Autophagy lipidation machinery regulates axonal microtubule dynamics but is

dispensable for survival of mammalian neurons

Negrete-Hurtado et al.

REAGENT or RESO	URCE			SOURCE	IDENTIFIER
Antibodies					
	WB	ICC	IHC		
Rabbit polyclonal	1:1000	-	-	MBL	Cat# PM040
anti-ATG16L1					
Rabbit monoclonal	1:1000	-	-	abcam	Cat# ab108327
anti-ATG5					
Rabbit polyclonal	-	1:300	-	Novus Biologicals	Cat# NB110-
anti-ATG9					56893
Rabbit polyclonal	-	1:300	-	Arigo (Biomol	Cat#
anti-ATG13				GmbH)	ARG55112.050
Guinea pig		1:500	1:500	Synaptic Systems	Cat# 141 004
polyclonal anti-					
Bassoon					
Rabbit polyclonal	1:1000	-	1:200	Cell Signaling	Cat# 9661
anti-CASPASE-3					
cleaved (Asp175)					
Rabbit polyclonal	-	-	1:500	Synaptic Systems	Cat# 226 003
anti-c-FOS	1.1.0.0.0	1.500	1.700		
Rabbit polyclonal	1:1000	1:500	1:500	Millipore	Cat# ABT263
anti-CLASP2		1.000			A H 1 1 1 1 0 0 1
Goat polyclonal	-	1:200	-	abcam	Cat# ab11806
anti-DNCTT	1 1 0 0 0	1 500			C /// NDD1 00170
Rabbit polyclonal	1:1000	1:500	-	Novus Biologicals	Cat# NBP1-881/8
anti-ELKS1	1.1000	1.200		Call Claustins	0-1# 12426
Rabbit monocional	1:1000	1:200	-	Cell Signaling	Cat# 12430
Mouse monoclonal	1.1000			Sigma Aldriah	Cot# C9705
anti GADDH	1:1000	-	-	Signa-Aldrich	Cal# 68795
Chicken polyclopal		1.2000	1.1000	abcam	Cat# ab13070
anti-GFP	-	1.2000	1.1000	abcam	Cal# a013970
Mouse monoclonal	1.5000	_		Takara Bio Clontech	Cat#
anti-GEP	1.5000			Tukulu Dio Cioncen	632375
Rabbit polyclonal	1:2000	_	_	Novus Biologicals	Cat# NB600-
anti-LC3B	1.2000				1384SS
Mouse monoclonal	-	1:300	-	MBL	Cat# M152-3
anti-LC3A/B					
Mouse monoclonal	_	1:500	_	Sigma-Aldrich	Cat# M9942
anti-MAP2					<i></i> . -
Mouse monoclonal	1:1000	-	_	Sigma-Aldrich	Cat# M8159
anti-MAPK					
activated (P-ERK-					
1&2)					

Supplementary Table 1. List of antibodies used in the current study

Rabbit polyclonal	1:2000	-	-	abcam	Cat# ab167453
anti-mCherry					
Mouse monoclonal	-	1:5000	-	Novus Biologicals	Cat# NBP1-96752
anti-mCherry					
Rabbit polyclonal	1:1000	-	-	Cell Signaling	Cat# 2211
anti-P-S6					
Ribosomal Protein					
(Ser235/236)					
Guinea pig	1:1000	1:500	1:1000	Progen	Cat# GP62-C
polyclonal anti-p62					
Rabbit monoclonal	1:1000	-	-	Cell Signaling	Cat# 4060
anti-P-AKT					
(Ser473)					
Rabbit monoclonal	-	1:250	-	Cell Signaling	Cat#9367S
anti-RAB7					
Rabbit polyclonal	-	1:800	-	Synaptic Systems	Cat# 104 202
anti-SYB2					
Mouse monoclonal	-	1:500	-	Synaptic Systems	Cat# 106 001
anti-Synapsin 1					
Rabbit polyclonal	1:1000	1:250	-	abcam	Cat# ab75173
anti-P-TRKB					
(Y816)					
Mouse monoclonal	1:1000	1:500	-	Synaptic Systems	Cat# 302 211
anti-α-Tubulin					
Mouse monoclonal	-	-	1:500	Thermo Fisher Sci	Cat# 14-4510-80
anti- beta-3-					
Tubulin					
Rabbit monoclonal	1:1000	-	-	Cell Signaling	Cat# 5335
anti-α-Tubulin					
acetylated (Lys40)	1.1.0.0.0				
Mouse monoclonal	1:1000	-	-	Sigma-Aldrich	Cat# 19028
anti-α-Tubulin					
tyrosinated	1 1 0 0 0				
Rabbit polyclonal	1:1000	-	-	Millipore	Cat# AB3201
anti-a-Tubulin					
detyrosinated	1 1 0 0 0	1 500		a a .	G
Rabbit polyclonal	1:1000	1:500	-	Synaptic Systems	Cat# 302 213
anti- α -Tubulin $\Delta 2$	1 1 0 0 0	1.200			0
Rabbit antiserum	1:1000	1:200	-	Sigma-Aldrich	Cat# U5379
anti-Ubiquitin		1 200			G
Mouse monoclonal	-	1:300	-	BioRad	Cat#
anti-WIPI2	1 5000			T 1	AB_10845951
Goat anti-Mouse	1:5000	-	-	Jackson	Cat# 115-035-003
Igo (H+L)				Immuno Research	
peroxidase-					
conjugated					

Goat anti-Mouse	1:5000	-	-	Jackson	Cat# 115-035-174
IgG, light chain				Immuno Research	
specific, peroxidase					
conjugated					
Goat anti-Rabbit	1:5000	-	-	Jackson	Cat# 111-035-003
IgG (H+L)				Immuno Research	
peroxidase-					
conjugated					
Goat anti-Guinea	1:5000	-	-	Jackson	Cat# 106-035-003
Pig IgG (H+L)				Immuno Research	
peroxidase-					
conjugated					
Normal Rabbit IgG	1:5000	-	-	Cell Signaling	Cat# 2729
Normal Mouse IgG	1:5000	-	-	Millipore	Cat# 12-371
Alexa Fluor 488	-	1:500	-	Thermo Fisher Sci	Cat# A-11029
Goat anti-Mouse					
IgG					
Alexa Fluor 488	-	1:500	1:500	Thermo Fisher Sci	Cat# A-11034
Goat anti-Rabbit					
IgG					
Alexa Fluor 488	-	1:500	1:500	Thermo Fisher Sci	Cat# A-11039
Goat anti-Chicken					
IgG					
Alexa Fluor 568	-	1:500	1:500	Thermo Fisher Sci	Cat# A-11031
Goat anti-Mouse					
IgG					
Alexa Fluor 568	-	1:500	1:500	Thermo Fisher Sci	Cat# A-11036
Goat anti-Rabbit					
IgG					
Alexa Fluor 568	-	1:500	1:500	Thermo Fisher Sci	Cat# A-11057
Donkey anti-Goat					
IgG					
Alexa Fluor 647	-	1:500	1:500	Thermo Fisher Sci	Cat# A-21236
Goat anti-Mouse					
IgG					
Alexa Fluor 647	-	1:500	1:500	Thermo Fisher Sci	Cat# A-21245
Goat anti-Rabbit					
IgG					
Alexa Fluor 647	-	1:500	1:500	Thermo Fisher Sci	Cat# A-21450
Goat anti-Guinea					
Pig IgG					
Alexa Fluor 647		1:500		Thermo Fisher Sci	Cat# A-21247
Goat anti-Rat IgG					
Abberior STAR	-	1:1000	-	Abberior	Cat#ST635P
635P Goat anti-					
mouse IgG					

AAV9-CamKIIα-eGFP	Penn Vector Core.	AV-9-pV1917
	University of	1
	Pennsylvania School	
	of Medicine	
Oligonucleotides		
siRNA Clasp2 smart pool	Dharmacon	L-062336-01-0005
siRNA Erc1 (Elks1) smart pool	Dharmacon	L-058829-01-0005
siRNA Maplc3b smart pool	Dharmacon	M-040989-01-
		0005
siRNA Mallc3a smart pool	Dharmacon	L-056203-01-0005
siRNA Fip200 smart pool	Dharmacon	L-041191-01-0005
siRNA Scramble non-targeting smart pool	Dharmacon	D-001206-13-05
Primer: <i>Bdnf</i> Forward:	This paper	N/A
GGGTCACAGCGGCAGATAAA		
Primer: Bdnf Reverse:	This paper	N/A
GCCTITGGATACCGGGACTT	During and a set	ID: ((70150-1
Primer: <i>Ntrk2</i> Forward:	PrimerBank	ID: 66/9150a1
	Duine and a sta	ID: ((70150-1
$\begin{array}{c} \text{Primer: } N W K 2 \text{ Reverse:} \\ \text{CCCCCTCAACCCTCTTACC} \end{array}$	Рппегванк	ID: 00/9150a1
Primor: Candh Forward:	1	NI/A
		IN/A
Primer: Gandh Reverse:	1	N/A
ACACATTGGGGGTAGGAACA		
Cre-Primer for genotyping.		
Gen Cre. 1: GAACCTGATGGACATGTTCAGG	eurofins	N/A
Gen Cre 2.	eurofins	N/A
AGTGCGTTCGAACGCTAGAGCCTGT		
Gen.Cre 3: TTACGTCCATCGTGGACA	eurofins	N/A
Gen.Cre 4: GGCTGGGTGTTAGCC	eurofins	N/A
Atg5-Primer for genotyping:		,
Atg5 1: AATATGAAGGCACACCCCTGAAATG	eurofins	N/A
Atg5 2: ACAACGTCGAGCACGCTGCGCAAGG	eurofins	N/A
Atg5_3: GTACTGCATAATGGTTTAACTCTTGC	eurofins	N/A
Atg16L1-Primer for genotyping:		
Atg16L1_1:CAGAATAATTTCCGGCAGAGACC	eurofins	N/A
GG		

Supplementary Table 2. List of oligonucleotides, vectors and primers used in the current study

<i>Atg16L1_2:</i> AGCCAAAGAAGGAAGGTAAGCA ACGAA	eurofins	N/A
Oligonucleotides and primers for mutagenesis and		
cloning		
Oligo: Lc3b G120A Forward (mutagenesis):	This paper	N/A
CCCAGGAGACGTTCGCGACAGCACTGGCTT	T T T	
Oligo: <i>Lc3b G120A</i> Reverse (mutagenesis):	This paper	N/A
ACAGCCAGTGCTGTCGCGAACGTCTCCTGG	1 1	
Oligo: <i>Lc3b G120A</i> -stop Forward (mutagenesis):	This paper	N/A
AGGAGACGTTCGCGTAAGCACTGGCTGTTC	1 1	
Oligo: <i>Lc3b G120A</i> -stop Reverse (mutagenesis):	This paper	N/A
GTAACAGCCAGTGCTTACGCGAACGTCTCT	1 1	
Primer: Lc3a in pEGFP2 Forward (cloning):	This paper	N/A
CGGAATTCATGCCCTCAGACCGGCC	1 1	
Primer: <i>Lc3a</i> in pEGFP2 Reverse (cloning):	This paper	N/A
GCGGATCCTCAGAAGCCGAAGGTTTC	1 1	
Oligo: Lc3a G120A Forward (mutagenesis):	This paper	N/A
CCCAGGAAACCTTCGCCTTCTGAGGATCCC		
Oligo: Lc3a G120A Reverse (mutagenesis):	This paper	N/A
GTGGATCCTCAGAAGGCGAAGGTTTCCTGG		
Primer: Gabarap in pEGFP2 Forward (cloning):	This paper	N/A
CAAGAAGCTTCATGAAGTTCGTGTACAAA		
Primer: Gabarap in pEGFP2 Reverse (cloning):	This paper	N/A
CTGTGGATCCTCACAGACCATAGACGCTTC		
Oligo: Gabarap G116A Forward (mutagenesis):	This paper	N/A
TGAAAGCGTCTATGCTCTGTGAGGATCCAC		
Oligo: Gabarap G116A Reverse (mutagenesis):	This paper	N/A
GGTGGATCCTCACAGAGCATAGACGCTTTA		
Recombinant DNA		
Plasmid: pFUGW-H1-eGFP	2	N/A
Plasmid: pmCherry-N1	Kind gift from Dr.	N/A
	M	
	M. Kreutz	
Disservide attacher C	Kind off from Dr	N/A
Plasmid: plagkFP-C	Kind gilt from Dr.	1N/A
	M Kroutz	
	WI. KIEUIZ	
Plasmid: pmStrawherry_ATG4BC74A (mouse)	Addgene	#21076
This indice prior a woonly in Orde (induse)	radgene	1121070
Plasmid: TRKB-mRFP (mouse)	3	N/A
Plasmid · EB3-tdTomato (human)	Addgene	#50708

Plasmid: Tubulin-eGFP (chicken)	Addgene	#66105
Plasmid: pEGFP-C1-mApg5 (mouse)	Kind gift from Prof.	N/A
	M. Lammers	
Plasmid: Mito-mCherry	Kind gift from Prof.	N/A
	E. Rugarli	
Plasmid: ptagRFP-LC3B (pro LC3) (rat)	This paper	N/A
Plasmid: ptagRFP-LC3BG120A (rat)	This paper	N/A
Plasmid: eGFP-LC3B (rat)	Kind gift from Dr.	N/A
	M. Kreutz	
Plasmid: eGFP-C-LC3BG120A (rat)	This paper	N/A
Plasmid: eGFP-LC3A (human)	This paper	N/A
Plasmid: eGFP-LC3AG120A (human)	This paper	N/A
Plasmid: eGFP-GABARAP (mouse)	This paper	N/A
Plasmid: eGFP-GABARAP-G116A (mouse)	This paper	N/A
Plasmid: tdTomato-ELKS1 (rat)	Kind gift from Dr.	N/A
	H. Kawabe and Prof.	
	Nils Brose	
Plasmid: SYB2-pHluorin (rat)	2	N/A

Supplementary Table 3. Total number of cells in N experiments

Main Figures					
2e	WT: 40	2h	WT: 234	2j	Control: 486
	KO: 40		KO: 238		ATG4B ^{C74A} :
					360
2k	Scr siRNA: 534	2q	LC3 WT: 332	2s	Scr siRNA: 417
	<i>Fip200</i> siRNA: 820				

			LC3 G120:		<i>Lc3b</i> siRNA:
			251		502
3e	WT: 27	3e	WT: 31	3h	WT: 29
(ATG5)	KO: 33	(ATG16L1)	KO: 28	(ATG5)	KO: 30
3h	WT: 31	3k	WT: 27	3m	WT: 28
(ATG16L1)	KO: 22		KO: 25		KO: 27
3s and 3r	29 per condition				
		1			
4c	WT ^{eGFP} : 25	4p	WT: 27	4r	eGFP: 30
	KO ^{eGFP} :26	-	KO: 26		eGFP-LC3B: 30
	WT ^{eGFP-ATG5} :20				eGFP-
	KO ^{eGFP-ATG5} :24				LC3BG120A:
					30
4t	eGFP: 19				
	eGFP-				
	LC3BG120A: 17				
	eGFP-				
	GABARAPG116A:				
	20				
	-	1		1	
6j	KO ^{Scr} : 247	6k	WT ^{Scr} : 27	6m	KO^{Scr} : 142
	KOLCODSIRINA: 281		KO ^{scr} : 27	(number	KO ^{Eiksi sikina} :
			WTEIKSI SIKINA:	spheroids)	125
			20 KOElks1 siRNA		
60	KOScr. 20	60	28	64 632 633	•CED: 22
oq	KO ^{zer} : 50 KOElks1 siRNA. 26	os	eGFP: 55	οι, ου, ον	CEP CLASP2
	KU .20		CLASD2: 20		20
			CLASI 2. 39		29
6h	WT: 65				
011	KO: 74				
	NO. / 1				
Supplementar	ry figures				
2e	WT·40	2σ	WT· 40	2m	Scr peptide: 42
20	KO: 40	25	KO: 40	2111	LC3B peptide:
	1101 10		10110		46
3d	WT: 30	3i, 3m, 3o	WT: 30	3k	WT: 30
	KO: 30	,,,	KO: 30		KO: 27
3р	WT: 359	3r	WT: 60	3t	WT: 13
(boutons)	KO: 358	(synapses)	KO: 60		KO: 13
3u	WT: 20	3w	WT: 31	3y (%	DMSO: 16
	KO: 20		KO: 28	moving)	Ciliobrevin D:
				0,	15

3z	DMSO: 15	3z	DIV6: 24	3b'	WT: 33
(retrograde)	Ciliobrevin D: 9		DIV12: 20		KO: 28
бр	WT ^{Scr} : 19 KO ^{Scr} : 19 WT ^{Elks1 KD} : 16 KO ^{Elks1 KD} : 17	бr	KO ^{Scr} : 37 KO ^{Lc3a KD} : 33	6v	Scr: 25 CLASP2 KD: 25
7a	WT+BDNF: 40 KO+BDNF: 40	7b, 7b, 7d	WT+H2O: 32 KO+H2O: 36 WT+BDNF:33 KO+BDNF: 35		

Supplementary Figure 1. Lack of apoptosis in ATG5 and ATG16L1 KO neurons. (a) ATG5 expression levels are significantly decreased in cortical brain lysates from 13- week-old ATG5 KO mice compared to controls. Protein levels were quantified relative to GAPDH and the levels in the KO were normalized to the WT set to 100% (KO: $8.40\pm4.39\%$). **p=0.001. N=3 independent experiments. (b) Growth curves of WT and ATG5KO mice (KO=22, WT=28 animals). ***p<0.000. (c) LC3II expression levels are significantly decreased in cortical brain lysates from 13- week-old ATG5 KO mice compared to controls. Protein levels were quantified relative to α -Tubulin and the levels in the KO were normalized to the WT set to 100% (KO: $50.87\pm3.45\%$). ***p=0.000. N=6 independent experiments. (d) LC3I expression levels are significantly increased in cortical brain lysates from 13- week-old ATG5 KO mice the WT set to 100% (KO: $50.87\pm3.45\%$).

were quantified relative to α -Tubulin and the levels in the KO were normalized to the WT set to 100% (KO: 128.59±13.00%). *p=0.040. N=6 independent experiments. (e,f) p62 expression levels are significantly increased in cortical brain lysates from 13 week-old ATG5 KO mice compared to controls. Protein levels were quantified relative to GAPDH and the levels in the KO were normalized to the WT set to 100% (KO: 6696.69±2105.47%). *p=0.044. N=3 independent experiments. (g,h) ATG5 expression levels are significantly decreased in lysates from cultured ATG5 KO neurons. Protein levels in the KO were quantified relative to GAPDH and the levels in the KO were normalized to the WT set to 100% (KO: 1±0.00%). ***p <0.000. N=5 independent experiments. (i) Representative fluorescence images of WT and ATG5 KO primary neurons after performing Live/Dead cell viability assay. Scale bar, 150µm. (j) ATG16L1 expression levels are significantly decreased in lysates from cultured ATG16L1 KO neurons. Protein levels in the WT set to 100% (KO:9.34±4.69%). ***p<0.000. N=4 independent experiments.

All graphs show mean \pm SEM, statistical analysis was performed by one-sample Student's *t*-test in (a,c,d,f,h,j) and unpaired two-tailed Student's *t*-test in (b). n.s.-non-significant. Source data are provided as a Source Data file.

Supplementary Figure 2. Axonal pathology of ATG5 KO cortical neurons. (a) Kaplan-Meier survival curves of ATG5 WT and KO mice. (b) Loss of ATG5 in forebrain excitatory neurons causes degeneration of thalamic nuclei. Scale bars: 900 µm, inserts 100 µm. (c) Cre expression in

the brain of CamkIla:Cre/Rosa-tdTomato mice. Scale bar, 1 mm. (d) Primary neurons from WT and ATG5KO mice transfected with eGFP and immunostained for MAP2. Rectangular boxes indicate the areas magnified in Fig. 2d. Scale bars, 50 µm. (e) Histogram showing the number of axonal swellings in WT and ATG5KO neurons plotted as a function of their diameter. ***pWT vs KO<0.0000 (for 2-2.99), ***pWT vs KO=0.0009 (for 3-3.99). N=4 independent experiments. (f,g) Spine density in WT and ATG5 KO neurons. N=4 independent experiments. Scale bar, 5 µm. (h,i) Expression levels of FIP200 in MEF cells transfected either with scr or *Fip200* siRNA. *p=0.042. N=3 independent experiments. (j) Expression levels of wild type LC3B and LC3BG120A in cultured neurons. p=0.2489. N=3 independent experiments. (k) Expression levels of GFP-LC3 in the cortex (Ctx) and the liver from 10 weeks old GFP-LC3 mice. Samples arise from the same experiment and the blots were processed in parallel, such that one loading control was used. (1) Representative images of eGFP-LC3B transgenic neurons treated with LC3B 108-125 or scramble (scr) TAMRA peptides. The red channel intensity was overexposed to illustrate the TAMRA signal within the neurons. Scale bar, 50µm. (m) Percentage of eGFP-LC3B neurons with spheroids. *p=0.012. 42-46 images per group (containing in total 1971 (Scr) and 2871 (LC3B) neurons) from N=3 independent experiments. Scale bar, $50\mu m$. (n,o) Expression levels of LC3 in MEF cells transfected either with scr $(100\pm4.5\%)$ or Lc3b siRNA $(49.48\pm9.86\%)$. **p=0.007. N=4 independent experiments).

All graphs show mean \pm SEM, statistical analysis was performed by unpaired two-tailed Student's *t*-test in (g,m), and two-way ANOVA for multiple comparisons in (e) and one-sample Student's *t*-test in (i,j,o). In (i,j,o) KO was normalized to the WT set to 100%. n.s.-non-significant. Total number of neurons in N experiments is shown in Supplementary Table 3. Source data are provided as a Source Data file.

Supplementary Figure 3. Functional mitochondria accumulate at ATG5 KO synapses. (a,b) p62 protein levels in WT and ATG5 KO (*p=0.046, N=5 independent experiments) or ATG16L1 KO (*p=0.013, N=4 independent experiments) lysates. (c,d) Ubiquitin puncta density in ATG5 KO neurons (***p WT^{soma} vs KO^{soma} =0.000; ***p KO^{soma} vs KO^{axon} =0.000). (e.f) mCherry- or pmStrawberry-ATG4B^{C74A}-expressing neurons, immunostained for p62. (g) Protein levels of FIP200, WIPI2 and ATG13 in WT and ATG5 KO lysates. (h-o) Immunofluorescent levels of WIPI2 (*p=0.032), FIP200 (p=0.298), ATG13 (p=0.474) and ATG9 (KO: *p=0.039) in eGFPexpressing WT and ATG5 KO axons. (p) SYB2-pHluorin responses to 200 APs at 50 Hz in WT and ATG5 KO neurons. (q,r) Number of mitochondria within 500nm of the AZ in WT and ATG5 KO neurons (*p=0.016). (s) Mitochondrial function in cultured WT and ATG5 KO neurons, measured by Seahorse Assay. 4 wells with 20000 cells per group. (t) RAB7 levels in WT or ATG5 KO somata (p=0.219). (u) Colocalization of DYNC1 and p816TRKB in WT and ATG5 KO axons, measured by Pearson's correlation coefficient (*p=0.011). (v,w) SYB2 levels in WT and ATG5 KO axons (p=0.124). Scale bar, 5µm. (x) Time-lapse images of WT axons treated with DMSO or 20µM Ciliobrevin D for 3h. (y) Percentage of moving TRKB vesicles (***p<0.0001) and their retrograde velocity in neurons, treated either with DMSO or Ciliobrevin D (*p=0.045). 16 DMSO and 17 CiliobrevinD neurons from N=2 independent experiments. (z) Retrograde velocity of TRKB vesicles in DIV6 (24 neurons, N=3, independent experiments) and DIV16 neurons (20 neurons, N=2 independent experiments). (a',b') Relative axonal mobility of Mito-mCherry in ATG5 KO neurons is significantly decreased compared to controls (*p=0.027). Scale bar, 5µm (snapshots).

Data in $(d,i,j,k,m,o,p,r,t,u,w,b^{\circ})$ are from N=3 independent experiments. All graphs show mean ± SEM, statistical analysis was performed by unpaired two-tailed Student's *t*-test in (r,u,y)

and one-sample Student's *t*-test in (a,b,d,I,k,m,o,t,w,b'). In (a,b,d,I,k,m,o,t,w,b') KO was normalized to the WT set to 100%. Scale bars in (c,e,f,h,j,l,n) 10µm. Total number of neurons in N experiments is shown in Supplementary Table 3. Source data are provided as a Source Data file. n.s.-non-significant. Kymographs scale bar: 5µm x 20sec.

Supplementary Figure 4. Hyperstability of microtubules in ATG5 and ATG16L1 KO neurons. (a, b) Levels of acetylated tubulin are significantly increased in lysates from cultured

ATG5 KO neurons compared to controls (KO: 182.25±33.07%). Protein levels in KO condition were normalized to the WT set to 100%. *p=0.034. N=5 independent experiments. (c) Time-lapse images of WT and ATG5 KO neurons transfected with α Tubulin-eGFP and treated with 1µg/ml of Nocodazole for 40 min. Scale bars, 100µm. (d) In WT neurons treated with nocodazole a profound loss of α Tubulin-eGFP immunofluorescence along the neurites is detected. In contrast, ATG5 KO neurons treated with Nocodazole were indistinguishable from DMSO-treated controls. (e,f) Levels of total α -tubulin are not altered in ATG5 KO neurons compared to controls. Protein levels were normalized to GAPDH and the levels in the KO condition were normalized to the WT set to 100% (KO: 106.99±4.69%). p=0.137. N=4 independent experiments. (g,h). Levels of α tubulin are not altered in ATG16 KO neurons compared to controls. Protein levels were normalized to GAPDH and the levels in the KO condition were normalized to 100% (KO: 103.90±4.64%, p=0.436, N=4 independent experiments). (i) Immunofluorescence images of WT and ATG16L1KO neurons treated with 0.2µg/ml Nocodazole for 1h or with DMSO as a control and immunostained for α -Tubulin. Scale bar, 50µm.

All graphs show mean \pm SEM, statistical analysis was performed one-sample Student's *t*-test. n.s.-non-significant. Source data are provided as a Source Data file.

Supplementary Figure 5. Cytoplasmic LC3a/b associates with ELKS1, but not with tubulin in neurons. (a) Co-immunoprecipitation of endogenous LC3 with α -Tubulin in soluble microtubules isolated from cultured WT and ATG5 KO neurons. Input, 5% of lysate was added to the assay. Example from N=3 experiments. (b) Co-immunoprecipitation of endogenous LC3 with α -Tubulin in polymerized microtubules isolated from cultured WT and ATG5 KO neurons. Input, 8% of lysate was added to the assay. Example from N=3 independent experiments. (c-k) Mass

spectrometry analysis of LC3 interaction partners (LC3a/b) or control IgG antibody (IgG) in the brain (N=3 brains for each condition). Log2 LFQ (label-free quantification) intensity denote change of expression of the protein (LC3a/b: **p=0.006; ELKS1: ***p<0.000). N=3 independent experiments.

All graphs show mean \pm SEM, statistical analysis was performed by unpaired two-tailed Student's *t*-test. n.s.-non-significant. Source data are provided as a Source Data file.

Supplementary figure 6. Cytoplasmic LC3 prevents ELKS1 proteasomal degradation. (a) ELKS1 antibody recognizes overexpressed tdTomato-ELKS1. Arrow indicates untransfected neuron. (b) Bassoon and ELKS1 immunostaining in cultured neurons. (c) WT and ATG5 KO neurons, immunostained for ELKS1. (d) WT and ATG5 KO cortices immunostained for ELKS1 and β 3-Tubulin. In the right panel, ELKS1 intensity was false color-coded. (e) ELKS1 levels in WT and ATG5 KO brains (**p=0.009). (f,g) ELKS1 levels in MG132-treated NSC34 cells (*p=0.049). (h-j) ELKS1 and CLASP2 levels in MG132-treated GFP-LC3B- or GFP-LC3B G120A-expressing HEK239T cells. *p^{ELKS1}(4h)=0.012, *p^{ELKS1}(12h)=0.031, *p^{CLASP2}(4h)=0.016. Samples arise from the same experiment and the blots were processed in parallel, such that one loading control was used. (k-m) ELKS1 and CLASP2 stability in cyclohexamide-treated GFP-, GFP-LC3B- or GFP-LC3BG120A-expressing HEK 293T cells. *peGFP(0h) vs eGFP(24h)=0.013, *p eGFP(24h) vs eGFP-LC3BG120A(24h)=0.033. (n,o) ELKS1 levels in NSC34 cells treated with scr or Elks1siRNA. **p=0.004. (p) ELKS1 levels in WT or ATG5 KO axons treated with scr (WT^{Scr}, KO^{Scr}, 19 neurons each) or *Elks1* siRNA (WT^{Elks1 KD}, 16 neurons, KO^{Elks1 KD}, 17 neurons). *pWT^{Scr} vs KO^{Scr} = 0.016, pWT^{Scr} vs *WT^{Elks1} KD=0.023, **p KO^{Scr} vs KO^{Elks1} KD = 0.007. (g) EB3tdTomato-expressing ATG5 KO neurons treated with scr or *Elks1* siRNA. Scale bars, x: 5µm, y: 15sec. (r) Spheroid area in ATG5 KO neurons treated with scr or Lc3a siRNA, *p=0.035. (s) ELKS1 and CLASP2 co-IP in mouse brain. Input, 4% of lysate. (t) CLASP2 antibody recognizes overexpressed eGFP-CLASP2. Arrow indicates untransfected neuron. (u,v) CLASP2 is decreased in Clasp2 siRNA-treated neurons. ***p<0.000. 20 for scr and 25 for siRNA neurons. (w, x) Confocal and STED images of neurons. (y) CLASP2 levels in ATG5 KO axons treated with scr or Elks1 siRNA.

Data in (i,j,m,o,v) come from N=3, in (e,r) from N=4, in (g) from N=5, in (p,v) from N=2 independent experiments. Graphs show mean \pm SEM, statistical analysis was performed by one-sample Student's *t*-test in (e,g,o,p), two-way ANOVA for multiple comparisons in (i,j,m) and unpaired two-tailed Student's *t*-test in (r,v). Source data are provided as a Source Data file. Scale bars: (a,t) 20µm, (b,y) 5µm, inserts 2µm, (c,w,x) 10µm, inserts 4µm, (d) 100µm, (u) 50µm.

Supplementary figure 7. BDNF rescues defective branching complexity in autophagydeficient neurons. (a) Unaltered number of axonal swellings in ATG5 KO neurons treated with 50 ng/ml of BDNF compared to H₂O-treated KO controls. N=4 independent experiments. (b-d) Sholl analysis of cultured WT and ATG5 KO neurons at DIV18 reveals the decrease in neuronal

complexity upon loss of ATG5 (b), a phenotype rescued via long-term application of 50 ng/ml of BDNF (**c,d**). N=4 independent experiments. * indicates $p \le 0.05$, ** indicates $p \le 0.01$, *** indicates $p \le 0.001$. (**e**) Immunoblot illustrating the long-term effect of either BDNF (50ng/ml) or NGF (50ng/ml) treatment on the levels of phosphorylated S6 Ribosomal Protein (pS6) in cultured WT and ATG5 KO neurons.

All data shown represent the mean \pm SEM. Statistical significance for all data was tested by two-way ANOVA repeated measures for multiple comparisons. Total number of neurons in N experiments is shown in Supplementary Table 3. Source data are provided as a Source Data file. n.s.-non-significant.

immunoblots from Figure 1

ib. rabaini	
	- \$5
IB: Delta2 Tubulin	
0z-tub	- 55

Figure 4i

Figure 4I

55-

-

Supplementary Figure 2n

Supplementary Figure 4a

Supplementary Figure 4e

Supplementary Figure 4g

Supplementary Figure 5b IB: Tubulin 55-IB: LC3 15-IB: LC3 IB: LC3

Uncropped immunoblots from Supplementary Figure 5

Supplementary Figure 6n

Supplementary Figure 6s

Supplementary Figure 7e

Supplementary figure 8. Uncropped original scans of WB membranes

Supplementary references:

- 1. Kye, M.J. *et al.* NMDA mediated contextual conditioning changes miRNA expression. *PloS one* **6**, e24682-e24682 (2011).
- 2. Kononenko, N.L. *et al.* Compromised fidelity of endocytic synaptic vesicle protein sorting in the absence of stonin 2. *Proceedings of the National Academy of Sciences of the United States of America* **110**, E526-535 (2013).
- 3. Kononenko, N.L. *et al.* Retrograde transport of TrkB-containing autophagosomes via the adaptor AP-2 mediates neuronal complexity and prevents neurodegeneration. *Nature Communications* **8**, 1-16 (2017).