
Supplementary material for “Combining Multiple Biomarker Models in Logistic

Regression” by Yuan and Ghosh

1 Web Appendix A: Proof of Theorem 1

Let D(p||q) =
∫
p(x) log{p(x)/q(x)}dµ(x) denote the Kullback-Leibler (K-L) divergence and
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for each j ∈ Γs. So we have
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where we assume that Aj ≤ f̂j ≤ 1− Aj for all x. Therefore

n∑
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j∈Γs

{log(1/λj) +
2

A2
j

n∑
i=n/2+1

E(f − f̂j)2}

Since the K-L divergence is always lower bounded by the squared Hellinger distance, we have
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By taking the expectation on both sides of the above inequality, for any j ∈ Γs if λj = 1/Ks,

we have
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Then by the definition of f̂ ∗n, for any j ∈ Γs, we have
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Since f̂ ∗n is a convex combination of the original estimators, under Condition 2, we have

||f − f̂ ∗n||2 ≤ τ when j is not in Γs. Therefore it follows that

||f − f̂ ∗n||2 ≤ τ(1− P (j ∈ Γs)) + 2{ log(Ks)

n/2
+

2

A2
j

||f − f̂j||2}P (j ∈ Γs).

The conclusion then follows. This completes the proof of Theorem 1.
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2 Web Appendix B: Definition and Estimation of Gen-

eralized Degrees of Freedom (GDF)

Consider a normal response vector Y ≡ (y1, . . . , yn)
′
, where

Y ∼ N(µ, σ2I).

where µ ≡ (µ1, ..., µn)
′

is a mean vector. Define a modelling procedure M to be a mapping

from Rn to Rn that produces a set of fitted values µ̂ = (µ̂1, ..., µ̂n)
′

from Y . That is, M :

Y → µ̂. The GDF for a modelling procedure M (Ye, 1998) is given by D(M) =
∑n

i=1 h
M
i (µ),

where

hMi (µ) =
dEµ[µ̂i(Y )]

dµi
= lim

δ→0
Eµ[

µ̂i(Y + δei)− µ̂i(Y )

δ
]

=
1

σ2
E[µ̂i(Y )(yi − µi)] =

1

σ2
cov(µ̂i(Y ), yi − µi),

where ei is the ith column of the n by n identity matrix. The GDF is defined to be the

sum of the average sensitivities of the fitted value µ̂i(Y ) to a small change in yi. Thus it

measures the flexibility of the modelling procedure M . If M is highly flexible, then the fitted

values tend to be close to the observed values. Thus the sensitivity of the fitted values to

the observed values would be high, and the GDF would be large.

Shen et al. (2004) showed that the GDF for general exponential family is D(M) =∑n
i=1 h

M
i (µ) with hMi (µ) = Eφ(µ̂i)(Yi − µi), where the density of the exponential family is

defined as

p(yi|µi) = exp(φ(µi)yi + α(µi) +m(yi))

with mean µi = EYi and variance var(Yi) = 1/φ
′
(µi). They proposed an estimator of GDF

using the idea of data perturbation. We will describe the details for calculating GDF for

logistic regression models.

For a logistic model, Yi is distributed according to the binomial distribution B(1, p(Xi)),

µi = E(Yi) = p(Xi) and φ(µi) = log(p(Xi)/(1− p(Xi))). Define Ỹi as an independent binary

random variable distributed according to B(1, p̃i) with a pre-specified p̃i (0 < p̃i < 1) or
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estimated p̃i = p̂(Xi). Then define Y ∗i as (1 − τ)Yi + τ Ỹi, i = 1, . . . , n, where 0 ≤ τ ≤ 1.

We can see than the conditional distribution of Y ∗i given Yi has the same support range.

In logistic regression, the same estimation method based on the iterative reweighted least

squares method is directly applicable to Y ∗ = (Y ∗1 , . . . , Y
∗
n )

′
even if each Y ∗i may no longer

be binary. This can be thought of as embedding a specific model into a more general class

of models defined by the exponential family distribution. In their Theorem 1, Shen et al.

(2004)in show that an estimator of GDF is given by

ĜDF (M) =
1

τ 2

n∑
i=1

cov∗(φ(µ̂i(Y
∗)), Y ∗i ),

where cov∗ is the conditional covariance given Y . In general, ĜDF (M) may be computed

using a Monte Carlo numerical approximation. The algorithm for computing ĜDF (M)

works as follows:

1. First, we sample η
(j)
i independently from the distribution of Y ∗i as described earlier for

i = 1, . . . , n and j = 1, . . . , T .

2. Second, we compute {µ̂(η
(j)
i ) : j = 1, . . . , T}. For each i, compute

b̂i =
1

T − 1

T∑
j=1

(φ(µ̂(η
(j)
i ))− φ̄i)(η(j)

i − η̄i),

where η̄i = 1
T

∑T
j=1 η

(j)
i and φ̄i = 1

T

∑T
j=1 φ(µ̂(η

(j)
i )) are the Monte Carlo means.

3. Then ĜDF (M) is approximated by 1
τ2

∑n
i=1 b̂i. Here T is chosen to be sufficiently large

to ensure approximation precision. We chose T to be n and τ to be 0.5.
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3 Web Appendix C: Simulation studies

Case 2: We use the following true model for relating biomarkers with disease status:

logitP (D = 1) = 1.0 + 1.1X1 + 1.2X2

This model only includes two biomarker predictors with relatively large coefficients. The

uncertainty of model selection procedures in this case is relatively small compared to that

in Case 1. The results are shown in Tables 1 and 2. We observe that all combining methods

perform similarly to the AIC-selected model due to small uncertainty in this case. For

the sample size of 100, the ARMS methods with the GDF, AIC and Bernoulli weights have

slightly smaller prediction risks and slightly higher AUC values than the AIC-selected model.

For the sample size of 400, the ARMS methods with the GDF, AIC and Bernoulli weights

have slightly larger prediction risk and smaller AUC values than the AIC-selected model.

For both sample sizes, BMA performs slightly better than ARMS. Hence, our ARMS-GDF

method performs significantly better than the BMA method in Case 1, while it performs

just slightly worse than the BMA method when in Case 2.

4 Web Appendix D: Adaptive model screening algo-

rithm

In order to apply our combining algorithm on higher-dimensional data, we propose a new

screening method for our ARMS algorithm using the adaptive penalty for model selection

(Shen et al., 2004). We replace step 2 of the ARMS algorithm by the following:

• Step 2. Estimate βk by β̂k using maximum likelihood for each candidate logistic model

Mk based on the first half of the data Q(1) and let p̂
(Q(1))
k (xi; β̂k) be the estimate of

pk(xi; βk) = exkiβ/(1 + exkiβ), where xk is a subset of x. Compute the adaptive model

selection criterion

−
i=n/2∑
i=1

log[{p̂(Q(1))
k (xi; β̂k)}Di{1− p̂(Q(1))

k (xi; β̂k)}1−Di ] + λ|Mk|,
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Table 1: ARMS simulation results of Case 2 with n = 100.

Method L2 risk L1 risk EP AUC
ARMS-LIKELI 0.041 0.093 0.398 0.821

(0.002) (0.003) (0.007) (0.010)

ARMS-AIC 0.041 0.093 0.396 0.823
(0.002) (0.003) (0.007) (0.010)

ARMS-GDF 0.040 0.091 0.395 0.826
(0.002) (0.003) (0.007) (0.010)

ARMS-APE 0.042 0.094 0.402 0.811
(0.002) (0.004) (0.008) (0.011)

ARMS-RESID 0.042 0.095 0.405 0.813
(0.002) (0.004) (0.008) (0.011)

BMA 0.039 0.089 0.391 0.831
(0.002) (0.003) (0.007) (0.010)

AIC 0.042 0.094 0.404 0.809
(0.002) (0.004) (0.008) (0.011)

Full 0.063 0.140 0.436 0.728
(0.003) (0.006) (0.011) (0.014)

True 0.033 0.075 0.366 0.899

Note: See Note to Table 1 in the paper.
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Table 2: ARMS simulation results of Case 2 with n = 400.

Method L2 risk L1 risk EP AUC
ARMS-LIKELI 0.034 0.067 0.389 0.841

(0.001) (0.002) (0.004) (0.007)

ARMS-AIC 0.034 0.067 0.389 0.840
(0.001) (0.002) (0.004) (0.007)

ARMS-GDF 0.034 0.066 0.388 0.842
(0.001) (0.002) (0.004) (0.007)

ARMS-APE 0.035 0.068 0.391 0.838
(0.001) (0.002) (0.005) (0.007)

ARMS-RESID 0.035 0.068 0.391 0.839
(0.001) (0.002) (0.005) (0.007)

BMA 0.0032 0.063 0.381 0.853
(0.001) (0.002) (0.004) (0.007)

AIC 0.033 0.065 0.385 0.847
(0.001) (0.002) (0.005) (0.007)

Full 0.048 0.093 0.413 0.756
(0.002) (0.004) (0.007) (0.009)

True 0.027 0.054 0.355 0.911

Note: See Note to Table 1 in the paper.
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indexed by the penalty parameter λ, where λ is chosen from 0 to 10 by 0.1 increment.

|M | is the size of the model M , i.e. the number of parameters. We find the optimal

model Mλ for each λ using the backward stepwise searching proposed by Shen et al.

(2004). Then the 100 selected optimal models under the different penalty parameters

are considered as candidates for combining. Then we follow the same steps in the

original algorithm.

We call this new ARMS algorithm the ARMS-adaptive algorithm. Now we want to

compare the new algorithm with the old one using the prostate cancer data. We did exactly

the same for the old ARMS, while we enlarge our model space by including all possible

pairwise interactions in the model for the new ARMS-adaptive algorithm. This results in

236 subset models for the new model space. The results are in Table 3.

The results show that the new ARMS-adaptive algorithm has some further improvement

over the old ARMS algorithm. There are several possible reasons for this. First, the ARMS-

adaptive algorithm can deal with a much larger model space and higher data dimension than

the old ARMS algorithm. Second, the ARMS-adaptive algorithm uses an adaptive penalty

parameter for screening which is less sensitive to the size of underlying true model than the

AIC-type screening in the old ARMS algorithm. However, we note that the ARMS-adaptive

method does not search the complete model space exhaustively, as did our original algorithm.

We believe that in most high-dimensional data cases, the gain from larger model space

and adaptive penalty parameter will offset the loss due to incomplete stepwise searching.

However, further work in this area is needed.

Shen, X., Huang, H. and Ye, J. (2004). Adaptive model selection and assessment for

exponential family distributions. Technometrics 46, 306–317.
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Table 3: Comparison of ARMS using AIC screening with ARMS-adaptive algorithm under
GDF weights (1000 permutations).

Method L2 risk L1 risk EP AUC

AIC 0.089 0.179 0.405 0.76
(0.003) (0.05) (0.007) (0.01)

ARMS 0.078 0.159 0.373 0.82
(0.002) (0.004) (0.006) (0.01)

ARMS-adaptive 0.074 0.148 0.365 0.84
(0.002) (0.004) (0.006) (0.01)
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