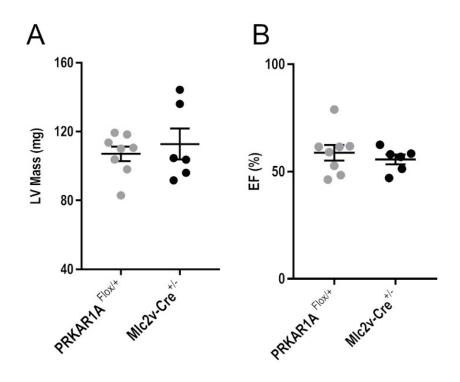
PRKAR1A deficiency impedes hypertrophy and reduces heart size

Yuening Liu¹, Peng Xia¹, Jingrui Chen¹, W. Patricia Bandettini², Lawrence S. Kirschner³, Constantine A. Stratakis^{4,#}, Zhaokang Cheng^{1,#}

¹Department of Pharmaceutical Sciences, Washington State University, PBS 423, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA


²National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Rm B1D-47, Bethesda, Maryland 20892-1061, USA

³Department of Cancer Biology and Genetics, The Ohio State University, BRT 510, 460 W 12th Avenue, Columbus, Ohio 43210, USA

⁴ Section on Endocrinology and Genetics, *Eunice Kennedy Shriver* National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Building 10, NIH-Clinical Research Center, Room 1-3330, MSC1103, Bethesda, Maryland 20892, USA

Supplemental Materials

Supplemental Materials include 1 Supplemental Figure with legend.

Supplemental Figure S1. Left ventricle mass and cardiac function were comparable between $PRKAR1A^{Flox/+}$ and $Mlc2v-Cre^{+/-}$ mice. (A) Left ventricular (LV) mass, and (B) LV ejection fraction (EF) was assessed using echocardiography. $PRKAR1A^{Flox/+}$, n=8; $Mlc2v-Cre^{+/-}$, n=6.