In the format provided by the authors and unedited.

A CRISPR screen identifies IFI6 as an ER-resident interferon effector that blocks flavivirus replication

R. Blake Richardson¹, Maikke B. Ohlson¹, Jennifer L. Eitson¹, Ashwani Kumar², Matthew B. McDougal[®]¹, Ian N. Boys[®]¹, Katrina B. Mar[®]¹, Pamela C. De La Cruz-Rivera¹, Connor Douglas³, Genevieve Konopka³, Chao Xing[®]² and John W. Schoggins[®]^{1*}

¹Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA. ²Bioinformatics Core, McDermott Center, University of Texas Southwestern Medical Center, Dallas, TX, USA. ³Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA. *e-mail: john.schoggins@utsouthwestern.edu

Supplementary Information for:

A CRISPR screen reveals IFI6 as an ER-resident interferon effector that blocks flavivirus replication

Table of Contents

Supplementary Figures 1-9	2-24
Supplementary Tables 1–2	25-28
Supplementary Methods	29-31
Supplementary References	32

Supplementary Figure 1. IFI6 induction by IFN and inhibition of viral infection. a, Huh7.5 or Huh7.5-IFI6-KO cells were treated with IFNα over a time course and lysates were analysed by western blot using an in-house generated anti-IFI6 rabbit polyclonal antibody. Arrows point to specific induction of IFI6 relative to an ectopically expressed IFI6 control (lane 1). The molecular weight is consistent with a mature protein after cleavage of the putative signal peptide. The antibody also detects numerous non-specific bands, which confirm equal protein loading. **b**, IFN α dose response curves in Huh7.5 or Huh7.5-IFI6-KO₁ cells challenged with YFV-Venus, n=3. c,d, YFV-Venus infection in IFN α -treated A549 (c) or U-2 OS (d) cells targeted for IFI6 depletion by CRISPR. Infectivity (%GFP⁺ cells) and replication (GFP mean fluorescence intensity) were monitored by FACS. In c, n=3: (left, %GFP) ** P=0.0017, **** P=9.7E-6; (right, MFI) * P=0.013, **** P=4.3E-12 (100 U/mL), **** P=6.5E-11 (1000 U/mL) (two-way ANOVA, Sidak post-test). In d, n=3: (left, %GFP) ** P=0.0011, **** P=7.6E-8 (untreated), **** P=7.9E-6 (100 U/mL); (right, MFI) *** P=0.00035, **** P=2.6E-6 (100U/mL) (two-way ANOVA, Sidak post-test). e, YFV replication in Huh7.5-NT or Huh7.5-IFI6-KO2 cells with or without a single dose of IFNα (1000 U/mL) pre-treatment. n=3, **** P=1.3E-5 (two-way ANOVA, Sidak post-test). **f**, YFV-Venus infectivity in Huh7.5, 293, or $STATI^{-/-}$ fibroblast cells transduced with lentivirus expressing IFI6 or an empty vector (Ctrl), n=3. g, Huh7.5 cells were stably transduced with lentivirus expressing IFI6 or an empty (Ctrl) vector. Cells were infected with ZIKV (PRVABC59) and infectivity was monitored by FACS, n=3.

Supplementary Figure 2. Characterization of IFI-6-16 family. a, Multiple sequence alignment of human IFI-6-16 family members. Amino acid sequences (IFI6: NP_002029.3, IFI27: NP_001275885.1, IFI27L1: NP_996832.1, IFI27L2: NP_114425.1) were aligned using COBALT and graphically rendered with Jalview. Residues are colored according to physicochemical properties using a modified Zappo color scheme. b, Induction of *IFI6, IFI27, IFI27L1, IFI27L2* by 100 U/mL IFN α (6 h) in Huh7.5, U-2 OS, and A549 cells, measured by RT-qPCR, n=3. **c,** YFV-Venus infectivity in Huh7.5 cells transduced with lentivirus expressing IFI6, IFI27, or an empty vector (Ctrl), n=3.

Supplementary Figure 3. IFI6 does not modulate global antiviral gene expression. a, RT-qPCR analysis of *IRF1, IFIT1, IFITM3, OAS2*, and *RSAD2* mRNA expression in *STAT1^{-/-}* fibroblasts transiently transduced with lentivirus expressing IFI6, an empty vector, or the antiviral transcription factor IRF1. n=3, * P=0.05 (IRF1), ** P=0.099 (IFIT1), ** P=0.006 (IFITM3), *** P=0.0001 (OAS2), * P =0.05 (RSAD2) (one-way ANOVA, Dunnett post-test). **b**, RNA-Seq analysis of global differential gene expression in *STAT1^{-/-}* fibroblasts transiently transduced with lentivirus expressing IFI6 or Fluc as a control, n=3. Differential expression and statistical significance were determine by edge R software package. **c**, RT-PCR analysis of *IFITM3, OAS2*, and *RSAD2* mRNA expression in Huh7.5 or Huh7.5-IFI6-KO cells treated for 6 h with 100 U/mL IFNα. Results are presented as the mean of three independent experiments. Error bars represent SD.

antibody 1: rabbit anti-BiP antibody 2: mouse anti-KDEL

antibody 1: rabbit anti-BiP antibody 2: mouse anti-FLAG (IFI6) (omit mouse probe)

е

+IFN

antibody 1: rabbit anti-BiP antibody 2: mouse anti-FLAG (IFI6) (omit rabbit probe)

antibody 1: mouse IgG antibody 2: rabbit IgG Scale bar = 20 microns

Supplementary Figure 4. Analyses supporting BiP-IFI6 interaction and localization of IFI6 to ER membranes. a, Proximity ligation assay controls to accompany Fig 2j. b, Signal peptide prediction using SignalP 4.1 server. C-score, raw cleavage site score; Sscore, signal peptide score; Y-score, combined cleavage site score. For non-secreted proteins, all scores should be close to negative target value of 0.1. IFI6 has a signal peptide cleavage site after Ala-23. c, Kyte-Doolittle hydropathy plot of IFI6 demonstrating a highly hydrophobic stretch from amino acid 45-105. d, IFI6 transmembrane prediction using the TMHMM server. e, Similar to Fig 3f, membrane flotation assay of lysates from Huh7.5 cells co-expressing IFI6-3xF and RFP, using an iodixanol gradient. Fractions were analyzed by western blot with antibodies against calnexin, IFI6, or RFP.

е

Species	family	genus	enveloped	genome	inhibit by IFI6
YFV, DENV, WNV, ZIKV	Flaviviridae	Flavivirus	yes	+ssRNA	yes
HCV	Flaviviridae	Hepacivirus	yes	+ssRNA	no
HCoV	Coronaviridae	Betacoronavirus	yes	+ssRNA	no
SINV	Togaviridae	Alphavirus	yes	+ssRNA	no
CVB	Picornaviridae	Enterovirus	no	+ssRNA	no
MV	Paramyxoviridae	Morbillivirus	yes	-ssRNA	no

Supplementary Figure 5. IFI6 specifically inhibits flaviviruses. **a**, Control or IFI6-expressing Huh7.5 cells were transfected with YFV-Rluc replicon RNA and luciferase relative light units in cell lysates were measured. n=3, **** P=4E-13 (24 h), **** P=1.7E-8 (48 h) (two-way ANOVA on log-transformed data, Sidak post-test). **b**, Huh7.5 cells expressing IFI6, or an empty (Ctrl) vector were infected with the following viruses over a range of input doses: SINV-GFP (10 h), CVB-GFP infection (6 h), or MeV-GFP (24 h). **c**, IFN α dose response curves in Huh7.5 control or Huh7.5-IFI6-KO₁ cells challenged with SINV-GFP or CVB-GFP. **d**, Similar to **a**, but cells were transfected with HCV-Gluc replicon RNA. n=3, *** P=0.0014 (24 h), **** P=0.0001 (48 h), *** P=0.00026 (72 h) (two-way ANOVA on log-transformed data, Dunnett post-test). **e**, Grouping of viruses with respect to susceptibility to IFI6-mediated inhibition.

b

Supplementary Figure 6. IFI6 does not affect viral NS3-dependent or host SPCS1-dependent cleavage. a. Western blot analysis of 293T cells transfected with plasmids expressing DENV NS2B-N3 WT or proteasedefective S135A mutant, in combination with STING and increasing amounts of IFI6 or EGFP as a control. NS2B-NS3 autocleavage and NS3-dependent STING cleavage products are denoted with arrows. b,c, Western blot analysis of 293T sgRNA control or 293T SPSC1-KO cells transfected with plasmids expressing C-prM-HA (b) or DENV 2K-NS4B-HA (c) and increasing amounts of IFI6 or EGFP as a control. Uncleaved and cleaved products are denoted with arrows. Data are representative of two (a) or three (b,c) independent replicates.

Supplementary Figure 7. Failure to rescue a viral mutant that overcomes IFI6. YFV was serially passaged every 2 days in Huh7.5 cells stably transduced with lentivirus expressing IFI6 or an empty vector. Supernatants were assayed for virus production by plaque assay on BHK-21 J cells.

Supplementary Figure 8. IFI6 colocalizes with DENV NS4B. Laser scanning confocal microscopy of Huh7.5 cells expressing IFI6-3xF and infected with DENV. Cells were stained with anti-FLAG antibody (red) or anti-NS4B antibody (green). With **Fig 4f**, data are representative images from three independent experiments.

Supplementary Figure 9. Uncropped Western blots

The following 14 pages contain images of uncropped Western blots used in main paper figures. Dotted boxes indicate lanes used from each scanned blot.

Figure 2a

Blot was cut at indicated line. Upper half was probed with anti-BiP, lower half was probed with anti-IFI6 and exposed together. A short exposure was chosen for BiP (top), and a long exposure was chosen for IFI6 (bottom)`.

Figure 3f, anti-calnexin

Figure 3g

Figure 4e

Supplementary Figure 4e, anti-FLAG (IFI6)

Supplementary Figure 4e, anti-calnexin

Supplementary Figure 6c

Supplementary Figure 6b

Supplementary Figure 6c

Supplementary Table 1. MAGeCK analysis output of CRISPR screen.

The accompanying Microsoft Excel (.xlsx) file contains the MAGeCK analysis output for the CRISPR screen shown in Figure 1. The screen was performed one time at a library coverage of approximately 900X. Statistical significance was assigned to genes with FDR < 0.01.

Cloning and PCR	Cloning and PCR oligos				
Primer name	Application	5' to 3' sequence			
IFI6-3xFLAG	FLAG insertion by overlap PCR	gctagtggccacgCTGCAG			
forward 1					
IFI6-3xFLAG	FLAG insertion by overlap PCR	CACCGTCATGGTCTTTGTAGTCGGATCCct			
reverse 1		cctcatcctcctcactatcgagatactt			
IFI6-3xFLAG forward 2	FLAG insertion by overlap PCR	aagtatctcgatagtgaggaggatgaggagGGATCCG ACTACAAAGACCATGACGGTG			
IFI6-3xFLAG reverse 2	FLAG insertion by overlap PCR	TGCGGCCGCACTCGAGGAATTCCTACTTG TCATCGTCATCCTTGTAGTC			
IFI6-HA forward	HA insertion by oligo annealing	GATCCTACCCATACGATGTTCCAGATTAC GCTTAGC			
IFI6-HA reverse	HA insertion by oligo annealing	TCGAGCTAAGCGTAATCTGGAACATCGTA TGGGTAG			
5-SacI-GFP	GFP fusion to IFI6 N terminus	catatagagctcgATGGTGAGCAAGGGCGAGG AG			
3-GFP-Xhol	GFP fusion to IFI6 N terminus	gttttctcgagcTACTTGTACAGCTCGTCCATGC CG			
OAS2-Forward	RT-PCR to detect OAS2	GAACACCATCTGTGACGTCCT			
OAS2-Reverse	RT-PCR to detect OAS2	GAGCCACCTATGGCCACTCC			
IFI6-Forward	RT-PCR to detect IFI6	GGTCTGCGATCCTGAATGGG			
IFI6-Reverse	RT-PCR to detect IFI6	TCACTATCGAGATACTTGTGGGT			
BiP T37G Forward	BiP site-directed mutagenesis	GCATCGACCTGGGGGGGCACCTACTCCTG CG			
BiP T37G Reverse	BiP site-directed mutagenesis	CGCAGGAGTAGGTGCCCCCAGGTCGAT GC			
BiP E201G Forward	BiP site-directed mutagenesis	GAGGATCATCAACGGGCCTACGGCAGCT GC			
BiP E201G Reverse	BiP site-directed mutagenesis	GCAGCTGCCGTAGGCCCGTTGATGATCCT C			
BiP T229G Forward	BiP site-directed mutagenesis	CCTGGGTGGCGGAGGCTTCGATGTGTCTC TTCTC			
BiP T229G Reverse	BiP site-directed mutagenesis	GAGAAGAGACACATCGAAGCCTCCGCCAC CCAGG			
DENV 2KNS4B HA Forward	PCR amplify DENV 2K-NS4B	accATGGGATCCACACCCCAAGACAAC			

Supplementary Table 2. Oligos used in this study

DENV 2KNS4B HA Reverse	PCR amplify DENV 2K-NS4B		GGTAgcccgcggcaccaccCCTTCTTGTGTTGG T	
5 DENV-C-prM	PCR amplify DENV C-prM		ccATGGGATCCAGGAGACGCAGATCTGCA GG	
3 DENV-C-prM	PCR amplify DENV C-prM		gtttcccgcggcaccaccTGTCATTGAAGGAGTGA CAGCTG	
CRISPR oligos				
Target gene	Oligo	5' to 3' seque	nce	
IFI6	BR2 Guide1, oligo 1	caccgCTGCTGCTCTTCACTTGCAG		
IFI6	BR2 Guide 1, oligo 2	aaacCTGCAA	GTGAAGAGCAGCAGc	
IFI6	IFI6 guide 1 (g1g2), oligo 1	caccgCGGCA	TCGCGGCCAACTCGG	
IFI6	IFI6 guide 1 (g1g2), oligo 2	aaacCCGAGT	TGGCCGCGATGCCGc	
IFI6	IFI6 guide 2 (g1g2), oligo 1	caccgCTGAC	CTTCATGGCCGTCGG	
IFI6	IFI6 guide 2 (g1g2), oligo 2	aaacCCGACG	GCCATGAAGGTCAGc	
IFI6 3xFLAG	FLAG Guide, oligo 1	caccgCCACA	AGTATCTCGATAGTG	
IFI6 3xFLAG	FLAG Guide, oligo 2	aaacCACTATCGAGATACTTGTGGc		
BiP	Guide 1, oligo 1	caccgAATGGCAAGGAACCATCCCG		
BiP	Guide 1, oligo 2	aaacCGGGATGGTTCCTTGCCATTc		
BiP	Guide 2, oligo 1	caccgCAGAC	GGGTCATTCCACGTG	
BiP	Guide 2, oligo 2	aaacCACGTG	GAATGACCCGTCTGc	
BiP	Guide 3, oligo 1	caccgCGACATAGGACGGCGTGATG		
BiP	Guide 3, oligo 2	aaacCATCAC	GCCGTCCTATGTCGc	
Non-targeting control 80255	Oligo 1	caccgGAACT	CAACCAGAGGGCCAA	
Non-targeting control 80255	Oligo 2	aaacTTGGCC	CTCTGGTTGAGTTCc	
Non-targeting control 80243	Oligo 1	caccgTGTTC1	TACTTTCGAAGTTAA	
Non-targeting control 80243	Oligo 2	aaacTTAACT	TCGAAAGTAGAACAc	
IFI6 3xFLAG	FLAG Guide, oligo 1	caccgCCACA	AGTATCTCGATAGTG	
IFI6 3xFLAG	FLAG Guide, oligo 2	aaacCACTAT	CGAGATACTTGTGGc	
CRISPR sequenci	ng primers			
Primer	5' to 3' sequence			
P5 0 nt stagger	AATGATACGGCGAG ATCTTTGTGGAAAG		CTACACTCTTTCCCTACACGACGCTCTTCCG	
P5 1 nt stagger	AATGATACGGCGAC ATCTCTTGTGGAAA	CCACCGAGAT GGACGAAACA		

P5 2 nt stagger	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG
D5 3 pt staggor	
F 5 5 fit stagger	
DE 1 at stagger	
P5 4 ht stagger	
5- 0 0 0	
P5 6 nt stagger	AAIGAIACGGCGACCACCGAGAICIACACICIIICCCIACACGACGCICIICCG
	ATCTTGCACCTTGTGGAAAGGACGAAACACCG
P5 7 nt stagger	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG
	ATCTACGCAACTTGTGGAAAGGACGAAACACCG
P5 8 nt stagger	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG
	ATCTGAAGACCCTTGTGGAAAGGACGAAACACCG
P7 barcode A01	CAAGCAGAAGACGGCATACGAGATCGGTTCAAGTGACTGGAGTTCAGACGTGT
	GCTCTTCCGATCTCCAATTCCCACTCCTTTCAAGACCT
P7 barcode A02	CAAGCAGAAGACGGCATACGAGATGCTGGATTGTGACTGGAGTTCAGACGTGT
	GCTCTTCCGATCTCCAATTCCCACTCCTTTCAAGACCT
P7 barcode A03	CAAGCAGAAGACGGCATACGAGATTAACTCGGGTGACTGGAGTTCAGACGTGT
	GCTCTTCCGATCTCCAATTCCCACTCCTTTCAAGACCT
P7 barcode A04	CAAGCAGAAGACGGCATACGAGATTAACAGTTGTGACTGGAGTTCAGACGTGT
	GCTCTTCCGATCTCCAATTCCCACTCCTTTCAAGACCT
P7 barcode A05	CAAGCAGAAGACGGCATACGAGATATACTCAAGTGACTGGAGTTCAGACGTGT
	GCTCTTCCGATCTCCAATTCCCACTCCTTTCAAGACCT
P7 barcode A06	CAAGCAGAAGACGGCATACGAGATGCTGAGAAGTGACTGGAGTTCAGACGTGT
	GCTCTTCCGATCTCCAATTCCCACTCCTTTCAAGACCT
P7 barcode A07	CAAGCAGAAGACGGCATACGAGATATTGGAGGGTGACTGGAGTTCAGACGTGT
	GCTCTTCCGATCTCCAATTCCCACTCCTTTCAAGACCT

Supplementary Methods

Genome-wide CRISPR screen

The human "Brunello" CRISPR knockout pooled library was purchased (#73179, addgene.org) and amplified according to instructions. The amplified pooled plasmid library was used to make infectious lentivirus from 293T cells. The day before transfection, 293T cells were seeded into twenty polylysine-coated 15 cm plates at a density of 6×10^6 cells per plate. The day of transfection, the culture media was exchanged for 15mL DMEM supplemented with 3% FBS, 1X NEAA, and Pen-Strep, and pooled library plasmid was then co-transfected with lentiviral packaging plasmids expressing Gag-Pol and VSV-g at a ratio of 5:4:1 using X-tremeGENE 9 reagent (Roche) in transfection reactions containing 30 total ug of DNA per plate. Six h post-transfection, transfection complex-containing media was removed and replaced with 23 mL DMEM supplemented with 3% FBS, 1X NEAA, and Pen-Strep. Culture supernatant containing lentiviral particles was collected at 48 and 72 h post-transfection, pooled, and HEPES and polybrene was added to a final concentration of 20mM and 4ug/mL, respectively. To eliminate plasmid DNA carryover into NextGen sequencing reactions for subsequent screens⁴¹, pooled library lentiviral supernatant was treated with Benzonase (Sigma) by adding 20X Benzonase buffer (1M Tris-HCl pH 8.0, 20mM MgCl₂, 2mg/mL BSA) to a final concentration of 1X, and 50U/mL Benzonase was added and the supernatant was incubated for 30 min at 37C. Treated lentiviral supernatant was filtered through a 0.45 micron filter and aliquots were stored at -80C. Lentiviral transduction efficiency was determined by transducing Huh7.5 cells with volumes of lentiviral supernatant ranging from 500ul to 10µl in 6w plates for 48 hrs, and the ratio (X100%) of puromycin-resistant to puromycin-sensitive cells following 3 days of incubation after splitting equal numbers of transduced cells into media with and without 4µg/ml puromycin was determined using CellTiter-Glo reagent (Promega). The volume of lentivirus that produced 30% transduction efficiency was used for all subsequent transductions in order to minimize the likelihood that any single cell would be infected with more than one lentivirus at a time during library screening.

To perform the IFN α CRISPR screen, Huh7.5 cells were seeded into ten 6-well plates at a density of 4×10^5 cells per well and transduced the next day with library lentiviral supernatant in 1ml per well of DMEM supplemented with 3%FBS, 1X NEAA, 20mM HEPES, and 4ug/mL polybrene for 1 h, after which 2 mL per well of DMEM complete media was added. After 48 h, transduced cells from all wells were trypsinized, pooled, and re-plated into nine 15 cm plates containing DMEM supplemented with 10% FBS, 1x NEAA, and 4µg/ml puromycin and incubated for 3 days to select for transduction. Puromycinselected cells were harvested with trypsin, pooled, counted, and reseeded into eight 15 cm plates at a density of 6.5x10⁶ cells per plate, corresponding to 675X library coverage. Cells were allowed to adhere to plates for 3 h, then were treated overnight with DMEM supplemented with 10%FBS, 1X NEAA and 100U/ml IFN α . The next day, each plate was infected with 0.8 mL YFV-17D-venus (MOI = 1) in 16ml of DMEM supplemented with 1% FBS and 1X NEAA for 3 h, then an additional 16 ml of DMEM complete media was added and the cells were incubated overnight. Twenty-four h post-infection the cells were trypsinized, pooled, pelleted and resuspended in FACS buffer (PBS, 2% FBS, 0.5 mM EDTA). Cells were filtered with a 100-micron cell strainer, stored on ice, then sorted at the Children's Medical Center Research Institute Flow Cytometry Facility by a FACSAria II (Becton Dickenson) flow cytometer while kept at 4°C. GFP-positive gated cells were collected in cell collection buffer (PBS, 50% FBS, 50 mM HEPES), and pelleted. Genomic DNA (gDNA) was extracted from isolated cell pellets following lysis in 500µl of tissue lysis buffer, containing 460µl of STE buffer (1 mM EDTA (pH 8.0), 10 mM Tris-HCl (pH 8.0), 100 mM NaCl) supplemented with 10µl of 0.5 M EDTA, 10µl of proteinase K (10 mg/ml in 10 mM Tris-HCl (pH 8.0) and 1 mM EDTA), and 20µl of 10% SDS. Lysates were incubated overnight at 55°C while shaking at 550rpm on a Thermomixer (Eppendorf). The following day, 5µl of 2 mg/ml RNase A was added to each tube and incubated at 37°C for 1 h while shaking at 550rpm. Extractions were collected after mixing samples with an equal volume of phenol:chloroform:isoamyl alcohol (25:24:1) twice, followed once by chloroform; each extraction was separated using MaXtract high density phase lock tubes (Qiagen). Twenty micrograms of glycoblue (Roche) and 1mL of 100% ethanol were

added to each sample and DNA was precipitated at -20° C for 1h followed by centrifugation at 18,000g for 10 minutes at 4°C. Pellets were washed with 1mL of 75% ethanol, dried, and resuspended in 50µL of water by incubating at 4°C overnight. Uninfected cell pellets of transduced cells were lysed and gDNA was extracted for controls. To amplify sgRNA sequences for Next Gen Sequencing, four parallel 100µl PCR reactions were run for each condition, and pooled. Each 100µl PCR reaction contained 6-10µg of gDNA, Ex Taq polymerase, pooled P5 and barcoded P7 primers (listed in supplementary table 1) as previously described⁴². DNA was purified for sequencing using AMPure XP beads (Agencourt) by mixing 300µl of pooled PCR with 150µl beads and incubated for 5 minutes to pre-clear genomic DNA. Magnetic separation was used to collect the supernatant. The supernatant was then mixed with 540µl of AMPure XP beads and incubated for 5 minutes to bind the PCR products. The supernatant was collected and discarded. Beads were washed twice with 1mL 70% ethanol and then dried for approximately 5 minutes. Bound DNA was eluted from the beads using 300µl sterile water. Before sequencing, all PCR DNA libraries were analyzed using a Bioanalyzer High Sensitivity DNA Analysis Kit (Agilent). Library concentration was determined by qPCR using a KAPA Library Quantification Kit for Illumina platforms. The samples were sequenced using Illumina NextSeq 500 with the read configuration as 75bp, single end. Each sample got approximately 10 million to 15 million reads. An in-house script was used to trim the adapter sequences from raw de-multiplexed FASTQ files and unique 20bp sgRNA sequences were processed for further downstream analysis. The reference sgRNA sequences for the human Brunello library were downloaded from Addgene (https://www.addgene.org/pooled-library/). Identical sgRNAs targeting the same protein coding genes were removed from the reference library. Software MAGeCK (v0.5.1) was used for data analysis. Sample reads were mapped to the reference sgRNA library with mismatch option as 0. Median normalization was performed to adjust for library sizes and read counts. Positively and negatively selected sgRNA and genes were identified with default parameters.

Supplementary References

- 41 Sack, L. M., Davoli, T., Xu, Q., Li, M. Z. & Elledge, S. J. Sources of Error in Mammalian Genetic Screens. *G3 (Bethesda)* **6**, 2781-2790, doi:10.1534/g3.116.030973 (2016).
- 42 Doench, J. G. *et al.* Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. *Nat Biotechnol* **34**, 184-191, doi:10.1038/nbt.3437 (2016).