The impact of sustained immunization regimens on the antibody response to oligomannose glycans

Dung N. Nguyen,^a Richard L. Redman,^a Satoru Horiya,^a Jennifer K. Bailey,^a Bokai Xu,^a Robyn L. Stanfield,^b J. Sebastian Temme,^a Celia C. LaBranche,^c Shiyu Wang,^d Avital A. Rodal,^d David C. Montefiori,^c Ian A. Wilson,^b Isaac J. Krauss^{a,*}

^aDepartment of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA; ^bDepartment of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA;

^cDepartment of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA; ^dDepartment of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA

Table of contents

Materials	S3
Preparation of CRM-AcBr	S3
Figure S1. MALDI-TOF MS of CRM-AcBr	
Conjugation of glycopeptide g10F6 to CRM-AcBr	S4
Figure S2. MALDI-TOF MS of CRM-Ac-g10F6	
Preparation of QS-21 liposome adjuvant	S6
Figure S3. TEM images of QS-21 liposome adjuvant	S7
Rabbit immunization regimen	S7
Table S1. Exponential dose quantities	S8
ELISA protocol	
Figure S4. Instability of thiol maleimide linkage	S10
Figure S5. Rabbit serum response to BSA + Linker	S11
Figure S6. MALDI-TOF mass spectra of BSA-Ac-glycopeptide conjugates for glycan	
microspecificity study	S12

Production of BG505 SOSIP Env for boosting	
TZM-bl neutralization assay procedure	
Table S2. TZM-bl neutralization assay of post-dose 3 sera	
Table S3. TZM-bl neutralization assay of post-dose 6 sera	
References	

Materials

	Vendors/ Sources
Cholesterol	MP Biomedicals
DOPC	Avanti Polar Lipids
CRM ₁₉₇ (ecoCRM TM)	Fina Biosolutions LLC
QS-21	Desert King

Standard buffers for ELISA assay				
PBS	137 mM NaCl, 2.7 mM KCl, 10 mM			
105	Na ₂ HPO ₄ , 1.8 mM KH ₂ PO ₄			
Dulbecco's PBS	137 mM NaCl, 2.7 mM KCl, 8.1 mM			
	Na ₂ HPO ₄ , 1.5 mM KH ₂ PO ₄			
PBS-T	PBS, 0.05% Tween-20			
PBS-T 5% milk (blocking solution)	PBS-T, 5% non-fat dried milk			
PBS-T 1% milk (dilution solution)	Prepared from dilution of PBS-T 5% milk			
Flat-bottomed ELISA plates (Nunc-Immuno)	Fisher Scientific			
2G12 antibody	Polymun Scientific			
Goat Anti-human antibody, Horseradish	Invites and			
Peroxidase (HRP) conjugate	Invitrogen			
3,3',5,5'-tetramethylbenzidine (TMB)	Abcam, Ab171522			
1M sulfuric acid	Fisher Scientific			

Procedures

Preparation of CRM-AcBr

CRM₁₉₇ (ecoCRMTM, Fina Biosolutions LLC, 1.0 mg, 17 nmol) was dissolved in 0.9 mL of PBS buffer (pH 7.4). Bromoacetamido-PEG₄-NHS ester (BroadPharm, BP-20569, BrCH₂(CO)NH(CH₂CH₂O)₄-(CH₂)₂-CO-NHS) (1.2 mg, 2.5 μ mol, 147 equiv in 0.1 mL PBS buffer pH 7.4) was added for a final protein concentration of 1 mg/mL. The reaction stood at room

temperature for 1.5 h. Excess bromoacetamido-PEG₄-NHS ester was removed by buffer exchange through an Amicon centrifugal filter (30 kDa cutoff, Ultra-0.5, 4 rounds of dilution with PBS pH 8.5). The average molecular weight of the activated CRM-bromoacetamido (CRM-AcBr) was determined by MALDI-TOF analysis. A ~6300-dalton average mass increase indicated an average of ~17 linkers per CRM molecule (**Figure S1**). BCA assay indicated recovery of 1.07 mg of activated protein.

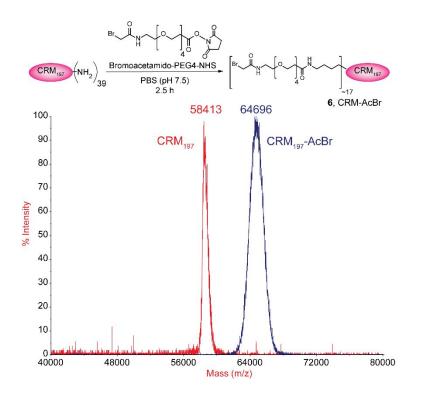
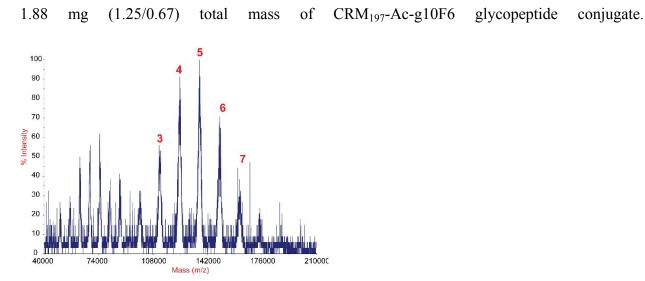



Figure S1. Synthesis of CRM₁₉₇-bromoacetamido (CRM-AcBr) and MALDI-TOF-MS analysis of CRM-AcBr.

Conjugation of glycopeptide g10F6 to CRM-AcBr

Glycopeptide g10F6¹ (1.2 mg, 95 nmol) in 285 μ L of water was treated with 1.9 μ L of 500 mM TCEP·HCl/ 1M pH 7.8 Tris-HCl buffer (950 nmol, 10 equiv). Complete removal of the cysteine

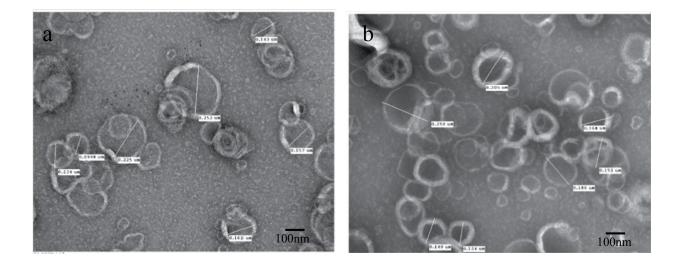

protecting group (-StBu disulfide) was confirmed by UPLC-ESI-MS after the reaction stood overnight at room temperature under N2. Excess TCEP was removed by buffer-exchange through an Amicon centrifugal filter (3-kDa cutoff, Ultra-0.5, 20 min in the first round of filtration, and 30 min for the second round) with PBS buffer (pH 8.5). The deprotected glycopeptide was added to freshly-prepared CRM₁₉₇-AcBr (0.7 mg, 10.8 nmol, average ~17 linkers/CRM₁₉₇, 184 nmol of bromoacetamide groups) in a total volume of 393 µL PBS buffer (pH 8.5). The solution stood overnight under N2 at room temperature in the dark. The CRM197-g10F6 glycopeptide conjugate was purified by removing excess glycopeptide and salts through an Amicon centrifugal filter (30 kDa cutoff, Ultra-0.5, 5 min for at least 4 rounds of filtration, dilution with water). MALDI-TOF analysis indicated distribution of conjugates with median loading of ~5.5 glycopeptides per CRM molecule (median MW ~132 KDa) (Figure S2). The unreacted bromoacetyl groups were then capped with β -mercaptoethanol (11.9 μ L from 10 mM stock, 119 nmol) in the dark for 1h in 0.5 mL PBS (pH 8.5) and the capped protein was then buffer-exchanged to water again by Amicon centrifugal filters (30 kDa cutoff, Ultra-0.5, 5 min for at least 4 rounds of filtration). BCA quantification assay detected 1.25 mg protein without the carbohydrate content, corresponding to

Figure S2. MALDI-TOF MS analysis of CRM-Ac-g10F6 glycopeptide conjugate. Smaller peaks to the left are doubly charged ions.

Preparation of QS-21 liposome adjuvant

A liposome formulation of QS-21 saponin adjuvant was formulated with cholesterol and 1,2dioleoyl-sn-glycero-3-phosphocholine (DOPC) as described by Collin and coworkers.² Briefly, DOPC (50 mg, 1.2 mL from 40mg/mL of DOPC stock solution) and cholesterol (12.5 mg, 1.2 mL from 10 mg/mL cholesterol stock solution) were dissolved in 2.3 mL chloroform in a 25 mL round bottom flask. The solvent was carefully evaporated *in vacuo* to yield a transparent lipid film, which was then left under vacuum for 1 h. The film was then hydrated in Dulbecco's PBS buffer (5 mL) at 37 °C for at least 1 h. The hydrated liposomes were extruded for 10 cycles through 0.4 µm polycarbonate membrane filters, then 10 cycles through 0.2 µm filters, and finally 15 cycles through 0.1 µm filters into 12 mL polypropylene tubes. Commercially available lyophilized QS-21(3 mg) was added to 6 mL of DPBS -/- and allowed to sit for 1 hour at room temperature for complete dissolution of QS-21. The QS-21 solution (2 mg, 4 mL) was added to the 12 mL polypropylene tube containing the liposome suspension (4 mL). The tube was gently inverted five times and stored at 4 °C. For transmission electron microscopy (TEM), samples were applied to copper grids coated with continuous carbon, negatively stained with 2% uranyl acetate (JT Baker Chemical Co., Phillipsburg, NJ), and imaged using an FEI Morgagni transmission electron microscope (FEI, Hillsboro, OR) operating at 80 kV and equipped with a $1k \times 1k$ charge coupled device (CCD) camera (Gatan, Pleasanton, CA). TEM (Figure S3) showed the liposomes to be primarily 100-250 nm in size, with no substantial change observed after two weeks storage at 37 °C.

Figure S3. Negative stain Transmission Electron Microscopy (TEM) images of liposome/QS-21 adjuvant combined with g10F6-CRM immunogen. a) Day 0. b) After incubation at 37° C for 14 days. Liposomes were stained with 2% uranyl acetate.

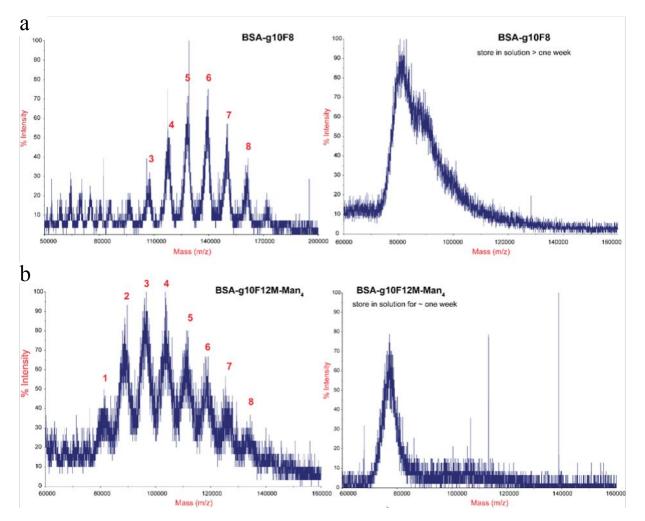
Rabbit immunization regimen

Three groups of six female New Zealand White rabbits were housed at Toxikon Inc. Animals were immunized as described below with CRM₁₉₇-Ac-g10F6 glycopeptide conjugate (prepared as described above) and QS-21 liposomes (formulated as described above).

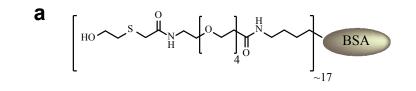
Bolus group: Animals received bilateral subcutaneous bolus injections (200 μ L split between two sites) comprising conjugate containing total 50 μ g of glycopeptide and liposomes containing total 50 μ g of QS-21 adjuvant per animal. Diluent was sterile phosphate-buffered saline (Dulbecco's PBS). This immunization was repeated at 4 weeks and 8 weeks. BG505T332N SOSIP boost injections were performed at weeks 16, 20 and 24 with 50 μ g SOSIP protein and liposome containing 50 μ g QS-21, in 400 μ L distributed between two sites.

Exponential group: Animals received bilateral subcutaneous, exponentially increasing doses of conjugate + QS-21 liposomes on days 0, 2, 4, 6, 8, 10 and 12. Regardless of dose, the injection volume was diluted to 200 μ L total for two sites; the exponentially increasing amounts of conjugate and QS-21 liposomes in these injections contained the quantities of glycopeptide and QS-21 indicated below (Table S1). Diluent was sterile phosphate-buffered saline (Dulbecco's PBS). This immunization cycle was repeated at 4 weeks and 8 weeks. BG505T332N SOSIP boost injections were performed as bolus injections at weeks 16, 20 and 24 with 50 μ g SOSIP protein and liposome containing 50 μ g QS-21, in 400 μ L distributed between two sites.

Day	QS-21	g10F6
0	0.1 µg	0.1 μg
2	0.26 µg	0.26 μg
4	0.68 µg	0.68 µg
6	1.8 µg	1.8 μg
8	4.6 μg	4.6 μg
10	12 μg	12 μg
12	31 µg	31 µg
cumulative	50 μg	50 μg


Table S1. Exponential dose quantities used in rabbit immunization

<u>Osmotic pump group</u>: Animals received bilateral continuous infusions of glycopeptide conjugate via subcutaneously implanted Alzet[®] mini-pumps. Each 2-week 100 µL pump was loaded with


conjugate containing 12.5 μ g glycopeptide and 12.5 μ g of QS-21 (in liposome formulation); pumps were implanted bilaterally into subcutaneous pockets created in the dorsum of each animal on weeks 0, 4, and 8. At the end of each two-week pump infusion, each rabbit received bilateral subcutaneous bolus injections of conjugate containing 12.5 μ g of glycopeptide and 12.5 μ g of QS-21, so that each immunization cycle totaled 50 μ g of immunogen and 50 μ g of QS-21. Serum samples were collected one week after the completion each 2-week infusion. BG505T332N SOSIP boost injections were performed as bolus injections at weeks 16, 20 and 24 with 50 μ g SOSIP protein and liposome containing 50 μ g QS-21, in 400 μ L distributed between two sites.

ELISA protocol

All steps were performed as follows unless stated otherwise. High-protein-binding flat-bottomed Maxisorp ELISA plates were coated with 120-2000 ng/mL antigen in coating buffer (100 μ L/well) and incubated at 4 °C overnight. Glycopeptide conjugates and carrier proteins were coated at 200 ng/mL concentration, and SOSIP trimer was coated at 120 ng/mL (for sera post-SOSIP boost) or 2 μ g/mL (for sera prior to SOSIP boost). The wells were washed twice with PBS-T (200 μ L) and then blocked for 1 h at room temperature with 5% fat-free milk PBS-T (200 μ L/well). After washing again twice with PBS-T, the wells were then incubated with either 3-fold, 4-fold or 5-fold serial dilutions of rabbit serum (starting at different concentrations: either 1:10 or 1:100) in 1% fat-free milk in PBS-T for 2 h at room temperature. The wells were washed 3 times before incubating with 100 μ L of an HRP-conjugated sheep anti-rabbit antibody at 1: 10,000 dilution for 1h at room temperature. After 3 washes, the wells were developed by adding 100 μ L of TMB solution for 3-35 min. The reaction was stopped by adding 100 μ L of 1 M sulfuric acid and absorbance was measured at 450 nm wavelength. All measurements were performed in triplicate, except that the prebleed sera were tested in duplicate.

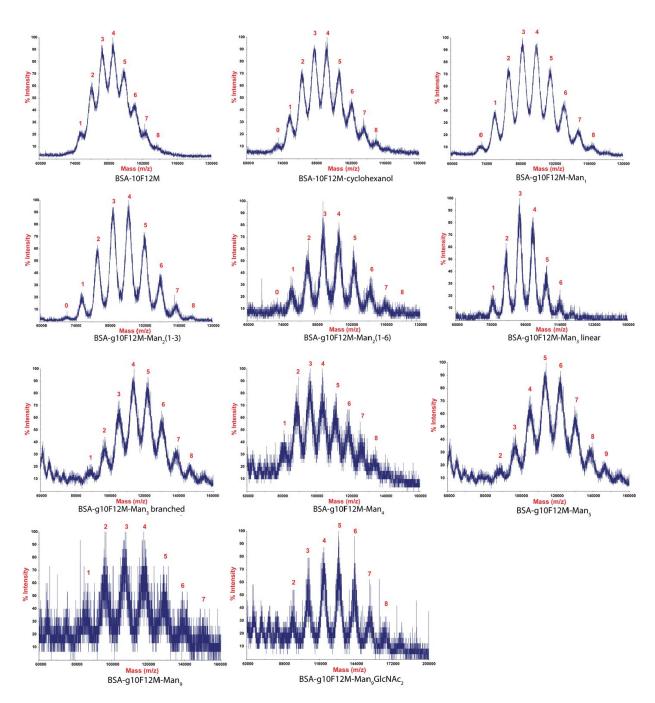


Figure S4. Instability of the thiol-maleimide linkage. a) MALDI-TOF mass spectra of maleimide-linked g10F8-BSA conjugate¹ before and after one week of storage in water at 4 °C. b) MALDI-TOF mass spectra of maleimide-linked Man₄-g10F12M-BSA conjugate¹ before and after one week of storage in water at 4 °C.

b	Bolus	Exponential	Pump
	*	*	*
	1:256	*	*
	*	*	1:85
	*	*	*
	*	*	*
	*	*	*

Figure S5. Rabbit serum response to linker used in the CRM₁₉₇-g10F6 glycopeptide conjugates. a) capped BSA+linker used in ELISA to detect anti-linker response. b) Post-dose 2 serum ELISA EC_{50} values (serum dilutions). * (OD₅₀ below 0.1 at minimum serum dilution of 1:50).

Figure S6. MALDI-TOF MS of BSA-Ac-glycopeptide conjugates used in microspecificity study. The red numbers indicate the number of glycopeptides per BSA protein molecule. More closely clustered peaks at lower m/z are doubly charged ions. Conjugates were prepared analogously to CRM197-Ac-g10F6 using glycopeptides that were reported previously.¹

Production of BG505 SOSIP Env for boosting

BG505 SOSIP.664 (T332N) used for boosting was co-expressed with furin in 293 Freestyle cells (ThermoFisher) following standard protocols.³ SOSIP was purified from the media by Galanthus Nivalis Lectin affinity chromatography (Vector Labs) followed by size exclusion chromatography (Superdex 200, 16/60, GE).

TZM-bl neutralization assay procedure

Neutralizing antibody activity in serum samples was measured in duplicate in 96-well culture plates by using Tat-regulated luciferase (Luc) reporter gene expression to quantify reductions in virus infection in TZM-bl cells. TZM-bl cells were obtained from the NIH AIDS Research and Reference Reagent Program, as contributed by John Kappes and Xiaoyun Wu. Assays were performed with HIV-1 Env-pseudotyped viruses essentially as previously described.⁴ Serum samples were heat-inactivated at 56°C for 1 hr, then diluted over a range of 1:20 to 1:43740 in cell culture medium and pre-incubated with virus (~150,000 relative light unit equivalents) for 1 hr at 37 °C before addition of cells. Following a 48 hr incubation, cells were lysed and Luc activity determined using a microtiter plate luminometer and BriteLite Plus Reagent (Perkin Elmer). Neutralization titers are the sample dilution at which relative luminescence units (RLU) were reduced by 50% compared to RLU in virus control wells after subtraction of background RLU in cell control wells.

		ID ₅₀ in TZM-bl Cells ¹					
		SVA- MLV	MW965.26	BG505/T332N	JR-FL	JR- FL.V1_3Q	CH0848.3.d949.10.17.N133D.N138T
		Neg Ctrl	Clade C	Clade A	Clade B	Clade B	Clade C
			Tier 1A	Tier 2	Tier 2	Tier 1A	Tier 2
Study ID	Anima l ID	ID#8075	ID#7847	ID#9212	ID#730	ID#9113	ID#9210
Bolus	1101	<20	<20	<20	<20	<20	<20
Bolus	1102	<20	<20	<20	<20	<20	<20
Bolus	1103	<20	<20	<20	<20	<20	<20
Bolus	1104	<20	<20	<20	<20	<20	<20
Bolus	1105	<20	<20	<20	<20	<20	29*
Bolus	1106	<20	<20	<20	<20	<20	<20
Exponential	2101	<20	<20	<20	<20	<20	<20
Exponential	2102	<20	<20	<20	<20	<20	<20
Exponential	2103	<20	<20	<20	<20	<20	<20
Exponential	2104	<20	<20	<20	<20	<20	<20
Exponential	2105	<20	<20	<20	<20	<20	<20
Exponential	2106	<20	<20	<20	<20	<20	<20
Pump	3101	<20	<20	<20	<20	<20	<20
Pump	3102	<20	<20	<20	<20	<20	<20
Pump	3103	<20	<20	<20	<20	<20	<20
Pump	3104	<20	<20	<20	<20	<20	<20
Pump	3105	<20	<20	<20	<20	<20	<20
Pump	3106	<20	<20	<20	<20	<20	<20
CH01-31 (p control)	>25	1.63	0.02	0.02	<0.01	0.43

¹Values are the serum dilution at which relative luminescence units (RLUs) were reduced 50% compared to virus control wells (no test sample).

*Both replicates exhibited concentration-dependent signal with RLU decreasing at higher serum concentrations.

Table S2. TZM-bl Neutralization assay results of post-dose 3 sera (after three immunizations with CRM-Ac-g10F6 glycopeptide conjugate, prior to SOSIP boost).

		ID ₅₀ in TZM-bl Cells ¹				
		SVA-MLV Neg Ctrl	CH0848.3.d949.10.17.N133D.N138T Clade C	BG505/T332N Clade A		
			Tier 2	Tier 2		
Group	Animal ID	ID#8075	ID#9479	ID#9212		
Bolus	1101	<20	<20	<20		
Bolus	1102	<20	<20	89		
Bolus	1103	<20	<20	<20		
Bolus	1104	<20	<20	218		
Bolus	1105	<20	<20	259		
Bolus	1106	<20	<20	241		
Exponential	2101	<20	<20	<20		
Exponential	2102	<20	<20	87		
Exponential	2103	<20	<20	42		
Exponential	2104	<20	<20	179		
Exponential	2105	<20	<20	413		
Exponential	2106	<20	<20	40		
Pump	3101	<20	<20	371		
Pump	3102	<20	<20	104		
Pump	3103	<20	<20	820		
Pump	3104	<20	<20	128		
Pump	3105	<20	<20	36		
Pump	3106	<20	<20	270		
CH01-31 (positi	ve control)	>25	0.383	0.049		

¹Values are the serum dilution or antibody concentration (in ug/ml) at which relative luminescence units (RLUs) were reduced 50% compared to virus control wells (no test sample).

Table S3. TZM-bl Neutralization assay results of post-dose 6 sera (after three SOSIP boost immunizations).

References

1. Nguyen, D. N.; Xu, B.; Stanfield, R. L.; Bailey, J. K.; Horiya, S.; Temme, J. S.; Leon, D. R.; LaBranche, C. C.; Montefiori, D. C.; Costello, C. E.; Wilson, I. A.; Krauss, I. J., Oligomannose Glycopeptide Conjugates Elicit Antibodies Targeting the Glycan Core Rather than Its Extremities. *ACS Cent. Sci.* **2019**, *5* (2), 237-249.

2. Brunner, L.; Barnier-Quer, C.; Collin, N., QS-21 Adjuvant: Laboratory-Scale Purification Method and Formulation Into Liposomes. In *Vaccine Adjuvants: Methods and Protocols*, Fox, C. B., Ed. Springer New York: New York, NY, 2017; pp 73-86.

3. Sanders, R. W.; Derking, R.; Cupo, A.; Julien, J. P.; Yasmeen, A.; de Val, N.; Kim, H. J.; Blattner, C.; de la Pena, A. T.; Korzun, J.; Golabek, M.; de los Reyes, K.; Ketas, T. J.; van Gils, M. J.; King, C. R.; Wilson, I. A.; Ward, A. B.; Klasse, P. J.; Moore, J. P., A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies. *PLoS Pathog* **2013**, *9* (9), e1003618.

4. Montefiori, D. C., Measuring HIV neutralization in a luciferase reporter gene assay. *Meth. Molec. Biol.* **2009**, *485*, 395-405.