

## SUPPLEMENTARY INFORMATION

https://doi.org/10.1038/s41586-018-0511-6

In the format provided by the authors and unedited.

## Crystal structure of the natural anion-conducting channelrhodopsin *GtACR1*

Yoon Seok Kim<sup>1,9</sup>, Hideaki E. Kato<sup>2,3,9</sup>\*, Keitaro Yamashita<sup>4</sup>, Shota Ito<sup>5</sup>, Keiichi Inoue<sup>3,5,6</sup>, Charu Ramakrishnan<sup>1</sup>, Lief E. Fenno<sup>1</sup>, Kathryn E. Evans<sup>1</sup>, Joseph M. Paggi<sup>7,8</sup>, Ron O. Dror<sup>7,8</sup>, Hideki Kandori<sup>5,6</sup>, Brian K. Kobilka<sup>2</sup> & Karl Deisseroth<sup>1</sup>\*

<sup>&</sup>lt;sup>1</sup>Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. <sup>2</sup>Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA. <sup>3</sup>PRESTO, Japan Science and Technology Agency, Honcho, Kawaguchi, Japan. <sup>4</sup>RIKEN SPring-8 Center, Hyogo, Japan. <sup>5</sup>Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan. <sup>6</sup>OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan. <sup>7</sup>Department of Computer Science, Stanford University, Stanford, CA, USA. <sup>8</sup>Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA. <sup>9</sup>These authors contributed equally: Yoon Seok Kim, Hideaki E. Kato. \*e-mail: hekato@stanford.edu; deissero@stanford.edu

## **Supplementary Discussion**

## Water molecules around the Schiff base region

In the GtACR1 structure, several  $2F_o$  -  $F_c$  and  $F_o$  -  $F_c$  electron densities of putative water molecules were detected near the Schiff base. Since the densities are not identical among chains A-D and the resolution of present structure is moderate (2.9 Å), we modeled just 4 water molecules in the final structure. 2 water molecules coordinated by Asp-234 and Tyr-72, were detected in chains B and C. Another 2 water molecules coordinated by Arg-94, were detected in chains A and B (EDFig. 2c). Their electron densities and B-factors are very reasonable for well-ordered water molecules (B-factors: 54.87, 52.64, 50.28, and 59.19, respectively). However, there remain unassigned densities in chains A and B (EDFig. 2c). Especially in chain B, there is relatively strong positive  $F_o$  -  $F_c$  electron density between the Schiff base nitrogen (Asp-234) and Trp-98, and it is possible that weakly coordinated water or hydroxyl ion binds near the Schiff base. Further studies, including the determination of higher-resolution structure and additional spectroscopic analysis, will be needed to more fully reveal water distribution in the Schiff base region.