
S1 Appendix. Technical appendix

1 Distribution

In this section, we give the definitions of probability density function used in this paper.

• Univariate Gaussian distribution

N(x | µ, τ) =
√

τ

2π
exp

(
−τ
2
(x− µ)2

)
, x ∈ R.

• Multivariate Gaussian distribution

N(κ | µ,Λ) = |Λ| 12
(2π)

d
2

exp

(
−1

2
(κ− µ)TΛ(κ− µ)

)
, κ ∈ Rd.

• Wishart distribution

W(Λ | ν, S) = |Λ| ν−d−1
2

|S| ν2 2 νd
2 π

d(d−1)
4

∏d
i=1 Γ

(
ν+1−i

2

) exp(−1

2
tr
(
S−1Λ

))
, Λ ∈ Rd×d.

• Normal-Wishart distribution

NW (µ,Λ |m, γ, ν, S) = N (µ |m, γΛ) W (Λ | ν, S) , µ ∈ Rd, Λ ∈ Rd×d.

• Multivariate Student’s t distribution

St(κ | m,S, ν) =
Γ
(
ν+d
2

)
|S| 12

Γ
(
ν
2

)
ν

d
2π

d
2

(
1 +

1

ν
(κ−m)TS(κ−m)

)− ν+d
2

, κ ∈ Rd.
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• Gamma distribution

Gam(x | α) = 1

Γ(α)
xα−1 exp (−x) , x ∈ R+.

• Dirichlet distribution

Dir(π | α1, . . . , αK) =
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ(αk)

K∏
k=1

παk−1
k , π ∈ SK−1.

• von Mises distribution

VM(x | µ, τ) = 1

2πI0(τ)
exp (τ cos(x− µ)) , −π ≤ x ≤ π,

where I0 is the modified Bessel function of order 0.

2 Proof of the proposition

In this section, we give the proof for Proposition 1 in section 4.

Proof of Proposition 1. Instead of calculating the posterior directly, we calculate the posterior

mean of an arbitrary integrable function g(c, z, ξ) with respect to the posterior

∫
g(c, z, ξ) p(dc, dz, dξ | ux,y) (1)

and show that this value corresponds to∫
g(c, z, ξ) p(y, c, z | ξ)dc dz GK(dξ | α0, β0, H

κ, ux)∫
p(y, c, z | ξ) dc dz GK(dξ | α0, β0, Hκ, ux)

. (2)

First, we calculate the numerator of (2). From the definition of the mixture of gamma
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processes and the likelihood of ξ,

∫
g(c, z, ξ) p(y, c, z | ξ) dc dz GK(dξ | α0, β0, H

κ, ux)

=

∫
g(c, z, ξ) exp

(
−T

∫
Rdx

∫
Rdκ

∫
Θx

∫
Θκ

fκ(κ | θκ) fx(x | θx) ξ(dθκ, dθx) dκ η(dx)
)

· N(c1 | µc
init, (Σ

c
init)

−1)
R∏

r=2

N(cr − Fcr−1 | 0, V )(1−
∑K

k=1 zrk)
R∏

r=1

N(yr −Gcr | 0,W )

·
R∏

r=2

K∏
k=1

(fκ(cr − Fcr−1 | uκk) fx(xr | uxk) ξ(duκk, duxk)∆)zrk

dc dz G

(
dξ

∣∣∣∣∣ α0

K

K∑
k=1

δ(uκ
k ,u

x
k)
, β0

)
K∏
k=1

Hκ(duκk).

Using the lemma 1 in [1], we can move the exponential term outside of the integral as

exp

(
−

K∑
k=1

α0

K
log

(
1 + β0T

∫
Rdx

fx(x | uxk) η(dx)
))

∫ ∫
g(c, z, ξ)N(c1 | µc

init, (Σ
c
init)

−1)
R∏

r=2

N(cr − Fcr−1 | 0, V )(1−
∑K

k=1 zrk)
R∏

r=1

N(yr −Gcr | 0,W )

·
R∏

r=2

K∏
k=1

(fκ(cr − Fcr−1 | uκk) fx(xr | uxk) ξ(duκk, duxk)∆)zrk

dc dz G

(
dξ

∣∣∣∣∣ α0

K

K∑
k=1

δ(uκ
k ,u

x
k)
, β∗

)
K∏
k=1

Hκ(duκk).

Here, the definition of β∗ is shown in the main paper.

Next, we focus on the integration in the above equation. The integration respect to z is a

summation respect to all combination of z. Since z takes only a finite number of combinations,
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this summation can be moved outside of the integral with respect to the gamma process as

∫
g(c, z, ξ)N(c1 | µc

init, (Σ
c
init)

−1)
R∏

r=2

N(cr − Fcr−1 | 0, V )(1−
∑K

k=1 zrk)
R∏

r=1

N(yr −Gcr | 0,W )

·
R∏

r=2

K∏
k=1

(fκ(cr − Fcr−1 | uκk) fx(xr | uxk) ξ(duκk, duxk)∆)zrk

dc dz G

(
dξ

∣∣∣∣∣ α0

K

K∑
k=1

δ(uκ
k ,u

x
k)
, β∗

)
K∏
k=1

Hκ(duκk)

=

∫
N(c1 | µc

init, (Σ
c
init)

−1)
R∏

r=1

N(yr −Gcr | 0,W )

·
∑
z

(
B(c, z)

R∏
r=2

N(cr − Fcr−1 | 0, V )(1−
∑K

k=1 zrk)

)
dc,

where

B(c, z) =

∫
M(Θ)

g(c, z, ξ)
R∏

r=2

K∏
k=1

(fκ(cr − Fcr−1 | uκk) fx(xr | uxk) ξ(duκk, duxk)∆)zrk

G

(
dξ

∣∣∣∣∣ α0

K

K∑
k=1

δ(uκ
k ,u

x
k)
, β∗

)
.

From the lemma 2 of [1], we can change the order of integration in B(c, z) as

B(c, z)

=

(∫
M(Θ)

g(c, z, ξ)G

(
dξ

∣∣∣∣∣
K∑
k=1

(
α0

K
+

R∑
r=2

zrk

)
δ(uκ

k ,u
x
k)
, β∗

))

·
R∏

r=2

K∏
k=1

(
β∗(uxk) f

κ(cr − Fcr−1 | uκk) fx(xr | uxk)

(
K∑
k=1

(
α0

K
+
∑

2≤j<r

zjk

)
δ(uκ

k ,u
x
k)

)
(duκk, du

x
k)∆

)zrk

.
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Then, using the relation

R∏
r=2

K∏
k=1

((
K∑
k=1

(
α0

K
+
∑

2≤j<r

zjk

)
δ(uκ

k ,u
x
k)

)
(duκk, du

x
k)

)zrk

=

∫ ( R∏
r=2

K∏
k=1

P (duκk, du
x
k)

zrk

)
DP

(
dP

∣∣∣∣∣ α0

K

K∑
k=1

δ(uκ
k ,u

x
k)

)
,

P ∼ DP

(
dP

∣∣∣∣∣ α0

K

∑
k=1

δ(uκ
k ,u

x
k)

)
d
=

K∑
k=1

πkδ(uκ
k ,u

x
k)
,

π = (π1, . . . , πK) ∼ Dir
(α0

K
, . . . ,

α0

K

)
, (3)

the numerator of (2) becomes

∫
g(c, z, ξ) p(y, c, z | ξ) dc dz GK(dξ | α0, β0, H

κ, ux)

= exp

(
−

K∑
k=1

α0

K
log

(
1 + β0T

∫
Rdx

fx(x | uxk) η(dx)
))

∫ ∫ (∫
M(Θ)

g(c, z, ξ)G

(
dξ

∣∣∣∣∣
K∑
k=1

(
α0

K
+

R∑
r=2

zrk

)
δ(uκ

k ,u
x
k)
, β∗

))

· N(c1 | µc
init, (Σ

c
init)

−1)
R∏

r=2

N(cr − Fcr−1 | 0, V )(1−
∑K

k=1 zrk)
R∏

r=1

N(yr −Gcr | 0,W )

·
R∏

r=2

K∏
k=1

(β∗(uxk) f
κ(cr − Fcr−1 | uκk) fx(xr | uxk)∆)zrk

·

(∫ ( R∏
r=2

K∏
k=1

P (duκk, du
x
k)

zrk

)
DP

(
dP

∣∣∣∣∣ α0

K

K∑
k=1

δ(uκ
k ,u

x
k)

))
dc dz

K∏
k=1

Hκ(duκk).
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On the other hand, the denominator of (2) becomes

∫
p(y, c, z | ξ)GK(dξ | α0, β0, H

κ, ux)

= exp

(
−

K∑
k=1

α0

K
log

(
1 + β0T

∫
Rdx

fx(x | uxk) η(dx)
))

∫ ∫
N(c1 | µc

init, (Σ
c
init)

−1)
R∏

r=2

N(cr − Fcr−1 | 0, V )(1−
∑K

k=1 zrk)
R∏

r=1

N(yr −Gcr | 0,W )

·
R∏

r=2

K∏
k=1

(β∗(uxk) f
κ(cr − Fcr−1 | uκk) fx(xr | uxk)∆)zrk

·

(∫ ( R∏
r=2

K∏
k=1

P (duκk, du
x
k)

zrk

)
DP

(
dP

∣∣∣∣∣ α0

K

K∑
k=1

δ(uκ
k ,u

x
k)

))
dc dz

K∏
k=1

Hκ(duκk).

Therefore, (2) can be expressed as∫
g(c, z, ξ) p(y, c, z | ξ)dc dz GK(dξ | α0, β0, H

κ, ux)∫
p(y, c, z | ξ) dc dz GK(dξ | α0, β0, Hκ, ux)

=

∫
g(c, z, ξ)G

(
dξ

∣∣∣∣∣
K∑
k=1

(
α0

K
+

R∑
r=2

zrk

)
δ(uκ

k ,u
x
k)
, β∗

)
p(dc, dz, duκ | ux,y),

where p(dc, dz, duκ | ux,y) is the posterior of (c, z, uκ) given ux and y that is proportional to

p(dc, dz, duκ | ux,y)

∝ N(c1 | µc
init, (Σ

c
init)

−1)
R∏

r=2

N(cr − Fcr−1 | 0, V )(1−
∑K

k=1 zrk)
R∏

r=1

N(yr −Gcr | 0,W )

·
R∏

r=2

K∏
k=1

(β∗(uxk) f
κ(cr − Fcr−1 | uκk) fx(xr | uxk)∆)zrk

·

(∫ ( R∏
r=2

K∏
k=1

P (duκk, du
x
k)

zrk

)
DP

(
dP

∣∣∣∣∣ α0

K

K∑
k=1

δ(uκ
k ,u

x
k)

))
dc dz

K∏
k=1

Hκ(duκk) (4)

and this corresponds to (1).

Next, consider a hidden variable π to indicate the weights of the random measure P in (3)

distributes to the Dirichlet process DP(·). Using π, we can express the integration respect to
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Box 1: Estimation steps of our method.� �
1: Initialize variational posterior q and hyperparameters.
2: repeat
3: update q(c).
4: update q(z).
5: update q(π).
6: update q(uκ).
7: update ux.
8: update µc

init,Σ
c
init.

9: update F, V .
10: update G,W .
11: update α0.
12: merge similar components.
13: until the evidence lower bound L(q) converges� �
DP(·) as the integration respect to π:

∫ ( R∏
r=2

K∏
k=1

P (duκk, du
x
k)

zrk

)
DP

(
dP

∣∣∣∣∣ α0

K

K∑
k=1

δ(uκ
k ,u

x
k)

)

=

∫
SK−1

R∏
r=2

K∏
k=1

πzrk
k Dir

(
π
∣∣∣ α0

K
, . . . ,

α0

K

)
dπ.

Substituting this relation into (4), we obtain the second statement.

3 Details of estimation steps

Box 1 shows the entire flow of the estimation procedure in our method. We give the details of

how to update hidden variables and hyperparameters in the estimation step. We also explain

some heuristic techniques for obtaining good variational posterior.
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3.1 Update formula

The complete log likelihood of our model is expressed as

log p(y, c, z,π, uκ | ux)

= log N(c1 | µc
init,Λ

c
init) +

R∑
r=2

(
1−

K∑
k=1

zrk

)
log N (cr − Fcr−1 | 0, V ) +

R∑
r=1

log N(yr −Gcr | 0,W )

+
R∑

r=2

K∑
k=1

zrk (log β0 + logN (cr − Fcr−1 | µκ
k,Λ

κ
k) + log fx(xr | uxk) + log∆)

−
K∑
k=1

(
α0

K
+

R∑
r=2

zrk

)
log

(
1 + β0T

∫
Rdx

fx(x | uxk) η(dx)
)

+
R∑

r=2

K∑
k=1

zrk log πk + logDir
(
π
∣∣∣ α0

K
, . . . ,

α0

K

)
+

K∑
k=1

log NW(µκ
k,Λ

κ
k | mκ, γκ, νκ, Sκ)

+ const.

Here, we substitute Gaussian kernel N(· | µκ
k,Λ

κ
k) for f

κ(· | uκk) in the loglikelihood.

Under the independent constraint, the variational posterior of each hidden variable maxi-

mizing the evidence lower bound L(q) can be obtained by calculating the expectation of the

complete loglikelihood with respect to other hidden variables:

q(c) ∝ exp
(
Eq(z,π,uκ) [log p(y, c, z,π, u

κ | ux)]
)
,

q(z) ∝ exp
(
Eq(c,π,uκ) [log p(y, c, z,π, u

κ | ux)]
)
,

q(π) ∝ exp
(
Eq(c,z,uκ) [log p(y, c, z,π, u

κ | ux)]
)
,

q(uκ) ∝ exp
(
Eq(c,z,π) [log p(y, c, z,π, u

κ | ux)]
)
.

Left side of these equations reduce to closed form so that we can update each posterior without

functional optimization. Hereafter, we show update formulas for these variables.
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Update q(c)

We define new variables as

Vr =
K∑
k=1

E [zrk] E [Λκ
k] +

(
1−

K∑
k=1

E [zrk]

)
V, r = 2, . . . , R,

or = V −1
r

(
K∑
k=1

E [zrk] E [Λκ
kµ

κ
k]

)
, r = 2, . . . , R.

Then, the distribution of c that maximizes L(q) coincides with the posterior of the following

linear state space model:

c1 ∼ N(µc
init, (Σ

c
init)

−1),

cr = Fcr−1 + or + vr, vr ∼ N(0, Vr), r = 2, . . . , R

yr = Gcr + wr, wr ∼ N(0,W ), r = 1, . . . , R.

(5)

The posterior of this linear state space model becomes Gaussian distribution

N
(
c | {µc

r}Rr=1, {Σc
r}Rr=1, {Σc

r−1,r}Rr=2

)
that indexed by mean vectors {µc

r}Rr=1, covariance matrices {Σc
r}Rr=1 and pairwise covariance

matrices {Σc
r−1,r}Rr=2. These parameters can be calculated by the Kalman smoother.

Therefore, we apply the Kalman smoother to calculate ({µc
r}Rr=1, {Σc

r}Rr=1, {Σc
r−1,r}Rr=2) under

the state space model (5) and update q(c) as

q(c)← N
(
c | {µc

r}Rr=1, {Σc
r}Rr=1, {Σc

r−1,r}Rr=2

)
.

The most computationally heavy part of our method is this update. The run-time for this

Kalman smoother is about O(R((dκ)3 + dydκ)) and the required memory is about O(R(dκ)2).
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Update q(z)

We define new variables as

ρrk = log β0 + E [log N (cr − Fcr−1 | µκ
k,Λ

κ
k)] + log fx(xr | uxk) + log∆,

− log

(
1 + β0T

∫
Rdx

fx(x | uxk) η(dx)
)
+ E [log πk] , r = 2, . . . , R, k = 1, . . . , K

ρr0 = E [log N (cr − Fcr−1 | 0, V )] , r = 2, . . . , R.

Using these variables, we update q(z) as

q(z)←
R∏

r=2

(
1−

K∑
k=1

ζrk

)(1−∑K
k=1 zrk) K∏

k=1

ζzrkrk ,

where

ζrk =
exp(ρrk)∑K
k=0 exp(ρrk)

, r = 2, . . . , R, k = 1, . . . , K.

Update q(π)

We update q(π) as

q(π)← Dir (π | α1, . . . , αK) , (6)

where

αk =
α0

K
+

R∑
r=2

E [zrk] , k = 1, . . . , K.

Update q(uκ)

We update q(uκk), k = 1, . . . , K respectively as

q(uκk)← NW(µκ
k,Λ

κ
k | mκ

k, γ
κ
k , ν

κ
k , S

κ
k ), (7)
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where

mκ
k =

γκmκ +
∑R

r=2 E [zrk] E [cr − Fcr−1]

γκ +
∑R

r=2 E [zrk]
,

γκk = γκ +
R∑

r=2

E [zrk] ,

νκk = νκ +
R∑

r=2

E [zrk] ,

Sκ
k =

(
(Sκ)−1 +

R∑
r=2

E [zrk] E
[
(cr − Fcr−1)(cr − Fcr−1)

T + γκmκmκT − γκkmκ
km

κ
k
T
])−1

.

Update ux

The term depends on uxk in L(q) is

R∑
r=2

E [zrk] log f
x(xr | uxk)−

(
α0

K
+

R∑
r=2

E [zrk]

)
log

(
1 + β0T

∫
Rdx

fx(x | uxk) η(dx)
)
.

We find uxk that maximizes L(q) using nonlinear optimization and update uxk by this value.

Update µc
init,Σ

c
init

We update the initial state mean µc
init and the initial state covariance matrix Σc

init as

µc
init ← E [c1] ,

Σc
init ← E

[
c1c

T
1

]
− E [c1] E [c1]

T .

Update F, V

We define Ψ and Ω as

Ψ =
R∑

r=2

(
K∑
k=1

E [zrk] E [Λk] +
K∑
k=1

(1− E [zrk])V

)
⊗ E

[
cr−1c

T
r−1

]
,

Ω =
R∑

r=2

(
K∑
k=1

E [zrk] E
[
Λk(cr − µk)c

T
r−1

]
+

(
1−

K∑
k=1

E [zrk]

)
V E

[
crc

T
r−1

])

11



and solve the following matrix equation

Ψϕ = vec(Ω).

Here, vec(·) is a vectorization operator and vec(Ω) corresponds to the vector obtained by

stacking the rows of Ω. Denote the solution of this equation as ϕ. Using this ϕ, we update F

as

F ←


ϕ1 ϕ2 · · · ϕdκ

ϕdκ+1 ϕdκ+2 · · · ϕ2dκ

...
... . . .

...

ϕ(dκ−1)dκ+1 ϕ(dκ−1)dκ+2 · · · ϕdκ2

 .

where ϕj is a j-th element of ϕ. After updating F , we update V as

V ←

(
1

R− 1−
∑R

r=2

∑K
k=1 E [zrk]

R∑
r=2

K∑
k=1

E [zrk] E
[
(cr − Fcr−1) (cr − Fcr−1)

T
])−1

.

This update gives the maximum optimum of L(q) with respect to F and V . However, this

approach is sensitive to contamination and misspecification of the initial value for q. Consider

that a spike occurred between the (r−1)-th frame and the r-th frame even though the estimated

spike occurrence probability
∑K

k=1 E[zrk] is small. Then, the rapid fraction in the movie due

to this spike may cause the precision matrix V to be underestimated. In our method, we

have to select an appropriate initial value for q(z). If this value fails to express the spiking

activities, then contamination would occur, and the variational posterior would differ from the

true posterior.

One possible solution for this problem is to obtain robust approximation close to the max-

imum optimum. In the rest of this section, we explain an alternative update using a modified

Multivariate Least Trimmed Squared (MLTS) estimator.

The MLTS estimator is a highly robust estimator used in multivariate regression [2]. Let

H be the subset of {2, . . . , R} \R(q(z)) where R(q(z)) = {r |
∑K

k=1 E[zrk] > ϵ} for sufficiently
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small ϵ > 0. We define (F (H), V (H)) as

F (H) =

(∑
r∈H

E
[
crc

T
r−1

])(∑
r∈H

E
[
cr−1c

T
r−1

])
,

V (H) =

(
C

h

∑
r∈H

E
[
(cr − F (H)cr−1) (cr − F (H)cr−1)

T
])−1

for two parameters h and C. Using these variables, MLTS estimator (FMLTS, VMLTS) is defined

as

(FMLTS, VMLTS) =

(
F (Ĥ), 1

C
V (Ĥ)

)
,

Ĥ = arg max
{H|#H=h}

det(V (H)).

Here, h is a cardinality ofH and C is a correction factor for maintaining consistency. This MLTS

estimator is also used for outlier detection. Define the Mahalanobis distance sr, r = 2, . . . , R

as

sr = E
[
(cr − FMLTScr−1)

TVMLTS(cr − FMLTScr−1)
]
, r = 2, . . . , R.

If sr takes a large value, then the large fraction may occur in the movie between the (r − 1)-

th frame and the r-th frame; it suggests the existence of spikes at this frame. Using this sr,

another version of the MLTS estimator called the reweighted MLTS estimator (FrMLTS, VrMLTS)

is defined as

(FrMLTS, VrMLTS) = (F (H̃), V (H̃)),

H̃ = {r | sr < χ2
dκ(α), r ∈ {2, . . . , R} \ R(q(z))},

where χ2
dκ(α) is the upper α% point of the chi-squared distribution whose degree of freedom is

dκ.

A disadvantage of the MLTS estimator is that it involves a large computational cost. To

calculate the exact MLTS estimator requires calculating the above equation
(
R−#R(q(z))

h

)
times.

Therefore, in our method, we use the MLTS estimator only for setting the initial value and use

13



the former estimator in the following iterations.

Update G,W

We update the observation matrix G as

G←

(
R∑

r=1

yrE [cr]
T

)(
R∑

r=1

E
[
crc

T
r

])−1

.

It is also able to update the observation precision matrix W in the closed form. Because

we restrict W as a diagonal matrix, the required computational cost for the update is linear to

the dimension of the movie dy, not quadratic.

First, we apply the Cholesky decomposition to the sum of the posterior mean of crc
T
r , r =

1, . . . , R as

R∑
r=1

E
[
crc

T
r

]
= LLT.

Next, using this L, we define wi, i = 1, . . . , dy as

wi =

(
1

R

(
R∑

r=1

y2ri − 2
R∑

r=1

yri (GE [cr])i +
dκ∑
j=1

(GL)2ij

))−1

, i = 1, . . . , dy

where (·)i is a i-th element in a vector and (·)ij is a (i, j)-th element in a matrix. Finally, we

update W as

W ←


w1

w2

. . .

wdy

 .

Update α0

The term that depends on α0 in L(q) is

log Γ(α0)−K log Γ
(α0

K

)
+
α0

K

K∑
k=1

(
E [log πk]− log

(
1 + β0T

∫
Rdx

fx(x | uxk) η(dx)
))
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We find that α0 maximizes this term using nonlinear optimization, and update α0 by this value.

3.2 Posterior mean of hidden variables and its implication

In our model, the posterior expectation of each parameter gives the deconvolution results. For

example, E[Gµκ
k] is the shape of the k-th neuron and E[Gcr], r = 1, . . . , R is the denoised movie

taking account of non-linearity that occurred from the spiking activities. Box 2 shows some

implications for the posterior mean of variables in our model.

Box 2: Implication for variational posterior mean and hyper parameters.

Implication Posterior mean

Cell shape of k-th neuron GE [µκ
k]

Spike occurrence time of k-th neuron

{
r

∣∣∣∣ arg max
k′

E [zrk′ ] = k,
∑K

k=1 E [zrk] > ϵ

}
,

for sufficiently small ϵ > 0

Receptive field of k-th neuron
{x | fx(x | uxk) > ϵ} ,

for some ϵ > 0

Denoised movie GE [cr] , r = 1, . . . , R

Intensity function E [λ(κ, x | ξ)]

In the estimation step, we also have to calculate the posterior mean of hidden variables

to update the variational posterior. Our generative model definition and the independence

constraint reduce these expectations to the closed form. The following equations show the

posterior mean of hidden variables that appeared in the update formulas.
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E [cr − Fcr−1] = µc
r − Fµc

r−1,

E
[
crc

T
r

]
= µc

rµ
c
r
T + Σc

r,

E
[
cr−1c

T
r

]
= µc

r−1µ
c
r
T + Σc

r−1,r,

E
[
(cr − Fcr−1)(cr − Fcr−1)

T
]
= (µc

r − Fµc
r−1)(µ

c
r − Fµc

r−1)
T

+ Σc
r − FΣc

r−1,r − Σc
r,r−1F

T + FΣc
r−1F

T,

E [log N(cr − Fcr−1 | µκ
k,Λ

κ
k)] = −

dκ

2
log 2π +

1

2

dκ∑
j=1

ψ

(
νκk + 1− j

2

)
+
dκ

2
log 2 +

1

2
log |Sκ

k |

− 1

2
(µc

r − Fµc
r−1 −mκ

k)
TSκ

f (µ
c
r − Fµc

r−1 −mκ
k)−

dκ

2γκk

− νκk
2
tr
(
Sκ
k

(
Σc

r − FΣc
r−1,r − Σc

r,r−1F
T + FΣc

r−1F
T
))
,

E [log N(cr − Fcr−1 | 0, V )] = −d
κ

2
log 2π +

1

2
log |V | − 1

2
(µc

r − Fµc
r−1)

TV (µc
r − Fµc

r−1)

− 1

2
tr
(
V
(
Σc

r − FΣc
r−1,r − Σc

r,r−1F
T + FΣc

r−1F
T
))
,

E [zrk] = ζrk,

E [log πk] = ψ(αk)− ψ

(
K∑
k=1

αk

)
,

E [Λκ
kµ

κ
k] = νκkS

κ
km

κ
k,

E [Λκ
k] = νκkS

κ
k ,

E [N(κ | µκ
k,Λ

κ
k)] = St

(
κ

∣∣∣∣mκ
k,
(νκk + 1− dκ)γκk

1 + γκk
Sκ
k , ν

κ
k + 1− dκ

)
.

Here, ψ is the digamma function.

At the end of this section, we show how to calculate the posterior mean of the intensity

function λ(κ, x | ξ). Given other variables, ξ distributes to

G

(
dξ

∣∣∣∣∣
K∑
k=1

(
α0

K
+

R∑
r=2

zrk

)
δ(uκ

k ,u
x
k)
, β∗

)
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and this ξ is also expressed as

ξ =
K∑
k=1

β0gk
1 + β0T

∫
fx(x | uxk)η(dx)

δ(uκ
k ,u

x
k)
,

gk ∼ Gamma

(
α0

K
+

R∑
r=2

zrk

)
.

Therefore, posterior mean of λ(κ, x | ξ) is calculated as

E [λ(κ, x | ξ)]

=
K∑
k=1

β0

(
α0

K
+
∑R

r=2 ζrk

)
1 + β0T

∫
fx(x | uxk)η(dx)

St

(
κ

∣∣∣∣mκ
k,
(νκk + 1− dκ)γκk

1 + γκk
Sκ
k , ν

κ
k + 1− dκ

)
fx(x | uxk).

This equation also shows that the tuning curve of the k-th neuron is expressed as

β0

(
α0

K
+
∑R

r=2 ζrk

)
1 + β0T

∫
fx(x | uxk)η(dx)

fx(x | uxk).

3.3 Initialization

Because the evidence lower bound L(q) is not convex, the optimization problem does not have

a global optimum. Hence, the solution obtained in the estimation step is nothing but a local

optimum, and it depends strongly on the initial value.

To obtain a good variational posterior, it is important to decide a good initial value before-

hand. The following procedure is an example of how to decide the initial value.

1. Decide K and (α0, β0) as appropriate values.

2. Subtract an average from movie vector yr as

yr ← yr −
1

R

R∑
r′=1

yr′ , r = 1, . . . , R

3. Apply principal components analysis to reduce the dimension of yr from dy to dκ. Define

cr, r = 1, . . . , R as these transformed vectors and G as the transpose of the transformation

matrix.
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4. Apply the reweighted MLTS algorithm for cr, r = 1, . . . , R to obtain (F, V ). Define R be

the time indices not used in the reweighted MLTS algorithm and define or, r = 2, . . . , R

as

or =

 cr − Fcr−1, (if r /∈ R),

0, (if r ∈ R).

5. Consider the following linear state space model

c1 ∼ N(µc
init, (Σ

c
init)

−1),

cr = Fcr−1 + or + ur, ur ∼ N(0, V ), r = 2, . . . , R,

yr = Gcr + wr, wr ∼ N(0,W ), r = 1, . . . , R

and apply Expectation Maximization algorithm to estimate (µc
init,Σ

c
init,W ). Using esti-

mated (µc
init,Σ

c
init,W ), calculate the posterior of cr, r = 1, . . . , R as

N
(
c | {µc

r}Rr=1, {Σc
r}Rr=1, {Σc

r−1,r}Rr=2

)
by the Kalman smoother.

6. From {or}r∈R, calculate a sample mean µ and a sample covariance matrix Σ. Using these

values, define hyperparameters (mκ, γκ, νκ, Sκ) as

mκ = µ, γκ = 1, νκ = dκ, Sκ =
1

dκ
Σ−1.

7. Consider that {or}r∈R is generated from Gaussian mixture model with K components

defined on Rdκand estimate the parameters (cκk, µ
κ
k,Λ

κ
k), k = 1, . . . , K using Expectation

Maximization algorithm. Here, cκk is a weight of the k-th component, µκ
k is a mean vector

and Λκ
k is a precision matrix. Then, using estimated Gaussian mixture model, divide

indices R into K clusters R1, . . . ,RK and define ζrk as

ζrk =


ckN(or|µκ

k ,Λ
κ
k)∑K

j=1 cjN(or|µκ
j ,Λ

κ
j )
, (if r ∈ Rk),

0, (otherwise).
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8. Define (mκ
k, γ

κ
k , ν

κ
k , S

κ
k ), k = 1, . . . , K as

mκ
k = µκ

k, γκk = 1, νκk = dκ, Sκ
k = Sκ, k = 1, . . . , K.

9. Consider that xr, r ∈ Rk is generated from a distribution whose density is fx(· | uxk) in-

dependently and estimate the parameter uxk using maximum likelihood estimation. Then,

set uxk by this estimated value.

10. Define αk, k = 1, . . . , K as (6).

3.4 Merging components

Our method assumes that each neuron always emits similar fluorescent footprints in the movie

when it spikes. Therefore, if two spikes have similar fluorescence shapes but different lumi-

nescence levels, our method may mistakenly regard that these spikes as being generated from

different neurons even if there are emitted from same neuron. Such misassignment causes

overestimation of the number of neurons.

To avoid such a problem, we perform a merging procedure at each iteration along the

evidence lower bound maximization. Although this merging procedure does not always increase

the evidence lower bound, it enable us to obtain a good local optimum.

The following are the details of this merging procedure.

1. Define the set Rk, k = 1, . . . , K as

Rk =

{
r

∣∣∣∣∣ arg max
k′

E [zrk′ ] = k,
K∑
k=1

E [zrk] > ϵ

}
,

where ϵ is a sufficient small positive value. This Rk indicates the estimated spike occur-

rence indices of k-th neuron.

2. Choose components that satisfy #Rk ≥ 1 and calculate the distance of mκ
k for all two

combinations in the selected components. For example, the angle between two vectors

can be used for this distance.

3. Decide a threshold value and select the pair whose distance does not exceed this threshold.

Let i be the component of this pair with the larger number of spikes allocated, and let j
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be the other component. Then, update ζri, ζrj, r = 2, . . . R, which are the parameters of

q(z), as

ζri ← ζri + ζrj,

ζrj ← 0.

Given new q(z), also update (mκ
i , γ

κ
i , ν

κ
i , S

κ
i ) and (mκ

j , γ
κ
j , ν

κ
j , S

κ
j ) using (7).

4. Given new q(z), update αk, k = 1, . . . , K using (6).

3.5 Removing motion artifact

Our model sometimes detects false positive components due to brain motion artifacts occurred

in the experiment. Fig 1 are typical examples. CNMF imposes a regularization constraint

in the spatial domain along the optimization and also performs a discarding procedure to re-

move components whose estimated shape is different from a general cell shape. Conversely, our

method does not impose any constraints in the spatial domain, and it may regard rapid frac-

tions in the movie as spikes. Estimating motion artifacts as neurons activities is due to model

misspecification error; definitions of our generative model cannot distinguish them. Compo-

Fig 1: False positive components detected by our method.

nents corresponds to motion artifacts are obviously distinguishable. For example, pixel values

distribution of a true component has right heavy tail. Hence, calculating skewness from pixel

values enable us to remove such components.
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4 Application to spiking activities with constant rate

Our model assumes that spiking activities are modulated by some covariates. However, there

may be some neurons whose activities are independent from the focusing covariates and have

the constant firing rate along the experiment. Our model is also applicable in such case since the

kernel function used for expressing the tuning curve in our model can be uniform distribution.

For example, von Mises kernel used in Section 2.2 takes a constant value independent to stimulus

when τx → 0.

We generated a movie under the assumption that spikes are generated from the marked

homogeneous Poisson process with the constant rate. Fig 2 shows the estimation result. Al-

though there are no relationship between spike trains and the covariate, Gaussian kernel used

in our model approximates the constant rate function.
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Fig 2: Estimation results obtained by our method in the simulation study. (Upper left) Esti-
mated cell shape. (Upper right) True cell shape. (Bottom left) Tuning curve. The solid line
shows the estimated tuning curve, and the dashed line shows the true tuning curve with the
mean value closest to the estimated mean value µx

k. (Bottom right) Estimated spike train and
calcium fluorescence. Vertical lines indicate when spikes occurred; the upper lines indicate true
spikes, and the bottom lines indicate estimated spikes. The black line plot shows the external
stimulus. The green band shows the receptive field decided by the true µx and τx, and the blue
band shows the receptive field decided by the estimated values.
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