Science Advances

advances.sciencemag.org/cgi/content/full/6/13/eaay6441/DC1

Supplementary Materials for

A new algorithm to convert a normal antibody into the corresponding catalytic antibody

Emi Hifumi*, Hiroaki Taguchi, Haruna Tsuda, Tetsuro Minagawa, Tamami Nonaka, Taizo Uda

*Corresponding author. Email: e-hifumi@oita-u.ac.jp

Published 25 March 2020, *Sci. Adv.* **6**, eaay6441 (2020) DOI: 10.1126/sciadv.aay6441

This PDF file includes:

Fig. S1. Mass spectroscopy. Table S1. Distances between two amino acid residues.

Fig. S1a-1e

Fig. S1. Mass spectroscopy. The fragmented peptides observed in HPLC were identified by mass spectroscopy analysis. For the peaks of 7-MCA-S-N-K-OH (20.6 min) and NH₂-G-A-I-I-G-K(DNP)-r-r-r-NH₂ (29 min), the monovalent mass was detected at 564.22 m/z (Fig. 1a) and the divalent mass at 596.34 m/2z (Fig. 1b: inset graph), respectively. For the fragments of 7-MCA-S-N-K-G-OH (21 min) and NH₂-A-I-I-G-K(DNP)-r-r-r-NH₂ (29 min), the monovalent mass was observed at 621.24 m/z (Fig. 1c) and the divalent at 567.83 m/2z (Fig. 1b), respectively. For the peaks of 7-MCA-S-N-K-G-A-I-I-OH (31.5min) and NH₂-G-K(DNP)-r-r-r-NH₂ (23.8 min), the monovalent mass was detected at 918.45 m2z (Fig. 1d) and the divalent at 419.23 m/2z (Fig. 1e), respectively.

Table S1. Distances between two amino acid residues.

Table S1 Distances between two amino acid residues

	Distances between functional groups (Å)	
Light chain	Ser27a(O)-His27d(N)	His27d(O)-Asp1(O)
S35	10.37	17.42
S38	10.43	13.77
Light chain	Ser27a(O)-His93(N)	His93(O)-Asp1(O)
T99wt	7.46	12.26
T99 Pro95(-)	6.20	6.21