fibronectin-coated plates.WT, n = 12; 1KO, n = 8; 1Dhom, n = 12; 3KO, n = 12; 1+3KO, n = 12; 2KO, n = 10.

(C) Cellular motility and adhesion foci size of the different podocyte cell lines as determined by vinculin immunostaining. Speed panel: WT, n = 240; 1KO, n = 148;

1Dhom,n=223;3KO,n=191;1+3KO,n=86; 2KO,n=75; 1D+addb, n=99. Focal adhesionsizepanel:WT, n=970;1KO,n=1,628;1Dhom,n=2,006;3KO,n=1,706.

(D) Actin and tropomyosin immunofluorescence confocal microscopy of representative samples of the different podocyte cell lines (n = 3).

(E) Mitochondria size morphology of the different podocyte cell lines as determined by MicroP software analysis. WT, n = 24; 1KO, n = 24; 1Dhom, n = 12; 3KO,

n = 22; 1+3KO, n = 9.

(F) Golgi extent of the different podocyte cell lines as determined by Golgin97 staining. WT, n = 51; 1KO, n = 34; 1Dhom, n = 66; 3KO, n = 72; 1+3KO, n = 51.

All results are expressed as means ± SDs. All scale bars, 20 mm.
Accordingly, in these podocytes, a larger fraction of the ER and

ER-linked inverted formin 2 (INF2), which recruits actomyosin on

ER for organelle fission (Chakrabarti et al., 2018; Curchoe and

Manor, 2017; Hatch et al., 2014), was associated with the non-

muscular myosin NM2A heavy-chain MYH9 (Figure S4C).

Thus, in addition to the inhibition of APOL involvement in

poly(I:C)-induced cell death, APOL1D expression or APOL3KO

induced similar podocyte actomyosin reorganization for reduced

cellular adherence, increased motility, and increased organelle

fission.

Either APOL1 C-Terminal Helix Truncation or APOL3KO
Inhibits PI(4)P Synthesis at the Golgi
Several actomyosin components, such as MYH9 and gelsolin,

share the ability of APOL1 to bind phosphoinositides (Liu
3824 Cell Reports 30, 3821–3836, March 17, 2020
et al., 2016; Nag et al., 2013). Therefore, we investigated

whether the effects of APOLs on actomyosin organization

may be related to their ability to bind these phospholipids.

APOL1 and APOL3 exhibited extensive co-localization with

the major Golgi phosphoinositide PI(4)P (Figure 3A). In

APOL1D and APOL3KO cells, but not in the APOL1KO and

APOL1+3KO cells, the PI(4)P content was strongly reduced

with respect to WT cells (Figures 3B and S5A), and the Golgi

exhibited the typical condensation observed following exper-

imental PI(4)P depletion (Dippold et al., 2009) (Figures 2F

and S5B). APOL1 and APOL3 appeared to exert, respectively,

negative and positive effects on PI(4)P content, since their

respective absence was associated with a slight increase or

a strong decrease in PI(4)P levels (Figures 3B, S5A, and

S5B). The overexpression of APOLs induced by poly(I:C)
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Figure 3. APOL1 and APOL3 Control PI(4)P Synthesis

(A) Co-localization of APOL1 and APOL3 with PI(4)P. APOL1, n = 22; APOL3V5, n = 19.

(B)Relative content ofPI(4)P andGolgi-associatedPI(4)P in the different podocyte lines.NormalizedPI(4)Ppanel:WT, n = 55; 1KO, n = 21; 1Dhom, n = 61; 3KO, n = 27;

1+3KO, n = 14; WT+poly(I:C), n = 15. GMP130/PI(4)P overlap panel: WT, n = 24; 1KO, n = 22; 1Dhom, n = 29; 3KO, n = 36; 1+3KO, n = 28; WT+poly(I:C), n = 15.

(C) Relative content of PI(4,5)P2 in WT, APOL1D, and APOL3KO cells. WT, n = 17; 1Dhom, n = 15; 1KO, n = 14.

(D) Western blot analysis of total cellular extracts and PI4KB immunoprecipitates from various podocyte lines. Immunoprecipitates loading corresponds to 20- to

25-fold more cellular material than total extracts loading.

(E) PI(4)P synthesis by recombinant PI4KB (50 ng) with or without the addition of different recombinant proteins, expressed as percentage of activity without

addition. The activity without PI substrate or without PI4KB (<0.1%) was subtracted.

(F) Surface area comparison of trans-Golgi network and Golgi stacks between different podocytes lines, as determined by transmission electron microscopy

(bars, 500 nm). The yellow stars label vesicles of the trans-Golgi network. WT, n = 39; 1Dhom, n = 17.

All scale bars, 20 mm. Quantitative measurements are expressed as means ± SDs.
only slightly affected PI(4)P (Figure 3B). In contrast to PI(4)P at

the Golgi, PI(4,5)P2 levels at the plasma membrane were

similar between cell lines (Figure 3C), suggesting that the

cellular phenotype was specifically related to Golgi PI(4)P.

As shown in Figure 3D, the reduction of PI(4)P was not due

to the reduced expression of PI4KB or NCS-1, a PI4KB acti-

vator (de Barry et al., 2006; Haynes et al., 2005; Mikhaylova

et al., 2009; Taverna et al., 2002; Zhao et al., 2001). Likewise,

it was not explained by the increased expression or delocal-

ization of the PI(4)P phosphatase SAC-1 (Del Bel and Brill,

2018) to the trans-Golgi (Figures 3D and S5C). Thus, it likely

resulted from PI4KB inactivation. In PI4KB immunoprecipi-
tates, PI4KB activity was too low to reliably detect differences

between cell lines, possibly due to inefficient NCS-1 co-immu-

noprecipitation with PI4KB (Figure 3D). Under in vitro condi-

tions, APOL3, but not NCS-1, triggered the Ca2+-dependent

stimulation of PI4KB activity (Figure 3E). This stimulation

also occurred with APOL1 or with APOL3+NCS-1, but at a

lower level (Figure 3E). Thus, in APOL3KO and APOL1D cells,

APOL3 absence or eventual APOL3 inactivation could ac-

count for the reduction in PI4KB activity.

In line with the relation between APOL3 and PI4KB activity,

APOL3 was found to co-localize with PI4KB, together with

NCS-1 and with the PI(4)P- and myosin-binding protein
Cell Reports 30, 3821–3836, March 17, 2020 3825



GOLPH3 (Dippold et al., 2009) (Figure S5D). Moreover, in

APOL1D podocytes, the co-localization of PI4KB, NCS-1,

and GOLPH3 with APOL3 was reduced (Figure S5D),

although PI4KB and NCS-1 remained closely associated

(Figure S5D).

In accordance with the role of PI(4)P in secretion, the lowering

of PI(4)P in APOL1D cells was associated with the surface area

reduction of the trans-Golgi vesicular network and collapse of

Golgi stacks (Figure 3F).

We conclude that besides the ability of APOLs to bind phos-

phoinositides, their activity is related to in vivo PI(4)P synthesis

by PI4KB at the Golgi.

APOL1 Only Indirectly Associates with Actomyosin
Components
We undertook a search for APOL1 partners that would partici-

pate in the APOL1 effects on actomyosin through themodulation

of PI(4)P synthesis. The immunoprecipitation of APOL1 from

NP-40 detergent-treated cellular extracts selectively pulled

down several actomyosin components, particularly NM2A

(heavy-chain MYH9, regulatory light-chain MYL9/12A, and

essential light-chain MYL6), together with gelsolin and tropomy-

osin, but not actin (Figure S6). However, approaches aiming at

identifying direct association with APOL1 did not reveal these

components (see below). Thus, both APOL1 association with

actomyosin components and effects on actomyosin organiza-

tion could be indirect, possibly through phosphoinositide

binding.

Alteration of the C-Terminal Helix Affects APOL1
Folding
To identify components directly interacting with APOL1, yeast

two-hybrid (Y2H) screening was performed in a podocyte

cDNA expression library (Figures S7A–S7C). This screen re-

vealed frequent interactions between N- and C-terminal

APOL1 sequences, the smallest interacting domains (SIDs) be-

ing, respectively, the 78–121 and 346–390 stretches (desig-

nated, respectively, SID1 and SID2; Figures S7C–S7E). APOL1

SID1 also interactedwith the APOL2 and APOL3C termini, which

share extensive sequence similarity with SID2 (Figures S7C–

S7E). The two SIDs exhibited a similar structure, with a hydro-

phobic cluster (HC) followed by a LZ (Figures 4A and S7E).

More stringent conditions of Y2H screening still allowed interac-

tions between SIDs and revealed that G2mutations reduced this

interaction (Figures S8A and S8B). The SID1 sequence was sub-

sequently mutated to destroy the heptad repeat hydrophobicity

in LZ1 (LZ1mut: L111Q/L115Q/L118Q). These mutations did

not inactivate APOL1, since the LZ1mut mutant displayed

conserved trypanolytic potential (Figure S8C), but they disrupted

the interaction between SIDs (Figure S8D), revealing the role of

LZs in this process.

Surface plasmon resonance (SPR) measurements confirmed

the interaction between the SID1 and SID2 peptides (Figure 4B).

Both HC and LZ sequences contributed to this interaction, since

HC1 deletion (in the LZ1p peptide), LZ2 deletion (in the HC2p

peptide), and LZ2 mutations (in the G1Cp-G2Cp peptides)

affected the interaction (Figures 4B and 4C). The LZ1p peptide

did not interact with HC2p (Figures 4B and 4C), supporting the
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hypothesis that the interaction between SID1 and SID2 is driven

by both HC1-HC2 and LZ1-LZ2 interactions.

Evidence that such interactions occur in ciswithin APOL1 was

impossible to verify experimentally due to the aggregation of

recombinant APOL1, which prevented analysis by either intra-

molecular fluorescence resonance energy transfer or double

electron-electron resonance. However, during electrophoresis

with SDS, APOL1D exhibited faster migration than expected

from its size (34.4 kDa), a discrepancy that was not seen for

WT APOL1 (Figure 4D). Since such a mobility shift in SDS results

from increased hydrophobicity (Rath et al., 2009), LZ2 deletion

appeared to increase APOL1 hydrophobicity. Accordingly, the

removal of HC2 from APOL1D (in APOL1D1) restored the ex-

pected electrophoretic mobility (Figure 4D). The increased expo-

sure of HC2 following LZ2 deletion suggested that LZ2 favors

HC2 cis-interaction with HC1 in SID1. In the case of the G1

and G2 variants, no electrophoretic mobility shift could be de-

tected (Figure 4D), but staining of these proteins with Nile red

also revealed increased hydrophobicity with respect to WT

APOL1 (Figure 4E).

These observations suggested that WT APOL1 is folded

through cis-interaction between SID1 and SID2 and that deletion

or mutation of LZ2 disrupts APOL1 folding, increasing the expo-

sure of HCs (Figure 4F).

Alteration of the C-Terminal Helix Increases APOL1
Interaction with APOL3
Y2H screening indicated that the N-terminal region of APOL1

can interact at low frequency with the C-terminal region of

APOL3 (Figure S7D). SPR measurements confirmed that

APOL1 SID1p interacts with the APOL3 sequence homologous

to SID2 (A3Cp). This interaction exhibited lower affinity than

that between APOL1 SIDs and was strongly dependent on

HC1 (Figures 4B and 4C).

Using biolayer interferometry (BLI) measurements, only weak

binding was observed between WT APOL1 and APOL3 (Fig-

ure 5A), but the binding increased when LZ2 was deleted

(APOL1D) or distorted (G1 and G2), or when LZ1 was disrupted

(LZ1mut) (Figure 5A). Thus, reducing the probability of interac-

tions between SID1 and SID2 led to the increased binding of

APOL1 to APOL3 (models in Figures 4F and 4G). This binding

did not require Ca2+ (Figure 5A).

Gene co-expression using the pDUET system in Escherichia

coli confirmed that APOL1 and APOL1 variants can interact

with APOL3 (Figure 5B, top panel). As a control, neither WT

APOL1 nor APOL1D interacted with tropomyosin.

Finally, in support of APOL1-APOL3 interaction in vivo, APOL1

was detected in FLAG immunoprecipitates from WT-APOL3-

FLAG cells (Figure 5C).

We conclude that APOL1 can bind to APOL3 in a mechanism

enhanced by the alteration of either LZ2 or LZ1.

Intracellular APOL1 Topology Is Compatible with
APOL1-APOL3 Interaction
Since APOL1 and APOL3 are supposed to be on opposite faces

of intracellular membranes due to the presence of the signal

peptide in APOL1 only, the biological relevance of the interac-

tion between these proteins was questionable. Therefore, we
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Figure 4. SID1 Interactions with SID2 Inhibit HC Exposure in APOL1

(A) Sequences of the synthetic peptides used for SPR measurements (SID1p and LZ1p = APOL1 K73-K125 and L88-K125; SID2p, G1Cp, G2Cp = APOL1 G332-

L392 from WT or variant sequences; A3Cp = APOL3 G265-L325). Violet and pink colors highlight residues defining the hydrophobic clusters (HC, violet) and

leucine zippers (LZ, pink). Yellow and green colors, respectively, indicate the N-term tag used for coupling the peptides to the SPR chip and residues specific to

G1 and G2 variants. In A3Cp, residues evoking the APOL1 G1 or G2 variants are shown in blue.

(B) SPR-determined binding parameters for the interactions of the SID1p and LZ1p peptides to various immobilized peptides.

(C) SPR sensorgrams of interactions between SID peptides.

(D) Electrophoretic mobility shift of APOL1D. A1, D and D1 = APOL1 60–398, 60–353, and 60–342, respectively (expected sizes: 41.3, 34.4, and 32.2 kDa). The

sequence of the APOL1D band excised from the SDS-PAGE gel was determined bymass spectrometry to check its integrity (peptide coverage in yellow; oxidized

methionines in green). The HC2 sequence is underlined, and the C terminus of APOL1D1 is denoted by an arrow.

(E) Nile red staining of recombinant APOL1, G1, or G2 (1 mM each). Fluorescence emitted by Nile red (0.01 mM) was measured at 630 nm (fluorescence of APOL1

was set to 1). Error bars, SDs; n = 9.

(F) Model for the interactions between SIDs in APOL1. LZ2 with a star, mutant leucine zipper, exhibiting reduced interaction affinity with LZ1. K+ refers to channel

activity (parentheses denote inactivation).

(G) Model for the interactions between APOL3 and NCS-1 (top) or APOL1D+NCS-1 (bottom). The APOL3 sequences homologous to APOL1 HCs and LZs are

indicated in italics. K+ refers to channel activity (parentheses denote inactivation).
investigated the topology of APOL1 by immunogold electron mi-

croscopy. Labeling with anti-APOL1 antibody revealed clusters

of gold particles in the cytosol of WT cells (Figure S9A), and

such particles were never seen in the cytosol of APOL1KO cells

(data not shown). Part of this labeling was localized close to the

mitochondrion (Figure S9A). No ER or Golgi membrane-associ-

ated APOL1 labeling was detected, suggesting that epitopes

of membrane-inserted APOL1 are not accessible to the antibody

under the immunogold conditions, which exclude treatment with

detergents.

The presence of cytosolic APOL1 could be related to differential

processing between intracellular and secreted APOL1, since the
apparent size of APOL1, as deduced from electrophoresis with

SDS, differed between podocyte extracts and human serum (Fig-

ure S9B). The expression of APOL1 isoforms unable to be

secreted (isoforms 2 and 3, respectively; NCBI: NP_663318.1

and NP_001130013.1) could account for this observation, since

transcripts for these isoformswere detected in podocytes (Cheat-

ham et al., 2018). In particular, transcripts for isoform 3 repre-

sented �5% of total APOL1 transcripts (Figure S9C). A possible

cleavage in isoform 3, resulting in an improbable signal peptide

unlikely to allow membrane translocation (12 hydrophobic resi-

dues instead of 17 inWT APOL1), would confer the size observed

for intracellular APOL1 (Figures S9D and S9E). In support of this
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Figure 5. APOL1 C-Terminal Variation Influences APOL3 Binding to APOL1 and NCS-1

(A) BLI measurements of interaction between bound APOL3 and recombinant WT APOL1 or APOL1 variants, either in SID1 (LZ1mut) or SID2 (APOL1D, G1, G2)

(n = 3).

(B) Interactions between APOLs and APOL3 (top panel) or NCS-1 (bottom panel), as measured in the E. coli pDUET co-expression system. Nickel binding of

S-tagged proteins reflects their association with His-tagged partners (highlighted within red frames). A1, D, and D1 = APOL1 60-398, 60-353, and 60-342,

respectively; A3 = APOL3; 3N = APOL3+1% NP-40 instead of 1% CHAPS; M3 = APOL3 HC2-like mutant HCmut. These data are representative of at least 5

independent experiments.

(C) Western blot analysis of APOL1, TriFLAG-tagged APOL3, and NCS-1 immunoprecipitates from podocytes. All of the extracts were treated with 1% CHAPS.

(D) BLI measurements of interactions between bound NCS-1 and APOL3 under various calcium concentrations (n = 3).

(E) BLI measurements of interactions between bound NCS-1 and various recombinant APOLs, either WT or variant in SID1 (LZ1mut) or in SID2 (APOL1D, G1, G2),

performed in the presence of 50 mM CaCl2 (n = 3).

(F) BLI measurements of interactions between bound NCS-1 and APOL3, in the presence or absence of either 1% NP-40 or 1% CHAPS (n = 3).

(G) BLI measurements of interactions between bound NCS-1 and APOL3 or PI4KB, added sequentially as indicated (n = 3).

(H) BLI measurements of interactions between bound NCS-1 and APOL3, either alone or mixed with different molar ratios of APOL1 (left panel) or APOL1D (right

panel) (n = 3).
hypothesis, APOL1 isoform 3 lacks the exon 4 sequence, which is

unlikely to be present in intracellular APOL1 since this sequence is

strongly cytotoxic (Khatua et al., 2015).

The protein fractionation data presented in Figure 1E sug-

gested that most intracellular APOL1 behaves like the trans-

membrane protein calnexin. Since the APOL1D intracellular

distribution pattern mimicked that of APOL1 (Figure 1E), APOL1-

D should be inserted into membranes like APOL1.

In conclusion, intracellular APOL1 is processed differently

from the secreted fraction and could be encoded by isoform 3
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transcripts. This APOL1 fraction could share the cytoplasmic

localization of APOL3.

APOL3, but Not APOL1, Interactswith NCS-1, Promoting
Association of NCS-1 with PI4KB
Y2H screening only detected infrequent interactions between

the N- and C-terminal regions of APOL3 (Figure S10A), contrast-

ing strikingly with the high frequency of such interactions in the

case of APOL1. Thus, in the case of APOL3, internal SID1-

SID2-like interactions are improbable. Accordingly, the APOL3



sequence homologous to APOL1 LZ1 exhibited a much lower

coiled-coiling potential than that of APOL1 (Figure S10B). Y2H

screening with full APOL3, inactivated by site-directed mutagen-

esis of the transmembrane hairpin loop to avoid toxicity (APOL3

null: L137Q/A138Q/P139S/G143S) (Fontaine et al., 2017), identi-

fied NCS-1 as a major interacting partner (Figure S10C). Such an

interaction with NCS-1 was not observed for inactivated APOL1

or APOL1D (null mutants: P198S/G202S/G203S) (Figures S8C

and S8E).

Gene co-expression in the E. coli pDUET system confirmed

both APOL3-NCS-1 interaction and the absence of APOL1-

NCS-1 interaction (Figure 5B, bottom panel). APOL3 interaction

with NCS-1 required the HC2-like sequence, as it was lost

following HC mutagenesis (HCmut: I276Q/F277A/L280Q/

V283Q/Y287Q) (Figure 5B, lane M3), which still conserved trypa-

nolytic activity (Figure S8C). Binding of the APOL3 HC2-like

sequence to NCS-1 was in keeping with the strong hydrophobic

nature of peptide interactions with NCS-1 (Pandalaneni et al.,

2015), which also explains the loss of APOL3-NCS-1 interaction

occurring with the non-ionic detergent NP-40, but not with the

ionic detergent CHAPS (Figure 5B, bottom panel, lane 3N). In

accordance with these observations, NCS-1 and APOL3FLAG

were found to be present in, respectively, FLAG and NCS-1 im-

munoprecipitates from CHAPS-treated extracts of APOL3FLAG

podocytes (Figure 5C).

More detailed measurements of protein interactions by BLI re-

vealed that the interaction of APOL3 with NCS-1 required Ca2+,

within concentrations found at the cytoplasmic periphery of ER

membranes (1–100 mM) (R€udiger et al., 2010; Figure 5D). Interac-

tion of APOL3 with NCS-1 contrasted strikingly with the lack of

APOL1-NCS-1 interaction (Figure 5E). The hydrophobic nature

of the APOL3-NCS-1 interaction was confirmed bymutagenesis.

Mutations altering either the APOL3 HC2-like sequence (HCmut)

or the hydrophobic crevice surface of NCS-1 such as L89K or

F85K (Pandalaneni et al., 2015) reduced the interaction (Figures

S11A and S11B). Moreover, as expected from observations in

E. coli (Figure 5B), the APOL3-NCS-1 interaction was abolished

in NP-40, but not in CHAPS (Figure 5F). The interaction between

APOL3 and NCS-1 exhibited high affinity (Kd = 36.5 ± 2.6 nM;

Figure S11C), comparable to that measured for interaction be-

tween the yeast PI4KB and NCS-1 homologs Pik1 and Frq1,

which also involves hydrophobic bonds (Kd �100 nM) (Huttner

et al., 2003; Strahl et al., 2003, 2007). The APOL3-NCS-1 interac-

tion occurred irrespective of NCS-1 N-myristoylation (Figures

5G, S11D, and S11E), contrasting with the requirement of N-myr-

istoylation for the interaction of NCS-1 with PI4KB (Zhao et al.,

2001). Remarkably, APOL3 increased the interaction of NCS-1,

even non-myristoylated, with PI4KB (Figures 5G and S11E).

In summary, APOL3, but not APOL1, exhibited high affinity

and Ca2+-dependent interaction with NCS-1. This interaction

occurred through hydrophobic contacts involving the APOL3

HC2-like sequence (Figure 4G) and promoted the association

of NCS-1 with PI4KB.

APOL1 and APOL1 C-Terminal Variants Can Affect the
Formation of the APOL3-NCS-1 Complex
We evaluated the effect of the interaction of APOL1 with APOL3

on the APOL3 association with NCS-1. When present in excess,
APOL1 reduced the interaction between APOL3 and NCS-1, but

in contrast, APOL1D contributed to the increase in the signal of

NCS-1 binding (Figure 5H, left and right panels, respectively).

Since APOL1D did not bind to NCS-1 (Figure 5E), the latter

observation indicated that a tripartite APOL1D-APOL3-NCS-1

complex was formed (Figure 4G). However, neither APOL1 nor

APOL1D were able to bind to the preformed APOL3-NCS-1

complex (Figure S11F). The G2 and G1 variants behaved like

APOL1 and not like APOL1D, since they reduced the interaction

between APOL3 and NCS-1 (Figure S11G).

We conclude that APOL1 and the G1 and G2 variants can

hinder the association of APOL3 with NCS-1, whereas APOL1D

appeared to strengthen this association. Thus, the binding of

APOL1 to APOL3 clearly interfered with APOL3-NCS-1 interac-

tions, and this occurred in different ways, depending on the

presence or absence of LZ2.

In Keeping with Its Association with NCS-1, APOL3
Exhibits K+ Channel Activity
NCS-1 is known to interact with cation channels (Guo et al.,

2002; Schlecker et al., 2006). Given its interaction with NCS-1

and its trypanolytic potential (Fontaine et al., 2017), APOL3

was expected to be an ion channel. In planar lipid bilayers at

neutral pH, APOL3 generated voltage-independent K+-selective

channels (Figure 6A). APOL3 differed fromAPOL1 since the latter

required acidic pH for membrane insertion and exhibited

voltage-dependent channel activity (Fontaine et al., 2017;

Pérez-Morga et al., 2005; Thomson and Finkelstein, 2015).

APOL3 channel activity was unaffected by the presence of

PI(4)P (data not shown).

Given the topology of these channels in intracellular mem-

branes, both APOL3 and APOL1 could similarly drive cyto-

plasmic K+ influx into the ER and/or Golgi (Figure 6B).

APOL1 and APOL1D Inhibit In Vitro Channel Activity of
the APOL3-NCS-1 Complex
At neutral pH, APOL1 or APOL1D cannot insert into membranes,

and even at low pH, APOL1D is inactive (Thomson and Finkel-

stein, 2015). This allowed us to study the effects of APOL1 or

APOL1D on APOL3 activity. NCS-1, APOL1, or APOL1D did

not inhibit APOL3 channel activity (Figure 6C). However, if

NCS-1 was added after APOL1 or APOL1D pre-incubation with

APOL3, no longer could channel activity be recorded, provided

Ca2+ was present (Figure 6C). Thus, Ca2+-independent APOL1

or APOL1D interaction with APOL3 appeared to inhibit the

channel activity of the Ca2+-dependent APOL3-NCS-1 complex

(Figure 4G).

APOL1 and APOL3 Influence Intracellular Ca2+ Levels
APOL1 and APOL3 K+ channel activities could serve as the ion

counter-current for Ca2+ efflux by the ER-linked and NCS-1-acti-

vated inositol 1,4,5-trisphosphate receptor (IP3R) (Schlecker

et al., 2006), or as the factors increasing Ca2+ uptake as observed

with other low conductanceK+ channels (Kuumet al., 2012, 2015).

Therefore, we investigated the effect of APOL3 channel activity on

Ca2+ release or uptake. IP3R-mediated Ca2+ release provoked by

the extracellular agonist ATP occurred in all cell lines, with overall

similar characteristics (Figure 6D). However, the Golgi Ca2+
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Figure 6. APOL3 Exhibits K+ Channel Activity Influencing Intracellular Ca2+ Levels

(A) APOL3 channel activity in planar soy lipid membranes (n = 5).

(B) Model of APOL-mediated ion currents in the podocyte ER and Golgi membranes.

(C) Effects of APOL1 or APOL1D on APOL3 channel activity. APOL3, APOL1, and NCS-1 were added at 56, 59, and 109 pmol/mL (n values indicated in the table).

(D) Quantification of the peak of cytosolic Ca2+ increases in response to different ATP concentrations (n = 5). The values were normalized to the signal obtained

using 100 mM ATP.

(E) Intracellular Ca2+ store contents. In the top panels, each curve is representative of one single experiment (calculated from three technical replicates). In the

lower panels, data were quantified by calculating the area under the curve (AUC) normalized versus the WT cell line (black line). In the dot plots, each cell line is

represented with a different color and each independent experiment is represented with a different symbol (left panel, n = 9; center and right panels, n = 7). Data

belonging to the same experiment (e.g., 96-well plate) are indicated with the same symbol.
content was significantly reduced in APOL1D and APOL1+3KO

cells, and the ER Ca2+ content was increased in APOL3KO cells

(Figures 6D and 6E). In the Golgi, APOL1 and APOL3 could exert

redundant Ca2+-controlling activity so that either the loss of both

APOLs in APOL1+3KO cells or the inactivation of both APOLs in

APOL1D cells would be required to reduce the Ca2+ level. In the

ER, the absence of APOL3 could promote APOL1-mediated

Ca2+ uptake.

We conclude that both APOL1 and APOL3 contribute to

increasing the level of Ca2+ in intracellular stores.

Urinary and Glomerular G1 or G2 Podocytes Exhibit an
APOL1D or APOL3KO-like Phenotype
To relate our findings with KD, podocytes were obtained from

the urine of a G2/G2 individual suffering from CKD stage 4
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post-perinatal asphyxia (Figures S12A–S12D) and from the

urine of G1/G2 patients suffering from focal segmental

glomerulosclerosis (FSGS) or HIV-associated nephropathy

(HIVAN) (Okamoto et al., 2018), and we compared their anal-

ysis with that of WT (G0/G0) controls. Urinary podocytes

from the G2/G2 individual exhibited a mild APOL1D pheno-

type, regarding their surface area, motility, PI(4)P content,

and Golgi morphology (Figures 7A–7D). Significantly, reduc-

tion of PI(4)P content coupled to Golgi condensation was

also observed in podocyte cell lines established from the urine

of the FSGS and HIVAN G1/G2 patients (Figures 7E and 7F).

Furthermore, in kidney biopsies from G1/G1 and G2/G2 pa-

tients (Gaillard et al., 2018), the mean PI(4)P level of glomeruli

was clearly reduced with respect to the levels of WT individ-

uals (Figure 7G).
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Figure 7. Urine and Glomerular G1 and G2 Podocytes Exhibit an APOL1D or APOL3KO-like Phenotype

(A) Surface and perimeter measurements of urine APOL1 WT (Ur Ctrl) and G2/G2 podocytes from an individual with stage 4 CKD. Ur Ctrl, n = 132; G2, n = 120.

(B) Cellular motility of podocytes described in (A). Ur Ctrl, n = 192; G2, n = 186.

(C) PI(4)P level of podocytes described in (A). Ur Ctrl, n = 77; G2, n = 71.

(D) Size of Golgi stacks in podocytes described in (A), as determined by transmission electron microscopy (TEM) analysis. Ur Ctrl, n = 49; G2, n = 50.

(E) PI(4)P level in urine APOL1 G0/G0 and G1/G2 podocytes from FSGS or HIVAN disease patients. G0, n = 31; FSGS, n = 30; HIVAN, n = 41.

(F) Golgi extent in urine APOL1G0/G0 andG1/G2 podocytes from FSGS or HIVAN disease patients, as determined byGolgin97 staining. G0, n = 32; FSGS, n = 32;

HIVAN, n = 34.

(G) PI(4)P level in glomeruli from biopsies from G0/G0, G1/G1, or G2/G2 transplanted kidneys. Glomeruli (G) and control regions (Ctrl) were analyzed for

immunostaining with anti-PI(4)P antibodies. In the graph, the different-colored dots identify different donors. G0, n = 37; G1, n = 94; G2, n = 19.

All of the quantitative results are expressed as means ± SDs.
We conclude that the disease phenotype linked to the expres-

sion of C-terminal APOL1 variants is related to the reduction of

PI(4)P at the Golgi.

DISCUSSION

We report that in kidney podocytes, either alteration of the C-ter-

minal helix (LZ2) of APOL1 or deletion of APOL3 trigger reduction

of PI(4)P synthesis at the Golgi, concomitant with actomyosin

reorganization increasing cellular motility and organelle fission.

As observed with actomyosin mutations (Brown et al., 2010; Ka-

plan et al., 2000), such a reorganization is susceptible to induce

KD through podocyte dysfunction. In support of this view, in

addition to the APOL1 variants G1 and G2, an APOL3 null variant

allele was also found to exhibit significant association with KD

(Skorecki et al., 2018).
We provide evidence that intracellular APOL1, which is pre-

sent in the cytosol as a protein processed differently from

secreted APOL1, can interact with APOL3 and that this interac-

tion is increased by LZ2 deletion or mutations. We propose that

in WT APOL1, cis-interaction between N- and C-terminal helices

(LZ1 and LZ2) limits trans-interaction with APOL3, and that LZ2

alteration relieves this limitation (Figures 4F and 4G). Since LZ2

deletion in APOL1D cells induced a phenotype strikingly similar

to that of APOL3KO, the APOL1-APOL3 interaction resulting

from LZ2 deletion should inactivate APOL3. Accordingly, we

found that APOL1 inhibits APOL3 channel activity when NCS-1

is present.

We show that APOL3, but not APOL1, binds with high affinity

to NCS-1. This binding occurred with Ca2+ concentrations found

in the cytoplasm close to IP3R and NCS-1 (R€udiger et al., 2010).

In vivo, NCS-1 requires high Ca2+ levels to activate PI4KB
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(de Barry et al., 2006; Mikhaylova et al., 2009). Accordingly, our

data indicated that Ca2+-dependent APOL3 binding to NCS-1

promotes NCS-1 interaction with PI4KB. In vitro, Ca2+ is not

mandatory for PI4KB activation by N-myristoylated NCS-1

(Zhao et al., 2001), but we observed Ca2+-dependent activation

of PI4KB by APOL3. In vitro assays cannot mimic in vivo condi-

tions for PI4KB activity, which involves recruitment of the kinase

to trans-Golgi membranes. However, they revealed APOL3 as a

possible PI4KB activator besides NCS-1. Since we did not find

evidence for interaction between APOL3 and PI4KB unless

NCS-1 was added, it is possible that despite its ability to directly

activate PI4KB in vitro, in vivo APOL3 should interact with NCS-1

to activate PI4KB, explaining the Ca2+ dependence of this

activation.

In keeping with their contrasting capability to interact with

NCS-1, APOL1 and APOL3 appeared to differentially affect

PI4KB in vivo, leading to, respectively, higher or lower PI(4)P

levels when absent. In vivo, PI4KB activity is controlled by

competition between inhibitory calneurons at low Ca2+ levels

and stimulatory NCS-1 at high Ca2+ levels (Mikhaylova et al.,

2009). Based on these observations, we propose a model for

APOL involvement in PI4KB control (Figure S13A). APOL3

would activate PI4KB at high Ca2+ levels, dissociating the

calneuron-PI4KB interaction because APOL3 promotes the as-

sociation of NCS-1 with PI4KB. Therefore, in the absence of

APOL3, such as in APOL3KO cells, PI4KB activity would be

reduced even at high Ca2+ levels following conserved interac-

tion with calneurons. In APOL1D cells, increased APOL1 bind-

ing to APOL3 would interfere with the interaction of APOL3 and

NCS-1, thus inactivating APOL3. In APOL1KO cells, the slight

increase in the PI(4)P level could result from the loss of

the ability of APOL1 to hinder APOL3-NCS-1 interaction. In

APOL1+3KO cells, paradoxically, PI4KB appeared to be active

despite the absence of APOL3. Such activity could result from

the interaction of PI4KB and N-myristoylated NCS-1 (Zhao

et al., 2001). Since the only difference between APOL3KO

and APOL1+3KO cells is the absence of APOL1 in the latter

case, it appears that in the absence of APOL3, APOL1 inhibits

PI4KB activation by NCS-1. Since APOL3KO cells but not

APOL1+3KO cells exhibited increased Ca2+ uptake in luminal

ER stores, the absence of APOL3 alone may favor calneuron

activity due to increased cytosolic Ca2+ depletion by APOL1.

Moreover, calneuron-1 is also known to participate in Ca2+

storage in the ER (Kobuke et al., 2018).

We show that APOL1 indirectly associates with actomyosin

components, particularly NM2A, gelsolin, and tropomyosin,

and that editing of APOLs triggers actomyosin reorganization,

while also affecting both organelle fission and Golgi structure.

Organelle fission and Golgi-derived secretion involve annular

membrane contraction by actin, which is dependent on non-

muscle myosin 2A (NM2A) activity (Chakrabarti et al., 2018;

Curchoe and Manor, 2017; Hatch et al., 2014, 2016; Miserey-

Lenkei et al., 2017). The inhibitory effect of APOLs on organelle

fission, also observed with APOL1 in trypanosomes (Vanwalle-

ghem et al., 2015), could involve their strong binding to cardioli-

pin and phosphatidic acid, known to be key components

recruiting the fission machinery to the mitochondrion and Golgi

(Frohman, 2015; Kameoka et al., 2018; Pagliuso et al., 2016).
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In addition, the effects of APOLs on PI(4)P levels are clearly ex-

pected to affect secretion, cellular traffic, and autophagy (Fig-

ure S13B), explaining the podocyte vesicular trafficking prob-

lems that are observed following the expression of APOL1

C-terminal variants either in vitro (Beckerman and Susztak,

2018) or in mice (Beckerman et al., 2017).

We propose that the G1 or G2 variants cause an APOL1D-like

phenotype because reduction of PI(4)P synthesis was observed

in both urine podocytes and kidney glomeruli from G1 or G2 in-

dividuals. The G1 or G2 variants could result from a compromise

between the requirement for the disruption of LZ2 interaction

with the N-terminal LZ of SRA to resist T. b. rhodesiense and

the necessity of preserving LZ2 interaction with APOL1 LZ1 to

avoid actomyosin reorganization by unfolded APOL1. Maintain-

ing a level of LZ2-LZ1 interaction may also be necessary for

APOL1 channel activity, because in contrast to what occurs

with the G1 or G2 mutations, either C-terminal truncation or

SRA binding to this region completely inhibit this activity (Lecor-

dier et al., 2009; Thomson and Finkelstein, 2015). While still al-

lowing some LZ2 interaction with LZ1, the G1 or G2 mutations

could destabilize the LZ2 structure enough to increase APOL1

binding to APOL3, preventing APOL3-mediated activation of

PI4KB, and therefore progressively inducing podocyte dysfunc-

tions responsible for CKD.
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et al. (2015); Bishé et al. (2012); Chen et al. (2016); Judith et al. (2019); Kam

et al. (2000); Klima et al. (2016); Kuna and Field (2019); Rodrigues et al.

(2016); Taft et al. (2013); Tan and Brill (2014); Tokuda et al. (2014); Tu et al.

(2012).
REFERENCES

Beckerman, P., and Susztak, K. (2018). APOL1: the balance imposed by infec-

tion, selection, and kidney disease. Trends Mol. Med. 24, 682–695.

Beckerman, P., Bi-Karchin, J., Park, A.S.D., Qiu, C., Dummer, P.D., Soomro, I.,

Boustany-Kari, C.M., Pullen, S.S., Miner, J.H., Hu, C.-A.A., et al. (2017). Trans-

genic expression of human APOL1 risk variants in podocytes induces kidney

disease in mice. Nat. Med. 23, 429–438.

Billington, N., Beach, J.R., Heissler, S.M., Remmert, K., Guzik-Lendrum, S.,

Nagy, A., Takagi, Y., Shao, L., Li, D., Yang, Y., et al. (2015). Myosin 18A coas-

sembles with nonmuscle myosin 2 to form mixed bipolar filaments. Curr. Biol.

25, 942–948.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-APOL1 Sigma-Aldrich HPA018885; RRID:AB_1844953

Rat anti-APOL2 This study N/A

Rat anti-APOL3 This study N/A

Mouse anti-ARF1 Santa cruz sc-53168; RRID:AB_2060825

Rabbit anti-Calnexin Proteintech 10427-2AP; RRID:AB_2069033

Mouse anti-Flag Sigma-Aldrich F1804; RRID:AB_262044

Rabbit anti-GM130 Cell signaling #12480; RRID:AB_2797933

Mouse anti-Golgin 97 Cell signaling #97537; RRID:AB_2800280

Mouse anti-GOLPH3 Abcam ab69171; RRID:AB_2279272

Rabbit anti-GOLPH3 Proteintech 19112-1AP; RRID:AB_2113342

Mouse anti-His-Tag Sigma-Aldrich SAB1305538; RRID:AB_2687993

Rabbit anti-INF2 Proteintech 20466-1-AP; RRID:AB_10694821

Mouse anti-MYH9 Abcam ab55456; RRID:AB_944320

Rabbit anti-MYO18A Proteintech 14611-1AP; RRID:AB_2201447

Rabbit anti-Myosin Light Chain (RLC) ECM Biosciences MP4201; RRID:AB_10837501

Rabbit anti-NCS-1 Abcam ab129166; RRID:AB_11150438

Mouse anti-NCS-1 Santa cruz sc-376206; RRID:AB_11008074

Mouse anti-PI(4)P Echelon Z-P004; RRID:AB_11127796

Mouse anti-PI(4,5)P2 Santa cruz sc-53412; RRID:AB_630097

Rabbit anti-PI4KB Novus Biologicals NBP180907; RRID:AB_11040866

Rabbit anti-PI4KB Merck-Millipore 06-578; RRID:AB_11210903

Mouse anti-TPM Merck-Millipore MAB2254; RRID:AB_2093368

Mouse anti-S-Tag Sigma-Aldrich SAB2702204

Goat anti-V5 Novus NB600-380; RRID:AB_10003376

Mouse anti-Vinculin Novus NB600-1293; RRID:AB_2272814

Rabbit anti-haptoglobin Dako Q0330

Mouse anti-synaptopodin Progen Biotechnik 65294

Mouse anti-podocalyxin Millipore MAB 430

Mouse anti-podocin Everest Biotech EB 12149

Mouse anti-V5 Agarose Affinity Gel antibody Sigma-Aldrich A7345; RRID:AB_10062721

Mouse anti-Flag M2 Affinity Gel Sigma-Aldrich A2220; RRID:AB_10063035

Goat anti-rabbit IgGs gold conjugates Sigma-Aldrich G7277; RRID:AB_259951

Mouse anti-His Abcam ab18184; RRID:AB_444306

peroxydase conjugated goat anti-mouse IgG Sigma-Aldrich DC02L; RRID:AB_437851

Mouse anti-Stag monoclonal antibody Novagen 71549-3; RRID:AB_10806301

Bacterial and Virus Strains

BL21(DE3) New England Biolabs C2527H

Biological Samples

Natural podocytes This study N/A

Additional urinary podocytes Okamoto et al., 2018 N/A

Renal biopsies Gaillard et al., 2018 N/A

Chemicals, Peptides, and Recombinant Proteins

Penicillin- Streptomycin Lonza DE17-603E

Insulin Sigma-Aldrich I9278

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Transferrin Sigma-Aldrich T8158

Selenite Sigma-Aldrich S5261

Fura2-AM Eurogentec AS-84017

Adenosine 50-triphosphate disodium salt trihydrate Sigma-Aldrich 10127531001

Thapsigargin Alomone Labs T-650

Ionomycin Alomone Labs I-700

Hygromycin B InvivoGen ant-hg-1

Doxycycline Sigma-Aldrich D3447

Accutase Innovative Cell

Technologies

AT104

Agar 100 Resin Agar Scientific AGR1031

Complete protease inhibitor Sigma-Aldrich 11697498001

TLCK Sigma-Aldrich T7254

PMSF Sigma-Aldrich 10837091001

Leupeptin Sigma-Aldrich 11017128001

E-64 Sigma-Aldrich 10874523001

Recombinant APOL1 This study N/A

Recombinant APOL1 null This study N/A

Recombinant APOL1 D This study N/A

Recombinant APOL1 D1 This study N/A

Recombinant APOL1 G1 This study N/A

Recombinant APOL1 G2 This study N/A

Recombinant APOL1 LZ1mut This study N/A

Recombinant APOL3 This study N/A

Recombinant APOL3 null This study N/A

Recombinant APOL3 HCmut This study N/A

Recombinant PI4KB Thermo Fisher

Scientific

Ca# PV5278

Recombinant NCS-1 Abcam Ca# ab183224

Recombinant NCS-1 This study N/A

N-myristoylated recombinant NCS-1 This study N/A

Recombinant NCS-1 L89K This study N/A

Recombinant NCS-1 F85K This study N/A

streptomycin Sigma-Aldrich S9137

IPTG Roche 10724815001

EDTA-free protease inhibitors Roche 11873580001

imidazole Sigma-Aldrich I202

tetradec-13-ynoic acid Accela SY034595

azido-carboxytetramethylrhodamine (TAMRA)-

PEG-Biotin

Santa Cruz SC-496240

Peptide: KYFKEKVSIQNLLLLLTDNEAWNGFVAAA

ELPRNEADELRKALDNLARQMIMK

GenicBio SID1p

Peptide: LTDNEAWNGFVAAAELPRNEADELRKALD

NLARQMIMK

GenicBio LZ1p

Peptide: CGSGVKLTDVAPVSFFLVLDVVYLVYESKH

LHEGAKSETAEELKKVAQELEEKLNILNNNYKIL

GenicBio SID2p

Peptide: CGSGVKLTDVAPVGFFLVLDVVYLVYESKH

LHEGAKSETAEELKKVAQELEEKLNMLNNNYKIL

GenicBio GC1Cp

Peptide: CGSGVKLTDVAPVSFFLVLDVVYLVYESKHL

HEGAKSETAEELKKVAQELEEKLNILNNKILQA

GenicBio GC2Cp

(Continued on next page)
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Peptide: CGSGVKLTDVAPVSFFLVLDVVYLVYESKHLHE GenicBio HC2p

Peptide: CGSGARILSATTSGIFLALDVVNLVYESKHLHE

GAKSASAEELRRQAQELEENLMELTQIYQRL

GenicBio A3Cp

Nile red dye Sigma-Aldrich 72485

Phalloidin-iFluor 488 Reagent Abcam ab176753

Critical Commercial Assays

Cell Line Nucleofector� Kit V Lonza VVCA-1003

Quick-DNA Plus kit Zymo Research D4068

NEBuilder HiFi DNA Assembly Master Mix New England Biolabs E2621

TruSeq Nano DNA HT Sample prep Kit Illumina TG-202-1003

TetOne Inducible Expression System Clontech 634301

In-Fusion� HD Cloning System Clontech 638920

Xfect Transfection Reagent Clontech 631318

Western Lightning Plus Perkin Elmer NEL103E001EA

DNeasy Blood & Tissue Kit QIAGEN 69504

Annexin V apoptosis detection kit eBioscience 88-8005-72

CellMask Green Plasma Membrane Stain ThermoFisher C37608

CellTiter-Glo Luminescent Cell Viability Assay Promega G7570

MitoTracker� Red CMXRos ThermoFisher M7512

BCA protein assay kit ThermoFisher 23227

Recombinant Protein G - Sepharose 4B ThermoFisher 101243

Phosphoinositides, Strip Echelon Biosciences P-6001-2

Ni-NTA beads QIAGEN 30210

Biacore Thiol Coupling Kit GE Lifesciences BR100557

EZ-Link NHS-PEG4-Biotin Thermo Scientific Ca# A39259

Direct-zol RNA kit Zymo Research R2051

PrimeScript RT reagent Kit with gDNA Eraser Takara RR047B

SYBR Premix Ex TaqII (Tli RNaseH Plus) Takara RR820A

ADP-Glo kinase assay kit Promega V6930

Deposited Data

Proteins identified by mass spectrometry in podocyte

extracts immunoprecipitated with anti-APOL1 antibody

This paper; and

PRIDE archive

Data available via ProteomeXchange with

identifier PXD016851

Experimental Models: Cell Lines

WT TriFlag This study N/A

WT 3V5 This study N/A

1 Dhom 3V5 This study N/A

1KO 3V5 This study N/A

WT APOL1 addback This study N/A

Dhom This study N/A

Dhet This study N/A

2KO This study N/A

3KO This study N/A

1+3KO This study N/A

Oligonucleotides

CCGGCCAGGCAAAAAAGAAAAAGG This study T2A for

AGTGCTATCCACTGGGCCAGGATTCTCCTCG This study T2A rev

TGGCCCAGTGGATAGCACTGAGAACGTCAT This study E2-Crimson for

(Continued on next page)
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GCTGATCAGCGAGCTCTAGTTAGCCCTGGAACAGGT

GGTGGCGGG

This study E2-Crimson rev

CACCGCACTGGTCTGGGGTCAGT This study APOL3 sgRNA for

AAACACTGACCCCAGACCAGTGC This study APOL3 sgRNA rev

TTGCATGCCTGCAGGTCGACTATGAGGCAGATG

CTCTCTACG

This study APOL3 ORF for

ACTTCCCAGCGGGCCCTGGAACAATACTTCCAG

ATCACTGCCGTGGGTATGGCATGGATTCAGA

This study APOL3 ORF rev

CTGTACAAGTAGCCCCAGACCAGTGCAGCC This study APOL3 UTR for

AATTCGAGCTCGGTACCCGGGTTACACACAGGG

CACTCAGC

This study APOL3 UTR rev

CCAGGGCCCGCTGGGAAGTGGCAAACCGATTCCG

AACCCGCTTCTTGGTCTAGACAGCACCGGTGGCAG

TGGAGAGGGCAGA

This study V5-GFP for

GTCTGGGGCTACTTGTACAGCTCGTCCATGCC This study V5-GFP rev

CCAGGGCCCGCTGGGAAGTGATTATAAGGATCATG

ATGGTGACTACAAAGACCATGATATCGATTACAAAG

ATGATGACAAGGGTGGCAGTGGAGAGGGCAGA

This study TriFlag-GFP for

GTCTGGGGCTACTTGTACAGCTCGTCCATGCC This study TriFlag-GFP rev

CCCTCGTAAAGAATTCATGTCAGAGGAAGCTGGA

GCGAGG

This study APOL1 TetOne for

GCAGAGATCTGGATCCTCACAGTTCTTGGTCCGC

CTGCAG

This study APOL1 TetOne rev

GTCACTGAGCCAATCTCAGC This study APOL1 exon 7 Fw

CATATCTCTCCTGGTGGCTG This study APOL1 exon 7 Rv

CCAGCTTTGCAATCATGAGATTC N/A APOL1 Ex2-Forward

TTCCTCTGCCCTCACTCC N/A APOL1 Ex4 Reverse

ATGGAGGGAGCTGCTTTG N/A APOL1 Ex3-Forward

TGCATCTGGGTGCAACAAA N/A APOL1 Ex 3-5 Forward

GATACTGCTCTCTGGGTCCAT N/A APOL1 Ex5-Reverse

Recombinant DNA

U6gRNA-Cas9-2A-GFP (TGTGCTGCTGGTCTTTA

TCGTGG sgRNA)

Sigma-Aldrich CRISPR APOL2

U6gRNA-Cas9-2A-GFP (TAGAACATATGCAGCTA

TTGAGG sgRNA)

Sigma-Aldrich CRISPR APOL3 exon 5

U6gRNA-Cas9-2A-GFP (AACCAGCATTGACCGA

TTGAAGG sgRNA)

Sigma-Aldrich CRISPR APOL3 exon 5

U6gRNA-Cas9-2A-GFP (AAGTAAGCCCCTCGGT

GACTGGG sgRNA)

Sigma-Aldrich CRISPR APOL1 exon 3

U6gRNA-Cas9-2A-GFP (AGTGCTTTGATTCGTAC

ACGAGG sgRNA)

Sigma-Aldrich CRISPR APOL1 exon 5

pGEM-T Easy vector Promega A137A

pSpCas9(BB)-2A-E2Crimson This study N/A

pSpCas9(BB)-2A-GFP Ran et al., 2013 Addgene plasmid # 48138

pApoL3-HRV-V5-2A-GFP This study N/A

pApoL3-HRV-TriFlag-2A-GFP This study N/A

pCDF-Duet1 Novagen N/A

Software and Algorithms

Trimmomatic v035 Bolger et al., 2014 http://www.usadellab.org/cms/?page=

trimmomatic

BWA mem v0.7.15 Li, 2013 https://github.com/lh3/bwa

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

GATK v3.6-0 Van der Auwera et al.,

2013

https://github.com/broadinstitute/gatk/

SnpEFF 4.2 Cingolani et al., 2012 http://snpeff.sourceforge.net/

Picard v2.6.0 Broad Institute https://github.com/broadinstitute/picard

Samtools 1.3.1 https://github.com/samtools/samtools

ImageJ https://imagej.nih.gov/ij/

MTrackJ ImageJ plugins Meijering et al., 2012 https://imagescience.org/meijering/

software/mtrackj/

MicroP Peng et al., 2011 http://bmi.ym.edu.tw/jypeng/

MiNA Valente et al., 2017 https://github.com/StuartLab/MiNA

iTEM software Olympus GMBH N/A

JACoP plugins https://imagej.nih.gov/ij/plugins/

track/jacop.html

BIAevaluation 4.1.1. GE Lifesciences N/A

Octet Data Acquisition V10.0 ForteBio/ Molecular

Devices

N/A

Octet Data Analysis V10.0 ForteBio/ Molecular

Devices

N/A

MaxChelator Ca-EGTA Calculator v1.3 Schoenmakers et al.,

1992

https://somapp.ucdmc.ucdavis.edu/

pharmacology/bers/maxchelator/index.html

Graph-pad Prism 8 Graphpad prism https://www.graphpad.com/scientific-

software/prism/

Softmax Pro 5.4.4 Molecular devices Molecular devices

Other

DMEM-HAM’s F-12 Lonza BE04-687F/U1

Eight wells Falcon culture chamber Falcon 54118

Human fibronectin-coated 96-well Microplate R&D Systems CWP001

IbiTreat 8 well microslides Ibidi 80826

Formvar-carbon-coated copper grids Agar Scientific AGS162-3

SDS–polyacrylamide pre-cast gels Biorad 456-1033

glass beads Lysing Matrix B MP Biomedicals SKU 116911050

Biacore CM5 GE Lifesciences 29149604

Biosensor / Streptavidin (SA) Pack ForteBio/ Molecular

Devices

Ca#18-5020

Biacore Thiol Coupling Kit GE Lifesciences BR100557

EZ-Link NHS-PEG4-Biotin Thermo Scientific Ca# A39259
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for reagents may be directed to, and will be fulfilled by the corresponding author Etienne Pays

(epays@ulb.ac.be). All unique/stable reagents generated in this study are available from the LeadContact with a completedMaterials

Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Immortalized podocytes
The conditionally immortalized human podocyte cell line described in Saleem et al. (2002) was obtained from Dr. M.A. Saleem (Uni-

versity of Bristol, UK).
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Urinary G0 and G2 podocytes
Human G0 and G2 podocytes exfoliated into urine were immortalized, sub-cloned and cultivated as described below (Figure S12).

This study was approved by Ethical Research Committee of the University Hospital/KU Leuven (S61246). The participants were re-

cruited from the African community living in Belgium after signing of the informed consent form. Samples were de-identified. Neither

sex nor age is known.

Additional urinary podocytes
Control G0/G0, FSGSG1/G2 andHIVANG1/G2 urinary podocytes described in Okamoto et al. (2018) were obtained fromDr. J. Kopp

(NIH, USA).

Renal biopsies
G0/G0, G1/G1 and G2/G2 human kidney biopsy tissues were obtained from a cohort of living kidney donors of African origin,

described in Gaillard et al. (2018). All biopsies were performed as rejection screening three months post-transplantation as part of

routine work-up. All patients gave informed and signed consent. Samples were de-identified. Neither sex nor age is known.

METHOD DETAILS

Cultivation of immortalized podocytes
Cultivation of these cells was performed essentially as described (Saleem et al., 2002). Briefly, cells were grown to confluence at

33�C, at which point they were trypsinized and reseeded in fresh flasks at a dilution of between 1:3 and 1:5. Before switching to

37�C, cells were grown to 70 to 80% confluence. At both temperatures, cells were fed with fresh medium 3 times per week. Podo-

cytes were used after 7 to 14 days of differentiation.

Generation of APOL-edited podocytes
CRISPR-Cas9 and green fluorescent protein (GFP) fusion protein expression vectors U6gRNA-Cas9-2A-GFP guide were purchased

from Sigma-Aldrich. These vectors allow the co-expression of GFP and Cas9 from the same mRNA via a 2A peptide linkage, which

enables tracking of transfection efficiency. The RNA guide sequences are listed in Table S1A. Plasmids were transfected into immor-

talized podocytes using Cell Line Nucleofector� Kit V (Lonza, Bale, Switzerland) and program T-020 (2 mg plasmid per 2 3 106 po-

docytes) with Nucleofector II apparatus (Lonza) following manufacturer’s instructions. The GFP positive cells were sorted using a

FACSAria III cell sorter (BD Biosciences, Franklin Lakes, USA) and seeded at one cell per 3 wells in 96 well-plates. The clones

were screened by western blot analysis for the lack of targeted APOL expression. The genomic DNA of the selected clones was

extracted using the Quick-DNA Plus kit (Zymo Research, Irvine, USA) following manufacturer’s instructions. The genomic region

targeted by the CRISPR/Cas9 procedure was amplified by PCR and cloned into pGEMTeasy vector (Promega). Ten clones were

sequenced and the genome of podocyte cell lines chosen to pursue the study was fully sequenced. The sequencing results are sum-

marized in Tables S1B–S1E.

In situ C-terminal tagged versions of APOL3
All the anti-APOL3 antibodies that were tested, either raised in our laboratory or commercially available, exhibited non-specific reaction

(see Figure 1B). Therefore, we generated podocyte cell lines which express the V5, TriFlag or GFP tags in fusion with APOL3. The

CRISPR-Cas9 and E2 Crimson fluorescent protein expression vector pSpCas9(BB)-2A-E2Crimson was generated as follow. The

T2A fragment was PCR-amplified from pSpCas9(BB)-2A-GFP vector using the 50- CCGGCCAGGCAAAAAAGAAAAAGG �30 and 50-
AGTGCTATCCACTGGGCCAGGATTCTCCTCG – 30 primers. The E2-Crimson fragment was PCR-amplified using the 50- TGGCCCAG

TGGATAGCACTGAGAACGTCAT�30 and 50- GCTGATCAGCGAGCTCTAGTTAGCCCTGGAACAGGTGGTGGCGGG�30 primers. The

T2A and E2-Crimson fragments were cloned into EcoRI digested pSpCas9(BB)-2A-GFP vector (Ran et al., 2013) using NEBuilder HiFi

DNA Assembly Master Mix (New England Biolabs, Ipswich, USA) following manufacturer’s instructions to generate pSpCas9(BB)-2A-

E2Crimson. The CRISPR-Cas9 guide RNA sequence targeting APOL3 was generated by cloning the annealed 50- CACCGCACT

GGTCTGGGGTCAGT �30 and 50- AAACACTGACCCCAGACCAGTGC �30 primers into the BbsI restricted pSpCas9(BB)-2A-

E2Crimson vector.

The C-terminal APOL3 tagging constructs pApoL3-HRV-V5-2A-GFP and pApoL3-HRV-TriFlag-2A-GFP were generated as follow.

The APOL3 ORF and APOL3 UTR fragments were PCR-amplified from podocyte gDNA using respectively the 50- TTGCATGCCTGC

AGGTCGACTATGAGGCAGATGCTCTCTACG �30 and 50- ACTTCCCAGCGGGCCCTGGAACAATACTTCCAGATCACTGCCGTGG

GTATGGCATGGATTCAGA�30 primers, and the 50- CTGTACAAGTAGCCCCAGACCAGTGCAGCC �30 and 50- AATTCGAGCTCGG

TACCCGGGTTACACACAGGGCACTCAGC �30 primers. The V5-GFP and TriFlag-GFP fragments were PCR-amplified from the

pSpCas9(BB)-2A-GFP vector S1 using respectively the 50- CCAGGGCCCGCTGGGAAGTGGCAAACCGATTCCGAACCCGCTT

CTTGGTCTAGACAGCACCGGTGGCAGTGGAGAGGGCAGA �30 and 50- GTCTGGGGCTACTTGTACAGCTCGTCCATGCC �30

primers, and the 50- CCAGGGCCCGCTGGGAAGTGATTATAAGGATCATGATGGTGACTACAAAGACCATGATATCGATTACAAAGAT

GATGACAAGGGTGGCAGTGGAGAGGGCAGA �30 and 50- GTCTGGGGCTACTTGTACAGCTCGTCCATGCC �30 primers. The

APOL3ORF, APOL3UTR and either V5-GFP or TriFlag-GFP fragments were cloned into XbaI / BamHI restricted pUC18 vector using
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NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs) following manufacturer’s instructions to generate the pAPOL3-

HRV-V5-2A-GFP or pAPOL3-HRV-TriFlag-2A-GFP tagging constructs respectively. The tagging constructs were linearized using

SalI and KpnI restriction enzymes before use.

Podocytes were transfected usingAPOL3-targeted pSpCas9(BB)-2A-E2Crimson vector and pAPOL3-HRV-V5-2A-GFP vectors to

generate theWT TriFlag, WT 3V5, 1Dhom 3V5 and 1KO 3V5 cell lines. Both induction of cell death and APOL3 expression by poly(I:C)

remained unaltered in the podocyte cell lines expressing V5-tagged APOL3 (see Figures 1B and 1C).

Genomic Analysis of the edited podocytes
Genome libraries were prepared with the Illumina TruSeq Nano DNA HT Sample prep Kit and sequenced on a HiSeq X-Ten platform

with paired-end reads of 150 bp (BGI, Hong Kong). Low quality regions of the reads were trimmed using Trimmomatic v035 (Bolger

et al., 2014). The reads were aligned to the hg38 reference human genomewith the Burrows-Wheeler Aligner (BWA)mem tool v0.7.15

(Bolger et al., 2014; Li, 2013), using default parameters. The resulting sam file was converted to bam, sorted, merged per sample and

indexed with samtools 1.3.1 (Li, 2011). Duplicate reads were marked with the Picard v2.6.0 Mark Duplicates tool and variant calling

was performed with the Genome Analysis Toolkit v3.6-0 Haplotype Caller (GATK) (Van der Auwera et al., 2013). Variants were conse-

quently filtered with the Variant Quality Score Recalibration following exactly the parameters and training sets recommended by

GATK. Finally, variants were annotated with SnpEFF 4.2 (Cingolani et al., 2012). SNPs and INDELs were compared between the

WT podocyte cell line and the CRIPSR/Cas9 mutant cell lines in genome regions with minimal coverage of 10-fold for homozygous

variants and minimal coverage of 20-fold for heterozygous variants.

The genomes of all cell lines were sequenced with at least 26.64-fold average coverage, 97.91% of the genome covered at least

10-fold and 81.58% 20-fold (Table S1B). In total, 3.206.618 SNPs and 864.694 INDELs passed the GATK Variant Quality Score Re-

calibration filter after aligning to the Hg38 reference genome. In a first phase, the genomes of the podocyte cell lines were manually

checked for the CRISPR/Cas9-directed edits in the APOL1 and APOL3 genes (Table S1C). The APOL1KO 1G3, APOL1D 3G3 and

APOL3KOC3 genomes showed homozygous INDELs in the targeted regions of APOL1 or APOL3, and all caused a 100% frameshift.

The APOL1D 3D8 genome had 3 heterozygous INDELs in APOL1, which complemented each other to cause a 100% frameshift. We

additionally checked all the genomes for off-target CRISPR/Cas9 edits to be sure that the observed phenotypes are exclusively

caused by the targeted modifications in APOL1 and APOL3. The off-target SNPs and INDELs are summarized in Tables S1D and

S1E. Only 1 homozygous SNP of moderate impact was detected in the HEG1 (Arg101Ser) gene of the APOL3KO C3 cell line. The

other podocyte cell lines did not contain any homozygous SNPs/INDELs of moderate or high impact. All cell lines did contain het-

erozygous SNPs/INDELs of moderate and high impact. The only two genes showing heterozygous SNPs/INDELs possibly related

with the phenotype, thus, only shared between APOL1D and APOL3KO, were MED1 (Mediator of RNA polymerase II transcription

subunit 1) and POT1 (Protection of telomeres protein 1), two genes for general chromatin organization that are not specifically related

to actomyosin control.

APOL1 inducible cell line
The WT APOL1 addback cell line was generated using TetOne Inducible Expression System (Clontech, Mountain View, USA)

following manufacturer’s instructions. Briefly, APOL1 was PCR-amplified using primers 50-CCCTCGTAAAGAATTCATGTCAGAG

GAAGCTGGAGCGAGG-30 and 50-GCAGAGATCTGGATCCTCACAGTTCTTGGTCCGCCTGCAG-30 and cloned into pTetOne vector

using In-Fusion� HD Cloning System (Clontech). The pTetOne vector was transfected into podocytes using Xfect transfection re-

agent (Clontech). Hygromycin resistant cells were screened for APOL1 induction following doxycycline induction.

Generation of G0 and G2 podocyte lines (Figure S12)
Sera analysis

Sera were collected from 19 individuals, and tested for their trypanolytic activity on different Trypanosoma brucei subspecies, as well

as for their APOL1 content (Figure S12A). Sera lytic for T. b. rhodesiensewere also analyzed for the presence of haptoglobin with anti-

human haptoglobin (Dako), (Figure S12B). The primary antibody was detected by anti-rabbit HPR conjugate and ECL substrates

(Perkin Elmer, Waltham, USA). The selected APOL1 G2/G2 genotype carrier sample was number 12. This patient suffered chronic

kidney disease stage 4 post perinatal asphyxia.

APOL1 Genotyping

DNA was extracted from whole blood samples using QIAGEN kits following the manufacturer’s instructions. APOL1 genotyping was

performed for the renal risk allele G2 (6 base-pair deletion, rs71785313). The exon 7 (883 bp) of APOL1 was amplified using gene-

specific primer pairs (Fw50-GTCACTGAGCCAATCTCAGC-30 / Rv50-CATATCTCTCCTGGTGGCTG-30). Subsequently, DNA

sequencing was performed with an ABI 3100XL High-Throughput DNA Sequencer (Applied Biosystems, Foster City, USA).

Cultivation of podocytes exfoliated into urine

Freshly voided urine was collected from the patient carrying APOL1 high risk genotype (G2/G2) and cells exfoliated into urine were

cultured as previously described (Ivanova et al., 2016). In brief, urine was centrifuged at 300 g for 5min, the pellet was washed in PBS

and re-suspended in podocyte growth medium composed of DMEM-HAM’s F-12 (Lonza) with 10% fetal bovine serum (GIBCO),

50 IU/ml penicillin, 50 mg/ml streptomycin (Lonza), 5 mg/ml insulin, 5 mg/ml transferrin and 5 ng/ml selenium (Sigma). Cells were

immortalized and sub-cloned using a temperature-sensitive SV40-TERT viral system (Saleem et al., 2002). Briefly, cultures of primary
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human podocytes were infected with retrovirus-containing supernatants from the packaging cell line (PA317). Cells in log-phase

growth were exposed to filtered (0.45 mm) supernatant mixed 1:1 with growth medium plus 8 mg/ml polybrene. After 24 h, cultures

were refed with fresh growth medium and grown for an additional 7 days to confluence. The culture mediumwas then supplemented

with 0.5 mg/ml G418 (Life Technologies BRL, Life Technologies, Paisley, UK) until selection was complete (7 to 10 days). Infection,

selection, and continuous culture were carried out at 33�C. Clonal cells were grown at permissive temperature of 33�C and, prior to

the experiments, incubated at 37�C for 7 days to ensure growth arrest and complete differentiation. APOL1WT podocytes, used as

controls, were generated from a Caucasian patient using the same methodology.

APOL1 sequence of the G2/G2 podocyte cells

The gDNA was isolated from G2/G2 clones and the targeted exon 7 (883 bp) of APOL1 was amplified and sequenced as described

above (Figure S12C).

Immunofluorescence

Immunofluorescence analysis was performed for the podocyte specific proteins synaptopodin, podocalyxin and podocin, as previ-

ously described (Ivanova et al., 2016) (Figure S12D). Briefly, cells grown on glass coverslips were fixedwith 4%paraformaldehyde for

10min at room temperature andwashed once in PBS. Cells were permeabilized in 0.1%Triton X-100 for 5min andwashed twice with

PBS. Blocking solution (0.5% bovine serum albumin, 0.2% gelatin, 0.5% fetal bovine serum in PBS) was added to cells for 20 min

followed by 1 h of incubation with appropriate concentrations of primary antibodies in blocking solution. Cells were washed with PBS

and incubatedwith secondary antibodies (1:1000) diluted in blocking solution. Coverslips were washed in PBS andmounted on glass

slides. Images were acquired using a Zeiss Axio Observer Z1 with a 20x objective.

Analysis of renal biopsies
For each glomerulus the mean level of fluorescence was normalized with respect to the mean level of the control surface. In the case

of WT samples (G0 individuals), two biopsies were analyzed (AP13.1921 and AP13.6775). For the G1 samples the four biopsies were

AP08.4028, AP12.8491, AP15.5049 and AP15.7024, whereas for G2 the biopsy analyzed was AP11.4066.

Apoptosis assays
AnnexinV staining was performed using Annexin V apoptosis detection kit (eBioscience, San Diego, USA) according to manufac-

turer’s instructions. The samples were analyzed by flow cytometry within 30 min.

Cell morphology analysis
Podocytes were grown in 8 wells Falcon culture chamber (Corning, USA) and stained with CellMask Green Plasma Membrane Stain

(ThermoFisher) according to manufacturer’s protocol. Images were acquired using a Zeiss Axio Observer Z1 with a 20x objective.

Cell area and perimeter were quantified with ImageJ.

Cell adhesion assays
Cells were collected using Accutase (Innovative Cell Technologies, San Diego, USA), resuspended at similar density, loaded into hu-

man fibronectin-coated 96-well Microplate (R&D Systems, Mineapolis, USA) and incubated for 1 h at 37�C with 5% CO2. The cells

were subsequently washed 5 times with phosphate-buffered saline (PBS) and numbered using CellTiter-Glo Luminescent Cell

Viability Assay (Promega, Madison, USA) following manufacturer’s instructions.

Single cell motility assays
Podocytes were plated in IbiTreat 8 well microslides (Ibidi, Martinsried, Germany) at 103 cells per well dilution and incubated for 10 h

at 37�C and 5%CO2 using Zeiss Axio Observer Z1. Imaging was performed using the 10x objective and the automatic heated stage

for live cell imaging. Images were taken from each position of the array every 5 min for 8 h. The individual images from each position

were combined into stacks using ImageJ software. Cell tracking was performed using the MTrackJ plugin (Meijering et al., 2012).

Individual trajectories of 30 randomly selected cells from each group were plotted using Excel software.

Mitochondria analysis
Podocytes were grown in 8 wells Falcon culture chamber (Corning) and stained with MitoTracker� Red CMXRos (ThermoFisher) for

30 min at 37�C, washed with PBS and fixed for 30 min in 4% paraformaldehyde. Images were acquired using a Zeiss LSM710

confocal scanning microscope with a 40x 1.4NA oil immersion objective. Mitochondria morphology was analyzed using MicroP

and MiNA softwares (Peng et al., 2011; Valente et al., 2017).

Transmission Electron Microscopy
TEM analysis was performed as described (Fontaine et al., 2017). Briefly, cells were fixed for 1h at room temperature in 2.5% glutar-

aldehyde in culture medium, and postfixed in 2% OsO4 in the same buffer. After serial dehydration in increasing ethanol concentra-

tions, samples were embedded in agar 100 (Agar Scientific Ltd., United Kingdom) and left to polymerize for 2 days at 60�C. Ultrathin
sections (50 to 70 nm thick) were collected in Formvar-carbon-coated copper grids by using a Leica EM UC6 ultramicrotome and
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stained with uranyl acetate and lead citrate. Observations were made on a Tecnai10 electron microscope (FEI), and images were

captured with an Olympus VELETA camera and processed with iTEM software (Olympus GMBH, Germany).

Golgi size measurements
On TEM images the Golgi compartment was identified by its unique morphological characteristics. Regions of interest around the

Golgi stacks and the TG network were encircled by the pen tool of the iTEM software (Olympus GMBH) and the integrated perimeter

and surface were automatically calculated.

Western Blot analysis
Cells were lysed in RIPA buffer (1% NP-40 or 1% CHAPS, 0.1% SDS, 0.5% deoxycholate sodium salt in PBS) supplemented with

complete protease inhibitor (Roche, Bale, Switzerland). The protein concentration was determined using BCA protein assay kit

(ThermoFisher). Equivalent amounts of protein were separated on SDS–polyacrylamide pre-cast gels (Biorad, Hercules, USA) and

processed for western blotting.

Immunoprecipitation
Protein lysates in RIPA buffer with 1%NP-40 or 1% CHAPS (300 mg to 1 mg) were incubated with primary antibody overnight at 4�C,
followed by incubation with 20 mL of pre-blocked protein G-Sepharose beads for 1 h. Following four washes in RIPA buffer and one

wash in PBS, the immune complexes were eluted in non-reducing Laemmli buffer and analyzed by western blotting. Immunoprecip-

itation of V5- and Flag-tagged protein complexes were performed using anti-V5 Agarose Affinity Gel antibody and anti-Flag M2

Affinity Gel respectively, according to the manufacturer (Sigma).

Immunofluorescence
Cells were grown in Falcon culture chambers (8 wells plate). PBS-washed cells were fixed in 4% paraformaldehyde for 10 min at

room temperature, treated with 0.1% (v/v) Triton X-100 in Tris-buffered saline for 10 min and incubated for 1 h in Tris-buffered saline

with 5% bovine serum albumin. Nuclei were stained with DAPI. PI(4)P and PI(4,5)P2 immunostainings were performed as previously

described (Elong Edimo et al., 2016). Briefly, cells were fixed in formaldehyde 4% and 0.2% glutaraldehyde for 15 min on ice for

PI(4,5)P2 staining or 15 min in 2% PFA et room temperature for PI(4)P staining. After three washes with PBS containing 50 mM

NH4Cl, cells were permeabilized either in buffer A (137 mM NaCl, 2.7 mM KCl, 20 mM PIPES (pH 6.8)) containing 0.1% saponin,

5% normal goat serum (NGS), 5% normal human serum (NHS) for 45 min on ice for PI(4,5)P2 staining or 5 min in buffer A containing

20 mMdigitonin and 45min in PBS NH4Cl, 5%NGS for PI(4)P staining. Anti-PI(4,5)P2 or anti-PI(4)P antibodies were incubated 16 h at

4�C. After 3 washes of 5min in PBSNH4Cl, cells were incubated with anti-mouse IgM -Alexa 488 for 1 h at room temperature. Primary

and secondary antibodies were diluted in Buffer A containing 0.1%NGS and 5%NHS for PI(4,5)P2 staining or buffer A containing 5%

NHS for PI(4)P staining. Post-fixation was performed (PFA 2%10min on ice and 5min RT for PI(4,5)P2 staining, 5min in 4%PFA at RT

for PI(4)P staining) and after final washes in PBS NH4Cl cells were mounted. Images were acquired sequentially at each laser exci-

tations wavelength using a LSM710 confocal scanning microscope with a 63x1.4NA oil immersion objective (Zeiss). Co-localization

analysis was performed using JACoP (Just Another Colocalization Plugin) for ImageJ (Bolte and Cordelières, 2006). The co-localiza-

tion was quantified using Manders coefficients calculated after Costes automated threshold. Detailed analysis concluded to the val-

idity of this method (Dunn et al., 2011). The extent of focal adhesion foci and Golgi size (expressed as the % of nuclear periphery)

(Dippold et al., 2009) were measured using ImageJ.

Immunogold labeling
For immunogold detection by ultrathin cryosectioning (Tokuyasu), cells were fixed in 4% paraformaldehyde–0.5% glutaraldehyde–

0.1 M cacodylate buffer (pH 7.2) for 15 min at room temperature, embedded in 10% gelatin and 2.3 M sucrose, and frozen in liquid

nitrogen. Sectioning of frozen samples was done on a Leica EM UC7 ultramicrotome at 70 nm. Sections on carbon-Formvar grids

were probed with a rabbit anti-APOL1 antibody and a mix of anti-rabbit IgGs gold conjugates (5 nm and 10 nm) and then mounted

in methylcellulose–1% uranyl acetate films. Observations were made on a Tecnai 10 electron microscope (FEI) at 100 kV and images

were captured with an Olympus VELETA camera and processed with iTEM software (Olympus GMBH, Germany).

Cellular fractionation
Fractionation of podocyte extracts was performed as described (Sibley et al., 1995). Briefly, cells were washed in Hanks’ balanced

salt solution supplemented with 1 mM EGTA and 10 mM HEPES and resuspended at 108 cells/ml in calcium/magnesium-free PBS

containing 1mMEGTA, and then subjected to three freeze-thaw cycles or to sonication for three, 15 s pulses at an intensity of 5 using

a micro-tip probe (Branson Sonifier 185). Protease inhibitors were included in all steps of cell fractionation at the following concen-

trations: 10 mg/ml TLCK, 10 mg/ml a-PMSF, 1 mg/ml leupeptin and 10 mg/ml E-64. Lysates were centrifuged at 2,500 g to remove cell

nuclei and debris. The supernatant was further centrifuged at 100,000 g for 2 h in a TL-100.3 rotor using a Beckman Optima TL

table-top ultra-centrifuge. The membrane pellet was washed once with 1 mM EGTA, 100 mM sucrose, 50 mM Tris-HCl (pH 7.6).
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Mass spectrometry
Peptides were analyzed by using nano-LC-ESI-MS/MS maXis Impact UHR-TOF (Bruker, Bremen, Germany) coupled with a UPLC

Dionex UltiMate 3000 (Thermo). Lanes were excised from SDS-PAGE gels and proteins were digested with trypsin by in-gel diges-

tion. The gel pieces were washed twice with distilled water and then shrunk with 100% acetonitrile. The proteolytic digestion was

performed by the addition of 6 ml of modified trypsin (Promega) suspended in 50 mM NH4HCO3 cold buffer. Proteolysis was per-

formed overnight at 37�C. The supernatant was collected and the eluates were kept at �20�C prior to analysis. The digests were

separated by reverse-phase liquid chromatography using a 75 mm x 250 mm reverse phase Thermo column (Acclaim PepMap

100 C18) in an Ultimate 3000 liquid chromatography system. Mobile phase A was 95% of 0.1% formic acid in water and 5% aceto-

nitrile. Mobile phase B was 0.1% formic acid in acetonitrile. The digest (15 ml) was injected, and the organic content of the mobile

phase was increased linearly from 4% B to 35% in 35 min and from 35% B to 90% B in 5min. The column effluent was connected

to a Captive Spray (Bruker). In survey scan, MS spectra were acquired for 0.5 s in the m/z range between 50 and 2200. The 10 most

intense peptides ions 2+ or 3+ were sequenced. The collision-induced dissociation (CID) energy was automatically set according to

mass to charge (m/z) ratio and charge state of the precursor ion. MaXis and Thermo systems were piloted by Compass HyStar 3.2

(Bruker). Peak lists were created using DataAnalysis 4.1 (Bruker) and saved as MGF file for use with ProteinScape 3.1 (Bruker) with

Mascot 2.4 as search engine (Matrix Science). Enzyme specificity was set to trypsin, and the maximum number of missed cleavages

per peptide was set at one. Carbamidomethylation was allowed as fixed modification, oxidation of methionine and Gln- > pyro-Glu

were allowed as variable modifications. Mass tolerance for monoisotopic peptide window was 7 ppm and MS/MS tolerance

window was set to 0.05 Da. The peak lists were searched against the mammalian taxonomy from UNIREF 100. The list of proteins

identified in 1% NP-40 extracts by mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium

via the PRIDE partner repository with the dataset identifier PXD016851 and 10.6019/PXD016851.

In vitro lipid binding assays
Lipid binding assays were performed on lipid-coated strips as described (Wan et al., 2008). Briefly, nitrocellulose membranes pre-

spotted with various indicated lipid species (P-6001, P-6002, Echelon, Salt Lake City, UT) were blocked in 3% fat-free BSA for 60min

at room temperature, probedwith recombinant APOLs (�100 ng/ml) in 3% fat-free BSA in TBST for 1 h at room temperature, followed

by primary anti-APOL antibody, secondary goat anti-rabbit antibody conjugated with horseradish peroxidase, and ECL detection

and imaging.

Liposome association assays
Assays were performed by incubating 5 ml of 5 mM liposomes with 2 mg of recombinant protein in a final volume of 50 mL in 0.1 mM

CaCl2, 0.1 mMMgCl2, 30 mM NaCl, 1 mM DTT, 50 mM Tris HCl (pH 7.5). Liposomes were pelleted by centrifugation at 16,000 g for

10 min. Lipid pellets were washed, and supernatant and pellet fractions were analyzed by gel electrophoresis on a 10% polyacryl-

amide gel and processed for western blotting with anti-APOL1 and APOL3 antibodies.

Y2H interaction assays
The Y2H cDNA library construction and screening, and all protein Y2H interaction analyses were performed by Hybrigenics SA (Paris,

France). For interaction analysis, the bait sequence was PCR-amplified and cloned in frame with the LexA DNA binding domain (DBD)

into pB27 as N-terminal fusion (LexA-APOL1Nter). The prey fragments were extracted from the screening of APOL sequences with the

human podocyte library. They were cloned in frame with the Gal4 activation domain as N-terminal fusion into plasmid pP6. The AD

construct was checked by sequencing. Bait and prey constructs were transformed in the yeast haploid cells L40DGal4 (MATa) and

YHGX13 (Y187 ade2-101::loxP-kanMX-loxP, MATa), respectively. The diploid yeast cells were obtained using a mating protocol

with both yeast strains. These assays are based on the HIS3 reporter gene (growth assay without histidine). As negative controls,

the bait plasmid was tested in the presence of empty prey vector (pP7) and the prey plasmid was tested with the empty bait vector

(pB27). The interaction between SMAD and SMURF was used as positive control. Interaction pairs were tested in duplicate as two in-

dependent cloneswere picked for the growth assay. For each interaction, several dilutions of the diploid yeast cells (culture normalized

at 5 3 107 cells) and expressing both bait and prey constructs were spotted on several selective media. The DO-2 selective medium

lacking tryptophan and leucinewas used as a growth control and to verify the presence of both the bait and prey plasmids. The different

dilutionswere also spotted on a selectivemediumwithout tryptophan, leucine and histidine (DO-3). Different concentrations of 3-amino-

1,2,4-triazole (3-AT), an inhibitor of the HIS3 gene product, were added to the DO-3 plates to increase stringency of the interaction.

pDUET assays
Gene co-expression assays in E. coli were performed as described (Lecordier et al., 2009). Cellular lysates usually contained 1%

CHAPS, but in some cases 1% NP-40 was used instead, as indicated. Briefly, cultures of BL21(DE3) strains transfected with

pCDF-Duet1 constructs were grown at 37�C in LB containing 50 mg/ml streptomycin and 1% glucose from freshly plated colonies

until OD600 reached 0.7 to 0.8. Cultures were centrifuged and bacteria pellet was resuspended in fresh medium without glucose

and distributed in 3 flasks to perform induction and copurification in triplicate. Expression of recombinant proteins was induced

by addition of 1mM IPTG overnight at 20�C and 80 rpm. Cell density was measured by OD600 and bacteria were centrifuged and

resuspended in (10% of culture volume3OD600) in cold hypotonic buffer (50 mMMES pH 6.0 or pH 7.0) containing EDTA-free pro-
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tease inhibitors (Roche). Bacteria were lysed by Fast Prep 24 (MP Biomedicals) with 1/10 volume of glass beads (LysingMatrix B, MP

Biomedicals), for 33 30 s at 6 m/s. Cell lysate was complemented by 0.6 M NaCl, 1% Triton X-100, 20 mM imidazole, and vortexed

vigorously. Cell debris were pelleted by centrifugation for 15 min at 16,000 g, and the supernatant was applied onto Ni-NTA beads

(QIAGEN) equilibrated in the same buffer, for 2 h at 4�C. After binding the beads were washed with 20 volumes of beads with cold

binding buffer and the bound proteins were eluted with 2 volumes of SDS-PAGE sample buffer. Supernatant (total soluble fractions)

and bound fractions were analyzed by western blotting. His tag was revealed with anti-His mouse monoclonal antibody and perox-

ydase conjugated anti-mouse antibody. Stag was detected by anti-Stag monoclonal antibody (Novagen) and peroxydase conju-

gated anti-mouse antibody. Peroxydase activity was revealed by ECL (Western Lighting Chemiluminescence Reagent PLUS, Perkin

Elmer).

N-myristoylated recombinant NCS-1
In order to produce N-myristoylated NCS-1 in E. coli, the gene encoding human N-myristoyltransferase (hsNMT1) was inserted next

to the NCS-1 gene in the pDUET vector, and both proteins were expressed in the presence of myristic acid (Gl€uck et al., 2010; Price

et al., 2012). To check N-myristoylation, the myristate analog 13-tetradecynoic acid (alkynyl myristic acid) was used. E. coli extracts

were incubated with the capture reagent azido-carboxytetramethylrhodamine (TAMRA)-PEG-Biotin (Az-TB), and the TAMRA fluoro-

phore was detected in gels from SDS-PAGE as described in Gl€uck et al. (2010) and Price et al. (2012). Briefly, the hsNMT1 substrate

myristic acid was added 10 min before induction to a final concentration of 50 mM. Myristic acid was supplied as a freshly prepared

5mM stock solution containing 0.6 mMBSA (Sigma). The pH of the stock solution was adjusted with NaOH to 9 and briefly heated to

50�C for complete solubilization of myristic acid. Cells were incubated under gentle agitation (150 rpm) and harvested 5 h after in-

duction by centrifugation (5000 3 g, 4�C, 30 min). Cell pellets were washed in 1 3 PBS buffer, lysed in ice-cold RIPA buffer

(50 mM Tris pH 7.4, 1% (v/v) NP-40, 1% (w/v) sodium deoxycholate, 150 mM NaCl, 0.5% (w/v) SDS and 1 3 complete protease in-

hibitor cocktail (Roche)), sonicated, then centrifuged at 15,000 g for 30 min at 4�C. Samples were separated by SDS-PAGE and the

gel washed briefly in water for in-gel fluorescent imaging. Gels were scanned with Cy3 filters to detect the TAMRA fluorophore.

SPR analysis
All peptides (> 90% pure) were obtained from GenicBio (Shanghaı̈, China). Peptide-peptide interactions were studied by SPR on a

Biacore 3000 (GE Lifesciences, Brøndby Denmark). Peptides were immobilized on a CM5 sensor chip (GE Lifesciences) using

the Thiol Coupling Kit (GE Lifesciences) essentially according to the manufacturer’s instructions. Briefly, peptides containing an

N-terminal cysteine residue (SID2, GC-1, GC-2 and A3-C) were diluted to 50 mg/ml in 10 mM Na phosphate buffer (pH 4.0) and im-

mobilized at surface densities ranging from 0.3 to 1.2 pmol/mm. Binding of SID1 and LZ1 was performed by injecting 40 ml analyte in

concentrations ranging from 0.5 to 80 mM at a flow rate of 10 ml/min in 10 mM HEPES, 150 mM NaCl, 0.05% Tween-20 (pH 7.4) with

either 5 mM EDTA or 50 mM CaCl2. Flow cells were regenerated with two injections of 10 ml 100 mM glycine, 5 mM EDTA, 500 mM

NaCl, 0.05% Tween-20 (pH 3.0) at 10 ml/min. Binding parameters were determined by fitting to a 1:1 interactions model using the

BIAevaluation 4.1.1. (GE Lifesciences). Each parameter was determined by a duplicate run of duplicate factor 2 dilution series of dis-

solved peptide, ranging from 1.25 to 20 mM. As a minimum all experiments were conducted in triplicates of duplicates.

BLI analysis
Data were generated using the Octet RED96e system (Pall ForteBio) at 22�C, 1000 rpm orbital sensor agitation in 200 ml volume.

NCS-1 or APOL3 were biotinylated with an EZ-Link NHS-PEG4-biotin (Thermo Fisher) by mixing in ratio 1:3 (protein:biotin) in

10 mM HEPES, 150 mM NaCl (pH 7.4) and incubating for 30 min at room temperature. For all assays streptavidin (SA) biosensors

(Pall ForteBio) were used. Sensors pre-hydrated for 10 min in the BLI running buffer (BLI-RB: 10 mM HEPES, 150 mM NaCl,

50 mM CaCl2, 0.05% Tween 20, 0.1% BSA, pH 7.4) followed by capture of biotinylated NCS-1, myr-NCS-1 (5 mg/ml in BLI-RB) or

APOL3 (20 mg/ml in BLI-RB). Measurements with a loaded biosensor in absence of protein were used as reference and were sub-

tracted from all binding curves. All sensorgrams were aligned using the last 5 s of baseline or second zero of association step. A

Savitzky-Golay filter was applied to smooth the data. All APOL1 and APOL3 proteins were dissolved in 20 mM acetic acid (pH 3).

For BLI measurements proteins were diluted with BLI-RB and the content of 20 mM acetic acid in the prepared sample was adjusted

to be equal in the samples to be compared. For Kd determination, the buffer was 150mMNaCl, 50 mMCaCl2, 0.05% Tween 20, 0.1%

BSA, 10 mM HEPES (pH 7.4). NCS-1 was loaded to 1.2 nm. The baseline was generated in BLI-RB over 300 s. Association with

different concentrations of APOL3 (diluted in BLI-RB) was measured for 1200 s, and dissociation in BLI-RB was measured as well

over 1200 s. Sensors were regenerated in 10 mM NaOH (pH 10), three times for 5 s. The sensorgrams were aligned using the last

5 s of baseline, fitted using 1:1 binding model (ForteBio Data Analysis 10.0 software), analyzing both association and dissociation.

Binding curves were analyzed using Global (Full) fit with Rmax unlinked by sensor. R2 was always above 0.99 and X2 was lower

than 0.65. The Kd was determined as an average of three experiments. For the binding of APOL1 variants/APOL3 to NCS-1 or

APOL3, the buffer used was 100 mM NaCl, 50 mM CaCl2, 0.05% Tween 20, 0.1% BSA, 200 mM HEPES (pH 7.4). The loading of

NCS-1 was to 1.2 nm or APOL3 to 0.7-1 nm. The baseline was generated in BLI-RB over 120 s. Association with 0.2 mM APOL1,

APOL1D, G1, G2, APOL1D1, APOL1 LZ1mut or APOL3 diluted in BLI-RB was measured for 600 s and dissociation in BLI-RB was

measured as well over 600 s. In another experiment a mixture of 0.2 mM APOL3 and APOL1 variants in different molar ratios (1:1,

1:3 or 1:5) was used for association. For the binding of APOL3 to NCS-1 ± CHAPS, NP-40 or TWEEN 20, the buffer used was
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150mMNaCl, 50 mMCaCl2, 0.1%BSA, 10mMHEPES (pH 7.4) ± 1%CHAPS, 1%NP-40 or 0.05%TWEEN 20. NCS-1 was loaded to

1 nm and the baseline generated in BLI-RB containing 1% CHAPS, 1% NP-40 or 0.05% TWEEN 20 over 300 s. Association with

0.2 mM APOL3 diluted in BLI-RB containing 1% CHAPS, 1% NP-40 or 0.05% TWEEN 20 was measured for 1000 s and dissociation

in BLI-RBwasmeasured as well over 1000 s. For the Ca2+-dependent binding of APOL3 to NCS-1, the buffer used was 150mMNaCl

(CaCl2 free), 10 mM EGTA, 0.05% Tween 20, 0.1%BSA, 10 mMHEPES (pH 7.4). This buffer was used as a basic buffer and different

amounts of CaCl2 were added to achieve certain concentrations of free Ca2+ based on the MaxChelator Ca-EGTA Calculator v1.3

(Schoenmakers et al., 1992) using the following settings T = 22�C, 0.01 M EGTA, 0.15 N ionic strength (pH 7.4). NCS-1 was loaded

to 1 nm and sensors were calibrated for 10min in basic buffer before the measurements were started. The baseline was generated in

corresponding buffers (±CaCl2) over 600 s and association of 0.2 mM APOL3 over 600 s.

For the competition assay of NCS-1 mutant for binding to APOL3, the buffer used was 150 mMNaCl, 50 mMCaCl2, 0.05% Tween

20, 0.1%BSA, 10 mMHEPES (pH 7.4). NCS-1 was loaded to 1-1.2 nm and the baseline generated in BLI-RB over 120 s. Association

with 0.2 mMAPOL3 (diluted in BLI RB) or 0.2 mMAPOL3mixed with 0.4 mMNCS-1WT or mutant wasmeasured for 1000 s, and disso-

ciation in BLI RB was measured as well over 1000s. For the binding of PI4KB and/or APOL3 to (N-myristoylated-) NCS-1, the buffer

used was 150 mMNaCl, 50 mMCaCl2, 1%CHAPS, 0.1%BSA, 10 mMHEPES (pH 7.4). The loading of NCS-1 or myr-NCS-1 (5 mg/ml

in BLI-RB) was to 1.5-1.8 nm. The baseline was generated in BLI-RB over 60 s. Association with 0.1 mMAPOL3 (diluted in BLI RB) or

0.1 mM APOL3 mixed with 0.1 mM PI4KB or 0.1 mM PI4KB (Thermo) alone was measured for 1000 s, and dissociation in BLI RB was

measured as well over 1000 s. After this first dissociation there was a second association step with 0.1 mMAPOL3 or 0.1 mMPI4KB in

BLI RB over 1000 s followed by a second dissociation. For the binding of APOL1 or APOL1D to NCS-1 or NCS-1-APOL3 complex, the

buffer used was 150 mM NaCl, 50 mM CaCl2, 0.05% Tween 20, 0.1% BSA, 10 mM HEPES (pH 7.4). NCS-1 was loaded to 1 nm and

the baseline generated in BLI-RB over 120 s. Association with 0.2 mM APOL3, APOL1 or APOL1D, diluted in BLI RB, was measured

for 1000 s, followed by a second association of the same proteins in another order was measured over 1000 s.

Nile red-based hydrophobicity assay
In order to remove protein aggregates, recombinant APOL1, G1 or G2 were filtered and quantified directly after filtration using Nano-

drop spectrometry. Concentrations were set at 1 mM in 20 mM acetic acid and directly mixed with the hydrophobic dye Nile red

(Sigma-Aldrich) (0.01 mM in dimethyl sulfoxide). Fluorescence was monitored with a Nano Synergy Mx microplate reader with

550 nm and 630 nm as the excitation and emission wavelengths, respectively.

APOL1 variant quantification by qRT-PCR
Total RNAwas purified using Direct-zol RNA kit from Zymo Research. The reverse transcription reaction was performed using 1 mg of

total RNA with the PrimeScript RT reagent Kit with gDNA Eraser, both from Takara. The qPCR reaction was performed with SYBR

Premix Ex TaqII (Tli RNaseH Plus) from Takara. The cycling conditions were as following: 30 s at 95�C, then 40 cycles alternating 5 s at

95�C and 30 s at 62�C, then 15 s at 95�C. This amplification stage was followed by a melting curve. The sequences of the primers

used to amplify APOL1 variants are the following: APOL1 Ex2-Forward: 50-CCAGCTTTGCAATCATGAGATTC-30, APOL1

Ex4 Reverse: 50-TTCCTCTGCCCTCACTCC-30, APOL1 Ex3-Forward:50-ATGGAGGGAGCTGCTTTG-30, APOL1 Ex 3-5 Forward:

50-TGCATCTGGGTGCAACAAA-30, APOL1 Ex5-Reverse: 50-GATACTGCTCTCTGGGTCCAT-30. Variant 2 was amplified using pri-

mersAPOL1 Ex2-Forward and APOL1 Ex4 Reverse, variants 1 + 2 using primersAPOL1 Ex3-Forward and Ex4 Reverse, variant 3

using APOL1 Ex 3-5 Forward and APOL1 Ex5-Reverse, and all variants using APOL1 Ex3-Forward and APOL1 Ex5-Reverse. The

relative incidence of each variant was calculated as described (Camacho Londoño and Philipp, 2016).

Trypanolysis assays
In vitro measurements of APOL trypanolytic activity were performed as described (Fontaine et al., 2017; Lecordier et al., 2015).

Briefly, trypanosomes were incubated at 5.105/ml in HMI-9 supplemented medium at 37�C in a CO2-equilibrated incubator. At the

indicated times, living trypanosomes were counted in triplicate under the microscope. In these assays the volume of the APOL sam-

ples, in 20 mM acetic acid (pH 5), was kept constant so that there was no difference of acetic acid content between samples.

Normalizations were performed to untreated controls.

PI4KB activity measurements
PI4KB activity was measured in an in vitro assay based on bioluminescent detection of ADP, as described (Tai et al., 2011). Briefly,

recombinant PI4KB, APOL1, APOL3 and NCS-1 were diluted in 96 well-plates in kinase buffer (50mM NaCl, 2 mM MgCl2, 25 mg/ml

BSA, 0.04% Triton X-100, 50 mMDTT, 4 mMMnCl2, 100 mMHEPES pH 7.5) containing either 0.5 mM EGTA, 0.1 mM CaCl2 or 2 mM

CaCl2. After preincubation for 10 min at room temperature, the PI4KB substrate (PI:PS mix) was added. Reaction was started by

addition of 40 mM ATP and incubated for 40 min at 30�C. ADP was revealed by ADP-Glo kinase assay kit (Promega) following man-

ufacturer’s instruction. Background activity was evaluated by omission of either IP substrate, ATP or PI4KB, and was always lower

than 0.1%.
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Electrophysiology of APOL3
Planar lipid bilayers were formed by folding two lipid monolayers over a hole (110-150 mm in diameter) made in a 25 mm thick Teflon

partition that separated two Teflon experimental chambers as described previously (Mlayeh et al., 2010). Briefly, the bilayer was

made of either soybean phospholipid or 50% DOPC / 45% DOPE / 5% PI(4)P (w/w), purchased from Avanti. Lipids were dissolved

in hexane to a final concentration of 2% (w/v). Ag/AgCl electrodes connected in series with a salt bridge (1M KCl in 1% agar) were

used to connect the experimental chambers to the electronic equipment. The trans compartment was defined as the one connected

to the ground (reference) and the voltage was applied to the cis compartment. For channel reconstitution into a planar lipid bilayer,

recombinant APOL3 was added to the cis compartment (final concentration 400 ng/ml). All solutions were buffered with 10 mM

HEPES (pH 7.5). Current recordings were performed using a BLM 120 amplifier (BioLogic, France). Data were filtered at 300Hz

(5-poles linearized Tchebichev filter) and digitized at 44.1 kHz. The reversal potential (zero-current potential) was set to zero in pres-

ence of 1MKCl on both sides of themembrane. The cis compartment was afterward perfused three times its volumewith a solution of

0.1 M KCl and the change in reversal potential (Erev) was recorded. The values of Erev were corrected for the liquid junction potential

at salt bridges. The ideal selectivity toward monovalent cations is given by the Nernst equation: Erev = 59.1 3 log10 (a trans / a cis),

where ‘a’ is the activity of the solution.

Cytosolic Ca2+ measurement
Cytosolic Ca2+ levels were monitored with Fura-2 AM as previously described (Bittremieux et al., 2017). Briefly, measurements were

performed by seeding the different podocyte cell lines at 40,000 cells per well in 96-well plates (mclear, Greiner Bio-one). After dif-

ferentiation as described above, the cells were loaded for 30 min with 1.25 mM Fura-2 AM at room temperature in modified Krebs

solution containing 150 mM NaCl, 5.9 mM KCl, 1.2 mM MgCl2, 11.5 mM glucose, 1.5 mM CaCl2 and 11.6 mM HEPES (pH 7.3), fol-

lowed by a de-esterification step of 30 min in the absence of Fura-2 AM. Fluorescence was monitored on a FlexStation 3 microplate

reader (Molecular Devices, Sunnyvale, CA, USA) by alternately exciting the Ca2+ indicator at 340 and 380 nm and collecting emitted

fluorescence at 510 nm. For the dose-response experiments, EGTA (final concentration 3 mM) and increasing concentration of ATP

(final concentration 0.3 up to 100 mM) were added. Ca2+ release from ER and non-ER stores (Golgi) was assessed by adding respec-

tively EGTA (3mM final concentration), thapsigargin (500 nM final concentration) and finally ionomycin (10 mM final concentration). All

traces are shown as the ratio of emitted fluorescence of Fura-2 (F340/F380) after a background correction. Concentration-response

relationships were fitted to an asymmetric sigmoidal, five-parameter dose-response curve, which derives 50% efficient concentra-

tions (EC50) (GraphPad Prism software).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using Prism software (GraphPad). Immunofluorescence data were obtained from randomly

selected cells from three independent experiments, and the images shown are representative of the majority of cells. Quantitative

data were represented as means ± standard deviation (SD); n = 3 unless otherwise indicated in the figure legends; no sample

was excluded. Normality of the data was analyzed with the Shapiro-Wilk test. p values were calculated by the Student’s t test

and one-way ANOVA (post hoc Dunnett’s test), for multiple and single comparisons of normally distributed data respectively, and

by the Kruskal–Wallis (post hoc Dunn’s test) for multiple comparisons of non-normally distributed data (*p < 0.05; **p < 0.01;

***p < 0.001; ****p < 0.0001).

DATA AND CODE AVAILABILITY

The proteomics data generated during this study are available at the ProteomeXchange Consortium via with the PRIDE partner re-

pository (dataset identifier PXD016851 and 10.6019/PXD016851).
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Figure S1. Editing of APOL1 and/or APOL3 affects the phenotype of independent 

podocyte clones (related to Figures 1 and 2) 

(A) Poly(I:C)-induced cell death in different clones of the various podocyte lines. WT, n = 11; 

1KO 1G3, n = 7; 1KO 5A4, n = 2; 1∆ 4B10, n = 5; 1∆ 3D8, n = 7; 1∆ 3G3, n = 10; 1∆ 

4G6, n = 3;  3KO 2H2, n= 4; 3KO 6H6, n= 6; 3KO CI3, n= 3; 1+3KO 1G1, n = 3; 1+3KO 

3D7, n = 8. 

(B) Raw data of the poly(I:C)-mediated podocyte cell death measurements presented in Figs. 

1C and Fig. S1A (ctrl= untreated control). Ctrl : WT, n = 15; 1KO 1G3, n = 14; 1KO 5A4, 

n = 6; 1∆ 4B10, n = 14; 1∆ 3D8, n = 12; 1∆ 3G3, n = 9; 1∆ 4G6, n = 12;  3KO 2H2, n= 

16; 3KO 6H6, n= 28; 3KO CI3, n= 9; 1+3KO 1G1, n = 6; 1+3KO 3D7, n = 16. Poly(I:C) : 

WT, n = 18; 1KO 1G3, n = 14; 1KO 5A4, n = 6; 1∆ 4B10, n = 14; 1∆ 3D8, n = 12; 1∆ 

3G3, n = 9; 1∆ 4G6, n = 12;  3KO 2H2, n= 16; 3KO 6H6, n= 28; 3KO CI3, n= 9; 1+3KO 

1G1, n = 8; 1+3KO 3D7, n = 16. 

(C) Cellular area of the different podocyte cell lines. WT, n = 179; 1KO 1G3, n = 168; 1KO 

5A4, n = 61; 1∆ 4B10, n = 159; 1∆ 3D8, n = 157; 1∆ 3G3, n = 161; 1∆ 4G6, n = 158;  

3KO 2H2, n= 87; 3KO 6H6, n= 102; 3KO CI3, n= 130; 1+3KO 3D7, n = 68; 1+3KO 

1G1, n = 84.  

(D) Cellular perimeter of the different podocyte cell lines. Same n values as panel C.  

All quantitative results are expressed as means +/- SD. 
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Figure S2. APOL1 and APOL3 exhibit important co-localization with ER and Golgi 

membranes (related to Figures 1 and 2) 

(A) Specificity of the immunolabelling with the anti-APOL1 and anti-V5 antibodies, as 

revealed by the strong reduction of staining, particularly cytoplasmic, with the anti-

APOL1 antibody in the APOL1KO or APOL1+3KO cells, and by the absence of staining 

with the anti-V5 antibody in non-V5 tagged WT cells. Anti-V5 antibodies label C-

terminal V5-tagged  APOL3. 

(B) Immunofluorescence analysis of APOL1 and APOL3 co-localization. The graphs show 

the co-localization levels of cytoplasmic APOL1 and V5-APOL3, following removal of 

the APOL staining covered with the nuclear DAPI marker (error bars = SD). ctrl, n = 32; 

poly(I:C), n = 21. 

(C) Immunofluorescence analysis of APOL1 and APOL3 distribution with respect to ER and 

trans-Golgi markers (Calnexin and Golgin97, respectively). The graphs show the co-

localization levels of cytoplasmic APOLs with ER or trans-Golgi markers, following 

removal of the APOL staining covered with the nuclear DAPI marker (error bars = SD). 

CytAPOL1/ Calnexin panel : ctrl, n = 30; poly(I:C), n = 24. CytAPOL1/ Golgin97 panel : 

ctrl, n = 23; poly(I:C), n = 23. CytAPOL3/ Calnexin panel : ctrl, n = 33; poly(I:C), n = 23. 

CytAPOL3/ Golgin97 panel : ctrl, n = 23; poly(I:C), n = 24. 

Cells were randomly selected from 3 independent experiments (ctrl = untreated cells; n = 

nucleus; scale bars = 20 µm). In all images, the nuclear and cellular contours are indicated 

by dotted lines; when absent, these contours are outside the image surface.  

 



APOL1
MEGAALLRVSVLCIWMSALFLGVRVRAEEAGARVQQNVPSGTDTGDPQSKPLGDWAAGTMDPESSIFIEDAIKYFKEKVSIQNLLLLLTDNEAWNGFVAAAE
LPRNEADELRKALDNLARQMIMKDKNWHDKGQQYRNWFLKEFPRLKSKLEDNIRRLRALADGVQKVHKGTTIANVVSGSLSISSGILTLVGMGLAPFTEGGS
LVLLEPGMELGITAALTGITSSTIDYGKKWWTQAQAHDLVIKSLDKLKEVKEFLGENISNFLSLAGNTYQLTRGIGKDIRALRRARANLQSVPHASASRPRV
TEPISAESGEQVERVNEPSILEMSRGVKLTDVAPVSFFLVLDVVYLVYESKHLHEGAKSETAEELKKVAQELEEKLNILNNNYKILQADQEL

APOL3
MDSEKKRFTEEATKYFRERVSPVHLQILLTNNEAWKRFVTAAELPRDEADALYEALKKLRTYAAIEDEYVQQKDEQFREWFLKEFPQVKRKIQESIEKLRAL
ANGIEEVHRGCTISNVVSSSTGAASGIMSLAGLVLAPFTAGTSLALTAAGVGLGAASAVTGITTSIVEHSYTSSAEAEASRLTATSIDRLKVFKEVMRDITP
NLLSLLNNYYEATQTIGSEIRAIRQARARARLPVTTWRISAGSGGQAERTIAGTTRAVSRGARILSATTSGIFLALDVVNLVYESKHLHEGAKSASAEELRR
QAQELEENLMELTQIYQRLNPCHTH

CRISPR

CRISPR

CRISPR

Cell line Allele 1 Allele 2

APOL1KO
clone 1G3

RVQQNVPSGTDTGDPQSKPLG ALGCWHHGPR * RVQQNVPSGTDTGDPQSKPLG ALGCWHHGPR *

APOL1KO
clone 5A4

RVQQNVPSGTDTGDPQSKPLGD KFTPLILTL* WT

APOL1∆
clone 4B10 VLDVVYLVLRIKALT* VLDVVYLVLRIKALT*

APOL1∆
clone 3D8 (hom) VLDVVYLVRIKALT* VLDVVYLVVRIKALT*

APOL1∆
clone 3G3 (het)

VLDVVYLV -
SKHLHEGAKSETAEELKKVAQELEEKLNILNNNYKILQADQEL* VLDVVYLVVRIKALT*

APOL1∆
clone 4G6 VLDVVYLVQSTYMRGQSQRQLRS* VLDVVYLVQSTYMRGQSQRQLRS*

APOL3KO
clone 2H2

DEADALYEALKKLRTYAA SRMFPVIQPLPLSLPILHTGPICPVRT* DEADALYEALKKLRTYAA SRMFPVIQPLPLSLPILHTGPICPVRT*

APOL3KO
clone 6H6 DEADALYEALKKLRT MRTNMCSRKMSSLGNGF* DEADALYEALKKLRT FRTNMCSRKMSSLGNGF*

APOL3KO
clone 3

DEADALYEALKKLRTYAA IEDEYVQQKDEQFREWFLKEFPQVKR
KIQESIEKLRALANGIEEVHRGCTISNVVSSSTGAASGIMSLAGLV
LAPFTAGTSLALTAAGVGLGAASAVTGITTSIVEHSYTSSAEAEAS
RLTATSIDR*

DEADALYEALKKLRTYAA IEDEYVQQKDEQFREWFLKEFPQVKR
KIQESIEKLRALANGIEEVHRGCTISNVVSSSTGAASGIMSLAGLV
LAPFTAGTSLALTAAGVGLGAASAVTGITTSIVEHSYTSSAEAEAS
RLTATSIDR*

APOL1KO (1G3) +
APOL3KO clone 1G1 DEADALYEALKKLRTYA * DEADALYEALKKLRTYA *

APOL1KO (1G3) +
APOL3KO clone 3D7

DEADALYKKLRTYAA PRPLAPSPKPPDSPLQALPCPPHPLRLQV
SSTSSSRCDD*

DEADALYKKLRTYAA PRPLAPSPKPPDSPLQALPCPPHPLRLQV
SSTSSSRCDD*

Fig. S3



Figure S3. CRISPR/Cas9 editing of podocytes (related to all Figures)  

In the APOL1 and APOL3 sequences, the coloured sections were edited in different podocyte 

cell lines as shown in the table. 
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Figure S4. Effect of APOL editing on actomyosin organization: additional information 

(related to Figure 2) 

(A) Cellular motility, as determined by single cell tracking of 30 randomly selected podocytes. 

The mobility of APOL1∆hom podocytes was analysed following or not doxycycline-

inducible addback expression of WT APOL1.  

(B) ER shape, as determined by measurement of calnexin-immunostained structures using 

MicroP software. WT, n = 47; 1KO, n = 8; 1∆hom, n = 22; 3KO, n= 14; 1+3KO, n = 44.  

(C) Relative co-localization of the ER marker calnexin and INF2 with MYH9. Calnexin / 

MYH9 panel: WT, n = 10; 1KO, n = 11; 1∆hom, n = 12; 3KO, n= 12; 1+3KO, n = 10. 

INF2 / MYH9 panel: WT, n = 16; 1KO, n = 13; 1∆hom, n = 11; 3KO, n= 14; 1+3KO, n = 

14.  

Size bars = 2 µm. All quantitative measurements are expressed as means +/- SD. 
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Figure S5. Effect of APOL editing on PI4KB activity: additional information (related to 

Figure 3) 

(A) Relative PI(4)P content in different clones of the APOL1∆ and APOL3KO cell lines, as 

determined by immunofluorescence with anti-PI(4)P antibodies. WT, n = 51; 1KO 1G3, n 

= 34; 1KO 5A4, n = 60; 1∆ 4B10, n = 34; 1∆ 3D8, n = 30; 1∆ 3G3, n = 35; 1∆ 4G6, n = 

32;  3KO 2H2, n= 45; 3KO 6H6, n= 43; 3KO CI3, n= 38; 1+3KO 1G1, n = 18; 1+3KO 

3D7, n = 53. 

(B) Relative Golgi extent in different clones of the APOL1∆ and APOL3KO cell lines, as 

determined by immunofluorescence with anti-Golgin97 antibodies. WT, n = 143; 1KO 

1G3, n = 68; 1KO 5A4, n = 55; 1∆ 4B10, n = 34; 1∆ 3D8, n = 92; 1∆ 3G3, n = 41; 1∆ 

4G6, n = 28;  3KO 2H2, n= 49; 3KO 6H6, n= 83; 3KO CI3, n= 31; 1+3KO 1G1, n = 51; 

1+3KO 3D7, n = 82. 

(C) Relative co-localization of the PI(4)P phosphatase SAC-1 with the ER marker Calnexin 

and trans-Golgi marker Golgin97 in WT and APOL1∆ cells. SAC-1 / Calnexin panel: 

WT, n = 12; 1∆hom, n = 19. SAC-1 / Golgin97 panel: WT, n = 49; 1∆hom, n = 55.  

(D) Relative co-localization of NCS-1, PI4KB and the trans-Golgi marker GOLPH3 with 

cytoplasmic V5-tagged APOL3, and between NCS-1 and PI4KB in WT and APOL1∆ 

cells. NCS-1 / Cyt 3V5 panel: WT, n = 25; 1∆hom, n = 42. PI4KB / Cyt 3V5 panel: WT, 

n = 29; 1∆hom, n = 43. GOLPH3 / Cyt 3V5 panel: WT, n = 33; 1∆hom, n = 25. NCS-1 / 

PI4KB panel: WT, n = 30; 1∆hom, n = 41. 

Size bars = 2 µm. All quantitative measurements are expressed as means +/- SD. 

 



Protein
Uniprot
Reference Molecular weight WT WT + poly (I:C) 1KO 1KO + poly (I:C) 1∆hom 1∆hom+ poly (I:C) 3KO 3KO + poly (I:C)

MYH9 P35579 216 kDa 28 89 11 25 33 88 7 85
MYO6 Q9UM54 145 kDa 0 36 0 0 0 17 0 11
MYO1C O00159 122 kDa 4 18 0 2 4 9 0 5
Gelsolin B7Z6N2 85 kDa 2 17 0 0 8 11 0 10
Drebrin Q16643 71 kDa 0 14 0 0 0 6 0 5
MYL9 or MYL12A (RLC) Q6IBG1/J3QRS3 20 kDa/20 kDa 2 11 0 5 5 15 6 10
Coatomer subunit alpha P53621 138 kDa 4 10 0 0 2 6 0 0
MYO5B Q9ULV0 214 kDa 0 10 0 0 0 7 0 0
Tropomyosin see b 12 kDa 2 8 0 0 22 76 3 48
Protein phosphatase 1 regulatory subunit B2RAH5 115 kDa 0 8 0 0 0 7 0 0
MYL6 (ELC) H0YI43 29 kDa 6 7 0 6 8 14 4 11
MYO1D O94832 116 kDa 2 7 0 0 0 5 0 7
Leucine-rich repeat flightless-interacting protein 2 Q9Y608 82 kDa 0 7 0 0 0 4 0 0
MYO1E Q12965 127 kDa 5 6 4 6 0 2 0 0
Myosin phosphatase Rho-interacting protein (MPRIP) H0Y2S9 203 kDa 0 5 0 0 0 10 0 5
Protein flightless-1 homolog Q13045 145 kDa 0 5 0 0 0 2 0 0
collagen alpha-1(I) chain P02452 133 kDa 0 5 0 0 0 0 0 0
60S ribosomal protein L28 H0YKD8 19 kDa 2 4 0 0 3 4 0 2
Ankycorbin Q9P0K7 110 kDa 0 4 0 0 2 13 0 3
Coatomer subunit beta P35606 102 kDa 0 4 0 0 0 4 0 0
Apolipoprotein L 1 (APOL1), transcript variant 2, mRNA B2R9E5 46 kDa 0 4 0 0 0 2 2 9

(unique peptides) see panel B

41/38 kDa

A

B

C

Uniprot
Reference

WT WT + poly (I:C) 1KO 1KO + poly (I:C) 1∆hom 1∆hom+ poly (I:C) 3KO 3KO + poly (I:C)

tropomyosin alpha-3 chain isoform Tpm3.1cy B2RDE1 0 4 0 0 4 23 0 14
tropomyosin alpha-4 chain isoform Tpm4.2cy B4DVY2 2 5 0 0 7 18 0 14
tropomyosin beta chain isoform Tpm2.4 B4E3P1 0 0 0 0 0 19 0 14
Tropomyosin alpha-1 chain isoform Tpm1.9cy H7BYY1 0 0 0 0 0 26 0 17
tropomyosin beta chain isoform Tpm2.3 P07951-3 0 0 0 0 0 15 0 11
tropomyosin alpha-1 chain isoform Tpm1.3sm P09493-8 0 0 0 0 9 27 0 15

GO molecular function H. sapiens Found Expected enrichment +/- P value
Microfilament motor activity 22 6 0.03 >100 + 6.04E-10
Actin-dependent ATPase activity 12 3 0.01 >100 + 1.11E-03
Motor activity 135 6 0.16 37.28 + 2.96E-05
Actin filament binding 137 6 0.16 36.74 + 3.22E-05
Calmodulin binding 188 7 0.22 31.23 + 5.06E-06
Actin binding 404 11 0.48 22.84 + 1.23E-09
Cadherin binding 294 7 0.35 19.97 + 1.07E-04
Cell adhesion molecule binding 449 7 0.54 13.08 + 1.84E-03
Cytoskeletal protein binding 853 11 1.02 10.82 + 3.44E-06
Unclassified 3792 2 5.52 0.44 - 0.00E00

GO biological process Fold enrichment +/- P Value
Actin filament-based process (GO:0030029) 13.87 + 5.02E-04
Vesicle-mediated transport (GO:0016192) 5.86 + 1.41E-03
Cellular localization (GO:0051641) 5.76 + 8.68E-05

Fig. S6



Figure S6. APOL1 is associated with actomyosin components (related to Figure 2) 

(A) Mass spectrometry analysis of proteins co-immunoprecipitated with anti-APOL1 

antibodies in different podocyte cell lines, incubated or not with poly(I:C). The 

immunoprecipitates were treated with 1% NP-40.  

(B) Details of tropomyosin isoforms immunoprecipitated with APOL1 (peptides common to 

different isoforms are listed several times).  

(C) Functional analysis of immunoprecipitated components.  

 



Size
marker

cDNA

kb

1.5
1.0
0.7

cDNA cloning in prey vector

5 x 107 independent clones in E. coli

(sequencing of 192 clones >>
less than 10% empty vectors
or mitochondrial/ribosomal RNA)

107 independent fragments in yeast

A

D

E

B C
APOL1

1 398

Bait 1
60 187

LEXA

Bait 2 LEXA
236 398

Prey GAL4 Podocyte cDNA

Gene name score SID (amino acid) times found
APOL1 78-121
APOL2 1-114
APOL6 8-153
DNAJC14 530-672
DST 4145-4355
IPO4 303-420
LAMB1 1605-1765
LAMB2 1690-1798
LAMB3 826-1058
OSBPL9 1-20
PDXDC1 524-661
PKM 211-269
VCL 2-159

A
B
D
D
D
D
D
D
D
D
D
D
D

268
16
2
1
1
2
2
1
2
3
1
2
1

Bait 1 Bait 2
Gene name score SID (amino acid) times found
APOL1 346-390
APOL2 267-326
BAIAP2 62-149
APOL3 263-327
COG4 1-109
CTNNAL1 318-427
DGCR14 24-97
GOLGA2 393-553
LAMB3 838-1074
MSC 13-206
STX12 131-222
STX1B 124-275

A
A
B
C
D
D
D
D
D
D
D
D

173
155
6
2
1
1
1
1
1
2
2
1

APOL1 SID1 (78-121): KVSIQNLLLLLTDNEAWNGFVAAAELPRNEADELRKALDNLARQ
** *** **** ************** ********* **

APOL2 (1-114): MNPESSIFIEDYLKYFQDQVSRENLLQLLTDDEAWNGFVAAAELPRDEADELRKALNKLASHMVMKDKNRHDKDQQHRQ
WFLKEFPRLKRELEDHIRKLRALAEEVEQVHRGTT
APOL1 SID2 (346-390): VLDVVYLVYESKHLHEGAKSETAEELKKVAQELEEKLNILNNNYK

**** * ****** ****** ****** ***** *** *
APOL2 (267-326): AMSRGTMIVGAATGGILLLLDVVSLAYESKHLLEGAKSESAEELKKRAQELEGKLNFLTK

hydrophobic cluster (HC) leucine zipper (LZ)

Fig. S7



Figure S7. Y2H screening for APOL1-interacting proteins mostly reveals intramolecular 

interactions (related to Figure 4) 

(A) cDNA was synthesized on pooled poly(A)+ RNA (50:50) from untreated and poly(I:C)-

treated podocytes.  

(B) The podocyte cDNA library was cloned in a prey vector and transfected in Saccharomyces 

cerevisiae.   

(C) Different regions of the APOL1 sequence in a bait vector were used for the screening of 

podocyte interacting sequences. For bait 1 and bait 2, respectively 57.5 million 

interactions in the presence of 5 mM HIS3 inhibitor 3-amino-1,2,4-triazole (3-AT) and 

67.6 million interactions in 0.5 mM 3-AT were analysed.   

(D) List of the genes identified following the screening with the different baits (SID = smallest 

interacting domain; score: A = very high, B = high, C = good and D = moderate 

confidence in the interaction).  

(E) Sequence comparison of the APOL1 and APOL2 SIDs (asterisks = identical amino acids; 

underlined violet amino acids: hydrophobic residues in HCs; underlined pink amino acids: 

positions “a” and “d” of heptads in LZs).  
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Figure S8. APOLs interactions in the Y2H system: additional features (related to 

Figures 4 and S7) 

(A) Strength of interactions between APOL1 SIDs, as measured by the resistance of the 

complexes to increasing concentrations of 3-AT. Positive and negative controls are 

indicated. Numbers above the lanes at the right correspond to those in the table at the left. 

(B) Strength of interactions between SID1 and C-terminal APOL3 sequence, measured as in 

(A). Numbers above the lanes at the right correspond to those in the table at the left. 

(C) Trypanolytic assays involving different APOL3 and APOL1 mutants used in this work, 

performed as a way to check protein activity following mutagenesis (means +/- SD; n = 

3). 

(D) Interactions between the 60-187 fragment of the LZ1mut mutant of APOL1 and different 

fragments containing SID2, all identified as strongly interacting with the 60-187 fragment 

of WT APOL1 in the initial cDNA library screening. 

(E) Interactions of APOL3 or APOL1 null mutants with NCS-1. Numbers in the panel at the 

right correspond to those in the table at the left. 
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Figure S9. Characterization of intracellular APOL1 (related to Figure 5) 

(A) Immunogold detection of intracellular APOL1 in WT podocytes. Gold particles in the 

cytoplasm, which identify the localization of APOL1, were false-coloured in red. Control 

experiments on APOL1KO cells did not reveal any cytoplasmic labelling (not shown). 

Left panels illustrate clustered labelling close to the mitochondrion (m = mitochondrion); 

panels at the right exhibit cytosolic labelling. Bars = 200 nm. 

(B) Western blot analysis of APOL1 in either normal human serum (NHS) (0.2 µl) or WT 

podocytes extracts (10 µg). NHS was added to extracts from either 1KO or WT podocytes 

to avoid any electrophoretic mobility difference linked to differential protein loading, also 

allowing the demonstration that intracellular APOL1 (arrow) migrates between the two 

APOL1 bands in NHS. 

(C) qRT-PCR analysis of APOL1 isoforms (means +/-SD; n = 3). 

(D) Prediction of signal peptide in APOL1 isoform 3, using the SignalP-5.0 program (Expasy). 

(E) Comparison of the predicted cleavage sites in WT APOL1 (blue) or isoform 3 (green). 
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Figure S10. Y2H screening for APOL3-interacting proteins does not reveal 

intramolecular interaction, but identifies NCS-1 (related to Figures 4 and S7) 

(A) Y2H screening experiment conducted with the 1-124 fragment of APOL3. 51.2 million 

interactions in 20 mM 3-AT were analysed. Score: A = very high, B = high, C = good and 

D = moderate confidence in the interaction 

(B) Evaluation of the potential of APOL1 and APOL3 N-terminal regions to form coiled-coils 

(COILS program, Expasy). Pink colours highlight the amino acids at positions “a” and “d” 

of heptad repeats in LZs (see Fig. 4). 

(C) Y2H screening experiment conducted with the complete sequence of the APOL3 null 

mutant (L137Q/A138Q/P139S/G143S) (Fontaine et al., 2017). 114 million interactions 

without 3AT were analysed. Same scores as in (A). 
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Figure S11. Binding of APOL1 variants and NCS-1 to APOL3: additional features 

(related to Figure 5) 

(A) BLI measurements of interaction between bound NCS-1 and APOL3 or APOL3 HC2-like 

mutant HCmut (n = 3). 

(B) BLI measurements of interaction between bound NCS-1 and APOL3, in the presence or 

not of WT or mutant NCS-1 in a molar ratio of 1:2 (APOL3 : NCS-1) (n = 3). 

(C) BLI measurements of interaction between bound NCS-1 and various concentrations of 

APOL3, with fitted curves (red) for determination of APOL3/NCS-1 binding affinity (n = 

3). 

(D) Generation of N-myristoylated NCS-1. Recombinant NCS-1 was synthesized in E. coli 

together or not with human N-myristoyl-transferase (hsNMT1) and either myristic acid or 

its alkynyled analogue 13-tetradecynoic acid. Fluorescent N-myristoylated NCS-1 was 

detected by binding of the TAMRA fluorophore to NCS-1-bound 13-tetradecynoic acid. 

Coomassie blue staining allows detection of NCS-1 (arrowhead), in total E. coli extracts 

or purified recombinant protein fraction. 

(E) BLI measurements of interaction between bound N-myristoylated NCS-1 and APOL3 or 

PI4KB, added sequentially as indicated (n = 3).  

(F) BLI measurements of interaction between bound NCS-1 and various APOLs, added 

sequentially as indicated (n = 3).  

(G)  BLI measurements of interaction between bound NCS-1 and APOL3, alone or with 

different molar ratios of G1 or G2 (n = 3).  

All quantitative measurements are expressed as means +/- SD. 
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Figure S12. Generation of urine APOL1 WT and G2/G2 podocyte cell lines (related to 

Figure 7) 

(A) Top panel: identification of WT and variant APOL1 genotypes by trypanolytic assays of 

different human sera on T. rhodesiense, T. gambiense and T. brucei. The parasites were 

incubated with 20% fetal calf serum (FCS), normal human serum (NHS) or G2 human 

serum, and with sera from humans with various APOL1 genotypes. The parasite growth 

ratio after overnight incubation is expressed as a percentage of control growth in FCS. 

Sera 1, 3, 12 and 15 (encircled) exhibited G1 or G2 phenotypes. Bottom panel: western 

blot serum analysis with anti-APOL1. 

(B) Western blot sera analysis with anti-haptoglobin (Hp), meant to evaluate if Hp variation 

could explain the relative resistance to T. rhodesiense
 
(Lecordier et al., 2015) 

(C) Genotype of APOL1 WT and G2/G2 podocytes upon amplification of exon 7. 

(D) Immunofluorescence staining for podocyte-specific proteins synaptopodin, podocin and 

podocalyxin with the nuclear staining DAPI (blue). Scale bar: 50 µm.  
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Figure S13. Control of PI4KB and actomyosin by APOLs: a model (related to all 

Figures)   

(A) APOL control of PI(4)P synthesis. APOL1 and APOL3 are inserted in the Golgi 

membrane where they can exhibit K
+
 channel activity. PI4KB is anchored to Golgi 

membranes notably through interactions with the ACBD3/giantin complex (Klima et al., 

2016) and synthesizes PI(4)P that is crucial for secretion (Bishé et al., 2012; de Barry et 

al., 2006; Dippold et al., 2009; Haynes et al., 2005; Kuna and Field, 2019; Tokuda et al., 

2014; Zhao et al., 2001). The N-myristoylated form of NCS-1 activates PI4KB through a 

direct interaction (Zhao et al., 2001). APOL3 interacts with NCS-1 irrespective of NCS-1 

myristoylation, through Ca
2+

-dependent hydrophobic contacts involving its C-terminal 

hydrophobic cluster. These contacts evoke those between the yeast NCS-1 homologue 

Frq1 and the PI4KB homologue Pik1 (Pandalaneni et al., 2015; Strahl et al., 2003). 

Whereas APOL1 or APOL1 G1/G2 variants can hinder association of APOL3 with NCS-

1 (dotted or plain red line respectively), APOL1∆ can bind to APOL3 and inactivate this 

protein without dissociating the APOL3/NCS-1 complex. In APOL1∆ and APOL3KO 

cells where APOL3 is no longer active, PI4KB is inhibited and the level of Golgi PI(4)P is 

reduced. However, in the absence of both APOL1 and APOL3, PI4KB appears to be 

active. In addition to the control of PI4KB, APOL1 and APOL3 also influence the levels 

of Ca
2+

 in Golgi stores, possibly through their redundant K
+
 channel activity. Hypotheses 

attempting to explain these observations are presented in the discussion (CALN = PI4KB 

inhibitor calneuron). 

(B) Interplay between APOLs, PI(4)P and the NM2A myosin. APOL1 and APOL3 bind to 

and co-localize with PI(4)P, and indirectly associate with the fission and secretion motor 

NM2A. Multiple pathways connect PI(4)P with NM2A. In particular, (i) the PI(4)P-

binding protein GOLPH3 binds to the NM2A-interacting protein MYO18A (Billington et 



al., 2015; Dippold et al., 2009; Kuna and Field, 2019; Taft et al., 2013), (ii) the 

phosphoinositide-binding GTPase-activating protein ASAP1  interacts with the ARF1-

binder GOLPH3 and with NM2A  (Chen et al., 2016; Kam et al., 2000; Rodrigues et al., 

2016; Tu et al., 2012), (iii) the NM2A heavy chain MYH9 directly binds to anionic 

phospholipids (Liu et al., 2016), and (iv) PI4KIIIβ and PI4P initiate autophagy by 

recruiting ATG9, ARFIP2 and NM2A at the Golgi (Judith et al., 2019). Thus, affecting 

Golgi PI(4)P level influences actomyosin organization, vesicular trafficking and 

autophagy (review in Tan and Brill, 2014). 

 



Table S1.  

Genome sequencing of CRISPR/Cas9-generated podocyte clones (related to Fig. S3) 

 

A. CRISPR/Cas9 target sites. 

Target Protospacer PAM (-NGG) 

APOL2 TGTGCTGCTGGTCTTTATCG TGG 

APOL3 exon 5 TAGAACATATGCAGCTATTG AGG 

APOL3 exon 5 AACCAGCATTGACCGATTGA AGG 

APOL1 exon 3 AAGTAAGCCCCTCGGTGACT GGG 

APOL1 exon 5 AGTGCTTTGATTCGTACACG AGG 

 

B. Sequencing coverage of the podocyte genomes. 
 

WT 1KO 1het 1hom 3KO 

% cov. 10x 98,46 98,60 97,91 98,28 98,39 

% cov. 20x 89,36 89,89 81,58 84,58 87,94 

% cov. 30x 44,71 50,50 32,16 36,76 52,77 

Average coverage 29,44 30,67 26,64 27,84 30,87 

St. dev. coverage 34,97 36,45 32,88 34,18 35,88 

 

C. Mutations in APOL1 and APOL3 detected following whole genome sequencing. 
Sample Gene Position 

(chr22) 

cDNA 

position 

CDS position Type Modification 

APOL1KO APOL1 36257381 484/3017 210/1245 deletion AC 

APOL1KO APOL1 36257381 484/3017 210/1245 insertion C 

APOL1hom APOL1 36265858 1345/3017 1071/1245 deletion TAAGCTTCTTTCTT

GTGCTGGATGTA

GTCTACCTCGTGT

ACGAATCAAA 

APOL1hom APOL1 36265893 1382/3017 1108/1245 deletion GT 

APOL1hom APOL1 36265895 1383/3017 1109/1245 insertion G 

APOL1het APOL1 36265895 1383/3017 1109/1245 insertion G 

APOL1het APOL1 36265895 1383/3017 1109/1245 deletion GTACGA 

APOL3KO  APOL3 36141621 827/2124 789/1209 deletion A 

  



D. On-target and off-target homozygous (minimal 10-fold coverage) and heterozygous 

(minimal 20-fold coverage) SNPs with moderate or high impact. 

  1KO 1hom 1het 3KO 

Homozygous 

SNPs 

Total number of SNPs 

(moderate impact/high 

impact) 

0(0/0) 0(0/0) 3(0/0) 1(1/0) 

Genes affected by moderate 

or high impact SNPs 
  

HEG1 

(moderate 

impact) 

Heterozygous 

SNPs 

Total number of SNPs 

(moderate impact/high 

impact) 

5140(12/0) 9133(18/1) 6605(21/1) 28007(88/4) 

Genes affected by high 

impact SNPs 
 ERBB3 IGSF1 

C2orf91 

HAAO 

DSCAM 

EXOC1 

 

E. On-target and off-target homozygous (minimal 10-fold coverage) and heterozygous 

(minimal 20-fold coverage) INDELs with moderate or high impact. 

  1KO 1hom 1het 3KO 

Homozygous 

INDELs 

Total number of INDELs 

(moderate impact/high 

impact) 

10(0/1) 23(0/1) 25(0/0) 21(0/1) 

Genes affected by 

moderate or high impact 

INDELs 

APOL1 

(high 

impact) 

APOL1 

(high 

impact) 

/ 

APOL3 

(high 

impact) 

Heterozygous 

INDELs 

 

 

 

 

 

Total number of INDELs 

(moderate impact/high 

impact) 

20542 

(3/5) 

15710 

(4/9) 

17545 

(2/9) 

23781 

(5/4) 

Genes affected by high 

impact INDELs 

PRPF3 

GEMIN2 
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MED1 
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