Supplementary Information

Single-Atom Catalysts Reveal the Dinuclear Characteristic of Active Sites in NO Selective Reduction with NH³

Qu et al.

Contents

 \bar{a} ł

Supplementary Discussion

The structure of α *-Fe₂O₃ nanosheet.* The SXRD pattern of the α -Fe₂O₃ nanosheet in Supplementary Figure 1 is indexed to rhombohedral Fe₂O₃ (JCPDS 33-0664) with $a = b = 5.036 \text{ Å}$ and $c = 13.749 \text{ Å}$. According to the TEM/HRTEM images (Supplementary Figure 2), the synthesized α -Fe₂O₃ has a hexagonal nanosheet-shaped morphology with average sizes of 90 nm in width and 9 nm in thickness. In Supplementary Figure 2C, two series of fringes with an intersection angle of 60° are ascribed to (-120) and (110) planes, respectively, from which the basal up surfaces of the horizontally-lying nanosheets are deduced to be α -Fe₂O₃(001) surface. Thus, the proportion of exposed (001) surfaces is calculated to be ~90% as follows: $2 \times (90 + 180) \times 45\sqrt{3}$ / $[2 \times (90 + 180) \times 45\sqrt{3} + 6 \times 90 \times 9] = 90\%$.

Calculation on the number of the anchoring sites. For α-Fe₂O₃, the number of anchoring sites on (001) surfaces is calculated as follows:

(i) *Average density of the unit cell of the* $Fe₂O₃$ *. For the perfect* $Fe₂O₃$ *crystal, the unit cell can be* expressed as a formula Fe₁₂O₁₈, and thus the mass (*M*_{cell}) of one unit cell is calculated to be 1.6×10^{-21} g. The volume (V_{cell}) of one unit cell according to the lattice parameters ($a = b = 0.503$ nm, $c = 1.374$ nm) and the hexagonal structure feature of the $Fe₂O₃$ (the SXRD pattern of the $Fe₂O₃$ in Supplementary Figure 1) can be calculated:

 $V_{\text{cell}} = \sqrt{3}/2 \times a^2 \times c = \sqrt{3}/2 \times (0.503 \text{ nm})^2 \times 1.374 \text{ nm} = 0.301 \text{ nm}^3$

Thus, an average density (ρ) of the unit cell is calculated:

 $\rho = M_{cell} / V_{cell} = 5.316 \times 10^{-21}$ g nm⁻³.

(ii) *The number of the nanosheets for 1 g Fe₂O₃ <i>nanosheets*. The volume (V_{sheet}) and mass (M_{sheet}) of single $Fe₂O₃$ nanosheet are calculated according to the TEM/HRTEM images and a corresponding model (Supplementary Figure 2) as follows:

$$
V_{\text{sheet}} = 3\sqrt{3}/2 \times l^2 \times h = 3\sqrt{3}/2 \times (90 \text{ nm})^2 \times 9 \text{ nm} = 1.90 \times 10^5 \text{ nm}^3
$$
,

 $M_{\text{sheet}} = V_{\text{sheet}} \times \rho = 1.90 \times 10^5 \text{ nm}^3 \times 5.316 \times 10^{-21} \text{ g/mm}^3 = 1.01 \times 10^{-15} \text{ g}$,

where *l* and *h* represent the average length and height of the $Fe₂O₃$ nanosheets, respectively (Supplementary Figure 2). Therefore, the number (N_{sheet}) of the Fe₂O₃ nanosheets that 1 g catalyst (M_{cat}) contains:

 $N_{\text{sheet}} = M_{\text{cat}} / M_{\text{sheet}} = 1 \text{ g} \div (1.01 \times 10^{15} \text{ g}) = 9.90 \times 10^{14}.$

(iii) The number of the anchoring sites on the (001) surfaces of 1 g $Fe₂O₃$. According to the model in Supplementary Figure 2D, the areas of the single anchoring site (S_a) and the (001) surface of 1 g Fe₂O₃ (*S*001) can be respectively calculated as:

$$
S_a = \sqrt{3}/2 \times a^2 = 0.219
$$
 nm²,

 $S_{001} = 2 \times 3\sqrt{3}/2 \times l^2 \times N_{\rm sheet} = 2 \times 3\sqrt{3}/2 \times (90 \text{ nm})^2 \times 9.90 \times 10^{14} = 4.17 \times 10^{19} \text{ nm}^2$.

Therefore, the number of the anchoring sites (N_a) can be calculated as follows:

 $N_a = S_{001} / S_a = 4.17 \times 10^{19}$ nm² / 0.219 nm² = 1.9 \times 10²⁰.

Based on the above discussion, if all the anchoring sites are occupied by Mo or W ions, the Mo or W loading in weight with respect to Fe₂O₃ is ~3.0 wt% or ~5.8 wt%, respectively, according to the following calculations:

Mo wt% = (N_a/N_A) mol × M_{Mo} g mol⁻¹ / (1 g) = (1.9 × 10²⁰ / (6.02 × 10²³) mol × 95.94 g mol⁻¹ /(1 g) $= 3.0 \text{ wt\%}$;

W wt% = (N_a/N_A) mol × M_W g mol⁻¹ / (1 g) = (1.9 × 10²⁰ / (6.02 × 10²³) mol × 183.8 g mol⁻¹ /(1 g) $= 5.8$ wt%;

The number of anchoring sites and the loading of Fe on the γ -WO₃ nanosheets can also be calculated by the same method according to the structures of γ -WO₃ and the dinuclear sites (Supplementary Figures 17 and 22). If all the anchoring sites are occupied by Fe ions, the Fe loading in weight with respect to γ - WO_3 is $~0.42\%$.

Analysis of the STEM image. In AC-STEM, the intensity contributed by an atom is approximately proportional to Z^n (where Z is the atomic number, $1.6 < n < 1.9$)¹, and thus the intensity is greater for heavier atoms. The brighter points in Figure 1a were identified as Mo atoms and the intensity ratio of the Mo atom to Fe atom is theoretically in a range 2.1-2.5 $[(Z_{\text{Mo}}/Z_{\text{Fe}})^n = (42/26)^n, 1.6 < n < 1.9]$. Then, we calculated the intensity ratio of the brighter dots to the darker ones according to the AC-STEM image in Figure 1 and Supplementary Figure 3. Considering that the number of atoms in a column can also have an effect on the intensity², the background intensity was subtracted. Therefore, the experimental intensity ratio is ∼2.3 [(210-50)/(120-50) = ∼2.3], in the theoretical intensity ratio range 2.1-2.5. This result indicates that the brighter points in Figure 1a are Mo atoms and the lighter gray points are Fe atoms.

*H*₂*-TPR*. The reduction of α-Fe₂O₃ starts at ~190 °C, and a weak reduction peak at ~267 °C can be ascribed to the surface active oxygen species, merely accounting for 2% of the total oxygen species of α -Fe₂O₃. According to the calculated area ratios of the sub-bands at relatively low (I), medium (II) and high (III) temperatures, which was 7.8 : 22.2 : 70.0 (Supplementary Table 2 and Supplementary Figure 27), i.e., 0.7 :2 : 6, Fe species in α -Fe₂O₃ mainly followed a three-step reduction process: Fe₂O₃ \rightarrow Fe₃O₄ \rightarrow FeO \rightarrow Fe. During the whole process, the H₂ consumption ratio of the three steps should be 1 : 2 : 6. Note that the H² consumption ratio at the low temperature (I) was smaller than the theoretical value of the first reduction step (Fe₂O₃ \rightarrow Fe₃O₄), indicating the existence of the surface defect oxygen. According to the H₂ consumption ratio at the low temperature (I), an actual formula of α-Fe₂O₃ nanosheet should be Fe₂O_{2.9}.

For Mo_1/Fe_2O_3 , there was also a weak reduction peak at ~267 °C, which accounts for 2% of the total oxygen species of $Mo₁/Fe₂O₃$. This result indicated that the Mo anchoring has little effect on the redox

ability of the surface active O atoms of $Mo₁/Fe₂O₃$. However, the reduction temperatures of the bulk O atoms shifted up by ~20 °C. We further calculated H_2 consumption area ratios of I : II : III, which are also 0.7 : 2 : 6, suggesting that the three-step reduction mechanism was not influenced by the Mo loading. Furthermore, an extra weak peak appears in the high temperature regime $460-615$ °C, which accounts for 1.8% of the total oxygen species of Mo₁/Fe₂O₃. We calculated the ratio of the consumed hydrogen atoms of this peak to Mo atoms (H/Mo) to be ~5, comfirming the reduction process of $Mo^{5+} \rightarrow Mo^{0}$.

Supplementary Tables

Supplementary Table 1. EXAFS analysis results of the samples.

^aCN, coordination number;

 ^{b}R , distance between absorber and backscatter atoms;

c σ 2 , Debye-Waller factor;

*^d*Δ*E*0, energy shift;

*e***R**-space fit, $\Delta k = 2.3 - 11.4 \text{ Å}^{-1}$, $\Delta r = 0.8 - 3.2 \text{ Å}$;

^fR-space fit, Δ*k* = 2.5–9.0 Å-1 , Δ*r* = 0.4–4.1 Å;

Supplementary Table 2. The calculated area ratio of sub-bands derived from the deconvoluted H₂-TPR profiles of α -Fe₂O₃ and Mo₁/Fe₂O₃.

Supplementary Figures

Supplementary Figure 1. SXRD patterns of Mo_1/Fe_2O_3 (red line), α -Fe₂O₃ (blue line), and α -MoO₃ (black line).

Supplementary Figure 2. (A,B) TEM and (C) HRTEM images of α **-Fe₂O₃ nanosheets. Insets in panels A** and **B** are the side length and thickness distributions of the α -Fe₂O₃ nanosheets, respectively. (**D**) Structural model of α -Fe₂O₃ nanosheets. The yellow, brown, red, and translucent balls represent surface Fe atoms, subsurface Fe atoms, O atoms, and three-fold hollow sites, respectively.

Supplementary Figure 3. (A) AC-STEM image of Mo₁/Fe₂O₃. (B) The image intensities of the dinuclear sites in directions a and b shown in **A**.

Supplementary Figure 4. (A) X-ray absorption spectra of $Mo₁/Fe₂O₃$ (red line), α -MoO₃ (black line), Fe2(MoO4)³ (green line), and Mo foil (gray line) at the Mo *K*-edge. (**B**) X-ray absorption spectra of $M_{01}/Fe₂O₃$ (red line), α -Fe₂O₃ (blue line), and Fe foil (gray line) at the Fe *K*-edge.

Supplementary Figure 5. (**A,B**) *R*-space ($\Delta k = 2.3$ -11.4 Å⁻¹) and inverse FT spectra ($\Delta r = 0.8$ -3.2 Å) at the Mo *K*-edge of Mo₁/Fe₂O₃. (**C,D**) *R*-space ($\Delta k = 2.5$ -9.0 Å⁻¹) and inverse FT spectra ($\Delta r = 0.4$ -4.1 Å) at the Fe *K*-edge of α -Fe₂O₃.

Supplementary Figure 6. Raman spectra of $Mo₁/Fe₂O₃$ (red line), α -Fe₂O₃ (blue line), and α -MoO₃ (black line). Inset: a double-bond-specific Raman band at ∼989 cm-1 is ascribed to the Mo=O bond.

Supplementary Figure 7. X-ray photoelectron spectra of Mo $3d$ over Mo₁/Fe₂O₃ (red line) and α -MoO₃ (black line).

Supplementary Figure 8. X-ray photoelectron spectra of Fe $2p$ over Mo₁/Fe₂O₃ (red line) and α -Fe₂O₃ (blue line).

Supplementary Figure 9. DRIFT spectra of NH₃ adsorption on W₁/Fe₂O₃ (blue line), Mo₁/Fe₂O₃ (red line) and α -Fe₂O₃ (black line) at 50 °C.

Supplementary Figure 10. DRIFT spectra of NH₃ adsorption on $Mo₁/Fe₂O₃$ (red line) and α -Fe₂O₃ (black line) at 250° C.

Supplementary Figure 11. X_{NO} as a function of temperature (*T*) over $Mo₁/Fe₂O₃$ with the different Mo loadings together with α -Fe₂O₃ and α -MoO₃. Reaction conditions: 500 ppm NO, 500 ppm NH₃, 3 vol% O_2 , balance N₂, and GHSV 800,000 h⁻¹.

Supplementary Figure 12. SCR performance as a function of temperature (*T*): (**A**) NO (orange circle) and NH₃ (blue square) conversion over $Mo₁/Fe₂O₃$. (**B**) N₂O concentration over α -Fe₂O₃ (black square) and Mo_1/Fe_2O_3 (red circle). (**C**) N₂ selectivity over α -Fe₂O₃ (black square) and Mo_1/Fe_2O_3 (red circle). (**D**) NO (orange circle) and NH₃ (blue square) conversion over α -Fe₂O₃. Reaction conditions: 500 ppm NO, 500 ppm NH₃, 3 vol% O₂, balance N₂, and GHSV 66,000 h⁻¹.

Supplementary Figure 13. Effect of H_2O and SO_2 on catalytic activity over Mo_1/Fe_2O_3 at 300 °C. Reaction conditions: 500 ppm NO, 500 ppm NH₃, 3 vol% O₂, 200 ppm SO₂ (when used), 5 vol% H₂O (when used), balance N_2 , and GHSV 66,000 h⁻¹.

Supplementary Figure 14. Arrhenius plots of NO conversions in SCR over Mo₁/Fe₂O₃ with different Mo loadings. Reaction conditions: 500 ppm NO, 500 ppm NH₃, 3 vol% O₂, balance N₂, and GHSV 800,000 h−1 .

Supplementary Figure 15. X_{NO} as a function of temperature (*T*) over $Mo₁/Fe₂O₃$ (red circle) and 3.3% Mo/Fe₂O₃ (cyan square). Reaction conditions: 500 ppm NO, 500 ppm NH₃, 3 vol% O₂, balance N₂, and GHSV 800,000 h^{-1} .

Supplementary Figure 16. SXRD patterns of Fe₂(MoO₄)₃ (blue line), 3.3% Mo/Fe₂O₃ (red line), and α -Fe₂O₃ (black line). Inset: the enlarged areas of the dashed rectangle showing diffraction due to the Fe₂(MoO₄)₃ phase on the surfaces of 3.3% Mo/Fe₂O₃

Supplementary Figure 17. TOFs in SCR at 270 °C over Mo₁/Fe₂O₃ with the different Mo loadings. Reaction conditions: 500 ppm NO, 500 ppm NH₃, 3 vol% O₂, balance N₂, and GHSV 800,000 h⁻¹. The red line is to guide the eye.

Supplementary Figure 18. XRD patterns of W_1/Fe_2O_3 (red line), α -Fe₂O₃ (blue line), and γ -WO₃ (black line).

Supplementary Figure 19. (A) AC-STEM image of W₁/Fe₂O₃. (B) The image intensity line scans along the directions a and b shown in **A**.

Supplementary Figure 20. H₂-TPR profiles of W_1/Fe_2O_3 (red line), Fe₁/WO₃ (green line), α -Fe₂O₃ (blue line) and γ -WO₃ (black line).

Supplementary Figure 21. X_{NQ} as a function of temperature (*T*) over W_1 /Fe₂O₃ with the different W loadings and α -Fe₂O₃. Reaction. conditions: 500 ppm NO, 500 ppm NH₃, 3 vol% O₂, balance N₂, and GHSV 800,000 h^{-1} .

Supplementary Figure 22. Arrhenius plots of NO conversions in SCR over W₁/Fe₂O₃ with different W loadings. Reaction conditions: 500 ppm NO, 500 ppm NH₃, 3 vol% O₂, balance N₂, and GHSV 800,000 h^{-1} .

Supplementary Figure 23. X_{NO} as a function of temperature (*T*) over $Mo₁/Fe₂O₃$ (red circle), $W₁/Fe₂O₃$ (blue square), and $Fe₁/WO₃$ (black triangle). Reaction conditions: 500 ppm NO, 500 ppm NH₃, 3 vol% O_2 , balance N₂, and GHSV 800,000 h⁻¹.

Supplementary Figure 24. TOFs over Mo₁/Fe₂O₃ (red), W₁/Fe₂O₃ (blue), and Fe₁/WO₃ (orange) at 270 °C. Reaction conditions: 500 ppm NO, 500 ppm NH₃, 3 vol% O₂, balance N₂, and GHSV 800,000 h⁻¹.

Supplementary Figure 25. (**A**) TEM and (**B**) HRTEM images of Fe1/WO3. (**C**) Structural model of Fe₁/WO₃. The yellow, blue and red balls represent Fe atoms, W atoms, and O atoms, respectively. The typical Fe1-W¹ dinuclear site is marked by red ellipse. (**D-F**) EDX mappings of Fe1/WO3.

Supplementary Figure 26. X_{NO} as a function of temperature (*T*) over $Fe₁/WO₃$ with the different Fe loadings and γ -WO₃. Reaction conditions: 500 ppm NO, 500 ppm NH₃, 3 vol% O₂, balance N₂, and GHSV 800,000 h^{-1} .

Supplementary Figure 27. The deconvoluted H₂-TPR profiles of (A) Mo_1/Fe_2O_3 and (B) α -Fe₂O₃.

Supplementary References

1. Hartel, P., Rose, H. & Dinges, C. Conditions and reasons for incoherent imaging in STEM. *Ultramicroscopy* **63**, 93- 114 (1996).

2. Ortalan, V., Uzun, A., Gates, B. C. & Browning, N. D. Towards full-structure determination of bimetallic nanoparticles with an aberration-corrected electron microscope. *Nat. Nanotechnol.* **5**, 843-847 (2010).