Cell Reports, Volume 27

Supplemental Information

Elav-Mediated Exon Skipping and Alternative

Polyadenylation of the Dscam1 Gene

Are Required for Axon Outgrowth

Zhiping Zhang, Kevin So, Ryan Peterson, Matthew Bauer, Henry Ng, Yong Zhang, Jung Hwan Kim, Thomas Kidd, and Pedro Miura

Figure S1. Northern analysis of *Dscam1* **during embryonic development. Related to Figure 1. (A)** Schematic of Northern probe locations. (B) Non-cropped northern blot using a probe to *Dscam1* exon 11 which is expressed in all *Dscam1* isoforms (CDS). (C) Stripped and re-probed blot using probe targeting the proximal 3' UTR (3' UTR). *, denotes common background bands often observed with these Drosophila northern blots.

EBS Mutant

Figure S2. EMSA demonstrates Elav binds a U-rich region downstream of the *Dscam1* **proximal polyA site. Related to Figure 1. (A)** Schematic showing probe design with location of proximal 3' UTR Elav binding site (EBS) probe used in RNA electrophoretic mobility shift assays (EMSA). Mutant probe has disrupted integrity of U-rich stretches generated by U to G mutations (indicated in red text). (B) EMSA reveals that upon the addition of recombinant purified Elav, an upward shift occurs, indicating Elav binding. Elav has been shown to bind as a multimer (Soller and White, 2005) which might explain the higher molecular weight supershift. Mutant probe was incapable of Elav binding, as evidenced by the lack of shift.

D

Age	+19	-19	+23	-23
12-16 Hours	9% (376)	91% (3783)	5% (200)	95% (3959)
16-20 Hours	2% (141)	98% (5753)	10% (640)	10% (5254)
Adult Heads	0% (0)	100% (4925)	48% (2371)	52% (2554)

Figure S3. Frequency of *Dscam1* transcript isoforms connected to extended 3' UTR determined by Nanopore sequencing of *Dscam1*. Related to Figure 3. (A) Adult heads. (B) 16-20 hr embryos. (C) 12-16 hr embryos. (D) Summary table showing the frequencies of exons 19 and 23 in transcripts including the extended 3' UTR. M1- microexon 1, M2- microexon 2.

Figure S4. Exon 18/18s/19/20 usage determined from short read RNA-Seq data. Related to Figures 3 & 4. (A) Schematic of *Dscam1* exon usage from exons 18 to 20. An exon 18 variant that is 12 nt longer at the 3' end is named 18-shifted (18s) (highlighted in purple). Compared to the 18 | -19 isoform, the 18s | -19 isoform gains the amino acid sequence T-V-I-S. Note the location of the sh-19 shRNA that uniquely knocks down 18s | -19 isoforms. RNA-Seq short-reads (150 nt) had sufficient length to resolve the connectivity between exons18, 18s, 19, and 20. **(B)** Exon usage during embryonic development, L3 CNS, and WPP +2D CNS as analyzed from short read RNA-Seq data.

Northern blot probes					
Gene name	probe name	5' primer	3' primer	probe coordinates	Figure
GFP	GFP	TAAACGGCCACAAGTTCAGC	CTTGTACAGCTCGTCCATGC		1G
Dscam1	Dscam1 coding	GGTCTTGATCACTCCGTTGG	CACCTACAACATTCGCATCG	chr2R:7331013-7331523	1B, 1D, 2A, 4A, 5B, S1
Gapdh2	Gapdh2	GGCATCCACTCACTTGAAGG	TCAGCTTCACGAACTTGTCG	chrX:15868647-15869257	1D, 1G, 2A, 5B
Dscam1	Dscam1 uni 3'UTR	ATTTGTAAGCGCCCTCTGC	ACTCCCTCTTTTCTCTATCTCT	chr2R:7320524-7320665	S1
PCR primers					
Parent gene	Amplicon name	5' primer	3' primer	product coordinates	Figure
Dscam1	Dscam1-uni	TCCGGAGTACAGGCTACCG	GGACAGTCCTCAATCTACACG	chr2R:7322909-7323093	1F
Dscam1	Dscam1-ext	GCGTTTTAAACTGCCTGTCC	CAACTTCAACGCACATCAGG	chr2R:7318329-7318425	1F
Dscam1	exon19	CTGGAAGTTCATGGCCTTGG	TGTGACCGGATTAAGCGAGG	chr2R:7323244-7324600	3B, 4B, 5F, 6A, 6B
Dscam1	exon23	TGTTGGAGTTGGAGTTGTTTTGG	GAGAGTAATGAGATCTCAGAGGC	chr2R:7320729-7322623	3B
Rpl32	Rpl32	ACGTTGTGCACCAGGAACTT	CCGCTTCAAGGGACAGTATC	chr3R:30045476-30045580	4B, 5F, 6B, 6D, 6F
Dscam1	Nanopore 16-24	ACTTGCCTGTCGCTCTATCTTCTCTGTAGCTCCATTGCATCG	TTTCTGTTGGTGCTGATATTGCCGAATACGACTTTGCCACCT	chr2R: 7319384-7329325	3C, 3D, S3
Dscam1	Flag-exon20	CAAGGATGACGATGACAAGG	ATCATCGTATTCGGGAGCTG		6D, 6F
qPCR primers					
Parent gene	Amplicon name	5' primer	3' primer	product coordinates	Figure
Dscam1	Dscam1-uni	TCCGGAGTACAGGCTACCG	GGACAGTCCTCAATCTACACG	chr2R:7322909-7323093	1C
Dscam1	Dscam1-ext	GCGTTTTAAACTGCCTGTCC	CAACTTCAACGCACATCAGG	chr2R:7318329-7318425	1C
Rpl32	Rpl32	ACGTTGTGCACCAGGAACTT	CCGCTTCAAGGGACAGTATC	chr3R:30045476-30045580	1C
Dscam1	Dscam1-CDS	GGCTGTTCTTTCGCTGGTAT	GCACTATGCTTCCACCAGGA	chr2R:7323099-7323194	1E
Dscam1	Dscam1-EBS	TGATTACGTTCGCTTTTGTTTG	TGTTGGTGGTGTCTCCACAG	chr2R:7319479-7319540	1E
Elav	Elav-CDS	TCGGAGCAATAATCACATCG	CTCCTTTCGTCTGCGTATCG	chrX:513912-513983	1E
Elav	Elav-EBS	CTGTACGATTTTCGATTAACAACCA	AGAAAGATAGACAGAGAGGGAAACAAGTA	chrX:513912-513983	1E

Table S1: Oligonucleotide sequences. Related to Figures 1, 2, 3, 4, 5, 6.Correspond to D. Melanogaster dm6 genome.

Supplemental Multimedia Files

Video #1. Related to Figures 2 and 4. *Elav-GAL4/+; UAS-Dicer2/UAS-shExt* flies display impaired locomotion and could not fly. Flies were placed on pad without anesthesia.

Video #2. Related to Figure 4. *Elav-GAL4/+; UAS-Dicer2/UAS-sh-19* flies display impaired locomotion and could not fly. Flies were placed on pad without anesthesia.