Supplementary Note 1.

Under the same conditions, the fluorescence intensity ratio λ between each individual green (q) and red (r) dye is constant ($\lambda = q/r$). The green and red fluorescence intensities (G and R, respectively) of a microbead bound with n nanobarcodes are calculated by formulas G = n x (a x q) and R = n x (b x r), respectively. The total fluorescence intensity ratio (K) between red and green fluorophores (K = R/G) can be used to calculate the code number, a/b, using the formula $a/b = 1/(K\lambda)$. When G and R are measured using flow cytometry, K can be calculated with the equation: $\log(G) = \log(R) - \log(K)$, where $\log(K)$ is the intercept of a two-color (green-red) flow plot. Thus the constant λ can be calculated with one known nanobarcode as a reference $(a_{ref}/b_{ref}$ is known) using the formula: $\lambda = (1/K_{ref}) \times (b_{ref}/a_{ref})$. Once λ is determined, the code number of other nanobarcodes, a/b, can be obtained with the equation: $a/b = 1/(K\lambda) = (K_{ref}/K) \times (a_{ref}/b_{ref})$, where K is derived from the flow plot. In our experiment, a known target DNA from Francisella tularensis, coded by 2G1R (*i.e.*, $\dot{a}_{ref}/b_{ref} = 2$), was used as a reference to determine λ , as shown in Figure 4a. The measured value of K_{ref} (*i.e.* K_{2G1R}) from Figure 4a was 22 and thus λ was equal to 1/44 (= 1/22 x 1/2). Based on the equation, $a/b = 1/(K\lambda)$, the code number, a/b, for any other nanobarcodes, was equal to 44/K. Since K can be measured for each nanobarcode by the flow plot, the code number can be determined.