# **Supplementary Information**

A Staphylococcus pro-apoptotic peptide induces acute exacerbation of pulmonary fibrosis

D'Alessandro-Gabazza et al.



**Supplementary Figure 1. Criteria for scoring lung radiological findings and correlation of CT score with the Ashcroft fibrosis score and with the hydroxyproline content of the lungs. a**, Computed tomography (CT) was performed as described under methods. Criteria for scoring CT findings were as follows: score 1: normal findings; score 2, intermediate; score 3; mild fibrosis; score 4: intermediate; score 5, moderate fibrosis; score 6: intermediate; and score 7, severe fibrosis. The average of scores of six pulmonologists was taken as the CT score of an individual mouse. b, The Ashcroft fibrosis score and the hydroxyproline content were measured as described under methods. Male mice with 20 to 25 g of body weight and 10-week of age were used in the experiments. N=23 mice. The CT score was significantly correlated with the Ashcroft score (r=0.78; p<0.0001) and with the hydroxyproline content of the lungs (r=0.84; p<0.0001). Statistical analysis by Pearson-product moment correlation. The source data underlying Supplementary Fig 1b are provided in the Source Data file.



Supplementary Figure 2. Abnormal immune response in lung fibrotic tissue. The percentage of monocytes/macrophages (a), CD4Cd25 cells (b), T cells (c) and B cells (d) in lung fibrotic tissue from wild-type (WT) mice (n=4), transforming growth factor (TGF) $\beta$ 1 transgenic (TG) mice with (n=4) and without (n=4) fibrosis was counted by flow cytometry using specific antibodies as described under methods. Bars indicate the means ± S.D. Statistical analysis by ANOVA with Tukey's test. \*p<0.05, \*\*p<0.01. The source data underlying Supplementary Figs 2a-d are provided in the Source Data file.

| Immune cells (%)                   | WT mice          | TGFβ1 TG mice<br>without fibrosis | TGFβ1 TG mice<br>with fibrosis    |
|------------------------------------|------------------|-----------------------------------|-----------------------------------|
| Monocytes/Macrophages              | $25.00 \pm 1.28$ | $31.09 \pm \mathbf{3.48^*}$       | 39.30 ± 1.93**†                   |
| Granulocytes                       | 11.59 ± 1.18     | $11.26\pm0.89$                    | $12.54 \pm 1.10$                  |
| Dendritic cells                    | $7.00\pm0.30$    | $\boldsymbol{6.86\pm0.82}$        | $\textbf{7.17} \pm \textbf{0.70}$ |
| Total lymphocytes                  | $56.41 \pm 1.30$ | $50.80\pm2.73^{\star}$            | 41.00 ± 1.94**‡                   |
| B cells                            | 34.41 ±1.29      | $29.87 \pm 1.98^{\star}$          | 21.67 ± 0.76**‡                   |
| T cells                            | $16.33 \pm 1.03$ | $15.24 \pm 1.23$                  | $15.02\pm1.68$                    |
| Natural killer cells               | $5.27\pm0.51$    | $4.80\pm0.31$                     | $2.85 \pm 0.43^{**}$ ‡            |
| Natural killer T cells             | $0.40\pm0.11$    | $0.88\pm0.42$                     | $1.45\pm0.34*$                    |
| CD4 <sup>+</sup> T cells           | $9.44\pm0.18$    | $9.11\pm1.42$                     | $9.26\pm0.84$                     |
| CD8 <sup>+</sup> T cells           | $6.75\pm0.99$    | $\textbf{6.12} \pm \textbf{0.50}$ | $\boldsymbol{6.39 \pm 0.53}$      |
| CD4 <sup>+</sup> CD25 <sup>+</sup> | $0.85\pm0.14$    | $1.12\pm0.07$                     | $1.52 \pm 0.24^{**}$ †            |
| γ/δ T cells                        | $0.53\pm0.11$    | $0.52\pm0.11$                     | $0.74\pm0.10^*\dagger$            |
| B/T cells ratio                    | $2.12\pm0.19$    | $1.96\pm0.03$                     | $1.46 \pm 0.16^{**}$ †            |
| CD4/CD8 ratio                      | $1.43\pm0.25$    | $1.50\pm0.32$                     | $1.45\pm0.05$                     |
|                                    |                  |                                   |                                   |

Supplementary Table 1. Immune cells in lung tissue of each group of mouse

Data are the means  $\pm$  S.D. Number of cells are expressed as the percentage of total number of lung cells. Each mouse group with n=4. Statistical analysis by ANOVA with Tukey's test \*p<0.05 or \*\*p<0.01 vs WT mice; p<0.05 or p<0.05 vs TGF $\beta$ 1 TG mice without fibrosis. TGF $\beta$ 1, transforming growth factor $\beta$ 1. WT, wild type. Source data are provided in the Source Data file.

| Variables                   | WT                     | TGFβ1 TG<br>without fibrosis | TGFβ1 TG<br>with fibrosis      |  |  |
|-----------------------------|------------------------|------------------------------|--------------------------------|--|--|
| mRNA relative level         |                        |                              |                                |  |  |
| Ctfr                        | $0.965\pm0.057$        | $0.720 \pm 0.118$            | $0.492 \pm 0.135^{*}$ †        |  |  |
| Scnn1γ                      | $0.910\pm0.117$        | $0.817 \pm 0.117$            | $0.495 \pm 0.135^{*}$ †        |  |  |
| Scnn1β                      | $1.198 \pm 0.212$      | $0.971 \pm 0.276$            | $0.612 \pm 0.094 *$            |  |  |
| Scnn1 $\alpha$              | $0.100\pm0.317$        | $0.995 \pm 0.167$            | $0.845 \pm 0.218 *$            |  |  |
| ΤΝFα                        | $0.486\pm0.046$        | $0.486\pm0.102$              | $0.893\pm0.084^*\dagger$       |  |  |
| IFNγ                        | $0.745\pm0.161$        | $0.540 \pm 0.078$            | $1.162\pm0.187^*\dagger$       |  |  |
| Periostin                   | $0.860 \pm 0.1396$     | $0.1396 \pm 0.911$           | $1.099\pm0.027$                |  |  |
| Ctgf                        | $0.822\pm0.103$        | $0.734 \pm 0.039$            | $1.186 \pm 0.026*$ †           |  |  |
| mTGFβ1                      | $0.558 \pm 0.046$      | $0.520 \pm 0.054$            | $0.792\pm0.067^*\dagger$       |  |  |
| Vegf                        | 0.630 0.114            | 0.542 0.181                  | 1.020 0.263*†                  |  |  |
| INOS                        | 0.718 0.159            | 0.755 0.097                  | 1.235 0.057*†                  |  |  |
| Mcp-1                       | $0.695 \pm 0.154$      | 0.754 ± 0.109                | $1.040 \pm 0.065^{*}$ †        |  |  |
| αSMA                        | $0.740\pm0.078$        | $0.666 \pm 0.093$            | $0.837\pm0.140$                |  |  |
| Fn1                         | 0.801 ± 0.096          | $0.678 \pm 0.092$            | $1.097 \pm 0.129^{*}$ †        |  |  |
| Col1α1                      | $0.759 \pm 0.074$      | $0.493\pm0.080$              | $1.069 \pm 0.220*$ †           |  |  |
| Plasma active TGF $\beta$ 1 | 97.542 ± 19.136        | $246.165 \pm 94.132$         | $365.897 \pm 58.751 *$         |  |  |
| Plasma total TGF $\beta$ 1  | $1521.586 \pm 645.522$ | $3858.940 \pm 1973.896$      | $8086.258 \pm 838.130*\dagger$ |  |  |

Supplementary Table 2. Expression of fibrotic factors and sodium channels in lung tissues from wild-type and transgenic mice with and without lung fibrosis

Data are expressed as the means  $\pm$  S.D. Each mouse group with n=4. Statistical analysis by ANOVA with Tukey's test. \*p<0.05 vs WT; †p<0.05 vs TGF $\beta$ 1 TG mouse without fibrosis. Ctfr, cystic fibrosis transmembrane conductance regulator; Scnn1 $\gamma$ , sodium channel epithelial 1  $\gamma$  subunit; Scnn1 $\beta$ , sodium channel epithelial 1  $\beta$  subunit; Scnn1 $\alpha$ , sodium channel epithelial 1  $\alpha$  subunit; TNF $\alpha$ , tumor necrosis factor $\alpha$ ; IFN $\gamma$ , interferon $\gamma$ ; Ctgf, connective tissue growth factor; mTGF $\beta$ 1, mouse transforming growth factor  $\beta$ 1; Vegf, vascular epithelial growth factor; iNOS, inducible nitric oxide synthase; Mcp-1, monocyte chemoattractant protein-1;  $\alpha$ SMA,  $\alpha$ smooth muscle actin; Fn1, fibronectin 1; Col1 $\alpha$ 1, collagen 1 $\alpha$ 1. WT, wild-type; TG, transgenic. Source data are provided in the Source Data file.

Lung tissue Nat Plasma Total Toff<sup>11</sup> Plasma active Taffit Collat mRNA Lung tissue Na<sup>+</sup> -> 1.0 Ent mRNA 0.7\* Plasma Total Tgfβ1 — 1.0 .....SMA mRNA Plasma active Tgf $\beta$ 1  $\rightarrow$  0.7\* 0.9\* 1.0 Periostin mRNA Col1a1 mRNA --> 0.6\* 0.4 0.3 1.0 Ctof mRNA Fn1 mRNA --- 0.6\* 0.5 0.4 0.9\* 1.0 MCP-1 mRNA α-SMA mRNA -- 0.5 0.2 0.3 0.8<sup>\*</sup> 0.6<sup>\*</sup> 1.0 In mRNA Periostin mRNA → 0.7\* 0.6\* 0.5 0.5 0.6\* 0.5 1.0 THE MRNA Ctgf mRNA → 0.7\* 0.6\* 0.5 0.8\* 0.7\* 0.4 0.6\* 1.0 mT9fp1 mRNA Mcp-1 mRNA → 0.6\* 0.6\* 0.6\* 0.5 0.5 0.3 0.4 0.5 1.0 VegfmRNA Ifn-γ mRNA → 0.7<sup>\*</sup> 0.4 0.3 0.9<sup>\*</sup> 0.9<sup>\*</sup> 0.7<sup>\*</sup> 0.6<sup>\*</sup> 0.8<sup>\*</sup> 0.4 1.0 INOS MRNA Tnf- $\alpha$  mRNA  $\rightarrow$  0.5 0.6\* 0.5 0.6\* 0.6\* 0.3 0.5 0.7\* 0.8\* 0.6\* 1.0 Scinita mRNA mTgf $\beta$ 1 mRNA  $\rightarrow$  0.7\* 0.7\* 0.6\* 0.8\* 0.9\* 0.6\* 0.5 0.7\* 0.7\* 0.8\* 0.7\* 1.0 Schn18 mRNA Vegf mRNA - 0.3 0.4 0.4 0.3 0.3 0.1 0.1 0.3 0.6\* 0.4 0.7\* 0.6\* 1.0 ScontymenA iNOS mRNA → 0.4 -0.7\* -0.7\* 0.5 0.5 0.4 0.3 0.5 -0.9\* 0.5 0.9\* 0.7\* 0.7\* 1.0 Ctfr mRNA Scnn1α mRNA → -0.5 -0.6<sup>\*</sup> -0.5 -0.2 -0.3 -0.1 -0.1 -0.3 -0.3 -0.2 -0.3 -0.2 -0.1 -0.4 1.0 Monocytes munuuyiesi macrophages Scnn1 $\beta$  mRNA  $\rightarrow$  -0.6\*-0.6\*-0.4 -0.4 -0.4 -0.1 -0.4 -0.5 -0.6\*-0.5 -0.5 -0.3 -0.1 -0.5 0.7\* 1.0 Total Wmphocytes oloCD25+CD+ 1 cells B Wmphocytes Monocytes/ → 0.7<sup>\*</sup> 0.9<sup>\*</sup> 0.8<sup>\*</sup> 0.4 0.4 0.4 0.5 0.5 0.8<sup>\*</sup> 0.4 0.7<sup>\*</sup> 0.6<sup>\*</sup> 0.6<sup>\*</sup> 0.9<sup>\*</sup>-0.6<sup>\*</sup> -0.6<sup>\*</sup> -0.7<sup>\*</sup> -0.8<sup>\*</sup> 1.0 macrophages Total lymphocytes  $\rightarrow$  -0.7\* -0.8\* -0.7\* -0.4 -0.5 -0.4 -0.6\* -0.4 -0.8\* -0.4 -0.7\* -0.7\* -0.5 -0.8\* 0.6\* 0.6\* 0.7\* 0.8\* -0.9\* 1.0 B lymphocytes  $\rightarrow$  -0.7\* -0.8\* -0.8\* -0.4 -0.5 -0.4 -0.6\* -0.5 -0.7\* -0.4 -0.6\* -0.5 -0.8\* 0.6\* 0.6\* 0.7\* 0.8\* -0.9\* 0.9\* 1.0 CD4+CD25+T cells → 0.6\* 0.8\* 0.7\* 0.3 0.4 0.2 0.6\* 0.5 0.8\* 0.3 0.7\* 0.5 0.3 0.7\*-0.6\* -0.7\*-0.7\* -0.8\* 0.8\* -0.9\* -0.9\* 1.0

Supplementary Figure 3. The level of sodium correlates with the number of immune cells, and with the expression of fibrotic markers and sodium channels in lung fibrotic tissues. The concentration of sodium, the expression of fibrotic factors, pro-fibrotic cytokines, chemokines, angiogenic factors and the percentage of immune cells in lung tissue were assessed in lung tissue from wild-type (n=4) and transforming growth factor (TGF) $\beta$ 1 transgenic (TG) mice with (n=4) and without (n=4) lung fibrosis. Spearman correlation r values are shown. Ctfr, cystic fibrosis transmembrane conductance regulator; Scnn1 $\alpha$ , sodium channel epithelial 1  $\alpha$  subunit; Scnn1 $\beta$ , sodium channel epithelial 1  $\beta$  subunit; Scnn1 $\gamma$ , sodium channel epithelial 1  $\gamma$  subunit; TNF $\alpha$ , tumor necrosis factor $\alpha$ ; IFN $\gamma$ , interferon $\gamma$ ; Ctgf, connective tissue growth factor; mTGF $\beta$ 1, mouse transforming growth factor  $\beta$ 1; Vegf, vascular epithelial growth factor; iNOS, inducible nitric oxide synthase; Mcp-1, monocyte chemoattractant protein-1;  $\alpha$ SMA,  $\alpha$ smooth muscle actin; Fn1, fibronectin 1; Co1 $\alpha$ 1, collagen 1 $\alpha$ 1. Statistical analysis by Spearman correlation. \*p<0.05. Source data are provided in the Source Data file.



Supplementary Figure 4. The pro-apoptotic factor in culture supernatant from bacteria is heat-stable. Culture supernatant from bacteria was incubated at 85°C for 15 min before adding to the culture medium of A549 alveolar epithelial cells at 1/10 dilution.. **a,b,** Flow cytometry of A549 cells was performed after staining with propidium iodide and annexin V. Each group with n=3. Bars indicate the means  $\pm$  S.D. Statistical analysis by ANOVA with Newman-Keuls test. \*p<0.001, vs medium; †p<0.05 vs unheated supernatant from *Staphylococcus nepalensis* (strain CNDG) or from strain 6. **c,d**, Activation of caspase-3 by the culture supernatant as evaluated by Western blotting after stimulating A549 alveolar epithelial cells in the presence of medium or supernatant of the mixture of *Staphylococcus* spp. or *Staphylococcus nepalensis* strain CNDG. Each group with n=3. Bars indicate the means  $\pm$  S.D. Statistical analysis by ANOVA with Newman-Keuls test. \*p<0.05 vs medium. The source data underlying Supplementary Figs 4b,c,d are provided in the Source Data file.



**Supplementary Figure 5. Schematic diagram describing the sample fractionation steps and the bioactivity of each fraction.** Fractionation of the culture supernatant was performed as described under methods. The pro-apoptotic activity of the fraction on A549 alveolar epithelial cells was evaluated by flow cytometry and it is indicated as bioactivity (+) or no bioactivity (-). Source data are provided in the Source Data file.



Supplementary Figure 6. Pro-apoptotic activity of each fraction, obtained during fractionation of bacterial supernatant from *Staphylococcus nepalensis*, on A549 alveolar epithelial cells. Fractionation of the culture supernatant was performed as described under methods. The pro-apoptotic activity of the fraction was evaluated by flow cytometry. Each group with n=3. Bars indicate the means  $\pm$  S.D. Statistical analysis by ANOVA with Tukey's test. \*p<0.001 vs medium. Source data are provided in the Source Data file.



Supplementary Figure 7. Ethanol, methanol and acetonitrile fractions of the culture supernatants of *Staphylococcus nepalensis* strain CNDG induces apoptosis of lung epithelial cells. A549 lung epithelial cells were cultured in the presence of each fraction for 48h and apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. DAPI, 4',6-diamidino-2-phenylindole. Representative microphotographs out of two experiments are shown. Scale bars indicate 100 µm.





Supplementary Figure 8. The pro-apoptotic activity of the fractions obtained from the supernatants of cultured *Staphylococcus nepalensis* strain CNDG is sensitive to proteinase K treatment. Culture supernatant and ethanol, methanol or acetonitrile fractions of the culture supernatant from *Staphylococcus nepalensis* were incubated in the presence of 200  $\mu$ g/ml of proteinase K (PK) at 37 °C before adding to the culture medium of A549 alveolar epithelial cells at 1/10 dilution. Each group with n=3. **a**,**b**, Flow cytometry of A549 alveolar epithelial cells was performed after staining with propidium iodide and annexin V. Bars indicate the means  $\pm$  S.D. Statistical analysis by ANOVA with Tukey's test. \*p<0.01. Abbreviations: PK, proteinase K. The source data underlying Supplementary Fig 8b are provided in the Source Data file.



**Supplementary Figure 9. Silver staining of the fraction showing pro-apoptotic activity.** Five micrograms of the high performance liquid chromatography fraction (fraction 3) with biological activity was loaded on a 15% sodium dodecyl sulfate polyacrylamide gel and silver-staining was performed using a commercial kit. Representative microphotographs out of three experiments with similar results are shown.



Supplementary Figure 10. Synthetic peptide prepared by a different manufacturer (ThermoFisher Scientific, Waltham, MA) induces dose-dependent apoptosis of alveolar epithelial cells, and the apoptotic activity of corisin was significantly more potent than equal concentration of supernatant protein. a,b, Flow cytometry analysis of A549 alveolar epithelial cells cultured for 48h in DMEM medium containing varying concentration of corisin. Each group with n=3. Bars indicate the means  $\pm$  S.D. Statistical analysis by ANOVA with Tukey's test. \*p<0.001 vs control (0 µg/ml); †p<0.001 vs 0.5 µg/ml of corisin. c,d,e, Flow cytometry analysis of A549 alveolar epithelial cells cultured for 48h in DMEM medium containing varying concentrations of corisin (5 or 10 µg/ml), supernatant protein from mixed *Staphylococcus* spp. or strain 6 (10 or 100 µg/ml), or from *Staphylococcus nepalensis* strain CNDG or strain 8 (10 or 100 µg/ml). Each group with n=3. Bars indicate the means  $\pm$  S.D. Statistical analysis by ANOVA and Tukey's test.  $\pm$ p<0.05 vs saline or scrambled peptide; \$p<0.001 vs supernatant protein (10 and 100 µg/ml) from mixed *Staphylococcus* spp. or *Staphylococcus nepalensis*. The source data underlying Supplementary Figs 10b,e are provided in the Source Data file.



Supplementary Figure 11. The pro-apoptotic peptide (corisin) but not its scrambled sequence induces apoptosis of normal human bronchial epithelial cells. a,b, Flow cytometry analysis of normal human bronchial epithelial (NHBE) cells cultured for 48h in DMEM medium containing 10  $\mu$ M of corisin or of its scrambled sequence. Each treatment group with n=4. Bars indicate the means  $\pm$  S.D. Statistical analysis by ANOVA with Tukey's test. \*p<0.001. c, Western blotting of lysates of NHBE cells treated with corisin or scrambled peptide. Each treatment group with n=4. Representative blot of each treatment group is shown. d,e, The intensity of the Western blott membrane bands was quantified by densitometry using the ImageJ software. Each treatment group with n=4. Bars indicate the means  $\pm$  S.D. Statistical analysis by one-tailed Mann-Whitney U test. \*p<0.05. The source data underlying Supplementary Figs 11b,d,e are provided in the Source Data file.



**Supplementary Figure 12. The synthetic pro-apoptotic peptide (corisin) is heat-stable.** The synthetic corisin (5  $\mu$ M; Peptide Institute Incorporation) or scrambled peptide (5  $\mu$ M; Peptide Institute Incorporation) was incubated at 85°C for 15 min before adding to the culture medium of A549 alveolar epithelial cells for 48h. **a,b**, Flow cytometry of A549 alveolar epithelial cells was performed after staining with propidium iodide and annexin V. Each treatment group with n=3. Bars indicate the means ± S.D. Statistical analysis by ANOVA with Newman-Keuls test. \*p<0.001 vs unheated or heated scrambled peptide. **c**, In a separate experiment, The synthetic corisin (5  $\mu$ M) or scrambled was incubated at 85°C for 15 min before adding to the culture medium of A549 alveolar epithelial cells for 48h, and the cells were collected and prepared for Western blotting of cleaved caspase-3,  $\beta$  actin, total Akt (t-Akt), phosphorylated Akt (p-Akt). Each treatment group with n=3. Representative blot of each treatment group is shown. **d,e**, The intensity of the Western blot membrane bands was quantified by densitometry using the ImageJ software. Each treatment group with n=3. Bars indicate the means ± S.D. Statistical analysis by ANOVA with Newman-Keuls test. \*p<0.01 vs saline. The source data underlying Supplementary Figs 12b,c,d,e are provided in the Source Data file.



Supplementary Figure 13. The apoptotic peptide (corisin) does not induce apoptosis of fibroblast, vascular endothelial cells or T cells. a,b, Flow cytometry analysis of HFL1 lung fibroblasts cultured for 48h in DMEM medium containing 10 µg/ml corisin. Each group with n=4. c,d, Flow cytometry analysis of human umbilical vein endothelial cells cultured for 48h in DMEM medium containing 10 µg/ml corisin. Each group with n=4. e,f, Flow cytometry analysis of human Jurkat T cells cultured for 48h in DMEM medium containing 10 µg/ml corisin. Each treatment group with n=4. Bars indicate the means  $\pm$  S.D. Statistical analysis by ANOVA with Tukey's test. The source data underlying Supplementary Figs 13b,d,f are provided in the Source Data file.



**Supplementary Figure 14. A band at the corresponding molecular weight of corisin can be observed in Western blotting of mouse lung tissue samples and culture supernatant of** *Staphylococcus nepalensis* using the corisin antibody. Five micrograms of lung tissue homogenate prepared from wild type and transforming growth factor (TGF)β1 transgenic (TG) mice (**a**), and several volumes of culture supernatant from *Staphylococcus nepalensis* (**b**) concentrated by precipitation with trichloroacetic acid were loaded on a 5-15% gradient sodium dodecyl sulfate polyacrylamide gel, and then Western blotting performed using anti-corisin antibody. Representative microphotographs out of two experiments with similar results are shown. Synthetic corisin was used as control. MW, molecular weight in kDa. Arrows indicate the band of corisin.



Supplementary Figure 15. Antibody against corisin inhibits the pro-apoptotic activity of corisin and of the supernatant of Staphylococcus nepalensis strain CNDG. a,b, A549 alveolar epithelial cells (2 x 10<sup>5</sup> cells/well) were cultured in 12-well plates and stimulated with 5 µM corisin in the presence of saline (Saline/corisin), 10 µg/ml control rabbit IgG (Control IgG/corisin) or 10 µg/ml rabbit anti-corisin IgG(Anti-corisin IgG/corisin) for 48h. Cells cultured in the presence of saline and treated with saline (Saline/saline), control rabbit IgG (Control IgG/saline) or rabbit ant-corisin IgG (Anti-corisin IgG/saline) were used as controls. Each treatment group with n=3 (triplicates). Bars indicate the means  $\pm$  S.D. Statistical analysis by ANOVA with Tukey's test. \*p<0.001. c.d. A549 alveolar epithelial cells cultured in 12-well plates were stimulated with the 1/10 dilution of the culture supernatant of Staphylococcus nepalensis strain CNDG in the presence of saline (Saline/supernatant of Staphylococcus nepalensis strain CNDG), 10 µg/ml control rabbit IgG (Control IgG/supernatant of Staphylococcus nepalensis strain CNDG) or 10 µg/ml rabbit anti-corisin IgG (Anti-corisin IgG/supernatant of Staphylococcus nepalensis strain CNDG) for 48h. Cells cultured in medium and treated with saline (Saline/medium), control rabbit IgG (Control IgG/medium) or rabbit ant-corisin IgG (Anti-corisin IgG/medium) were used as controls. Each treatment group with n=3. Flow cytometry of A549 cells was performed after staining with propidium iodide and annexin V. Bars indicate the means ± S.D. Statistical analysis by ANOVA with Tukey's test. \*p<0.001. The source data underlying Supplementary Figs 15b,d are provided in the Source Data file.



Supplementary Figure 16. The full-length transglycosylase 351 containing the corisin sequence has no apoptotic activity. a,b, Flow cytometry analysis of A549 alveolar epithelial cells cultured for 48h in DMEM medium containing 10  $\mu$ g/ml corisin, unheated or heated His-tagged recombinant transglycosylase. Each treatment group with n=3. Bars indicate the means ± S.D. Statistical analysis by ANOVA with Tukey's test. \*p<0.001. c, Electrophoresis using sodium dodecyl sulfate polyacrylamide gel (10-20%) and silver-staining of thrombin-treated or thrombin-untreated His-tagged recombinant transglycosylase 351 from *Staphylococcus nepalensis* strain CNDG. Representative microphotographs out of two experiments with similar results are shown. d,e, Flow cytometry analysis of A549 alveolar epithelial cells cultured for 48h in DMEM medium containing 10  $\mu$ g/ml corisin, His-tagged or Tag-free recombinant transglycosylase. Each treatment group with n=3. Bars indicate the means ± S.D. Statistical analysis by ANOVA with Tukey's test. \*p<0.001. The source data underlying Supplementary Figs 16b,e are provided in the Source Data file.



#### Supplementary Figure 17. CT findings in mice used for intra-tracheal instillation of corisin, scrambled peptide or saline. a,b,

Computed tomography (CT) and CT fibrosis scoring of wild-type (WT) mice (n=3) and transforming growth factor (TGF) $\beta$ 1 transgenic (TG) mice before treatment with saline (n=5), scrambled peptide (n=4) or corisin (n=5) were performed as described under methods. Bars indicate the means ± S.D. Statistical analysis by ANOVA with Tukey's test. \*p<0.05. No statistical difference (p=0.9) between TGF $\beta$ 1 TG/SAL, TGF $\beta$ 1 TG/scrambled peptide, and TGF $\beta$ 1 TG/corisin groups. The source data underlying Supplementary Fig 17b are provided in the Source Data file. **TGF**β1 **TG/Atb/Staph.** *nepalensis* group (before intratracheal bacteria)

a



TGF<sub>β1</sub> TG/Staph. epidermidis group (before intratracheal bacteria)



TGFβ1 TG/Saline group (before intratracheal bacteria)

Saline Staph. epidermidis Staph. nepalensis

7

b

Supplementary Figure 18. CT findings in mice used for intra-tracheal instillation of *Staphylococcus nepalensis*, *Staphylococcus epidermidis* or saline. a,b, Computed tomography (CT) and CT fibrosis scoring of transforming growth factor  $(TGF)\beta1$  transgenic (TG) mice before intra-tracheal instillation of *Staphylococcus nepalensis* (n=6), *Staphylococcus epidermidis* (n=6) or saline (n=4) as described under methods. Bars indicate the means  $\pm$  S.D. Statistical analysis by ANOVA with Tukey's test. No statistical difference (p=0.5) between all mouse groups The source data underlying Supplementary Fig 18b are provided in the Source Data file.



Supplementary Figure 19. The synthetic peptide containing the sequence of the transglycosylase segment (corisin) from *Staphylococcus nepalensis* strain CNDG, but not its scrambled peptide or the synthetic peptide containing the sequence of the transglycosylase segment from Staphylococcus epidermidis, induces apoptosis of alveolar epithelial cells. a,b, Flow cytometry analysis of A549 alveolar epithelial cells cultured for 24h in DMEM medium containing 10  $\mu$ M of synthetic peptide containing the sequence of the transglycosylase segment (corisin) from *Staphylococcus nepalensis* strain CNDG (IVMPESSGNPNAVNPAGYR), its scrambled peptide (NRVYNGPAASPVSEGMPIN) or synthetic peptide of the transglycosylase segment from *Staphylococcus epidermidis* (ATCC14990) (IIARESNGQLHARNASGAA). Each treatment group with n=3 (triplicates). Bars indicate the means ± S.D. Statistical analysis by ANOVA with Tukey's test. \*p<0.001. The source data underlying Supplementary Fig 19b are provided in the Source Data file.



Supplementary Figure 20. Deterioration of radiological findings in germ-free TGF $\beta$ 1 TG mice after intra-tracheal instillation of *Staphylococcus nepalensis*. a,b, Computed tomography (CT) and CT fibrosis scoring of transforming growth factor (TGF) $\beta$ 1 transgenic (TG) mice were performed before and after intra-tracheal instillation of saline (n=4), *Staphylococcus epidermidis* (n=6) or *Staphylococcus nepalensis* (n=6) in germ-free TGF $\beta$ 1 TG mice as described under methods. Bars indicate the means ± S.D. Statistical analysis by two-tailed Mann-Whitney U test. \*p<0.05. The source data underlying Supplementary Fig 20a are provided in the Source Data file.

| Clinical<br>parameters    | No of patients<br>and mean values |
|---------------------------|-----------------------------------|
| No of Japanese patients   | 34                                |
| Sex                       |                                   |
| Male                      | 29                                |
| Female                    | 5                                 |
| Age (years-old)           | $71.7 \pm 6.6$                    |
| Smoking history           |                                   |
| Current smoker            | 2                                 |
| Ex-smoker                 | 25                                |
| Never smoker              | 7                                 |
| Lung function test        |                                   |
| VC (L)                    | $\textbf{2.7} \pm \textbf{0.7}$   |
| VC (% predicted)          | $80.8\pm17.3$                     |
| FVC (L)                   | $\textbf{2.7} \pm \textbf{0.7}$   |
| FVC (% predicted)         | $83.3\pm18.4$                     |
| FEV1 (L)                  | $\textbf{2.1}\pm\textbf{0.6}$     |
| FEV1/FVC (%)              | $78.8 \pm 10.9$                   |
| Rest SpO <sub>2</sub> (%) | $95.6\pm2.2$                      |
| Therapy                   |                                   |
| None                      | 32                                |
| Nintedanib                | 2                                 |
|                           |                                   |

Supplementary Table 3. IPF patients characteristics

Data are the mean  $\pm$  S.D. IPF, idiopathic pulmonary fibrosis; VC, vital capacity; FEV1, forced expiratory volume in one second; FVC, forced volume vital capacity; L, liters; SpO<sub>2</sub>, arterial oxygen saturation by pulse oximetry. Source data are provided in the Source Data file.



Supplementary Figure 21. Phylogenetic analysis of the Staphylococcus nepalensis strain CNDG transglycosylases and their relatives in the genus Staphylococcus. A phylogenetic tree based on amino acid sequences aligned using MUSCLE alignment was constructed by the Neighbor joining method. Bootstraps were performed with 1,000 replicates. The GenBank accession numbers in this tree are as follows: CLUSTER IsaA-1 [WP 112369066.1 (transglycosylase, S. arlettae), WP 061853755.1 (hypothetical protein, S. kloosii), WP 107393111.1 (transglycosylase, S. auricularis), WP 049409534.1 (hypothetical protein, S. pettenkoferi), WP 103371985.1 (transglycosylase, S. argensis), WP 046466985.1 (transglycosylase, S. pasteuri), COE35810.1 (transglycosylase, Streptococcus pneumoniae), WP 002467055.1 (hypothetical protein, S. warneri), WP 050969684.1 (transglycosylase, Streptococcus pneumoniae type N), WP 002449188.1 (hypothetical protein, S. hominis), WP 103166037.1 (transglycosylase, S. devriesei), WP 053024542.1 (transglycosylase, S. haemolyticus), WP 103328722.1 (transglycosylase, S. petrasii), WP 126565453.1 (transglycosylase, S. carnosus), WP 107511677.1 (transglycosylase, S. gallinarum), WP 069823097.1 (transglycosylase, S. succinus), WP 069833173.1 (transglycosylase, S. equorum), WP 057513458.1 (hypothetical protein, S. sp. NAM3COL9), WP 002506616.1 (hypothetical protein, S. sp. OJ82), WP 107552346.1 (transglycosylase, S. xylosus), WP 069827045.1 (transglycosylase, S. saprophyticus), WP 099091381.1 (transglycosylase, S. edaphicus), WP 073344326.1 (transglycosylase, S. cohnii), WP 119487699.1 (transglycosylase, S. nepalensis), CNDG 8p 00351 (putative transplycosylase IsaA-1, S. nepalensis)] CLUSTER IsaA-2 [SUK04795.1 SceA (S. aureus), WP 105995336.1 (hypothetical protein, S. agnetis), WP 105986821.1 (hypothetical protein, S. chromogenes), WP 009384111.1 (hypothetical protein, S. massiliensis), WP 126510217.1 (transglycosylase, S. epidermidis), WP 049407882.1 (hypothetical protein, S. pettenkoferi), WP 103371892.1 (hypothetical protein, S. argensis), WP 061853631.1 (hypothetical protein, S. kloosii), WP 107376802.1 (hypothetical protein, S. arlettae), WP 022791177.1 LysM peptidoglycan-binding domain-containing protein (Weissella halotolerans), WP 105993143.1 (hypothetical protein, S. simulans), WP 114602723.1 (hypothetical protein, S. sp. EZ-P03), WP 095089569.1 (hypothetical protein, S. stepanovicii), WP 017000663.1 (hypothetical protein, S. lentus), WP 119634381.1 (hypothetical protein, S. fleurettii), WP 126476519.1 (hypothetical protein, S. schleiferi), WP 107573021.1 (hypothetical protein, S. sciuri), WP 069822945.1 (hypothetical protein, S. succinus), WP 119484130.1 (hypothetical protein, S. gallinarum), WP 099090334.1 (hypothetical protein, S. edaphicus), WP 107558872.1 (hypothetical protein, S. xylosus), WP 069995535.1 (hypothetical protein, S. saprophyticus), WP 057513315.1 (hypothetical protein, S. sp. NAM3COL9), WP 069817445.1 (hypothetical protein, S. equorum), WP 107384366.1 (hypothetical protein, S. cohnii), CNDG 8p 00513 (putative transglycosylase IsaA-2, S. nepalensis), WP 096808504.1 (hypothetical protein, S. nepalensis)] CLUSTER SceD-1 [WP 101118359.1 (transglycosylase, S. succinus), WP 107530874.1 (transglycosylase, S. xylosus), WP 011302117.1 transglycosylase SceD 1 (S. saprophyticus), WP 105873943.1 (transglycosylase, S. cohnii), WP 107644182.1 (transglycosylase, S. nepalensis), CNDG 8p 00157 (putative transglycosylase SceD-1, S. nepalensis), WP 071564462.1 (transglycosylase, S. equorum)] CLUSTER SceD-2 [WP 070812670.1 (transglycosylase, S. sp. HMSC034G07), WP 119486153.1 (transglycosylase, S. gallinarum), WP 047504891.1 (transglycosylase, S. sp. ZWU0021), WP 057513650.1 (transglycosylase, S. sp. NAM3COL9), WP 096808177.1 (transglycosylase, S. nepalensis), CNDG 8p 00159 (putative transglycosylase SceD-2, S. nepalensis)] CLUSTER SceD-3 [WP 107564333.1 (transglycosylase, S. succinus), WP 115347167.1 (transglycosylase, S. saprophyticus), WP 107557548.1 (transglycosylase, S. xylosus), WP 099091190.1 (transglycosylase, S. edaphicus), WP 064263215.1 (transglycosylase, S. cohnii), CNDG 8p 00161 (putative transglycosylase SceD-3, S. nepalensis), WP 107644349.1 (transglycosylase, S. nepalensis)] CLUSTER SceD-4 [WP 119569949.1 (transglycosylase, S. succinus), WP 107385877.1 (transglycosylase, S. cohnii), CNDG 8p 00845 (putative transglycosylase SceD-4, S. nepalensis), WP 096808795.1 (transglycosylase, S. nepalensis)]. WP 050969685.1 (transglycosylase, Streptococcus pneumoniae type N), YP 501340.1 (transglycosylase, S. aureus subsp. aureus NCTC 8325), WP 046206716.1 (transglycosylase, S. cohnii subs. cohnii).

|    | C | onsensus     |                   |                   | SV-A-F           | GGT-A-W    | IV-PESSGGP                 | PNAVNPGY                  | -GLGQTKES-WG               | I-GSVQTKO          | GM-NYARYGSAA               | -FRG         |     |
|----|---|--------------|-------------------|-------------------|------------------|------------|----------------------------|---------------------------|----------------------------|--------------------|----------------------------|--------------|-----|
|    | W | P_002467055  | [Staph.           | warneri]          | SSASTGGSTKAQFLAN | GGTEEAWN7  | IVMPES <mark>G</mark> GNP  | PNAVNP <mark>-</mark> AGY | RGLGQTMES-WG               | I-GSVASQTKO        | GMLNYANSRYGSLSNAI          | AFRQSHG      | 244 |
|    | c | OE35810      | [Strept.          | . pneumoniae]     | SSASTGGSTKAQFLAN | GGTEEAWN7  | IVMPES <mark>G</mark> GNP  | PNAVNP <mark>-</mark> AGY | RGLGQTMES-WG               | I-GSVASQTKO        | GMLNYANSRYGSLSNAI          | AFRQSHG      | 245 |
|    | W | P_050969684  | [Strept           | . pneumoniae]     | SSASTGGSTKAQFLAN | GGTEEAWN7  | IVMPES <mark>G</mark> GNP  | PNAVNP <mark>-</mark> AGY | RGLGQTMES-WG               | I-GSVASQTKO        | GMLNYANSRYGSLSNAI          | AFRQSHG      | 244 |
|    | W | P_046466985  | [Staph.           | pasteuri]         | SSASTGGSTKAQFLAN | GGTEAAWN7  | IVMPES <mark>G</mark> GNP  | NAVNP-AGY                 | R <mark>GLGQTKES-WG</mark> | S-GSVASQTKO        | GMLNYANSRYGSLSSAI          | AFRQSHG      | 256 |
|    | W | P_049409534  | [Staph.           | pettenkoferi]     | SASSAGGSVKAQFLAN | GGTEAAWNS  | I IMPES <mark>G</mark> GNP | NIVNP-YGY                 | SGLGQTKEA-WG               | K-GSVAQQTKO        | GFLNYVNQRYGSIDNAIN         | NFRSTHG      | 248 |
|    | W | P_103371985  | [Staph.           | argensis]         | SASTSGGSVKAQFLAN | GGTEAAWNS  | I IMPES <mark>G</mark> GNP | NIVNP-YGY                 | SGLGQTKEA-WG               | K-GSVAQQTKO        | GFLNYVNQRYGSIDNAIN         | NFRNNNG      | 248 |
|    | W | P_107393111  | [Staph.           | auricularis]      | APASTGGSVKSQFLAA | GGNEAMWNZ  | IVLPES <mark>G</mark> GNP  | NAVNP-AGY                 | RGLGQTMES-WG               | I-GSVANQTKO        | GMLNYAQQRYGSVDAAIA         | AFRANHG      | 252 |
|    | W | P_103328722  | [Staph.           | petrasii]         | QSASTGGSVKSQFLAN | GGTEAAWNZ  | IVMPES <mark>G</mark> GNP  | NAVNP-YGY                 | RGLGQTMES-WG               | T-GSVAQQTKO        | MINYANSRYGSMDNAI           | AFRASHG      | 239 |
|    | W | P_126565453  | [Staph.           | carnosus]         | AASSTGGSVKSQFLAN | GGTEAAWNZ  | IVMPES <mark>G</mark> GNP  | NAVNP-YGY                 | RGLGQTMES-WG               | I-GSVAQQTKO        | MINYANNRYGSLDNAI           | AFRASHG      | 244 |
|    | W | P_103166037  | [Staph.           | devriesei]        | SSASTGGSVKAQFLAN | GGTEAAWNZ  | IVMPES <mark>G</mark> GNP  | PNAVNP-LGY                | RGLGQTKES-WG               | S-GSVASQTKO        | GLINYANSRYGSLSNAI          | AFRSSHN      | 247 |
|    | W | P_053024542  | [Staph.           | haemolyticus]     | SSASTGGSVKAQFLAN | GGTEAAWNZ  | IVMPES <mark>G</mark> GNP  | PNAVNP-AGY                | RGLGQTMES-WG               | I-GSVASQTKO        | MINYANSRYGSLDAAI           | AFRANNG      | 234 |
| 1  | W | P_002449188  | [Staph.           | hominis]          | STASTGGSVKAQFLAN | GGTEAAWNZ  | IVMPES <mark>G</mark> GNP  | PNAVNP-IGY                | RGLGQTKEA-WG               | I-GSVATQTQC        | MVNYAKSRYGSWDAAIA          | AFRQGHG      | 240 |
| or | W | P_069827045  | [Staph.           | saprophyticus]    | SAASTGGSVKAQFLAA | GGSEAMWNS  | IVLPESSGNP                 | PNAVNP-AGY                | RGLGQTKES-WG               | I-GSVADQTKO        | <b>MLNYAEQRYGSVDAALS</b>   | SFRASHG      | 246 |
| er | W | P_099091381  | [Staph.           | edaphicus]        | SAASTGGSVKAQFLAA | GGSEAMWNS  | IV <mark>L</mark> PESSGNP  | PNAVNP-AGY                | RGLGQTKES-WG               | S-GSVADQTKO        | <b>GMLNYAKQRYGSEEAAL</b> A | AFRASHG      | 246 |
|    | W | P_107552346  | [Staph.           | xylosus]          | SAASTGGSVKAQFLAA | GGTEAMWNS  | IVMPESSGNP                 | PNAVNP-AGY                | RGLGQTKES-WG               | I-GSVASQTKO        | GMINYGESRYGSMEAAMA         | AFRASNG      | 246 |
|    | W | P_119487699  | [Staph.           | nepalensis]       | SAASTGGSVKAQFLAA | GGSEAMWNS  | IVMPESSGNP                 | PNAVNP-AGY                | RGLGQTKES-WG               | I-GSVADQTKO        | <b>GMLNYAKQRYGSEEAAL</b> A | AFRASHG      | 244 |
|    | c | NDG 00351 Is | aA-1 [ <i>S</i> t | taph. nepalensis] | SAASTGGSVKAQFLAA | GGSEAMWNS  | IVMPESSGNP                 | PNAVNP-AGY                | RGLGQTKES-WG               | I-GSVADQTKO        | <b>GMLNYAKQRYGSEEAAL</b> A | AFRASHG      | 244 |
|    | W | P_073344326  | [Staph.           | cohnii]           | SAASTGGSVKAQFLAA | GGSEAMWNS  | IVMPESSGNP                 | PNAVNP-AGY                | RGLGQTKES-WG               | I-GSVADQTKO        | GMLNYAKQRYGSEAAALE         | EFRKNHG      | 246 |
|    | W | P_057513458  | [Staph.           | species NAM3COL9] | SAASTGGSVKAQFLAA | GGTEAMWNT  | IVLPESSGNP                 | NAVNS-LGY                 | SGLGQTKES-WG               | I-GSVATQTKO        | MINYAEQRYGSVDEALS          | SFRSQNN      | 251 |
|    | W | P_002506616  | [Staph.           | species OJ82]     | SAASTGGSVKAQFLAA | GGTEAMWNT  | IVLPESSGNP                 | NAVNP-LGY                 | TGLGQTKEA-WG               | I-GSVATQTKO        | MINYAEQRYGSIDEALS          | SFRSQNN      | 250 |
|    | W | P_069833173  | [Staph.           | equorum]          | SAAATGGSVKAQFLAA | GGTEAMWNT  | IVLPESSGNP                 | NAVNP-AGY                 | SGLGQTKEA-WG               | I-GSVSTQTKO        | MLNYAKERYGSVDNAI           | AKRQQQG      | 250 |
|    | W | P_107511677  | [Staph.           | gallinarum]       | QAASTGGSVKAQFLAA | GGTEAMWNT  | IVLPESSGNP                 | NAVNE-LGY                 | RGLGQTKES-WG               | I-GSVATQTQC        | MINYAKERYGSIEAAL#          | AFRSANN      | 251 |
|    | W | P_069823097  | [Staph.           | succinus]         | TAASTGGSVKSQFLAA | GGTEAMWNT  | IVMPESSGNP                 | PNAVNE-LGY                | QGLGQTKES-WG               | I-GSVATQTKO        | <b>MLNYAKERYGSVDAAL</b> A  | AFRAQNN      | 247 |
|    | W | P_112369066  | [Staph.           | arlettae]         | SSASTGGSTKAQFLAA | GGTEAMWNT  | IVMPESSGNP                 | PNAVNE-LGY                | RGLGQTKES-WG               | I-GSVAEQTKO        | GMINYANERYGSVEAALI         | OFRSSNN      | 252 |
|    | W | P_061853755  | [Staph.           | kloosii]          | SSASTGGSVKAQFLAA | GGTEAIWNT  | IVLPESSGNP                 | PNAVNE-LGY                | RGLGQTKES-WG               | I-GSVAEQTKO        | GLLNYAKQRYGSVDAAVA         | AFRNSNN      | 244 |
|    | W | P_069822945  | [Staph.           | succinus]         | TSDVYSQFIEA      | GGTKSLWDN  | VMPESSGNP                  | DAVNE-LGY                 | KGLGQTKEA-WG               | <b>I-GSVEEQTKO</b> | MINYAEERYGSIDAAVI          | OFHIANG      | 122 |
|    | W | P_099090334  | [Staph.           | edaphicus]        | QSTQSTSDVYSQFIEA | GGTKALWDN  | IVMPESSGNP                 | DAVNE-LGY                 | RGLGQTKEA-WG               | r-gsveeotko        | MIQYAEDRYGSIDAAII          | OFRLANG      | 120 |
|    | s | UK04795      | [Staph.           | aureus]           | QSTNEVYKAFIQA    | GGTKAMWDN  | IVMPES <mark>G</mark> GNP  | NAVNE-LGY                 | RGLGQTKEA-WG               | I-GSVETQTKO        | MINYAKERYGSIDKAI           | OFRIANG      | 116 |
|    | W | P_105995336  | [Staph.           | agnetis]          | QSTNEVYKAFIQA    | GGTKAMWDN  | IVMPES <mark>G</mark> GNP  | NAVNE-LGY                 | RGLGQTKEA-WG               | I-GSVETQTKO        | MINYAKERYGSIDKAI           | FRIANG       | 116 |
|    | W | P_119484130  | [Staph.           | gallinarum]       | TASOPTSEVYNEFIQA | GGTKSLWDN  | VVIPESSGNP                 | NAVNE-LGY                 | RGLGQTKEA-WG               | r-gsveeotko        | MINYAEERYGSIDGAV           | FHIANG       | 121 |
|    | W | P_009384111  | [Staph.           | massiliensis]     | QGVDQTSTVHDRFIKA | GGTEAMWQN  | IVLPESGGDP                 | PNAVSP-QGY                | KGLGQTKEA-WG               | <b>I-GTVEEQTKO</b> | <b>MINYAEERYGSIDAAV</b>    | QFRIANG      | 125 |
|    | Ŵ | P_105986821  | [Staph.           | chromogenes]      | TSTSTVYNEFINA    | GGTKAMWDH  | IVMPESGONP                 | PDAVNP-IGY                | RGLGQTKEA-WG               | I-GSVTEQTKO        | MVNYAKERYGSIDNAI           | OFRMANG      | 116 |
|    | W | p 105993143  | [Staph.           | simulans]         | OTSTOSVHDRFIAA   | GGTEAMWEN  | IVMPESSGNP                 | DAVNE-LGY                 | RGLGOTKEY-WG               | -GTVEEOTKO         | MIQYAEERYGSIDNAI           | FRMANN       | 118 |
|    | W | p_114602723  | [Staph.           | sp. EZ-P03]       | OTSTOSVHDRFIAA   | GGTEAMWEY  | IVMPESSGNP                 | DAVNE-LGY                 | RGLGOTKEY-WG               | -<br>GTVEEOTKO     | MIQYAEDRYGSIDNAI           | -<br>OFRMANN | 118 |
|    | W | p_022791177  | [Weisse]          | lla halotolerans] | ASASASGSVHDQFIAA | GGTEAMWAS  | IVMPESGENP                 | NAVNP-AGY                 | RGLGOTKEG-WG               | S-GSVAQOTO         | MLNYATSRYGSVENALS          | SFRAAHN      | 236 |
|    | W | p_049407882  | [Staph.           | pettenkoferi]     | TTOOSTDSVYDEFINN | GGTKALWDN  | IVMPESGEDP                 | NAVNE-LGY                 | RGLGOTKES-WG               | I-GSVAEOTO         | MVQYAKERYGSIDQAIE          | EFROSHG      | 119 |
|    | W | P_103371892  | [Staph.           | argensis]         | TAQQSTDSVYDEFINN | GGTKALWDN  | VVMPESGGDP                 | NAVNE-LGY                 | RGLGQTKES-WG               | I-GSVAEQTQ         | MVQYAKERYGSIDQAI           | EFRQSHG      | 119 |
| 2  | W | P_126476519  | [Staph.           | schleiferi]       | TDSSNTSEVYKEFIAA | GGTKALWDN  | IVMPESSGNP                 | NAVNE-LGY                 | RGLGQTKES-WG               | I-GSVTEQTKO        | MIKYAKERYGSIEAAIA          | AFRQANN      | 144 |
| Z  | W | P_107573021  | [Staph.           | sciuri]           | TDSSNKSEVYKEFIAA | GGTKALWDN  | IVMPESSGNP                 | NAVNE-LGY                 | RGLGQTKES-WG               | I-GSVTEQTKO        | MINYAKERYGSIEAAI#          | AFRQANN      | 144 |
| er | W | P_119634381  | [Staph.           | fleurettii]       | ADTSNTNEVYKEFIAA | GGTKALWDN  | IVMPESSGNP                 | NAVNE-LGY                 | RGLGQTKEA-WG               | I-GSVTEQTKO        | MINYAKERYGSVEAAI#          | AFRQANN      | 130 |
|    | W | P 095089569  | [Staph.           | stepanovicii]     | TOAASTDEVYKEFIAA | GGTKELWDZ  | IVMPESSGNP                 | NAVNE-LGY                 | RGLGOTKEA-WG               | -GTVTEOTKO         | MINYAKERYGSVDAAI           | FRLANN       | 123 |
|    | W | p_017000663  | [Staph.           | lentus]           |                  | GGTKALWDN  | IVMPESSGNP                 | NAVNE-LGY                 | RGLGOTKES-WG               | -<br>GSVTEOTKO     | -<br>MINYAKERYGSVEAAI      | AFROANN      | 120 |
|    | W | p_061853631  | [Staph.           | kloosii]          | OASOSTESVHOOFLNA | GGTEELWOR  | VVLPESGENP                 | NAVNE-LGY                 | OGLGOTKES-WG               | -<br>GSVEEQTKO     | MVQYAKERYGSIDAAIS          | SFREANG      | 121 |
|    | W | p_107376802  | [Staph.           | arlettae]         | TTOOSTDAVYOEFIEA | GGTPELWERN | VVLPESGGDP                 | NAVNE-LGY                 | KGLGOTKED-WG               | -<br>GSVETOTKO     | MINYAEERYGSIDAAII          | OFREANG      | 119 |
|    | W | p_126510217  | [Staph.           | epidermidis]      | NESTSSVYQEFIDA   | GGTKALWDS  | IVIPESGENP                 | NASNGOM                   | HGLGOTNOS-WG               | Y-GSVENOTKO        | MINYAKERYGSIDKAIS          | SFREANG      | 124 |
|    | c | NDG 00513 Is | aA-2 [ <i>S</i>   | taph. nepalensis] | -TTQANNGVYSEFIAA | GGTKALWDH  | IVMPESSGNP                 | DAVNE-LGY                 | RGLGQTKEA-WG               | T-GSVTEQTKO        | MIQYAEDRYGSIDAAIE          | EFRVANG      | 118 |
|    | W | P_096808504  | [Staph.           | nepalensis]       | -TTQVNNDVYSEFIAA | GGTKALWDH  | IVMPESSGNP                 | DAVNE-LGY                 | RGLGQTKEA-WG               | T-GSVTEQTKO        | MIQYAEDRYGSIDAAIE          | EFRVANG      | 118 |
|    | W | P_107384366  | [Staph.           | cohnii]           | -TTQANNDVYSEFIAA | GGTKALWDN  | IVMPESSGNP                 | DAVNE-LGY                 | RGLGQTKEA-WG               | T-GSVTEQTKO        | MIQYAEDRYGSIDAAIE          | EFRIANG      | 118 |
|    | W | P_057513315  | [Staph.           | species NAM3COL9] | TQTNNDVYSEFIEA   | GGTKALWDN  | IVMPESGGD                  | EAVNE-LGY                 | KGLGQTKEA-WG               | S-GSVEEQTKO        | MINYAEDRYGSIDAAII          | FRLANG       | 123 |
|    | W | P_069817445  | [Staph.           | equorum]          | TQANNDVYSEFIEA   | GGTKALWDN  | IVMPESSGD                  | EAVNE-LGY                 | KGLGQTKEA-WG               | r-gtveeotko        | <b>MINYAEDRYGSIEAAII</b>   | FRLANG       | 123 |
|    | W | P_107558872  | [Staph.           | xylosus]          | -TTQSTNDVYDQFIEA | GGTKALWDN  | IVMPESSGNP                 | DAVNE-LGY                 | RGLGQTKES-WG               | I-GSVEEQTKO        | MINYAEERYGSVDAAII          | FRVANG       | 123 |
|    | W | P_069995535  | [Staph.           | saprophyticus]    | TQSNNDVYSQFIEA   | GGTKALWDN  | IVMPESSGNP                 | DAVNE-LGY                 | RGLGQTKEA-WG               | I-GSVEEQTKO        | MIKYAEERYGSIDAAII          | OFRLANG      | 117 |
|    |   |              |                   |                   |                  |            |                            |                           |                            |                    |                            |              |     |

IsaA-1 cluste

IsaA-2 cluster

| ĺ       | WP 107644182 [Staph_ nepalensis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ASTOSSSSNEASSGSSVNVNSHLOATAORESGCDLKAVNESSCAAGKYOFLOSTWDSVAPAEYOGVSPTEAPESVODOAAMDLYNTAG                                                             | 222 |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|         | CNDG 00157 SceD-1 [Staph, nepalensis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ASTOSSSSNEASSGSSVNVNSHLOZUAORESSGCDLKAVNESSCAAGKYOFLOSTWDSVAPAEYOGVSPTEAPESVODAAAVKLYNEVG                                                            | 222 |
|         | WP 105873943 [Staph. cohnii]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ALTOSSNSNEASSGSSVNVNSHLOATAORESSGEDLKAVNESSCAAGKYOFLOSTWDSVAPAOYKGVSPTEAPESVODAAAVKLYNEVG                                                            | 213 |
| SceD-1  | WP 011302117 [Staph, saprophyticus]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSNESSSSEASEGSSVNVNSHLOATAORESGCDLKAVNESSCAAGKYOFLOSTWDSVAPSEYOGVSPTEAPEAVODAAAVKLYNTAG                                                             | 231 |
| cluster | WP = 107530874 [Staph vylosus]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TSSNESSSERSESSERSESSERVINISHLOZ TAORESCOLKAVNESSCARCKYOFLOSTWDSVAPSOVKCUSPTEA DESUODAAAVKLVNEVC                                                      | 231 |
|         | WP $070812670$ [Staph sp HMSC $034G071$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SOOSTGSSSEASSGSSVDVNDHLKOTAORESGCDLKAVNPSSCAAGKYOFLOSTWDSVAPDEYKGVSPTEAPESVODOAAMDLVESEG                                                             | 231 |
|         | $MP_071564462$ [Staph equarum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                      | 220 |
|         | $MP_101118358$ [Staph sugginus]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      | 229 |
| ſ       | [Staph. Succinus]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      | 210 |
|         | WP_119400105 [Staph. gallmalum]<br>WP_047504901 [Staph on $ZWU0021$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      | 225 |
| SCED-2  | $WP_047504891 [Staph. sp. 2w00021]$ $WD_006909177 [Staph. samples is leaved at the semplement of the $ |                                                                                                                                                      | 242 |
| cluster | WP_096606177 [Staph. nepatensis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      | 229 |
|         | CNDG 00159 SCED-2 [Staph. hepatensis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SIQSSDSSEASSGSSVEVNDHLKUTAER-SGGDLKAWNESSGAAGKIQFLQSTWDSVAPAEIQGQSPTEAPESVQDQAAMDLIESEG                                                              | 229 |
| l       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DSSNESSSSEASSGSSVQVNDHLKUMAERESGEDLKAVNASSCAAGKIQFLQSTWDSVAPEQIQGQSPTEAPESVQDQAAMDLIESEG                                                             | 229 |
|         | WP_099091190 [Staph. edaphicus]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SSSNESSSSKASEGSSVNVNSHLQAHAQRESGGDLKAVNPSSCAAGKYQFLQSTWDSVAPAEYQGVSPTEAPEAVQDAAAVKLYNTAG                                                             | 226 |
|         | WP_115347167 [Staph. saprophyticus]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSSNESSSSEASESSSSGVNAHLQQTAQRFSGCDIHATNPSSCASGKFQFLQSTWDSVAPAEYQGQPAASAPESVQDAAAQKLYDTEG                                                             | 242 |
| SceD-3  | WP_107557548 [Staph. xylosus]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TSSNESSSEASEGSSVNVNSHLQAUAQRDSGCDLKAVNDSSCAAGKYQFLQSTWDSVAPSQYKGVSPTEAPESVQDAAAVKLYNEVG                                                              | 217 |
| cluster | WP_064263215 [Staph. cohnii]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QQSTDSSSSEASSGSSVDVNDHLKQTAQRESGCDLKAVNESSCAAGKYQFLQSTWDSVAPAEYKGVSPTEAPESVQDQAAMDLYESAG                                                             | 230 |
|         | CNDG 00161 SceD-3 [Staph. nepalensis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STQSSDSSSEASSGSSVDVNDHLKQIAERESGCDLKAVNPSSCAAGKYQFLQSTWDSVAPAEYQGQSPTEAPESVQDQAAMDLYESEG                                                             | 229 |
|         | WP_107644349 [Staph. nepalensis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STQSSDSSSEASSGSSVDVNDHLKQTAERESGCDLKAVNPSSCAAGKYQFLQSTWDSVAPAEYQGQSPTEAPESVQDQAAMDLYESEG                                                             | 229 |
| l       | WP_107564333 [Staph. succinus]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATTTQSSQASEGSSVNVNAHLQQIAQRESGGDLKAVNPSSCAAGKYQFLQSTWDSVAPAEYKGVSPTEAPESVQDQAAVDLYNSAG                                                               | 222 |
|         | CNDG 00845 SceD-4 [Staph. nepalensis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ASTQSSSSNEASSGSSVNVNSHLQAIAQRESGGDLKAVNPSSCAAGKYQFLQSTWDSVAPAEYQGVSPTEAPESVQDQAAMDLYNTAG                                                             | 222 |
| sceD-4  | WP_096808795 [Staph. nepalensis]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ASTQSSSSNEASSGSSVNVNSHLQA <mark>IIAQRES</mark> GGDLKAVNPSSCAAGKYQFLQSTWDSVAPAEYQGVSPTEAPESVQDAAAVKLYNEVG                                             | 222 |
| cluster | WP_107385877 [Staph. cohnii]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASTQSSSSNEASSGSSVNVNSHLQA <mark>I</mark> AQR <mark>ES</mark> G <mark>C</mark> DLKAVNPSS <mark>CA</mark> AGKYQFLQSTWDSVAPAEYKGVSPTEAPESVQDAAAVKLYNEVG | 215 |
|         | WP_119569949 [Staph. succinus]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATTTQSSQASEGSSVNVNAHLQQTAQRESGCDLKAVNPSSCAAGKYQFLQSTWDSVAPAEYKGVSPTEAPESVQDQAAVDLYNSAG                                                               | 217 |
|         | WP_046206716 [Staph. cohnii]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TSSIDAIANQMAS-RTGVSAAQWKCVIQRESCGNANAVNASSCAYGLFQLLGHGEHSGMSVQDQIDTAVGVYKSQG                                                                         | 230 |
|         | YP_501340 [Staph. aureus s. au NCTC8325]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ] AGATGSSAAQIMAQRTGVSASTWAA <mark>IIARES</mark> NGQVNAYNP-SCA <mark>S</mark> GLFQTMPG-WGPTNTVDQQINAAVKAYKAQG                                         | 227 |
|         | WP_050969685 [Strept. pneumoniae]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AGSTGSYAAQEMAKRTGVSASTWEY <mark>TIARESNGQANA</mark> RNA-SCA <mark>SGLFQTMPG-WGSTASVSDQI</mark>                                                       | 227 |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |     |

Supplementary Figure 22. Multiple sequence alignment showing conserved sequence of the pro-apoptotic segment of transglycosylases in several species of *Staphylococcus* and *Streptococcus*. The red square encloses sequences of the pro-apoptotic segment (tested and predicted). The multiple transglycosylases of *Staphylococcus nepalensis* strain CNDG are highlighted in red. Transglycosylases are grouped in several clusters based on transglycosylases encoded in *Staphylococcus nepalensis* strain CNDG. The amino acids that are identical (shaded black) to amino acids of the pro-apoptotic segment are indicated.







COE35810.1 [Strep. pneumoniae strain N] COE67256.1 [Strep. pneumoniae strain N] WP\_002467055.1 [Staph. warneri]

b

С

COE35810.1 [Strep. pneumoniae strain N] COE67256.1 [Strep. pneumoniae strain N] WP\_002467055.1 [Staph. warneri]

COE35810.1 [Strep. pneumoniae strain N] COE67256.1 [Strep. pneumoniae strain N] WP\_002467055.1 [Staph. warneri]

COE35810.1 [Strep. pneumoniae strain N] COE67256.1 [Strep. pneumoniae strain N] WP 002467055.1 [Staph. warneri

COE35810.1 [Strep. pneumoniae strain N] COE67256.1 [Strep. pneumoniae strain N] WP 002467055.1 [Staph. warneri

| MKKTFIASTLALTLGA <mark>A</mark> GYAVSGHEAHASETTNVDQAHLVDLAHNHPEQLNAAPVQEGA   | 60  |
|------------------------------------------------------------------------------|-----|
| MKKTFIASTLALTLGAAGYAVSGHEAHASETTNVDQAHLVDLAHNHPEQLNAAPVQEGA                  | 59  |
| -MKKTFI <mark>V</mark> STLALTLGAAGYAVSGHEAHASETTNVDQAHLVDLAHNHPEQLNAAPVQEGA  | 59  |
| YDIHFVSGGFEYNFTSDGTNFSWNYQEAGSTSAQTSNTAVQSADYTTSYNQEAGTQS                    | 117 |
| YDIHFVSGGFEYNFTSDGTNFSWNYQE <mark>V</mark> GSTSAQTSNTAVQSADYTTSYNQEAGTQS     | 116 |
| YDIHFVSGGFEYNFTSDGTNFSWNYQEAGSTSAQTSNTAVQSADYTTSYNQEAGTQS                    | 116 |
| VSSNOOSSNTNVEAVSAPTTSNNGSNHNYSTKTTSYSAPSTSSASTGGSTKAOFLANGGT                 | 177 |
| VSSNQQSSNTNVEAVSAPTTSNNGSNHNYSTKTTSYSAPSTSSASTGGSTKAQFLANGGT                 | 176 |
| vssnqqssntnveavsapttsnngsnhnystkttsysapstssastggstkaqflanggt                 | 176 |
| EEAWNATVMPESGGNPNAVNPAGYRGLGQTMESWGTGSVASQTKGMLNYANSRYGSLSNA                 | 237 |
| EEAWNAIVMPESGGNPNAVNPAGYR <mark>G</mark> LGQTMESWGTGSVASQTKGMLNYANSRYGSLSNA  | 236 |
| EEAWNA <mark>I VMPESGGNPNAVNPAGYR</mark> ELGQTMESWGTGSVASQTKGMLNYANSRYGSLSNA | 236 |
|                                                                              |     |

247

246

246

IAFROSHGWW

IAFROSHGWW

IAFRQSHGWW

| Query | 1      | CCTACCARCCGTGGCTTTGACGGAAAGCAATTGCATTGCTTAATGAACCGTAACGGC    | 60   |
|-------|--------|--------------------------------------------------------------|------|
| Sbjct | 354134 | CCTACCACCAACCGTGGCTTTGACGGAAAGCAATTGCATTGCTTAATGAACCGTAACGGC | 3540 |
| Query | 61     | TATTAGCATAGTTAAGCATACCTTTAGTTTGGCTAGCTACTGAACCAGTTCCCCATGATT | 120  |
| Sbjct | 354074 | TATTAGCATAGTTAAGCATACCTTTAGTTTGGCTAGCTACTGAACCAGTTCCCCATGATT | 3540 |
| Query | 121    | CCATAGTTTGTCCTAAACCTCTGTAACCAGCTGGGTTTACTGCGTTAGGGTTACCACCTG | 180  |
| Sbjct | 354014 | CCATAGTTTGTCCTAAACCTCTGTAACCAGCTGGGTTTACTGCGTTAGGGTTACCACCTG | 3539 |
| Query | 181    | ATTCTGGCATAACGATAGCGTTCCAAGCTTCTTCAGTACCACCATTAGCTAAGAATTGTG | 240  |
| Sbjct | 353954 | ATTCTGGCATAACGATAGCGTTCCAAGCTTCTTCAGTACCACCATTAGCTAAGAATTGTG | 3538 |
| Query | 241    | CTTTAGTTGATCCACCTGTTGAAGCACTTGAAGTTGATGGTGCTGAGTATGAAGTTGTTT | 300  |
| Sbjct | 353894 | CTTTAGTTGATCCACCTGTTGAAGCACTTGAAGTTGATGGTGCTGAGTATGAAGTTGTTT | 3538 |
| Query | 301    | TAGTGCTGTAGTTGTGGTTTGAACCATTGTTTGATGTAGTTGGAGCTGAAACAGCTTCTA | 360  |
| Sbjct | 353834 | TAGTGCTGTAGTTGTGGTTTGAACCATTGTTTGATGTAGTTGGAGCTGAAACAGCTTCTA | 3537 |
| Query | 361    | CATTAGTGTTGCTTGATTGTTGGTTAGAGCTTACTGATTGAGTACCAGCTTCTTGATTGT | 420  |
| Sbjct | 353774 | CATTAGTGTTGCTTGATTGTTGGTTAGAGCTTACTGATTGAGTACCAGCTTCTTGATTGT | 3537 |
| Query | 421    | AAGAAGTTGTGTAGTCAGCTGATTGAACAGCAGTGTTTGATGTTTGAGCTGAAGTAGAAC | 480  |
| Sbjct | 353714 | AAGAAGTTGTGTAGTCAGCTGATTGAACAGCAGTGTTTGATGTTTGAGCTGAAGTAGAAC | 3536 |
| Query | 481    | CAACTTCTTGGT&GTTCCAAGAGAAGTT>&CCATCTGAAGTGAAG                | 540  |
| Sbjct | 353654 | CAGCTTCTTGGTAGTTCCAAGAGAAGTTAGTACCATCTGAAGTAAAGTTATATTCGAATC | 3535 |
| Query | 541    | CACCACTTACAAAGTGAATGTCATAAGCGCCTTCTTGAACTGGTGCAGCGTTTAATTGTT | 600  |
| Sbjct | 353594 | CACCACTTACAAAGTGAATGTCATAAGCGCCTTCTTGAACTGGTGCAGCGTTTAATTGTT | 3535 |
| Query | 601    | CTGGGTGGTTATGAGCTAAGTCTACTAAGTGTGCTTGATCTACGTTAGTAGTTTCTGAAG | 660  |
| Sbjct | 353534 | CTGGGTGGTTATGAGCTAAGTCTACTAAGTGTGCTTGATCTACGTTAGTAGTTTCTGAAG | 3534 |
| Query | 661    | CGTGTGCTTCGTGTCCTGATACTGCGTAACCTGCTGCGCCTAATGTTAATGCTAAAGTTG | 720  |
| Sbjct | 353474 | CGTGTGCTTCGTGTCCTGATACTGCGTAACCTGCTGCGCCTAATGTTAATGCTAAAGTTG | 3534 |
| Query | 721    | ATGCGATAAATGTCTTCTTCAT 742                                   |      |
| Sbict | 353414 | ATGCGATAAATGTCTTCTTCAT 353393                                |      |

SKT99287.1 [Mycobact. Abscessus]
 WP\_049379270.1 [Staph. Hominis]
 SKT99287.1 [Mycobact. Abscessus]
 WP\_049379270.1 [Staph. Hominis]
 SKT99287.1 [Mycobact. Abscessus]
 WP\_049379270.1 [Staph. Hominis]

SKT99287.1 [Mycobact. Abscessus] WP\_049379270.1 [Staph. Hominis]

SKT99287.1 [Mycobact. Abscessus] WP\_049379270.1 [Staph. Hominis]

| MKKTVIASSLAVTLGLTGYALTNDHSAHASEQTTNYSHLADLAQNNPSELNAHPVQAGAY                               | 60  |
|--------------------------------------------------------------------------------------------|-----|
| MKKTVIASLAVTLGLTGLTNDHAASEQTTNYSHLADLAQNNPSELNAHPVQAGAY                                    | 60  |
| DISFVKDGFKYNFTSNGNTWSWNYTYTGGADTAQSTTDYTESYNQASTQSVSSNNQASTS                               | 120 |
| NISFVKDGFKYNFTSNGNTWSWNYTYTGGADTAQSTTDYTESYNQASTQSVSSNNQASTS                               | 120 |
| NVKAVSAPVQRTSSYNNYS <mark>A</mark> RTTSYSAPKTTSYSTASTGGSVKAQFLANGGTEAAWNA <mark>I</mark> V | 180 |
| NVKAVSAPVQRTSSYNNYS <mark>V</mark> RTTSYSAPKTTSYSTASTGGSVKAQFLANGGTEAAWNA <mark>I</mark> V | 180 |
| MPESSGNPNASNGQYHGLGQTNQSWGTGSVASQTQGMANYAKSRYGSWDAAIAFRNANGW                               | 240 |
| MPESSGNPNASNGQYHG <mark>LGQTNQSWGTGSVASQTQGMANYAKSRYGSWDAAIAFRNANGW</mark>                 | 240 |
| 241                                                                                        |     |
| W 241                                                                                      |     |

Supplementary Figure 23. Genomic context and multiple sequence alignment showing conserved sequence of the pro-apoptotic segment of transglycosylases in several species of Staphylococcus and Streptococcus. a, Genomic context of transglycosylases containing the peptide "IVMPESSGNPNAVNPAGYR" or its derivative in Staphylococcus nepalensis strain SNUC 4025 and Staphylococcus cohnii subspecies cohnii. b. Streptococcus pneumoniae contains transglycosylases (COE35810 and COE67256) with almost identical peptide sequence to corisin. c, The guery sequence and the subject sequence in the alignment are from S. pneumoniae strain N and S. warneri, respectively. The complementary nucleotide sequence encodes COE67256 and highly identical proteins in Staphylococcus warneri strain SWO, strain SGI, strain NCTC11044, strain NCTC7291, and strain 22.1. d, Genomic context of transglycosylases containing the corisin sequence or its derivative in Streptococcus pneumoniae strain N and Staphylococcus warneri. e, The genome of a strain of the emerging pathogen Mycobacterium [Mycobacteroides] abscessus harbors a transglycosylase (SKT99287) that is almost identical to a transglycosylase (WP\_049379270) in Staphylococcus hominis. f. Genomic context of transplycosylases containing the corisin sequence or its derivative in Mycobacterium [Mycobacteroides] abscessus and Staphylococcus hominis. The red square encloses sequences with high identity to the pro-apoptotic segment identified in Staphylococcus nepalensis strain CNDG. The amino acids that are identical (shaded black) or similar (grey) are indicated. The genomic context of Staphylococcus nepalensis strain SNUC is generally conserved in Staphylococcus nepalensis strain CNDG. The grouping shows genomic context and potential for horizontal gene transfer in the non-staphylococcal strains. The original annotations in individual genomes are maintained.



Supplementary Figure 24. The synthetic peptide from *Streptococcus pneumoniae* strain N transglycosylase has pro-apoptotic activity. a,b, Flow cytometry analysis of A549 alveolar cells cultured for 48h in DMEM medium containing 5  $\mu$ M of the synthetic corisin (IVMPESSGNPNAVNPAGYR) from *Staphylococcus nepalensis* (strain CNDG) transglycosylase 351, its scrambled peptide (NRVYNGPAASPVSEGMPIN) or the synthetic peptide (IVMPESGGNPNAVNPAGYR) from *Streptococcus pneumoniae* strain N transglycosylases (COE35810 and COE6725). Each group with n=3. Bars indicate the means ± S.D. Statistical analysis by ANOVA with Tukey's test. \*p<0.001. The source data underlying Supplementary Fig 24b are provided in the Source Data file.



# Supplementary Figure 25. Contribution of corisin to the pathogenesis of idiopathic pulmonary fibrosis. Transforming growth factor (TGF) $\beta$ 1 may increase the extracellular salt concentration by downregulating the cell surface expression of ion transporters, and the salty microenvironment stimulates the growth of *Staphylococcus* spp. that release corisin to induce apoptosis of alveolar epithelial cells. Excessive apoptosis and/or activation of epithelial cells contribute to acute exacerbation of pulmonary fibrosis.



**Supplementary Figure 26. Flow cytometry gating strategy.** Gating strategies used in the experiments described in Supplementary Figure 4a (**a**), Supplementary Figure 11a (**b**), and Supplementary Figure 12a (**c**). Abbreviations: SSC, side scatter; FSC, forward scatter.

| Target               | Label  | Clone    | Source  | Isotype | Company                         |
|----------------------|--------|----------|---------|---------|---------------------------------|
| Mouse Ly-6G/Ly-6C    | FITC   | RB6-8C5  | rat     | lgG2bκ  | BioLegend, Inc. (San Diego, CA) |
| Mouse F4/80          | PE     | CIA3-1   | rat     | lgG2bκ  | BioLegend, Inc. (San Diego, CA) |
| Mouse CD11c          | PE/Cy5 | N418     | hamster | lgG     | BioLegend, Inc. (San Diego, CA) |
| Mouse CD3 $\epsilon$ | FITC   | 145-2C11 | hamster | lgG     | BioLegend, Inc. (San Diego, CA) |
| Mouse CD45R/B220     | PE/Cy5 | RA3-6B2  | rat     | lgG2ак  | BioLegend, Inc. (San Diego, CA) |
| Anti-mouse CD25      | FITC   | PC61     | rat     | lgG1λ   | BioLegend, Inc. (San Diego, CA) |
| Mouse CD8a           | PE     | 53-6.7   | rat     | lgG2aκ  | BioLegend, Inc. (San Diego, CA) |
| mouse CD4            | PE/Cy5 | GK1.5    | rat     | lgG2bκ  | BioLegend, Inc. (San Diego, CA) |
| mouse NK1.1          | PE     | PK136    | mouse   | lgG2ак  | BioLegend, Inc. (San Diego, CA) |
| Annexin V            | FITC   | -        | -       | -       | BD Pharmingen (San Diego, CA)   |

FITC, fluorescein isothiocyanate; PE, phycoerythrin.

#### Supplementary Table 5. Primers for RT-PCR

| $\begin{array}{c} \label{eq:constraint} Ctfr & Sense & CACAGTCATCAACGGAATCGT & 60.4 & NM_021050 & 975-995 & 113 \mbox{ bp} \\ Antisense & CATACCATATCTGTACGGCAGTG & 60.3 & 1087-1065 \\ Scnn1\gamma & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| $\begin{array}{c} Sense \\ Antisense \\ Sense \\ Antisense \\ Sense \\ Antisense \\ GCACCGACCATTAAGGACCTG \\ Sense \\ Antisense \\ GCGTGAACGCAATCCACAAC \\ Sense \\ Antisense \\ Sense \\ Antisense \\ CAAGCTAGGAACTTCACCAG \\ Sense \\ Antisense \\ CAAGCTAGGAACTTCACCAG \\ Sense \\ Antisense \\ CAAGCTAGGAACTTCACCAG \\ Sense \\ Antisense \\ CAAGCTAGGATTATGCGATCAGG \\ Sense \\ Antisense \\ AAAGCTAGGATTATGCGATCAGG \\ Sense \\ Antisense \\ AAAAGCGTCTGTTCCGTGAGT \\ Antisense \\ AAAAAGCGTCTGTTCCGTGAT \\ Sense \\$ | <br>Ctfr  |
| $\begin{array}{c} \mbox{Antisense} & \mbox{CATACCATATCTGTACGGCAGTG} & 60.3 & 1087-1065 \\ \mbox{Sense} & \mbox{GCACCGACCATTAAGGACCTG} & 62.7 & \mbox{NM}_011326 & 64-84 & 118 \mbox{ bp} \\ \mbox{Antisense} & \mbox{GCGTGAACGCAATCCACAAC} & 62.8 & 181-162 \\ \mbox{Sense} & \mbox{TACCTTGCGGAACTTCACCAG} & 66.1 & \mbox{NM}_011325 & 603-623 & 138 \mbox{ bp} \\ \mbox{Antisense} & \mbox{CAAGCTAGGATTATGCGATCAGG} & 60.6 & 740-718 \\ \mbox{Sense} & \mbox{TACTTCAGCTACCCCGTGAGT} & 62.6 & \mbox{NM}_011324 & 403-423 & 153 \mbox{ bp} \\ \mbox{Antisense} & \mbox{AAAAAGCGTCTGTTCCGTGAT} & 64.6 & 555-535 \\ \mbox{TNF}\alpha \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sense     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Antisense |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scnn1γ    |
| $\begin{array}{cccc} \mbox{Antisense} & \mbox{GCGTGAACGCAATCCACAAC} & \mbox{62.8} & 181-162 \\ \mbox{Scnn1}\beta & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sense     |
| $\begin{array}{cccccccc} Scnn1\beta & & & \\ Sense & TACCTTGCGGAACTTCACCAG & 66.1 & NM_011325 & 603-623 & 138 \mbox{ bp} \\ Antisense & CAAGCTAGGATTATGCGATCAGG & 60.6 & 740-718 \\ Scnn1\alpha & & & \\ Sense & TACTTCAGCTACCCCGTGAGT & 62.6 & NM_011324 & 403-423 & 153 \mbox{ bp} \\ Antisense & AAAAAGCGTCTGTTCCGTGAT & 64.6 & 555-535 \\ TNF\alpha & & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Antisense |
| Sense<br>AntisenseTACCTTGCGGAACTTCACCAG<br>CAAGCTAGGATTATGCGATCAGG<br>Scnn1α<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Scnn1β    |
| AntisenseCAAGCTAGGATTATGCGATCAGG60.6740-718Scnn1αSenseTACTTCAGCTACCCCGTGAGT62.6NM_011324403-423153 bpAntisenseAAAAAGCGTCTGTTCCGTGAT64.6555-535TNFα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sense     |
| Scnn1αSenseTACTTCAGCTACCCCGTGAGT62.6NM_011324403-423153 bpAntisenseAAAAAGCGTCTGTTCCGTGAT64.6555-535TNFα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Antisense |
| SenseTACTTCAGCTACCCCGTGAGT62.6NM_011324403-423153 bpAntisenseAAAAAGCGTCTGTTCCGTGAT64.6555-535555-535TNFα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Scnn1α    |
| AntisenseAAAAAGCGTCTGTTCCGTGAT64.6555-535TNFα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sense     |
| ΤΝΕα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Antisense |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | īΝFα      |
| Sense ACGTGGAACTGGCAGAAGAG 64.4 NM 013693 182-201 284 bp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sense     |
| Antisense CTCCTCCACTTGGTGGTTTG 64.5 465-446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Antisense |
| IFNγ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FNγ       |
| Sense GCTCTGACACAATGAACGCT 63.1 NM 008337 99-118 229 bp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Śense     |
| Antisense AAAGAGATAATCTGGCTCTGC 59.1 327-307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Antisense |
| Periostin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Periostin |
| Sense CACGGCATGGTTATTCCTTCA 60.4 NM 001198766 547-567 151 bp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sense     |
| Antisense TCAGGACACGGTCAATGACAT 61.1 697-677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Antisense |
| Ctaf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ctaf      |
| Sense CACAGTCATCAACGGAATCGT 60.4 NM 021050 975-995 113 bp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sense     |
| Antisense CATACCATATCTGTACGGCAGTG 60.3 1087-1065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Antisense |
| mTGFβ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nTGFβ1    |
| Sense ACTCCACGTGGAAATCAACGG 68.1 NM 011577 693-713 414 bp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sense     |
| Antisense TAGTAGACGATGGGCAGTGG 62.7 1106-868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Antisense |
| Vegf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /egf      |
| Sense ATCTTCAAGCCGTCCTGTGTG 66.4 NM 009595 1232-1252 282 bp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sense     |
| Antisense GCAGGAACATTTACACGTCTG 62.1 1513-1493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Antisense |
| INOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOS       |
| Sense TGGGAATGGAGACTGTCCCAG 66.0 NM_011577 1944-1964 306 bp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sense     |
| Antisense GGGATCTGAATGTGATGTTTG 60.0 2249-2229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Antisense |
| Mcp-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Иср-1     |
| Sense ATGCAGGTCCCTGTCATGCTTC 69.5 NM_01133 86-107 465 bp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sense     |
| Antisense ACTAGTTCACTGTCACACTGGTC 68.5 533-511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Antisense |
| αSMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | αSMA      |
| Sense CAGGATGCAGAAGGAGATCAC 64 NM007392.2 1009-1029 364 bp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sense     |
| Antisense TGTTGCTAGGCCAGGGCTAC 64 1372-1353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Antisense |
| Fn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -n1       |
| Sense TTCAAGTGTGATCCCCATGAAG 60 NM 010233 7126-7147 154 bp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sense     |
| Antisense CAGGTCTACGGCAGTTGTCA 61.5 7279-7260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Antisense |
| Col1a1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Col1α1    |
| Sense TAAGGGTCCCCAATGGTGAGA 67.4 NM007742 107-127 203 bp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sense     |
| Antisense GGGTCCCTCGACTCCTACAT 64.2 309-290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Antisense |
| GAPDH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAPDH     |
| Sense TGGCCTTCCGTGTTCCTAC 61.3 NM 008084 686-704 178 bp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sense     |
| Antisense GAGTTGCTGTTGAAGTCGCA 60.9 863-844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Antisense |

Ctfr, cystic fibrosis transmembrane conductance regulator; Scnn1 $\alpha$ , sodium channel epithelial 1  $\alpha$  subunit; Scnn1 $\beta$ , sodium channel epithelial 1  $\beta$  subunit; Scnn1 $\gamma$ , sodium channel epithelial 1 $\gamma$  subunit; TNF $\alpha$ , tumor necrosis factor $\alpha$ ; IFN $\gamma$ , interferon $\gamma$ ; Ctgf, connective tissue growth factor; mTGF $\beta$ 1, mouse transforming growth factor $\beta$ 1; Vegf, vascular epithelial growth factor; iNOS, inducible nitric oxide synthase; Mcp-1, monocyte chemoattractant protein-1;  $\alpha$ SMA,  $\alpha$ smooth muscle actin; Fn1, fibronectin 1; Col1 $\alpha$ 1, collagen 1 $\alpha$ 1. WT, wild-type; TG, transgenic.

### Mass spectrometry data with full annotation and e values.

MS/MS Fragmentation of IVMPESSGNPNAVNPAGYR Found in Staph\_8p\_00351 in putative transglycosylase IsaA

Match to Query 3631: 1987.945068 from (994.979810,2+) intensity (711086.6200) scans (4233) rawscans (sn4233) rtinseconds (1268.962) index(216)

Title: 217: Scan 4233 (rt=21.1494) [E:\Data\HFX\Isaac Cann\18-154-IsaacCann-Trypsindigested.raw] Data file E:\Data\HFX\Isaac Cann\18-154-IsaacCann-Trypsindigested.raw



#### Monoisotopic mass of neutral peptide Mr(calc): 1987.9422 Variable modifications:

M3 : Oxidation (M), with neutral losses 0.0000(shown in table), 63.9983 Ions Score: 80 Expect: 1.6e-07

Matches: 9/260 fragment ions using 9 most intense peaks

| #  | b         | <b>b</b> <sup>++</sup> | b*        | b*++     | b <sup>0</sup> | b <sup>0++</sup> | Seq. | у         | y**      | y*        | y***     | y <sup>0</sup> | y <sup>0++</sup> | #  |
|----|-----------|------------------------|-----------|----------|----------------|------------------|------|-----------|----------|-----------|----------|----------------|------------------|----|
| 1  | 114.0913  | 57.5493                |           |          |                |                  | Ι    |           |          |           |          |                |                  | 19 |
| 2  | 213.1598  | 107.0835               |           |          |                |                  | V    | 1875.8654 | 938.4363 | 1858.8388 | 929.9231 | 1857.8548      | 929.4310         | 18 |
| 3  | 360.1952  | 180.6012               |           |          |                |                  | M    | 1776.7970 | 888.9021 | 1759.7704 | 880.3889 | 1758.7864      | 879.8968         | 17 |
| 4  | 457.2479  | 229.1276               |           |          |                |                  | Р    | 1629.7616 | 815.3844 | 1612.7350 | 806.8712 | 1611.7510      | 806.3791         | 16 |
| 5  | 586.2905  | 293.6489               |           |          | 568.2799       | 284.6436         | E    | 1532.7088 | 766.8580 | 1515.6823 | 758.3448 | 1514.6982      | 757.8528         | 15 |
| 6  | 673.3225  | 337.1649               |           |          | 655.3120       | 328.1596         | S    | 1403.6662 | 702.3367 | 1386.6397 | 693.8235 | 1385.6557      | 693.3315         | 14 |
| 7  | 760.3546  | 380.6809               |           |          | 742.3440       | 371.6756         | S    | 1316.6342 | 658.8207 | 1299.6076 | 650.3075 | 1298.6236      | 649.8154         | 13 |
| 8  | 817.3760  | 409.1917               |           |          | 799.3655       | 400.1864         | G    | 1229.6022 | 615.3047 | 1212.5756 | 606.7914 |                |                  | 12 |
| 9  | 931.4190  | 466.2131               | 914.3924  | 457.6998 | 913.4084       | 457.2078         | N    | 1172.5807 | 586.7940 | 1155.5541 | 578.2807 |                |                  | 11 |
| 10 | 1028.4717 | 514.7395               | 1011.4452 | 506.2262 | 1010.4612      | 505.7342         | Р    | 1058.5378 | 529.7725 | 1041.5112 | 521.2592 |                |                  | 10 |
| 11 | 1142.5146 | 571.7610               | 1125.4881 | 563.2477 | 1124.5041      | 562.7557         | N    | 961.4850  | 481.2461 | 944.4585  | 472.7329 |                |                  | 9  |
| 12 | 1213.5518 | 607.2795               | 1196.5252 | 598.7662 | 1195.5412      | 598.2742         | Α    | 847.4421  | 424.2247 | 830.4155  | 415.7114 |                |                  | 8  |
| 13 | 1312.6202 | 656.8137               | 1295.5936 | 648.3005 | 1294.6096      | 647.8084         | V    | 776.4050  | 388.7061 | 759.3784  | 380.1928 |                |                  | 7  |
| 14 | 1426.6631 | 713.8352               | 1409.6366 | 705.3219 | 1408.6525      | 704.8299         | N    | 677.3365  | 339.1719 | 660.3100  | 330.6586 |                |                  | 6  |
| 15 | 1523.7159 | 762.3616               | 1506.6893 | 753.8483 | 1505.7053      | 753.3563         | Р    | 563.2936  | 282.1504 | 546.2671  | 273.6372 |                |                  | 5  |
| 16 | 1594.7530 | 797.8801               | 1577.7264 | 789.3669 | 1576.7424      | 788.8748         | A    | 466.2409  | 233.6241 | 449.2143  | 225.1108 |                |                  | 4  |
| 17 | 1651.7744 | 826.3909               | 1634.7479 | 817.8776 | 1633.7639      | 817.3856         | G    | 395.2037  | 198.1055 | 378.1772  | 189.5922 |                |                  | 3  |
| 18 | 1814.8378 | 907.9225               | 1797.8112 | 899.4093 | 1796.8272      | 898.9172         | Y    | 338.1823  | 169.5948 | 321.1557  | 161.0815 |                |                  | 2  |
| 19 |           |                        |           |          |                |                  | R    | 175.1190  | 88.0631  | 158.0924  | 79.5498  |                |                  | 1  |

| Per | otide tag                                      | Peptide | matches  | Protein identification                          | e-values |
|-----|------------------------------------------------|---------|----------|-------------------------------------------------|----------|
| 1.  | S.IVMPESSGNPNAVNPAGYR.G + Oxidation (M)        | 1       |          | Putative transglycosylase IsaA                  | 1.6 e-07 |
| 2.  | T.PNAMANLDVITKKFGASPK.S + Oxidation (M)        | 1       |          | Sodium/glutamate symporter                      | 0.0025   |
| 3.  | M.FVHLFGLPLP.G                                 | 1       | 0        | Copper-exporting P-type ATPase A                | 0.014    |
| 4.  | K.LTPPPVK.O                                    | 1       |          | Methionyl-tRNA formyltransferase                | 0.00031  |
| 5.  | E.PYOSLSELO.S                                  | 1       |          | Spermidine N(1)acetyltransferase                | 0.0089   |
| 6.  | LLTIKTYLGGL                                    | 1       |          | Sodium/pantothenate symporter                   | 0.02     |
| 7.  | D.VVIKGHE.R                                    | 1       | Putative | ABC transporter ATP-binding protein YbiT        | 0.0074   |
| 8.  | N.DISIDSKLKGOV.N                               | 1       |          | Hypothetical protein                            | 0.047    |
| 9.  | F.MFAGKDVLIVYDDLT.K + Oxidation (M)            | 1       |          | ATP Synthase subunit alpha                      | 0.031    |
| 10. | LIAVVLSSAAVSVAGALG                             | 3       |          | Iron-uptake system permease protein FeuC        | 0.044    |
| 11. | K.PMLVVAFAIIMANTISVLL + Oxidation (M)          | 1       |          | Hypothetical protein                            | 0.022    |
| 12  | S VPEDAKGOKVFM E+Oxidation (M)                 | 1       |          | Vitamin B12-binding protein                     | 0.019    |
| 13  | LEMMIGALIGGVTNMIAVRMLEHPEKT Y + 3 Oxidation    | (M) 1   |          | Hypothetical protein                            | 0.041    |
| 14  | A DKVAKALNKKGSGAGEGSYTYTDMEA F + Oxidation     | (M) = 1 | 1        | Macrolide export ATP binding permease MacB      | 0.037    |
| 15  | V.SLALPTIRDDI NVTASISLI F                      | 1       |          | Multidrug efflux nump SdrM                      | 0.04     |
| 16  | T EMCK ANNVELAVMLR $\pm 2$ Oxidation (M)       | 1       |          | CutC-like protein                               | 0.018    |
| 17  | AISGKLPANYADALP                                | 1       |          | Transketolase                                   | 0.029    |
| 18  | K LEKHPYKNPIP D                                | 1       |          | n-aminobenzvol-glutamate hydrolase subunit B    | 0.044    |
| 19  | F LPKSTEEKHSVAROLNVSVSELEHYIASLN E             | 1       |          | Pyruvate, phosphate dikinase                    | 0.027    |
| 20  | L LNVTFNFDTNLHTLPPH F                          | 2       |          | Homoserine dehydrogenase                        | 0.019    |
| 21  | P.HHEOFVNTTEDIGHOLS I                          | 1       |          | Putative competence-damage inducible protein    | 0.029    |
| 22  | L YITIDIDGIDPSIAPGTG T                         | 1       | 1        | Guanidinobutyrase                               | 0.033    |
| 23  | E MTIFEPIKGLIVNK L + Oxidation (M)             | 1       |          | Penicillin acylase                              | 0.039    |
| 24  | M KVFIGKIINTHG I                               | 1       |          | Ribosome maturation factor RimM                 | 0.012    |
| 25  | D IDGLEVILLVNNNY K                             | 1       | 1        | Putative ring cleaving dioxygenase MhgA         | 0.012    |
| 26. | Y.VILSDYRGYN.R                                 |         | 1        | Hypothetical protein                            | 0.041    |
| 27. | T.OPVKKGMKEKGVEIVTEAMAKSAE.E + 2 Oxidation (1) | M)      | 1        | Dihyrolipoyl dehydrogenase                      | 0.022    |
| 28. | G.VLGALEVVEHLNEH.H                             |         | 1        | Putative hydrolase                              | 0.022    |
| 29. | V.AFILILIHIG.L                                 |         | 1        | Hypothetical protein                            | 0.048    |
| 30. | LVPVLGPITGGMLG                                 |         | 1        | Glycerol uptake facilitator protein             | 0.038    |
| 31. | G.SRPIEOHIKG.F                                 |         | 1 UI     | P-N-acetylglucosamine 1-carboxyvinyltransferase | 0.034    |
| 32. | S.ELTSTLPHAODYLLR.N                            |         | 1        | Type II secretion system protein F              | 0.044    |
| 33. | F.EOSIGFLRIINGSEPLDNTSIH.P                     |         | 1        | 30S ribosomal protein S1                        | 0.036    |
| 34. | H.SDHIKGLGVLARKYGLPI.Y                         |         | 1        | Putative metallo-hydrolase YycJ                 | 0.05     |
| 35. | R.TGIYMAIDSTNGYMDADRSEWIHD.E + Oxidation (M)   |         | 1        | C protein alpha-antigen                         | 0.023    |
| 36. | F.GGYKHSG.I                                    |         | 1        | Putative aldehyde dehydrogenase                 | 0.021    |
| 37. | M.HVTISHP.L                                    |         | 1        | Aspartokinase 2                                 | 0.031    |
| 38. | L.LLVSSLLLSOTAMA.A                             |         | 1        | Bifunctional autolysin                          | 0.049    |
| 39. | K.GILTTIPPRKEIDIVAKVKKAOYNIKKVTONLY.R          |         | 1        | Hypothetical protein                            | 0.028    |
| 40. | V.FIMASILTFA.S + Oxidation (M)                 |         | 1        | Ktr system potassium uptake protein B           | 0.043    |
| 41. | N.ieikdep                                      |         | 1        | Hypothetical protein                            | 0.025    |
| 42. | L.EAEEVGNTSFQVFMKT.N + Oxidation (M)           |         | 1        | Oxygen sensor histidine kinase NreB             | 0.029    |
| 43. | S.YMKSMQN.T + Oxidation (M)                    |         | 1        | Putative glycosyltransferase TagX               | 0.038    |
| 44. | N. EALKMKKMGVDGG.F+Oxidation (M)               |         | 1        | Glycerophophodiester phophodiesterase           | 0.046    |
| 45. | F.ltINlkfl.Q                                   |         | 1        | Amino-acid carrier protein AlsT                 | 0.046    |

: icann@illinois.edu

Search title : 18-154-IsaacCann-Trypsindigested.raw-by-no-enzyme-search MS data file : E:\Data\HFX\Isaac Cann\18-154-IsaacCann-Trypsindigested.raw 1: Cann largeplas Staph 20181116 (38 sequences; 6,867 residues)

**Databases** : 2: Cann\_smallplas\_Staph 20181116 (5 sequences; 755 residues)

**3:** Cann\_Staph 20181116 (2,748 sequences; 796,786 residues) **Timestamp** : 22 Nov 2018 at 23:27:18 GMT

## High performance liquid chromatography data

## Chromatographic fractionation of bacterial culture



## Chromatogram







## Full blots of portions of blots described in Figure 8a



Full blots of portions of blots described in Supplementary Figure 4c



Full blots of portions of blots described in Supplementary Figure 11c



#### Full blots of portions of blots described in Supplementary Figure 12c