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APPENDIX S1: DERIVATION OF THE FISHER INFORMATION MATRIX (FIM) EXPRESSION
FOLLOWING TRANSTRUM ET AL. 2011 (1)
The FIM expression presented in the main text is a way to estimate how model parameters can be fitted to data, and by extension
how models with different parameters are distinguishable. We will use the FIM in the latter sense, and in the following recall its
connection to data fitting.

Assume we have a mathematical model of a biological system, with parameters ®θ, giving the probability y
(
®θ, xi

)
of

observable x to take the value x = xi . We call di the experimentally measured probability of value xi and assume that:

di = y
(
®θ, xi

)
+ σiri (1)

where we assume ri to be a random Gaussian noise of mean 0 and variance 1, and σi a local variance so that:

ri
(
®θ
)
=

di − y
(
®θ, xi

)
σi

(2)

Assuming all ri’s are independent, the total probability P(®r , ®θ) of experimentally observing the values ®d = {di} given the
residuals ®r = {ri},is thus :

P
(
®r , ®θ

)
=

1
(2π)M/2

exp

(
−

1
2

M∑
i=1

ri
(
®θ
)2

)
(3)

where M is the number of points where we try to fit data.
The Fisher Information Matrix (FIM) defines the amount of information that the residuals ri contain on parameters.

Intuitively, the FIM tells us about the distinguishability of two parameter sets given the data. It is given by:

Iµ,ν =

〈
−

∂2 log P
(
®r , ®θ

)
∂θµ∂θν

〉

= −

∫
d®rP

(
®r , ®θ

) ∂2 log P
(
®θ, ri

)
∂θµ∂θν

(4)

Since ri are Gaussian distributed, one can explicitly perform the computation of the FIM, which can then be interpreted as a
metric gµ,ν quantifying the ability to distinguish between different parameter sets. Following Machta et al. we have:

gµ,ν =

〈
−

∂2 log P
(
®θ, ξ

)
∂θµ∂θν

〉
=

〈
∂2 ∑

i
1
2r2

i

∂θµ∂θν

〉
=

∑
i

〈
ri

∂2ri
∂θµ∂θν

+
∂ri
∂θµ

∂ri
∂θν

〉
=

∑
i

〈
ri

∂2ri
∂θµ∂θν

〉
+

∑
i

〈
∂ri
∂θµ

∂ri
∂θν

〉 (5)
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We substitute equation 2 into equation 5. The first sum cancels out because ri is independent of y
(
®θ, xi

)
, di is independent of ®θ

and the expectation value of the residue ri itself is zero. The second term becomes fully deterministic since with the same

assumptions ∂ri
∂θν
=

∂y
(
®θ,xi

)
∂θν

. We arrive at the final expression for the Fisher Information Matrix of the model:

gµ,ν =
∑
x

∂y
(
®θ, x

)
∂θµ

∂y
(
®θ, x

)
∂θν

(6)

where we assume all σi to be equal (and rescaled to 1). The remarkable result is that this metric, while initially computed
by averaging over experiments, is a pure function of the model y, and as a consequence, can be used independently of actual
experiments to estimate in a deterministic way the distinguishability of models.

Biological models mix rates and energies, so the parameters are potentially of very different nature. Mixing units might
yield purely dimensional effects in the analysis of important directions in parameter space. Energy is the most fundamental
quantity and kinetic rates are exponentially related to the rescaled energy (in unit of kBT). We take the derivatives with respect

to the log of the parameter (i.e.
∂y

(
®θ,xi

)
∂ log θmu

=
∂y

(
®θ,xi

)
∂θmu

θmu) to express every parameters in the Fisher Information Matrix with the
same effective unit. Therefore, the final expression becomes:

gµ,ν =
∑
x

∂y
(
®θ, x

)
∂θµ

∂y
(
®θ, x

)
∂θν

θ
αµ
µ θανν (7)

where αµ = 0 if θµ is an energy and αµ = 1 if θµ is a kinetic rate.

APPENDIX S2: CONVERSION FOR ENERGY kBT TO RATES s−1 IN THE MICROTUBULE MODEL
As shown in Appendix S1, biological models mix energies and rate constants as parameters. While energies are the most
fundamental quantities for our Fisher Information Matrix computation, computing derivatives by incremental changes of
energies might be challenging since small changes of energies could potentially give big changes of rates and thus of probability
distributions. For numerical computations, we vary rate constants by a small increment α, and shift energies such as ∆Go

long
,

∆Go
lat

and ∆∆Go
lat

logarithmically. In order to ensure a smoother change of probability distribution, we need to come up with a
conversion between changing bond energy and the change in rate.
As an example, the off rate of a dimer for the microtubule model is given as:

kof f =
k+

e−∆Go
tot

(8)

where k+ is the apparent on rate and ∆Go
tot is the total bond energy associated with the particular dimer.

Let us define the original off rate k−ori and the new off rate after changing the bond strength k−new . Assume the difference factor
is defined as the following:

α =
k−ori − k−new

k−ori
(9)

which implies that
k−new = k−ori(1 − α)

⇒
k+

e−∆Go
new
=

k+

e−∆G
o
or i

(1 − α)

⇒ e∆G
o
new = e∆G

o
or i (1 − α)

⇒ ln
(
e∆G

o
new

)
= ln

(
e∆G

o
or i (1 − α)

)
⇒ ∆Go

new = ∆Go
ori + ln (1 − α)

⇒ ∆ (∆Go) = ln (1 − α)

(10)

Equation 10 gives us the change in energy corresponding to a relative change α. Practically, when computing derivatives such
as the ones in equation 7 for the Fisher Information Matrix, we thus use a relative rate of α for kinetic rates, and of ln (1 − α) for
energies. Notice that as α goes to 0 the relative change of energy also becomes zero. However, we can not pick an α that is too
small due to numerical imprecision. Fig. S1 shows the relationship between the change in energy and the ratio of change in
rates. For example, a 5% change in rate constant is around 0.05 kBT change in energy.
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Figure S1. The conversion plot for various percentage change for parameters that have a unit of kBT . The conver-
sion rate is universal and it does not depend on the value of the parameter itself. Note: a 5% change in parameter
value is about 0.05 kBT .

APPENDIX S3: ANALYTIC CALCULATION OF EIGENVALUES FOR A ONE DIMENSIONAL
DIFFUSION SYSTEM AT THE FIRST TIME STEP
For the one dimensional random walk where the particles diffuse uniformly, the probability density after one time step is
proportional to the number of particles at each possible lattice site. Therefore, P(Nµ) =

Nµ

Ntot al
= κ where Nµ is the number of

particles that are in each possible lattice sites and total number of particles Ntotal =
∑
µ Nµ.

Using equation 7 from Appendix S1 and taking into account that after the first time step only the diagonal elements of the
Fisher Information Matrix are nonzero, equation 7 simplifies to:

gµ,ν =
∂y

∂θµ

∂y

∂θν
θµθνδµν (11)

where δµν is the Kronecker delta.
Therefore, the corresponding eigenvalues are:

λµ = gµ,µ =
[ yθ+∆θ − yθ−∆θ

2∆θ

]2
θ2

=


Nµ+∆Nµ

Ntot
−

Nµ−∆Nµ

Ntot

2∆Nµ

Ntot


2

=
[
(Nµ + ∆Nµ) − (Nµ − ∆Nµ)

]2 N2
µ

4∆N2
µN2

tot

= (2∆Nµ)2
(

N2
µ

4∆N2
µN2

tot

)
=

N2
µ

N2
tot

= P(Nµ)2

(12)

This shows that the eigenvalue of a one dimensional random walk at the first time step is equal to the probability at a given
lattice site squared. The result for both the drift right diffusion and uniform diffusion with different number of sites are shown in
Figure 2C and D.

APPENDIX S4: ANALYTIC CALCULATION OF THE DOMINANT EIGENVALUE FOR THE PROTEIN
PRODUCTION AND DEGRADATION SYSTEM
The stationary distribution of a simple production and degradation system is given by the Poisson distribution (2):

P(ρ, δ, n) =
1
n!

e−
ρ
δ

( ρ
δ

)n
(13)
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Therefore, the Fisher Information Matrix for this system from equation 7 becomes:
∑

n

(
∂Pn

∂ρ ρ
)2 ∑

n
∂Pn

∂ρ ρ
∂Pn

∂δ δ∑
n
∂Pn

∂ρ ρ
∂Pn

∂δ δ
∑

n

(
∂Pn

∂δ δ
)2


=


∑

n α
2
n

∑
n αnβn∑

n αnβn
∑

n β
2
n


(14)

where αn = ∂Pn

∂ρ ρ and βn =
∂Pn

∂δ δ.
To find the eigenvalues λ of this matrix, we subtract the identity matrix with diagonal value λ and set the determinant equals

to zero:

det


∑

n α
2
n − λ

∑
n αnβn∑

n αnβn
∑

n β
2
n − λ

 = 0 (15)

We can calculate αn and βn analytically and show that the magnitudes of the two terms are equal to each other:

αn = |βn | = P(n)
(ρ − nδ)

δ
(16)

Thus the determinant matrix becomes the following form, where A = −αnβn:

det


A − λ −A

−A A − λ

 = 0 (17)

The eigenvalues for this matrix are easy to compute with only one nonzero eigenvalue:

λ1 = 2A = 2
∑
n

P(n)2
(ρ − nδ)2

δ2 (18)

To calculate analytically the nonzero eigenvalue: λ1, we approximate the Poisson distribution with a Gaussian distribution
and change the integral into a summation with γ = ρ

δ :

λ1 = 2
∑
n

P2 (ρ − nδ)2

δ2

' 2
∫ ∞

0

(
1√
2πγ

e
(x−γ)2

2γ

)2 (
(ρ − xδ)2

δ2

)
dx

=
1
π

[
1
4
√
πγer f

(
x
√
γ
−
√
γ

)
+

1
2δ

e−
(x−γ)2

γ (ρ − δx)
]∞

0

=
1
2

√
γ

π
−

γ

2π
e−γ

(19)

If the value of γ � 0, the second term becomes negligible due to the exponential. Thus, the final expression for the
eigenvalue is:

λ1 '
1
2

√
γ

π
=

1
2

√
ρ

δπ
(20)

APPENDIX S5: MICROTUBULE SIMULATION
We use VanBuren et al. 2002 as our inspiration for our simulation of microtubule dynamic instability (3).
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Figure S2. Microtubule simulation bench mark against computer simulation of Ayaz et al. (4) and experimental data
of Walker et al. (5) (A) GMPCPP tubulin (B) GTP tubulin.

Parameters
The microtubule has 13 protofilaments with a three monomer offset at the seam. The base parameters in the model are: (1) k+,
the association rate constant for tubulin subunts to associate with the end of a protofilament; (2) ∆Go

long
, the longitudinal bond

energy between dimers; (3) ∆Go
lat

, the lateral bond energy between tubulin subunits in a B-lattice configuration (α − α and
β − β); (4) kH , the hydrolysis rate constant for the conversion of GTP-tubulin to GDP-tubulin; (5) ∆∆Go

lat
, the change in free

energy associated with GTP hydrolysis, which is assigned to each lateral bond; and (6) [Tubulin], the concentration of tubulin.

Coupled Random Hydrolysis
An α-tubulin contributes catalytic residues to the GTP pocket of the β-tubulin that sits below it. Therefore, a tubulin subunit
cannot hydrolyze its GTP unless another tubulin subunit is above it; in other words, only non-terminal subunits can hydrolyze
GTP. The GTP hydrolysis reaction for all non-terminal subunits occurs at random time intervals (see Gillespie algorithm below).
This implementation of GTP hydrolysis is known as coupled random hydrolysis (6). We do note, however, that earlier models
of dynamic instability used other implementations of GTP hydrolysis, e.g., where the hydrolysis reaction was obligate after
association of a new terminal subunit, known as vectorial hydrolysis. But coupled random hydrolysis is the standard among
contemporary models.

Our model assumes the transition from GTP-tubulin to GDP-tubulin occurs in a single step, with no intermediates in the
hydrolysis pathway. A single step is surely a simplification, as GTPases often have important GDP-Pi intermediate states.
Recently, Manka et al. solved a cryo-EM structure of the putative GDP-Pi state (7), and very recent models have incorporated a
GDP-Pi state explicitly (8). Testing the relevance of a GDP-Pi state will be the subject of future studies.

Lateral Weakening
The effect of GTP hydrolysis in the VanBuren model is a weakening of lateral bonds. This choice is based on the observation
that protofilaments peel outward after a catastrophe (9), which indicates that the lateral bonds rupture first. More recent
observations suggest that longitudinal bonds may also be affected by GTP hydrolysis; more specifically, the N-domain of
α-tubulin appears to compact down into the β-tubulin below it.

Gillespie algorithm
We use the direct method of the Gillespie algorithm to simulate all the possible events for the microtubule at a given time (10).
The possible events for the microtubule simulation are: association of dimers, dissociation of dimers, and hydrolysis of
GTP-tubulin to GDP-tubulin. The association and dissociation events only happen at the ends of protofilaments. The association
rate is equal on the top of each protofilament and is defined as the association constant k+ multiplies by the concentration of
tubulin:

kon,PF = k+[Tubulin] (21)
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The dissociation rate depends on ∆Go
total

: the total bond energies the tubulin dimer have with its neighboring dimers:

kof f =
k+

e−
∆Go

total
kBT

(22)

The total number of hydrolysis events depend on the number of GTP tubulin that are present in the lattice and a nonterminal
GTP can be hydrolyzed into a GDP at a fixed first order rate kH which leads to a total rate of hydrolysis at any given time as:

khyd = kH × N(GTP) (23)

The effect of hydrolysis is a decrease in the bond strength laterally by ∆∆Go. This is commonly known as the coupled random
hydrolysis model.

We sum up all the possible rates ri for all the possible events αand generate two random number R1, R2 between zero and
one. We choose the events that satisfy the following condition:∑i−1

0 ri
α

≤ R1 <

∑i
0 ri
α

(24)

and we increment the simulation time t by τ, where τ is defined as

τ =
1
α

log
(

1
R2

)
(25)

Benchmarking
Because we use the direct method of the Gillespie algorithm, we benchmarked our Gillespie simulation against published
results of Ayaz et al. (4) and VanBuren et al. (3) to ensure that our simulation was properly implemented. We used their precise
parameter values and simulated microtubule growth in the absence of GTP hydrolysis (which is handled differently in the two
models). Our simulation recovered their results exactly (see Fig. S2A and S2B). Therefore our simulation is well-executed.

Reproduction of Experimental Data
Simple models like those described here can microtubule growth rates and post-catastrophe shrinkage rates across a range of
tubulin concentrations. The models can reproduce the mean lifetime at a single tubulin concentration, but then the trouble
begins. These models cannot reproduce the mean lifetime across a range of tubulin concentrations. The models are much too
sensitive to [Tubulin]–at high [Tubulin], catastrophes become exceedingly rare, in contrast with experimental observations.
More complex models do better (11–13).

APPENDIX S6: MICROTUBULE SIMULATION ANALYSIS
We use an in house Matlab code to analyze the microtubule trajectories over time. The algorithm smoothies the trajectories and
identifies local maxima and minima. The maxima correspond to potential catastrophe positions and minima correspond to
potential rescue positions. Lifetime and post-catastrophe shrinkage rate is then determined. Note: to avoid fluctuation of the
stochastic simulation, a threshold of 250 nm is used (since this is the point spread function of our microscope) such that any
lifetime that is counted towards the probability distribution starts from a minima to a maxima while passing 250 nm. Similarly,
for the post-catastrophe shrinkage rate but instead it goes from a maxima to a minima.
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Figure S3. (A)The lifetime distribution is close to a gamma distribution which indicates it is indeed two parameters
(B) Moving along the two dominating Eigenvector directions. The distribution changes subtly but clearly different
which indicate it is a two direction distribution.

REFERENCES
1. Transtrum, M. K., B. B. Machta, and J. P. Sethna, 2011. Geometry of nonlinear least squares with applications to sloppy

models and optimization. Physical Review E 83:036701.

2. Klipp, E., W. Liebermeister, C. Wierling, and A. Kowald, 2016. Systems biology : a textbook. Wiley-VCH, Weinheim.

3. VanBuren, V., D. J. Odde, and L. Cassimeris, 2002. Estimates of lateral and longitudinal bond energies within the
microtubule lattice. Proc Natl Acad Sci U S A 99:6035–40.

4. Ayaz, P., S. Munyoki, E. A. Geyer, F.-A. Piedra, E. S. Vu, R. Bromberg, Z. Otwinowski, N. V. Grishin, C. A. Brautigam,
and L. M. Rice, 2014. A tethered delivery mechanism explains the catalytic action of a microtubule polymerase. eLife
3:e03069.

5. Walker, R. A., E. T. O’Brien, N. K. Pryer, M. F. Soboeiro, W. A. Voter, H. P. Erickson, and E. D. Salmon, 1988. Dynamic
instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell
Biol 107:1437–48.

6. Bowne-Anderson, H., M. Zanic, M. Kauer, and J. Howard, 2013. Microtubule dynamic instability: a new model with
coupled GTP hydrolysis and multistep catastrophe. Bioessays 35:452–61.

7. Manka, S. W., and C. A. Moores, 2018. The role of tubulin-tubulin lattice contacts in the mechanism of microtubule
dynamic instability. Nat Struct Mol Biol 25:607–615.

8. Kim, T., and L. M. Rice, 2018. A role for long-range, through-lattice coupling in microtubule catastrophe. bioRxiv .

9. Mandelkow, E. M., E. Mandelkow, and R. A. Milligan, 1991. Microtubule dynamics and microtubule caps: a time-resolved
cryo-electron microscopy study. J Cell Biol 114:977–91.

10. Gillespie, D. T., 1977. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry
81:2340–2361.

11. Gardner, M., B. Charlebois, I. Jánosi, J. Howard, A. Hunt, and D. Odde, 2011. Rapid Microtubule Self-Assembly Kinetics.
Cell 146:582–592.

12. Castle, B. T., S. McCubbin, L. S. Prahl, J. N. Bernens, D. Sept, and D. J. Odde, 2017. Mechanisms of kinetic stabilization
by the drugs paclitaxel and vinblastine. Mol Biol Cell 28:1238–1257.

13. Zakharov, P., N. Gudimchuk, V. Voevodin, A. Tikhonravov, F. I. Ataullakhanov, and E. L. Grishchuk, 2015. Molecular and
Mechanical Causes of Microtubule Catastrophe and Aging. Biophys J 109:2574–91.

Manuscript submitted to Biophysical Journal 7



Chieh-Ting (Jimmy) Hsu, Gary J. Brouhard and Paul François

Observable: Length

Worm

Observable: Lifetime

Observable: Post-catastrophe shrinkage rate

Observable: Decay constant

Bovine
E

ig
en

va
lu

e

10-2

10-4

10
0

10
2

E
ig

en
ve

ct
or

 %

20

10

30

0

40

50

Time (s)
0 100 200

1 2 3

4 5

Time (s)
0 100 200 300 300

Glong
o Glat

o

Glat
o

H
+

(+)(+) (+)

(-) (+)

E
ig

en
va

lu
e

10-2

10-4

10
0

10
2

Time (s)
0 100 200

1 2 3

4 5

E
ig

en
ve

ct
or

 %

20

10

30

0

40

50

Time (s)
0 100 200 300 300

Glong
o Glat

o

Glat
o

H
+(+)

(-) (-) (-)

(-)

E
ig

en
va

lu
e

10-2

10-4

10
0

10
2

E
ig

en
ve

ct
or

 %

20

10

30

0

40

50

1

2

3

4

5

At stationarity At stationarity

Glong
o

Glat
o

Glat
o H

+

Glong
o

Glat
o

+

H

Glat
o

1 2

(+)
(+)

(-)

(+)
(+)

(+)

(+)

(+)

(+)
(-)

E
ig

en
va

lu
e

10-2

10-4

10
0

10
2

E
ig

en
ve

ct
or

 %

20

10

30

0

40

50

1

2

3

4

5

At stationarity At stationarity

Glong
o

Glat
o

Glat
o

H

+

(+)
(+)
(+)

(+)

(+)

Glat
o

= -5.7 kBT

Glong
o

= -7.0 kBT

[Tubulin] = 8 µM

α
β

k+ /s/PF/µM= 1.25

= +3.30 kBTGlat
o

= 0.35 /skH

GTP GDP

}

Glat
o

= -5.2 kBT

Glong
o

= -8.0 kBT

[Tubulin] = 4.6 µM

α
β

k+ /s/PF/µM= 6.6

= +3.30 kBTGlat
o

= 1.0 /skH

GTP GDP

}

E
ig

en
va

lu
e

10-2

10-4

10
0

10
2

E
ig

en
ve

ct
or

 %

20

10

30

0

40

50

Time (s)
0 100 200

1 2 3

4 5

Time (s)
0 100 200 300 300

Glong
o Glat

o

Glat
o

H
+

(+)(+) (+)

(-) (+)

E
ig

en
va

lu
e

10-2

10-4

10
0

Time (s)
0 100 200

1 2 3

4 5

E
ig

en
ve

ct
or

 %

20

10

30

0

40

50

Time (s)
0 100 200 300 300

10
2

Glong
o Glat

o

Glat
o

H
+(-)

(+) (+) (+)

(+)

E
ig

en
va

lu
e

10-2

10-4

10
0

10
2

E
ig

en
ve

ct
or

 %

20

10

30

0

40

50

1

2

3

4

5

At stationarity At stationarity

Glong
o

Glat
o

Glat
o

H
+ Glong

o

Glat
o

+

H

Glat
o

1 2

(+)
(+)

(+)

(-)
(+)

(+)

(+)

(+)
(-)

(+)

E
ig

en
va

lu
e

10-2

10-4

10
0

10
2

E
ig

en
ve

ct
or

 %

20

10

30

0

40

50

1

2

3

4

5

At stationarity At stationarity

Glong
o

Glat
o

Glat
o

H

+(+)

(+)

(-)
(+)

(+)

Figure S4. The comparison between the parameters and the FIM analysis for bovine and worm. The result between
the two parameter sets are consistent with one another even given the completely different parameter value.
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Supplement: Numerical parameter space compression and its application to biophysical models
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Figure S5. SVD analysis for the worm tubulin dataset. The system is two dimensional like the bovine data set,
however, the components are not exactly the same with k+ much more dominating in this system.
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Figure S6. shows the FIM analysis of the microtubule system when shifting the parameter for 0.01 kBT . The result
is a lot nosier compare with our choice of 0.05 kBT .

10 Manuscript submitted to Biophysical Journal


