SUPPORTING INFORMATION

Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach

Yi-Hsien Cheng,^{†,‡} Chunla He,[†] Jim E. Riviere,^{†,¶} Nancy A. Monteiro-Riviere,[‡] Zhoumeng Lin^{*,†,‡}

[†] Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA

[‡] Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan,

KS 66506, USA

¶1Data Consortium, Kansas State University, Manhattan, KS 66506, USA

Yi-Hsien Cheng: <u>yhcheng1987@ksu.edu</u>; Chunla He: <u>chunla.he0321@gmail.com</u>; Jim E. Riviere: <u>jim.riviere@gmail.com</u>; Nancy A. Monteiro-Riviere: <u>nmonteiro@ksu.edu</u>; Zhoumeng Lin: zhoumeng@ksu.edu

*Corresponding author: Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, P200 Mosier Hall, Manhattan, KS 66506, USA. Email: <u>zhoumeng@ksu.edu</u>. Phone: +1-785-532-4087. Fax: +1-785-532-4953.

Table of Contents

Description for supplementary Excel files	3
Supplementary figures	4
Figure S1	4
Figure S2	5
Supplementary tables	6
Table S1	6
Table S2	45
Table S3	67
Table S4	68
Table S5	69
Table S6	70
Table S7	71
Table S8	72
Table S9	73
Berkeley Madonna example code for PBPK modeling in tumor-bearing mice	101

Description for supplementary Excel files

E1. Summarized information including physicochemical properties of administered inorganic nanomaterials (INMs), implanted tumor type, site, size, and body weight as well as the injected dose for tumor-bearing mice, estimated tumor delivery efficiencies, and adequacy in the model simulation of NM kinetics in the tumor.

E2. Summarized information including physicochemical properties of administered organic nanomaterials (ONMs), implanted tumor type, site, size, and body weight as well as the injected dose for tumor-bearing mice, estimated tumor delivery efficiencies, and adequacy in the model simulation of NM kinetics in the tumor.

E3. PBPK simulations of pharmacokinetics in healthy mice intravenously injected with 13 nm gold nanoparticles (AuNPs). In addition, PBPK simulations of tumor pharmacokinetics and associated tumor- and NM-specific parameters for INMs following systemic administration in tumor-bearing mice were included.

E4. PBPK simulations of tumor pharmacokinetics and associated tumor- and NM-specific parameters for ONMs following systemic administration in tumor-bearing mice.

Supplementary figures

Figure S1

13 nm AuNPs (Cho et al. 2010)

Figure S1. PBPK model calibration and simulation of the concentrations of gold nanoparticles (AuNPs) in the (A) plasma, (B) lung, (C) kidney, (D) liver, and (E) spleen from healthy mice by intravenous (IV) injection with 13 nm AuNPs. Panel (F) is the result of linear regression between log-transformed measured and simulated concentrations of 13 nm AuNPs. R^2 is the coefficient of determination.

Figure S2

Figure S2. Subgroup analyses on tumor delivery efficiencies estimated at 24h (DE₂₄) (orange) and 168h (DE₁₆₈) (green) using our tumor-bearing PBPK model from 376 analyzed datasets in this study (2005–2018). Box-and-whisker plots of tumor delivery efficiency data (percent injected dose, %ID) for different subgroups: (A) year, (B) targeting strategy, (C) type of nanomaterials (NMs), (D) inorganic NMs, (E) organic NMs, (F) shape, (G) hydrodynamic diameter, (H) zeta potential, (I) tumor model, and (J) cancer type. The boxes represent the $25^{th} - 75^{th}$ percentiles and solid lines in the boxes indicate the median values.

Supplementary tables

Table S1. Estimated tumor delivery efficiencies, physicochemical properties of administered nanomaterials (NMs), tumor physiology, and dosing regimens for each of the included studies.

Material	Surface chemistry	Shape	Hydro- dynamic diameter [nm]	Zeta potential [mV]	Animal, cancer type, and tumor model	Tumor size ^a	Dosing regimen [mg/kg]	DE _{Tlast_PK} [%ID] ^b	Ref.	
	PEG_5kDa ^c ;	AR 3.8	24	10.0	Human cervical carcinoma (HeLa) s.c. inoculated to	$0.1 \text{ cm}^{3 \text{ c}}$	20	1.07	1	
Gold	[active]	Rod	38×10 (TEM)	-18 °	the flank of mice (20 g) [cervix/xenograft heterotopic]	~0.1 g	(7 d)	1.97	1	
	PFG 5kDa ^c	AR 3.2	29.5		Murine colon carcinoma		12			
Gold	[passive]	Rod 4	45×14 (TEM)	00	flank of mice (20 g) [colon/allograft heterotopic]	~0.1 g	(2 d)	1.51	2	
Gold	PEG_5kDa; EGFR peptide [active]	_ Spherical	PEG_5kDa; EGFR peptide [active] Spherical	42	-5 °	Rat glioblastoma (9L.E29) s.c. inoculated to the flank of mice	~0.9 g	1	2.85	3
	PEG_5kDa [passive]		38.3	-5 °	heterotopic]		(7 d)	3.61		
Gold	PEG_2kDa; Aptamer AS1411 [active]	Star	68.4	-9.3	Human breast adenocarcinoma (MDA-MB-231) s.c. inoculated to the flank of mice (20 g) [breast/xenograft heterotopic]	0.2 cm^3 ~0.2 g	4.8 (3 d)	0.64	4	
	PEG 5k/10kDa		46.3	-6.7			4.1 (2 d)	18.64		
	Alexa Fluor 750		64.2	-15	4		8.1 (2 d)	14.28	_	
	[passive]		104.2	-10	Human melanoma	$1.1 {\rm cm}^3$	16.2 (2 d)	11.19	-	
Gold		Spherical	166	-6	(MDA-MB-435) s.c. inoculated		27.1 (2 d)	4.94	5	
	PEG_5k/10kDa;	a Spherical	49.5 -0.6	to the hind flank of mice (21 g)	~1.3 g	4.1(2d)	25.07	-		
	Transferrin Alexa		<u> </u>	-11	[skin/xenograft orthotopic]		$\delta.1(2d)$	23.80	-	
	Fluor /50		100.4 -9	-		10.2(20)	21.37	-		
	Lactive		1/3.0	-3			27.1 (2 d)	ð.21		

Gold	HSA [passive]	Spherical	6.1	NA	Human glioblastoma (U87MG) s.c. inoculated to the flank of mice (20 g) [brain/xenograft heterotopic]	75 mm ³ ~0.1 g	1.3 (1 d)	1.12	6
Gold	Choline and PEI [passive]	Spherical	27.3 (TEM)	NA	Human prostate carcinoma (DU145) s.c. inoculated to the flank of mice (20 g) [prostate/xenograft heterotopic]	0.3 cm ³ ~0.4 g	7.2 (1 d)	0.06	7
Gold	Quaternary ammonium; Sulfonic groups [passive]	Spherical	17.1	-9.8	Human cervix carcinoma (KB) s.c. inoculated to right rear flank of mice (16–18 g)	0.1 cm^3	5.9	1.13	8
	PEG_2kDa [passive]		31	-10.5	[cervix/xenograft heterotopic]	~0.1 g	(5 0)	0.54	
	PEG_2kDa [passive]	Tripod	18.2	25.4				0.36	
	PEG_3.4kDa [passive]		20.8	24.6	Human glioblastoma (U87MG)	~ 0.2 cm^3	2	0.51	
Gold	PEG_6kDa [passive]		25.8	21.7	s.c. inoculated to the right front or hind flank of mice (20 g) [brain/xenograft heterotopic]	~0.2 g	(2 d)	0.59	9
	PEG; cRGDfC peptide [active]		24.1	-21.3				1.57	
Gold	PEG_2kDa; Glutathione; Folic acid [active]	Spherical	6.1	-5 °	Human gastric carcinoma (MGC- 803) s.c. inoculated to the right flank of mice (18–22 g) [stomach/xenograft heterotopic]	~0.2 cm ³ ~0.2 g	4 (7 d)	9.5	10
		Spherical	69.8		Murine mammary carcinoma (FMT-6)	0.1 cm ³	0.3 (1 d)	1.74	
Gold	PEG_5kDa [passive]	Disk (Plate)	130.5 92×7 (TEM)	~0 °	s.c. inoculated to the right flank of mice (15–20 g)	~0.1 g	1.6 (1 d)	0.46	11

Gold	PFG 5kDa	AR 4.3 Rod	77 39×9 (TEM)		[breast/allograft beterotopic]	0.1 cm ³	0.2 (1 d)	0.15	
Gold	[passive]	Cage (Cubic)	111.3 ~0° 50×50 (TEM)	[oreast anograft neterotopic]	~0.1 g	1 (1 d)	0.62		
Gold	PEG_1kDa [passive]	Spherical	5.5	~0	Human breast carcinoma (MCF-7) orthotopically inoculated to mammary fat pad of mice (20–25 g) [breast/xenograft orthotopic]	~ 0.2 cm^3 ~ 0.2 g	63 (2 d)	1.24	12
Gold	Plasma- polymerized allylamine; Cetuximab antibody [active]	Spherical	31	NA	Human epithelial carcinoma (A431) s.c. inoculated to both flanks of mice (32–37 g) [skin/xenograft orthotopic]	~0.3 cm ³ ~0.7 g	8 (7 d)	2.23	13
Gold	PEG_5kDa	PEG_5kDa Cage	63.7 30×30 (TEM)	10.2	Murine mammary carcinoma (EMT-6) s.c. implanted to the hind flank of mice (15–20 g) [breast/allograft heterotopic]	03.04 g	1.4e-9 (1 d)	2.45	14
Cold	[passive]	(Cubic)	96 55×55 (TEM)	18.7		0.3–0.4 g	6.4e-9 (1 d)	0.44	44
	DEC 5kDa		66.5	-2.6				0.64	
	FEG_JKDa		62.8	-27.1	Human prostate carcinoma	0.2 am^3	11	0.59	
Gold		Spharical	60.2	-10.6	(LNCaP) s.c. injected to hind	~0.5 cm ²	11	0.03	15
Gold	PEG_5kDa; TNF-α ligand [active]	Spherical	71.7	-2.9	limb of mice (20 g) [prostate/xenograft heterotopic]	~0.3 g	(1 d)	0.55	
Gold	PEG_5kDa [passive]	Spherical	63	0 °	Human lymphoblastoid carcinoma (LCL) s.c. inoculated to right flank of mice (20 g) [other cancer type/xenograft heterotopic]	~0.1 g ^c	3.8 (2 d)	0.35	16

	PEG_5kDa [passive]	AR 4.0	37.8	-10	Human prostate carcinoma	~ 0.1 cm^3	9.6	1.30	
Gold	PEG_5kDa; cRGDfK peptide; [active]	Rod	61×15 (TEM)	-44.1	bilaterally to flank of mice (20 g) [prostate/xenograft heterotopic]	~0.2 g	(2 d)	0.25	17
		Spherical	88.9	-27.1	Human ovarian carcinoma (A2780) orthotopically		2.4 (7 d)	0.64	
Gold	PEG_5kDa	AR 4.5	27.5		inoculated to left ovarian bursa	5 g	1.6		18
	[[]	Rod	45×10 (TEM)	1.1	of mice (25 g) [ovary/xenograft orthotopic]		(7 d)	6.47	
	PEG_2kDa		22.4	-			4.5 (1 d)	0.02	
	[passive]		39.6	-	Human melanoma (MDA MB 435)	1 cm^3	8 (1 d)	0.80	
Gold	PEG_5kDa [passive]	Spherical	61.3	~0 °	orthotopically inoculated to dorsal skin of mice (20 g)	$\sim 1.2 \text{ g}$	12.3 (1 d)	0.70	19
	PEG_10kDa		82.6	-	[skin/xenograft orthotopic]	1.2 5	16.6 (1 d)	0.94	
	[passive]		99.4				20 (1 d)	0.59	
	PEG_2kDa; MSN coating [passive]		41.8 60×15 (TEM)	-0.1	Murine mammary carcinoma			0.65	
	BSA coating; MSN	AR 4.0	44.3		(4T1) s.c. inoculated to right hind	0.5 cm^{3}	1		
Gold	coating [passive]	Rod	60×15 (TEM)	-14.1	leg of mice (20 g)			0.29	20
	BSA coating [passive]		20.2 60×15 (TEM)	-20.2	[breast/allograft heterotopic]	~0.6 g	(3 d)	0.21	
	BSA coating [passive]	Spherical	7.2	-23.5				0.42	
Dendrimer entrapped	PEG_2kDa; cRGDfK peptide	Spherical	71.7	6.1	Human glioblastoma (U87MG) s.c. inoculated to the right oxter	$\sim 0.04 \text{ cm}^3$	188	0.03	21
AuNPs	[active]	Spherical	, 1.,	0.1	of mice (20–22 g) [brain/xenograft heterotopic]	~0.05 g	(5 d)	0.05	

	Amine- terminated PAMAM [passive]		5	Positive				3.08	
	Carboxy- terminated PAMAM [passive]		5 Negative	Negative	Murine melanoma (B16-F10) s.c. inoculated to the dorsal			1.85	
Gold-	Acetylated PAMAM [passive]	Spherical	5	2.5 (Neutral)	surface of mice (25 g)	0.5 cm ³ 0.6 g	16 (4 d)	1.81	
composite nanodevice	Carboxy- terminated PAMAM [passive]		11	Negative	[skin/allograft orthotopic]			0.24	22
	Amine- terminated PAMAM [passive]		22	Positive				1.21	
	Amine- terminated PAMAM [passive]		22	Positive	Rat prostate carcinoma (MatLyLu) s.c. inoculated to the dorsal surface of mice (25 g) [prostate/xenograft heterotopic]			0.63	
	Tiopronin [passive]		2.7	-16.8				0.95	
	PEG_5kDa [passive]		2.7	-42.3				1.51	
	Myxoma peptide [active]		2.7	-22.1	Murine melanoma (B16-F10)		34	1.62	
Gold	PEG_5kDa; Myxoma peptide [active]	Spherical	2.7	-25.6	of mice (25 g)	~5 g	(3 d)	1.36	23
	cRGD peptide		2.7	-16.6	[skin/allograft orthotopic]			1.15	-
	PEG_5kDa; cRGD peptide [active]		2.7	-18.4				2.04	

Gold	Polyprodrug shell coating (Biotin/PEG/LA) [active]	AR 3.5 Rod	51.6 38×11 (TEM)	3	Murine epidermoid carcinoma (SCC-7) orthotopically inoculated to back of mice (20 g) [skin/allograft orthotopic]	0.1 cm ³ ~0.1 g	1.5 (1 d)	2.43	24
Magnetic AuNPs	PEG_5kDa [passive]	Spherical	22	-25.9	Murine Ehrlich ascites carcinoma (EAC) s.c. inoculated to right flank of mice (22–25 g) [breast/allograft heterotopic]	~0.5 cm ³ ~0.5 g	10 (1 d)	1.17	25
	PEG 5kDa	AR 4.1 Rod	37.4 60×15 (TEM)	-11	Human prostate carcinoma (DU145) s.c. inoculated to flank	$\sim 0.2 \text{ cm}^3$	8 (3 d)	2.81	26
[passive]	Cage (Cubic)	50 50×50 (TEM)	-9.2	of mice (28 g) [prostate/xenograft heterotopic]	~0.2 g	4.1 (3 d)	3.83	20	
Gold	PEG_3.3kDa [passive]	Spherical	4.5 (TEM)	NA	Murine melanoma (B78H1) orthotopically transplanted to mice (18–20 g) [skin/allograft orthotopic]	0.4 cm ³ ~0.5 g	1.7 (7 d)	7.13	27
Gold- iron oxide	PEG_2kDa; Affibody protein [active]	Spherical	24.4	-28.6	Human epithelial carcinoma (A431) s.c. inoculated to shoulder of mice (20 g) [skin/xenograft orthotopic]	~0.2 cm ³ ~0.3 g	10 (2 d)	1.09	28
Iron oxide	PEG_5kDa and silica coating; Trastuzumab antibody [active]	Spherical	16 (TEM)	NA	Human breast carcinoma (SkBr3) s.c. inoculated to flank of mice (20–25 g) [breast/xenograft heterotopic]	~0.1 cm ³ ~0.1 g	22.5 (2 d)	0.70	29
Iron oxide	Starch shell modified with PEG_1kDa and PSMA antigen [active]	Spherical	139.1	-11.6	Human prostate carcinoma (PC-3 PIP & PC-3 flu) s.c. inoculated to opposite front flanks of mice (22 g) [prostate/xenograft heterotopic]	~0.1 cm ³ ~0.2 g	11.4 (4 d)	0.37	30

Iron oxide	PEG_5kDa [passive]	Spherical	68 (assumed)	NA	Human glioblastoma (U87MG)	$\sim 0.2 \text{ cm}^3$	10	0.56	
Iron oxide	PEG_5kDa; cRGD peptide [active]	Spherical	68	NA	(26 g) [brain/xenograft heterotopic]	~0.2 g	(2 d)	1.17	31
Iron oxide	Dopamine; HSA [passive]	Spherical	50.8	NA	Murine breast carcinoma (4T1) s.c. inoculated to right flank of mice (24 g) [skin/allograft heterotopic]	0.5 cm ³ 0.6 g	5 (1 d)	1.14	32
Iron oxide	PEG; DOTA; ChL6 mAb; [active]	Spherical	20 (TEM)	NA	Human breast adenocarcinoma (HBT3477) s.c. inoculated on both sides of abdomen of mice (26 g) [breast/xenograft heterotopic]	~0.2 cm ³ ~0.6 g	84.6 (4 d)	5.11	33
	Trastuzumab antibody [active]		39.4	-4.5				5.26	
	IgG antibody [active]	<u> </u>	40.3	-3.3	Human gastric carcinoma (N87) s.c. inoculated to the hind flank of mice (22 g)	~2 g	21.4	4.97	34
Iron oxide	Anti-HER2 scFv antibody [active]	Spherical	22.3	-4.6	[stomach/xenograft heterotopic]	(NA, estimated)	(3 d)	9.36	
	Anti-HER2 peptide [active]		28.1	-0.6				7.42	
Silica	PEG_5kDa; cRGDyK peptide [active]	Spherical	226.2	-3.5	Human glioblastoma (U87MG) s.c. inoculated to flank of mice	$\sim 0.2 \text{ cm}^3$	9.5	1.28	35
(HMSN)	PEG_5kDa [passive]	Spherical	219.4	-3.6	(28 g) [brain/xenograft heterotopic]	~0.2 g	(18 h)	0.74	

Silica	Polypyrrole [passive]	Spherical	59	-7.4	Murine mammary carcinoma (4T1) s.c. inoculated to right rear flank of mice (20 g) [breast/allograft heterotopic]	~0.1 cm ³ ~0.1 g	10 (1 d)	0.34	36		
Silica	PEG_5kDa [passive]		125.2	-10.9	Human glioblastoma (U87MG)	~0.1 cm ³	9.5	0.18			
(MSN)	PEG_5kDa; VEGF ligand [active]	Spherical	Da; Spherical gand 129 e] 129	Spherical	129	-10.2	mice (28 g) [brain/xenograft heterotopic]	~0.1 g	(22 h)	0.50	37
Silica	PEG_5kDa [passive]		194.4 (assumed)	-5.1 (assumed)	Murine mammary carcinoma $(4T1)$ s c inoculated to front	$\sim 0.2 \text{ cm}^3$	9.5	0.63			
(HMSN)	PEG_5kDa; TRC105 antibody [active]	Spherical	194.4	-5.1	[breast/allograft heterotopic]	~0.2 g	(1 d)	1.60	38		
Cilian	PEG_5kDa [passive]		175.3 (assumed)	-3.3 (assumed)	Murine mammary carcinoma	0.2 cm^3	0.5	0.41			
(MSN)	PEG_5kDa; TRC105(Fab) antibody [active]	Spherical	175.3	-3.3	(4T1) s.c. inoculated to the front flank of mice (28 g) [breast/allograft heterotopic]	~0.2 g	(2 d)	0.84	39		
	PEG_0.5kDa [passive]		6.8	0 °	Human melanoma (M21) s.c.	0.2 cm^3	0.5 (4 d)	0.07			
Silica	Silica PEG_0.5kDa; cRGDY peptide [active]	Spherical	7	-3 °	inoculated to hind leg of mice (27 g) [skin/xenograft orthotopic]	~0.2 g	0.5 (7 d)	0.17	40		
Silica	PEG_5kDa [passive]		150.2	-2.3	Murine mammary carcinoma $(4T1)$ s c inoculated to the front	~ 0.2 cm^3	9.5	0.52			
(MSN)	PEG_5kDa; TRC105 antibody [active]	Spherical	168	-2.7	(4T1) s.c. inoculated to the front flank of mice (20 g) [breast/allograft heterotopic]	~0.2 g	(2 d)	0.95	41		

Enzyme & iron oxide entrapped dendritic MSN	PEG_5kDa; Fe3O4 NPs; Natural glucose oxidase [passive]	Spherical	255.3	-27.6	Murine mammary carcinoma (4T1) s.c. implanted to mammary fat pad of mice (16 g) [breast/allograft orthotopic]	30 mm ³ ~0.04 g	10 (2 d)	0.22	42
Liposome coated HMSN	PEG_2kDa- liposome coating [passive]	Spherical	210	27	Human hepatocellular carcinoma (HepG2) s.c. inoculated to front armpit of mice (16–18 g) [liver/xenograft heterotopic]	0.5 cm ³ 0.6 g	8 (1 d)	0.88	43
Liposome coated HMSN	PEG_2kDa- liposome coating [passive]	Spherical	243	-11.7	Murine melanoma (B16-F10) orthotopically inoculated to the right flank of mice (20 g) [skin/allograft orthotopic]	~0.1 cm ³ ~0.1 g	750 (2 d)	6.06	44
Silica (MSN)	RBC membrane vesicle coating [passive]	Spherical	107.7	-14	Murine mammary carcinoma (4T1) injected to right mammary gland of mice (20 g) to establish spontaneous tumor model [breast/allograft orthotopic]	~0.3 cm ³ ~0.4 g	5 (1 d)	2.12	45
Hollow mesoporous silica	PEG_3.5kDa; PDA coating [passive] PEG_3.5kDa; PDA coating; Folic acid [active]	AR 2.5 Rod	210 200×80 (TEM)	24.1	Murine mammary carcinoma (4T1) orthotopically administered to right mammary fat pad of mice (20 g) [breast/allograft orthotopic]	0.7 cm ³ ~0.8 g	5 (2 d)	6.35 16.64	46
Magnetic silica (MSN)	Fe ₃ O ₄ NPs [passive]	Spherical	18.7 (TEM)	NA	Murine colon adenocarcinoma (C-26) s.c. inoculated to right flank of mice (20 g) [colon/allograft heterotopic]	~0.1 cm ³ ~0.2 g	12 (2 d)	0.29	47
Polymer and carbon coated silica	PGA & MHPCNs coating; Folic acid [active]	Spherical	~210	-31.6	Human cervical carcinoma (HeLa) s.c. inoculated to flank of mice (20 g) [cervix/xenograft heterotopic]	~0.1 cm ³	10 (2 d)	2.62	48

Periodic mesoporous organosilica	Copper sulfide capped [passive]	Spherical	222.6	-17.9	Murine sarcoma cell line (S180) s.c. inoculated to shoulder of mice (15–20 g) [other cancer type/ allograft orthotopic]	0.1 cm ³ ~0.1 g	5 (1 d)	5.12	49
Silica coated Mn ₃ O ₄	PEG_0.6kDa; Silica shell; Aptamer AS411 [active]	Spherical	53.2	-12.4	Human cervical carcinoma (HeLa) s.c. inoculated to left flank of mice (31 g) [cervix/xenograft heterotopic]	~1.1 cm ³ ~1.3 g	16 (1 d)	5.83	50
NaGdF4	PEG_2kDa; (cRGDyK)2 peptide [active]	Spherical	32	NA	Human glioblastoma (U87MG) s.c. inoculated to shoulder of mice (20–24 g) [brain/xenograft heterotopic]	~1.8 cm ³ ~2.1 g	90.9 (22 h)	4.28	51
MoS2/Fe3O4 composite	PEG_0.4kDa [passive]	Flake	190.1	-21.9	Human pancreatic adenocarcinoma (PANC-1) s.c. inoculated to backside of mice (18 g) [pancreas/xenograft heterotopic]	0.1 cm ³ ~0.1 g	20 (7 d)	0.21	52
CaP	PEG_12kDa [passive]	Spherical	80	-0.5	Murine colon adenocarcinoma (C-26) s.c. inoculated in mice [colon/allograft heterotopic]	0.1 cm^3 ~0.1 g	11 (1 d)	0.37	53
MnO	PEG_1.9kDa; cRGD peptide [active]	Spherical	100	3 °	Human lung adenocarcinoma (A549) s.c. inoculated to right flank of mice (18 g) [lung/xenograft heterotopic]	65 mm ³ ~0.1 g	0.5 (4 h)	41.69	54
Mg ₂ Al layered double hydroxide	BSA coating [passive]	Sheet	150	-19	Murine mammary carcinoma (4T1) s.c. inoculated to the flank of mice (20 g) [breast/allograft heterotopic]	~0.2 cm ³ ~0.2 g	1.2 (1 d)	1.69	55
Cobalt nanotube	Folate [active]	AR 38.2 Rod	166.8 325×9 (TEM)	-14.6	Human cervical carcinoma (HeLa) s.c. inoculated to flank of mice (20–22 g) [cervix/xenograft heterotopic]	~0.2 cm ³ ~0.2 g	5 (1 d)	0.23	56

AuNPs coated	PEG 5kDa		112.2	-9.8	Murine sarcoma cell line (S180) s.c. inoculated to shoulder of	$\sim 0.1 \text{ cm}^3$	5	0.75	57
coated fullerene	[passive]	Spherical	143.4	-12.7	mice (18–20 g) [other cancer type/ allograft orthotopic]	~0.1 g	(12 h)	0.59	- 57
Bi2Se3	HSA and PDA coating [passive]	Spherical	112	-14.4	Human cervical carcinoma (HeLa) s.c. inoculated to flank of mice (20–22 g) [cervix/xenograft heterotopic]	~0.4 cm ³ ~0.5 g	25 (1 d)	1.99	58
Calcium phosphate	PEG_12kDa [passive]	Spherical	60	-0.5	Murine colon adenocarcinoma (C-26) s.c. inoculated to right femoral of mice (18 g) [colon/allograft heterotopic]	0.1 cm ³ ~0.1 g	9.1 (3x) (1.25 d)	0.89	59
Gd3N	PEG_5kDa; C80 encapsulated [passive]	Spherical	49.2	NA (assumed neutral)	Murine colon adenocarcinoma (C-26) s.c. inoculated to right femoral of mice (23 g) [colon/allograft heterotopic]	0.1 cm ³ ~0.1 g	0.7 (3.1 d)	0.31	60
Hollow mesoporous CuS	Transferrin [active]	Spherical	205	-25.5	Human breast adenocarcinoma (MCF-7) s.c. inoculated to shoulder of mice (20 g) [breast/xenograft heterotopic]	0.1 cm ³ ~0.1 g	35 (4 d)	0.04	61
Polymeric	PLG160-g- PEG_5kDa [passive]	Spherical	36.7	-8.5	Murine Lewis lung carcinoma (LLC) s.c. inoculated to right flank of mice (17 g) [lung/allograft heterotopic]	0.2 g	CDDP: 5 (2 d)	1.26	62
Polymeric	PAMAM-PLA- <i>b</i> - PEG5kDa; TRC105 antibody [active]	Spherical	37	NA	Murine mammary carcinoma (4T1) s.c. inoculated to front	180 mm ³	0.3	0.91	63
	ymeric [active] Spherica PAMAM-PLA- <i>b</i> - PEG5kDa [passive]		37	NA	flank of mice (20 g) [breast/allograft heterotopic]	~0.2 g	(2 d)	0.50	

Polymeric	Cy7-labeled PEG_5kDa- <i>b</i> -p(HPMAm-Bz) loaded with Cy5.5- based model drug [passive]	Spherical	72	-0.5	Human epithelial carcinoma (A431) orthotopically inoculated to right flank of mice (22.5 g)	100 mm ³	14.2	1.04	64
	Cy7-labeled PEG_5kDa- <i>b</i> -p(HPMAm-Bz) [passive]		72	-0.5	[skin/xenograft orthotopic]	~0.1 g	(2 d)	1.16	
Polymeric	Pluronic P105; F127 [passive]	Spherical	22.3	-1.5	Human breast adenocarcinoma (MCF-7/ADR) s.c. inoculated to right hind leg of mice (20 g) [breast/xenograft heterotopic]	$\sim 0.3 \text{ cm}^3$ $\sim 0.3 \text{ g}$	DOX: 2 PTX: 3 (2 d)	0.17	65
	PEG_2kDa [passive]	Mixed	89	-7	Human epidermoid carcinoma	30 mm ³	PTX: 5	0.02	
Polymeric	PEG_2kDa; C225 cetuximab antibody [active]	spherical/ cylindrical	88	-24.2	(A431) s.c. inoculated in forelimb oxter of mice (21–23 g) [skin/xenograft orthotopic]	~0.04 g	(8 h)	0.06	66
	PLGA	AR 4.0 Rod	227 320×80 (TEM)	-3.2	Human ovarian carcinoma (SKOV-3) s.c. inoculated to the	150 mm ³	DTX: 10	0.30	67
Polymeric	[passive]	Cylinder (Cubic)	263 200×200 (TEM)	-3.4	right flank of mice (14–18 g) [ovary/xenograft heterotopic]	~0.2 g	(7 d)	0.23	
	PLGA; 9% DTX [passive]	AR 4.0 Rod	216 320×80 (TEM)	-3.1	Human alveolar adenocarcinoma (A549) s.c. inoculated to the	150 mm ³	DTX: 10	0.08	68
Polymeric	PLGA; 20% DTX [passive]	AR 4.0 Rod	216 200×200 (TEM)	-3.4	right flank of mice (20 g) [lung/xenograft heterotopic]	~0.2 g	(7 d)	0.09	

Polymeric	PEG_2kDa; Folic acid; PLGA [active]	Spherical	274.1	-12.1	Human breast adenocarcinoma (MDA-MB-231) s.c. injected to the right flank of mice (20 g)	$\sim 0.2 \text{ cm}^3$	1.25	1.26	69
	PLGA [passive]		216.6	-14.3	[breast/xenograft heterotopic]	~0.2 g	(12 h)	0.42	
			30	-2.3	Murine colon adenocarcinoma			0.80	
	DACHPt-loaded		54	-1.6	(C-26) s.c. inoculated in mice			0.82	
	micelles;		69	-0.9	(20 g)	100 mm^3	5	0.91	
D 1	PEG- <i>b</i> -P(Glu)	<u>a</u> 1 - 1	110	0.2	[colon/allograft heterotopic]	100 11111	5	0.70	70
Polymeric	D(Chr)	Spherical	30	-2.3	Human pancreatic adenocarcinoma (BxPC3) s.c. inoculated in mice (20 g)			0.98	
	homopolymer		54	-1.6		~0.1 g	(1 d)	0.63	
	[nassive]		69	-0.9				0.39	
	[pussive]		110	0.2	[pancreas/xenograft heterotopic]			0.39	
	Hydrazine; PEG_2kDa; Folic acid [active]		70.9	4 ^c	Murine mammary carcinoma (4T1) s.c. inoculated to the right back of mice (20 g) [breast/allograft heterotopic]	50 mm ³	DOX: 5	0.63	
Polymeric	Carbamate; PEG_2kDa; Folic acid [active]	Spherical	86.6	2 °		0.06 g	0.06 g (1 d)	0.49	71
	PEG_2kDa-PCL [passive]		64 ^c	3 °				0.36	
Polymeric	Cross-linked PEG_9.5kDa; Carborane Tyrosine [passive]	Spherical	88.9	-0.5	Murine colon adenocarcinoma (C-26) s.c. inoculated to the back of mice (22 g)	100 mm ³	1.3	0.33	72
Polymeric	Non-cross-linked PEG_9.5kDa; Tyrosine [passive]	Spherical _	87.1	-1	[colon/allograft heterotopic]	~0.1 g	(1 d)	0.21	

	PEG [passive]		64.2	-0.4				0.67	
	PEG; 5% folate [active]	-	68.4	-1.1				0.59	
	PEG; 10% folate [active]		69.2	-2	(KB, HeLa derivative) transplanted to abdominal region	100 mm ³	ADR: 10	0.73	73
Polymeric	PEG; 25% folate [active]	Spherical	72.5	-2.3	of mice (20 g)	~0.1 g	(1 d)	0.68	
	PEG; 50% [active]		77.5	-7	[cervix/xenograft heterotopic]			0.78	
	PEG; 100% folate [active]		91.3	-9.3				0.74	
Polymeric	DACHPt-loaded micelles; PEG_12kDa [passive]	Spherical	40	-2 °	Murine colon adenocarcinoma (C-26) s.c. inoculated in mice (20 g) [colon/allograft heterotopic]	0.2 g	5 (3 d)	1.54	74
Polymeric	PEG_0.4kDa; cRGD peptide [active]	Spherical	22.5	0 °	Murine mammary adenocarcinoma (Cl-66) injected to mammary fat pad of mice (19 g) [breast/allograft orthotopic]	625 mm ³ ~0.8 g	13.2 (5 d)	4.52	75
Polymeric	PEG_12kDa [passive]	Spherical	65	-2 °	Murine colon adenocarcinoma (C-26) s.c. inoculated in mice (20 g) [colon/allograft heterotopic]	100 mm ³ ~0.1 g	ADR: 10 (2 d)	1.13	76
Polymeric	Pyrene-ended poly(_{DL} -lactic acid) [passive]	Spherical	222	NA	Murine sarcoma cell line (S180) s.c. inoculated to axillary of mice (30 g) [other cancer type/ allograft orthotopic]	350 mm ^{3 c} ~0.4 g	20 (2 d)	1.95	77

PEG_1.6kDa; Folate [active] PAA- <i>b</i> -PMA	Spharical	20 (assumed)	NA	Human nasopharyngeal epidermal carcinoma (KB, HeLa derivative) s.c.	. 55 mg	4	0.24	78	
Polymenc	PAA- <i>b</i> -PMA [passive]	spherical	20	NA	inoculated to the nape of the neck of mice (20–25 g) [cervix/xenograft heterotopic]	~55 llig	(1 d)	0.30	
Polymeric	PLGA [passive]	Spherical	133.5	-15.8	Murine Ehrlich ascites carcinoma (EAC) s.c. inoculated to right hind leg of mice (25–30 g) [breast/allograft heterotopic]	1 cm ³ 1.2 g	LTZ: 11.1 (1 d)	0.95	79
	Rhodamine B		149.2	-13.2				10.53	
	labeled		157.3	-23.2			100	8.84	
	carboxymetnyi chitosan [passive]		156	-38.4	Murine hepatocellular carcinoma (H22) s.c. inoculated to axillary		(1 d)	7.66	
Dolumorio		Spharical	456.5	-25.1		100 mm ³		3.59	80
Forymeric	Dhodomine D	Spherical	150.1	14.8	region of mice (18–22 g)	~0.1 g		1.94	
	Rhodamine B labeled chitosan		150.6	25.5			15	2.96	
	hydrochloride [passive]		152.7	34.6			(1 d)	3.94	
	[pubbive]		300.7	24.4				1.77	
Polymeric	DACHPt-loaded micelles;	Spherical	40	-4	Murine colon adenocarcinoma (C-26) s.c. inoculated in mice	100 mm ³	5	0.94	81
i orymerie	PEG_12kDa [passive]	Spherieur			(20 g) [colon/allograft heterotopic]	~0.1 g	(3 d)	0.71	
	PEI_25kDa [passive]		399	38.1	Murine Ehrlich ascites carcinoma (FAC) s c inoculated to left hind	~1.8 cm ³	0.05 (1 d)	0.62	
Polymeric	3% chondroitin sulfate-PEI [passive]	Spherical	276	16.4	flank of mice (25–30 g) [breast/allograft heterotopic]	~2.2 g	0.36 (1 d)	3.28	82

	NOTA								
Graphana	PEG_5kDa [passive]		26.2	-16.4	Murine mammary carcinoma (4T1) s.c. inoculated to the flank	$\sim 0.2 \text{ cm}^3$	5	0.46	
oxide	NOTA; PEG_5kDa; TRC105 antibody [active]	Flake	37	-2	of mice (20 g) [breast/allograft heterotopic]	~0.2 g	(2 d)	0.99	83
Granhana	NOTA; PEG_10kDa [passive]		21.9	-9.5	Murine mammary carcinoma (4T1) s.c. inoculated to front	$\sim 0.2 \text{ cm}^3$	5	0.46	
oxide	NOTA; PEG_10kDa; TRC105 antibody [active]	Flake	27	-0.1	flank of mice (20 g) [breast/allograft heterotopic]	~0.2 g	(2 d)	0.89	84
Graphene oxide	PEG_4kDa [passive]	Flake	90 50×1.9 (AFM)	-30 °	Murine melanoma (B16-F10) s.c. inject to right arm of mice (18–20 g) [skin/allograft orthotopic]	200 mm ³ ~0.2 g	PTX: 50 (1 d)	9.72	85
Graphene	NOTA; PEG_5kDa [passive]		27.7	-9.5	Human glioblastoma (U-87MG)	60 mm ³	5	0.21	
oxide	NOTA; PEG_5kDa; VEGF121 ligand [active]	Flake	32.9	-5 °	(20 g) [brain/xenograft heterotopic]	~0.07 g	(2 d)	0.37	86
Graphene	NOTA; PEG_5kDa [passive]		21.9	-9.5	Murine mammary carcinoma (4T1) s.c. inoculated to front	$\sim 0.2 \text{ cm}^3$	5	0.68	87
oxide	NOTA; PEG_5kDa; TRC105 antibody [active]	Flake	27	-0.1	flank of mice (20 g) [breast/allograft heterotopic]	~0.2 g	(1 d)	1.04	

Single-walled carbon	PEG_2kDa [passive] PEG_2kDa; RGD peptide [active]	AR 80	2.5×200		Human glioblastoma (U-87MG)	~250 mm ³	0.04	0.79	
nanotubes (SWCNTs)	PEG_5.4kDa [passive]	Rod	(AFM)	NA	of mice (25 g) [brain/xenograft heterotopic]	~0.3 g	(1 d)	1.14	88
	PEG_5.4kDa; RGD peptide [active]							3.56	
Liposomes	DPPC; Cholesterol; DSPE-PEG_2kDa; Iohexol; GH680 [passive]	Spherical	96.4	-59.4	Human cervical carcinoma (ME180) orthotopically inoculated in mice (21 g) [cervix/xenograft orthotopic]	~500 mm ³ ~0.6 g	1220 (5 d)	1.91	89
	DEC 2kDa				BALB/c TP53(-/-) mammary adenocarcinoma transplanted to mammary fat pad of mice (23 g) [breast/allograft orthotopic]	~0.1 cm ³ ~0.1 g	DOX: 6	0.15	
Liposomes	[passive]	Spherical	79.1	-36.1	Mice (23 g) carrying a transgene (C3-Tag) were bred in house until tumor size reaching >0.5 cm in any dimension [breast/other tumor model]	~0.1 cm ³ ~0.1 g	(4 d)	0.43	90
Lipid nanocarrier (Liposomes)	Alendronate- hyaluronate grafted polymer [active]	Spherical	386 °	20 °	Murine Ehrlich ascites carcinoma (EAC) s.c. inoculated to right hind flank of mice (25–30 g) [breast/allograft heterotopic]	~600 mm ³ ~0.7 g	13.1 (1 d)	1.66	91

Liposomes	DSPE-PEG_2kDa [passive]	Spherical	120	0 °	Syngeneic murine mammary carcinoma (MET1) transplanted to mammary fat pad of mice (15–25 g) [breast/allograft orthotopic]	~0.2 g	50 (2 d)	0.93	92
Lipid			25	-3	Human embryonic kidney cell	65 mm^3	741	0.10	
nanocapsule	PEG_0.9kDa [passive]	Spherical	51	-4	line (HEK293(β_3)) s.c. inoculated in mice (27 g)	~0.00	(1 1)	0.06	93
(Liposomes)			93	-6	[kidney/xenograft heterotopic]	~0.08 g	(1 d)	0.07	
	PEG- <i>nido-</i> carborane [passive]		168 °	NA	Murine colon adenocarcinoma (C-26) s.c. inoculated to back of	~270 mm ³	11.1	0.52	
Liposomes	PEG- <i>nido</i> - carborane; Transferrin [active]	Spherical	225 °	NA	mice (20–25 g) [colon/allograft heterotopic]	~0.3 g	(3 d)	0.88	94
Lipid nanocapsule (Liposomes)	DSPE-PEG_2kDa [passive]	Spherical	118	0 °	Murine colon adenocarcinoma (C-26) s.c. inoculated to back regions of mice (18–21 g) [colon/allograft heterotopic]	20 mm ³ ×3 ∼0.07 g	15 (1 d)	0.55	95
Liposomes	PEG_2kDa [passive]	Spherical	200	-2	Human anaplastic thyroid carcinoma (ARO) s.c. inoculated to the flank of mice (25–30 g) [other cancer type/ xenograft heterotopic]	~400 mm ³ ~0.5 g	145.5 (1 d)	0.43	96
Liposomes	PEG [passive]	Spherical	100	0 °	Human melanoma (A375) s.c. inoculated to right flank of mice (21 g) [skin/xenograft orthotopic]	~1.25 g	1 (3 d)	0.96	97

	HA; HP-β-cyclodextrin (HPCD); Vitamin E succinate (VES) [active]		200.8	-14				0.04	
Hyaluronic acid	HA bearing 2 PEG_5kDa chains; HPCD; VES [active]	Spherical	217.4	-13.5	Murine mammary carcinoma (4T1) s.c. inoculated to right flank of mice (18–20 g)	~125 mm ³	DOX: 10	0.05	98
nyuroger	HA bearing 5 PEG_5kDa chains; HPCD; VES [active]		225.8	-13.1	[breast/allograft heterotopic]	~0.15 g	(1 d)	0.09	
	HA bearing 10 PEG_5kDa chains; HPCD; VES [active]		241.7	-10.8				0.07	
Hyaluronic acid hydrogel	HA modified with methacrylic anhydride [active]	Spherical	50	-45	Murine hepatocellular carcinoma (H22) s.c. inoculated to left flank of mice (20–25 g) [liver/allograft heterotopic]	50 mm ³ 0.06 g	DOX: 4.5 (3 d)	0.12	99
Heparin- based hydrogel	Heparin copolymerized with cystamine bisacrylamide [passive]	Spherical	87.5	-30	Murine hepatocellular carcinoma (H22) s.c. inoculated to left flank of mice (20–25 g) [liver/allograft heterotopic]	~50 mm ³ 0.06 g	DOX: 4 (1 d)	0.44	100
	Chitosan [passive]		146	9 °	Murine hepatocellular carcinoma	~70 mm ³	4	0.22	
Chitosan hydrogel	Chitosan; Bradykinin- potentiating peptide [active]	Spherical	138.5	9 °	(H22) s.c. inoculated to right limb armpit of mice (20–25 g) [liver/allograft heterotopic]	~0.08 g	4 (1 d)	0.25	101

Hyaluronic acid hydrogel	HA-PEI_10kDa; HA-PEG_2kDa; Indocyanine green [active]	Spherical	200	-14.6	Human alveolar adenocarcinoma (A549 ^{DDP}) s.c. inoculated to right shoulder of mice (20 g) [lung/xenograft heterotopic]	200 mm3 ~0.2 g	0.5×3 (3 d)	0.37	102
	Thiolated gelatin [passive]		132.6	-24.6				0.84	
Gelatin	Thiolated gelatin; PEG_2kDa [passive]	Spherical	179	-22.3	Human pancreatic adenocarcinoma (PANC-1) s.c. inoculated to left flank of mice	150 mm ³	0.75	1.39	103
nyuroger	Thiolated gelatin; PEG_2kDa; EGFR peptide [active]		230.8	-18.1	[pancreas/xenograft heterotopic]	~0.2 g	(1 d)	2.40	
Alginic acid	Alginic acid	Sabariaal	120	24.2	Murine hepatocellular carcinoma (H22) s.c. inoculated to right	150 mm ³	DOX: 4	0.68	104
hydrogel	[passive]	Spherical	152	-34.2	armpit of mice (25 g) [liver/allograft heterotopic]	~0.2 g	(3 d)	0.08	
Cellulose hydrogel	Methacrylated carboxymethyl cellulose; Cystamine Bisacrylamide [passive]	Spherical	193	-25.7	Murine hepatocellular carcinoma (H22) s.c. inoculated to left flank of mice (20–25 g) [liver/allograft heterotopic]	100 mm ³ ~0.1 g	DOX: 5 (3 d)	0.18	105
Dendrimers	PAMAM G7.0 dendrimers [passive]	0.1 . 1	8	-1.3	Human ovarian carcinoma (A2780) orthotopically	~1.8 cm ³	20 (7 d)	9.87	106
vs. copolymers	HPMA copolymers (52 kDa) [passive]	Spherical	6.6	-1.5	of mice (30 g) [ovary/xenograft heterotopic]	~2.1 g	40 (1 d)	3.23	100
	Lysine G6.0 [passive]		5.9	19.8	Murine colon adenocarcinoma	100 mm ³	1	0.27	
Dendrimers	Lysine G6.0; 76 PEG_5kDa chains [passive]	Spherical	16.9	-6.5	(C-26) s.c. inoculated to back of mice (25–27 g) [colon/allograft heterotopic]	~0.1 g	(1 d)	1.37	107

	PAMAM G5.0 [passive]		5		Human carcinoma (KB, HeLa derivative)	~ 0.9 cm^3	8.3 (7 d)	2.09	
Dendrimers	PAMAM G5.0; Folic acid [active]	Spherical	(reported as <5 nm)	NA	s.c. inoculated to flank of mice (21 g) [cervix/xenograft heterotopic]	~1.1 g	9.5 (7 d)	7.97	108
Dendrimers <i>vs</i> . copolymers	HPMA copolymers (131 kDa) [passive]	Spherical	16.4	-19.2	Human ovarian carcinoma (A2780) orthotopically inoculated to left ovarian bursa of mice (30 g) [ovary/xenograft heterotopic]	~1.8 cm ³ ~2.1 g	20 (7 d)	3.34	109
Tabacco mosaic virus	PEG_8kDa [passive]	AR 16.7 Rod	95 ° 300×18 (TEM)	-36 °	Human glioblastoma (U-87MG) s.c. inoculated to flank of mice (20 g) [brain/xenograft heterotopic]	~0.2 cm ^{3 c} ~0.2 g	0.05 (3 d)	0.05	110
		AR 1.3 Rod	163					3.41	
Anticancer drug	HCPT PEGylated with	AR 2.0 Rod	221	4.2	Murine mammary carcinoma (4T1) s.c. inoculated to right	~100 mm ³	HCPT: 10	2.81	111
(HCPT)	C18-PMH-PEG [passive]	AR 3.2 Rod	324	-4.5	[breast/allograft heterotopic]	~0.1 g	(1 d)	2.33	
		AR 4.0 Rod	402					2.04	
Solid lipid	DOPE; Cholesterol; DC-cholesterol [passive]		85.8	71.3	Human lung adenocarcinoma (H1975) s.c. inoculated to flank region of mice (20 g)	~75 mm ³	50	0.15	
NPs	DOPE; Cholesterol; DC-cholesterol; PEG_5kDa [passive]	Spherical	134.7	0.6	[lung/xenograft heterotopic]	~0.09 g	(1 d)	0.36	112

	DOPE; Cholesterol; DC-cholesterol; PEG_5kDa; Cetuximab antibody [active]		168.2	-0.8				0.38	
Solid lipid NPs	Tripalmitin [passive]	Spherical	387 (SEM)	-46.6	Dalton's lymphoma cells s.c. inoculated to right hind leg of mice (25–30 g) [other cancer type/ allograft heterotopic]	~0.9 cm ³ ~1.1 g	3.6 (1 d)	0.04	113
	PTX loaded		164.7	-30.5		2		0.43	
	PTX loaded; DSPE-PEG_2kDa; Folic acid [active]		175.3	-27.2	Human glioblastoma (T98G)	100 mm ³ ~0.1 g	PTX: 10 (1 d)	0.61	
Polymer-lipid hybrid	PTX-cRGDfK peptide conjugate (PTXR) loaded [passive]	Spherical	Spherical 171.7		orthotopically injected into the right striatum of mice (20 g) [brain/xenograft orthotopic]	100 mm ³	PTX: 10	0.54	114
	PTXR loaded; DSPE-PEG_2kDa; Folic acid [active]		186.9	-29.5		~0.1 g	(1 d)	0.90	
Polymeric	PEG_3.5kDa-b- PLGA polymer [passive]	Spherical	134	NA	Murine mammary carcinoma (4T1) s.c. inoculated to right flank of mice (18–20 g) [breast/allograft heterotopic]	100 mm ³ ~0.1 g	DOX: 5 (1 d)	0.03	115
Polymeric	Poly(styrene- <i>co</i> - maleic anhydride) copolymer [passive]	Spherical	174	-22.9	Murine Ehrlich ascites carcinoma (EAC) s.c. inoculated to right hind leg of mice (18–22 g) [breast/allograft heterotopic]	50 mm ³ 0.06 g	PTX: 20 (1 d)	0.03	116

	PEG _{3.4k} -PCL _{8.3k} copolymer [passive]		98					0.14	
	PEG _{3.4k} -PCL _{5.7k} copolymer [passive]	-	94		Human breast adenocarcinoma (MDA-MB-231) orthotopically	60 mm ³	0.36	0.85	
Polymeric	PEG _{3.4k} -PCL _{5.3k} copolymer [passive]	Spherical	104	-3.4	inoculated to mammary fat pad of mice (20 g)			1.39	117
	PEG _{3.4k} -PCL _{4.5k} copolymer [passive]		96		[breast/xenograft orthotopic]	~0.07 g	(1 d)	2.76	-
	PEG _{3.4k} -PCL _{3.7k} copolymer [passive]		103					6.94	
	PEG_2kDa-PLGA [passive]		176.6	-23.1	Murine lung carcinoma (M109)	60 mm ³	CDDP: 5	0.07	
Polymeric	Folate; PEG_2kDa- PLGA [active]	Spherical	185.9	-24.7	s.c. transplanted to right flank of mice (20 g) [lung/allograft heterotopic]	~0.07 g	(1 d)	0.16	118
Polymeric	Cholesterol; DOPA; DSPC; DSPE-PEG_2kDa; Pyrolipid coating [passive]	Spherical	108	-2.3	Murine colon adenocarcinoma (C-26) s.c. inoculated to the right flank of mice (20 g) [colon/allograft heterotopic]	100 mm ³ ~0.1 g	CDDP: 3 (2 d)	1.56	119
Polymeric	Cy3 dye labeled; PEG_12kDa [passive]	Spherical	49.9	0.1	Murine colon adenocarcinoma (C-26) s.c. inoculated in mice (20 g) [colon/allograft heterotopic]	100 mm ³ ~0.1 g	16 (2 d)	0.37	120
Dolumoric	Dextran (polysaccharide) [passive]	Spharical	50 (STEM)	-20	Murine mammary carcinoma (4T1) s.c. inoculated to	400 mm ³	CDDP: 5	0.94	121
Folymeric	Dextran; LHRH peptide [active]	spnerical	55 (STEM)	-17	mammary fat pad of mice (20 g) [breast/allograft orthotopic]	~0.5 g	(1 d)	1.43	

Polymeric	Chimeric polypeptide [passive]	Spherical	40 (AFM)	NA	Murine mammary carcinoma (4T1) orthotopically inoculated in the 4 th mammary fat pad of mice (18–22 g) [breast/allograft orthotopic]	100 mm ³ ~0.1 g	DOX: 20 (3 d)	0.44	122
Polymeric	Cholesterol; DOPA; DOPC; DSPE-PEG_2kDa; [passive]	Spherical	49.5	-1.3	Murine colon adenocarcinoma (C-26) s.c. inoculated in mice (20 g) [colon/allograft heterotopic]	100 mm ³ ~0.1 g	OP: 3 (2 d)	0.83	123
Polymeric	PEGylated PVP-PASP [passive]	Spherical	115	-20	Murine hepatocellular carcinoma (H22) s.c. inoculated on left flank of mice (32–36 g) [liver/allograft heterotopic]	20 mm ³ ~0.02 g	CDDP: 6 (1 d)	0.02	124
	PEG _{5k} -P(HEMA- SN38 _{3.5k}) [passive]	Spherical	35					0.30	
	PEG _{5k} -P(HEMA- SN38 _{3.5k}) [passive]		100	-4	Human cervix adenocarcinoma (Bcap37, HeLa derivative) s.c. inoculated in mice (20 g)	100 mm ³	SN38: 5 (1 d)	0.81	125
Polymeric	PEG _{5k} -P(HEMA- SN38 _{7k}) [passive]		110					1.00	
	PEG _{20k} -P(HEMA- SN38 _{25k}) [passive]		100		[cervix/xenograft heterotopic]	~0.1 g		1.01	
	PEG _{5k} -P(HEMA- SN38 _{3.5k}) [passive]		150					0.98	
Polymeric	PEG_2kDa-PLMB [passive]	Spherical	107.8	NA	Murine cervical carcinoma (U14) s.c. implanted to right leg of mice (18–20 g) [cervix/allograft heterotopic]	~75 mm ³ 0.09 g	DOX: 2 (3 d)	0.30	126

Polymeric	PBD _{1.8k} - <i>b</i> -PEO _{4k} ; PBD _{1k} - <i>b</i> -PAA _{2.2k} [passive]	Star	25	NA	Human colon carcinoma (LS174T) s.c. injected to hind limb of mice (20 g) [colon/xenograft heterotopic]	$\sim 250 \text{ mm}^3$ $\sim 0.3 \text{ g}$	~0.01 g (5 d)	1.39	127
Polymeric	mPEG_1kDa-s-s- vitamin E succinate; Polymer-based liposome coating [passive]	Spherical	113.3	<10	Murine mammary carcinoma (4T1) orthotopically transplanted to the 4 th mammary fat pad of mice (18–20 g) [breast/allograft orthotopic]	~175 mm ³ ~0.2 g	DTX: 10 (1 d)	0.25	128
Polymeric T conj	PLGA [passive]		152	-10.3	Murine hepatocellular carcinoma $(H22)$ s c inoculated to armpit of	50 mm ³	EPI: 5	0.12	129
	Tat peptide- conjugated PLGA [active]	Spherical	157	-8.8	[122) s.e. inoculated to ample of mice (20–25 g) [liver/allograft heterotopic]	0.06 g	(1 d)	0.22	
	PLA [passive]	Spherical	135	NA	Murine sarcoma cell line (S180) s.c. inoculated to armpit of mice (25 s)	~125 mm ³	OP: 3	0.08	130
Polymeric	PEG-PLA [passive]		154.6	NA [other cancer type/ allograft orthotopic]	0.15 g	(12 h)	0.13	150	
Polymeric	PEG_2kDa; Stearic acid; Glycerol carbonate [passive]	Spherical	20.4	3.9	Murine hepatocellular carcinoma (H22) s.c. injected to right flank of mice (22–25 g) [liver/allograft heterotopic]	~150 mm ³ ~0.2 g	DOX: 5 (2 d)	0.01	131
Polymeric	PLGA-lecithin- PEG_2kDa [passive]		110	-5.1	Human hepatocellular carcinoma (HepG2) s.c. inoculated to dorsum of mice (25 g) [liver/xenograft heterotopic]	~250 mm ³	DOX: 2	0.15	
	PLGA-lecithin- PEG_2kDa; Biotin [active]	Spherical	111.3	-6.2		0.3 g	(1 d)	0.21	132

Polymeric	Cholesterol; DOPA; DOPC; DSPE-PEG_2kDa; DSPE-siRNA [passive]	Spherical	105.3	-4.8	Murine colon adenocarcinoma (C-26) s.c. injected in mice (20–25 g) [colon/allograft heterotopic]	100 mm ³ ~0.1 g	CDDP: 3 (2 d)	0.46	133
	PCB-PCL [passive]		143	~0	Human hanataaallular aarainama			0.32	
Polymeric	PCB-s-s-PCL [passive]	Spherical	145	~0	(HepG2) s.c. inoculated in mice (20 g)	100 mm ³	DOX: 10	0.31	134
	PCB-s-s-PCL; cRGDfK peptide [active]		148	~0	[liver/xenograft heterotopic]	~0.1 g	(1 d)	0.43	
	Chitosan [passive]	Spherical	106.8	35.6	 Human alveolar adenocarcinoma (A549-WT) s.c. injected to right flank of mice (20 g) [lung/xenograft heterotopic] Human alveolar adenocarcinoma (A549^{DDP}) s.c. injected to right flank of mice (20 g) [lung/xenograft heterotopic] 			0.15	
	Chitosan; EGFR peptide [active]		227.3	28.3		200 mm ³	3	0.20	135
Polymeric	Chitosan [passive]		106.8	35.6		~0.2 g	(5 d)	0.16	
	Chitosan; EGFR peptide [active]		227.3	28.3				0.31	
Polymeric	PEG_2kDa-Fmoc- NLG [passive]	Spherical	96.6	NA (assumed neutral)	Murine mammary carcinoma (4T1) s.c. inoculated in mice (16–18 g) [breast/allograft heterotopic]	~500 mm ³ ~0.6 g	PTX: 10 (2 d)	0.52	136

	PCL-s-s-PEG _{2k} [passive]	Spherical	125.5	-7.4	Murine hepatocellular carcinoma	50 mm ³	DOX: 5	0.19	
Polymeric	PCL-s-s-PEG _{2k} ; PBA ligand [active]		130.4	-2.3	-2.3 (H22) s.c. moculated at right backside of mice (20 g) [liver/allograft heterotopic]	0.06 g	(1 d)	0.32	137
Polymeric	PLGA-TPGS [passive]	Spherical	182.6	-22.6	Murine hepatocellular carcinoma (Hca-F) s.c. inoculated to right armpit of mice (20–22 g) [liver/allograft heterotopic]	~1.5 cm ³ 1.8 g	EMO: 10 (1 d)	5.40	138
Polymeric	PEG-s-s-PCL; PBA ligand [active]		163		Murine hepatocellular carcinoma (H22) s.c. inoculated to backside of mice (20 g) [liver/allograft heterotopic]			0.56	
	6-arm PEG_6kDa cross linked with PEG-s-s-PCL [passive]	Spherical	152	NA (assumed neutral)		50 mm ³	DOX: 2 (1 d)	0.67	139
	6-arm PEG_6kDa cross linked with PEG-s-s-PCL; PBA ligand [active]		152			0.06 g		1.14	
Dolumorio	Linear HPMA_27kDa [passive]	Spherical	8.6	NA	Murine lymphoma cells (EL4) s.c. transplanted into right flank	~150 mm ³	DOX: 85 (4 d)	0.56	140
Polymeric	Star-like HPMA_250kDa [passive]		25.6	NA	[other cancer type/ allograft heterotopic]	~0.2 g	DOX: 22.5 (4 d)	1.79	140
Polymeric	PEG _{2k} -PLGA; LHRH peptide [active]	Spherical	150 (TEM)	-22.1	Human breast adenocarcinoma (MCF-7) i.m. injected in thigh of left hind leg of mice (20 g) [breast/xenograft heterotopic]	~75 mm ³ ~0.1 g	PTX: 5 (1 d)	0.17	141

	Inulin-ibuprofen [passive]		143	NA	Murine hepatocellular carcinoma	50 mm ³	EPI: 5	0.21	
Polymeric	Inulin-ibuprofen; cRGDfK peptide [passive]	Spherical	149 NA (H22) s.c. inoculated to armpit of mice (18–22 g) [liver/allograft heterotopic]	0.06 g	(1 d)	0.30	142		
Polymeric	Heparin- deoxycholate [passive]	Spherical	166.1	-36.7	Murine melanoma (B16-F10) s.c. inoculated to mice (17–21 g) [skin/allograft orthotopic]	100 mm ³ ~0.1 g	DOX: 5 (1 d)	0.15	143
Polymeric	PEG _{2k} -PLGA-s-s- siRNA [passive]	Spherical	76.3	-13	Human colorectal adenocarcinoma (HT-29) s.c. implanted above the mammary fat pad of mice (20 g) [colon/xenograft heterotopic]	85 mm ³ ~0.1 g	3 (7 d)	0.23	144
	PEG _{5k} - <i>b</i> -PDTC [passive]	Spherical	150	~0	Murine melanoma	~125 mm ³	DOX: 10	0.38	
Polymeric	PEG _{5k} - <i>b</i> -PDTC; cRGDfK peptide [active]		Spherical 152.5	~0	[BI0-FI0] s.c. inoculated to find flank of mice (20 g) [skin/allograft orthotopic]	0.15 g	(1 d)	0.69	145
	Trimethyl chitosan [passive]	Spherical	166.4	12.3	Murine hepatocellular carcinoma	100 mm ³	PTX: 10	0.17	
Polymeric	Trimethyl chitosan; Folic acid [active]		1 175.1 8.	8.7	(H22) s.c. inoculated to axillary region of mice (23.5 g) [liver/allograft heterotopic]	~0.1 g	(1 d)	0.24	146
Polymeric	PEG_2kDa; Acetylated carboxymethyl cellulose [passive]	Spherical	20.3	-2	Murine mammary carcinoma (EMT6/AR1) s.c. inoculated to right flank of mice (18–20 g) [breast/allograft heterotopic]	~150 mm ³ ~0.2 g	PPT: 180 (4 d)	0.75	147

	POEAd-g-LacA20 [active]		197.4	-20.4	Murine hepatocellular carcinoma	300 mm^3		2.63	
Polymeric	POEAd-g-LacA50 [active]	Spherical	276.8	-23.5	(H22) s.c. inoculated to right flank of mice (18–22 g)	500 mm	DOX. 0	2.29	148
	POEAd-g-LacA80 [active]		350	-27.2	[liver/allograft heterotopic]	~0.4 g	(2 d)	0.94	
Polymeric	Poly(ortho ester malonamides) [passive]	Spherical	258.3	-23.7 (assumed	Murine hepatocellular carcinoma (H22) s.c. inoculated to right flank of mice (18–22 g) [liver/allograft heterotopic]	300 mm ³	DOX: 6	2.60	- 149
	Poly(ortho ester adipamides) [passive]		156.6	according to above study)		~0.4 g	(2 d)	4.01	
	PEG-Chitosan [passive]	Spherical	165.3	25.1	Human alveolar adenocarcinoma (A549) i.v. injected <i>via</i> tail vein to induce tumor in lung region of mice (25 g) [lung/xenograft heterotopic]	~300 mm ³	GEM: 15	10.14	
Polymeric	PEG-Chitosan; Folic acid [active]		184.3	21.1		~0.4 g	(1 d)	23.81	150
Polymeric	mPEG _{2k} -P(CL-co- (DMMA-CL)) [passive]	Spherical	122.6	-15	Murine mammary carcinoma (4T1) orthotopically inoculated to mammary gland of mice (20 g) [breast/allograft orthotopic]	100 mm ³ ~0.1 g	DOX: 5 (1 d)	1.46	151
Polymeric	Trimethyl chitosan [passive]	Spherical	107.3	23.3	 3.3 Murine hepatocellular carcinoma (H22) s.c. injected to right axillary of mice (22 g) [liver/allograft heterotopic] 	200 mm ³	DOX: 2 (1 d)	0.82	152
	Trimethyl chitosan; Folate [active]		190	26.1		~0.2 g		0.65	

Polymeric	30% cross-linked PGlu-g-mPEG [passive]	- Spherical –	137	-15.6	Murine hepatocellular carcinoma (H22) s.c. injected to right	200 mm ³	CTX: 10	0.31	152
Polymeric	70% cross-linked PGlu-g-mPEG [passive]		129	-9.1	axillary of mice (22 g) [liver/allograft heterotopic]	~0.2 g	(8 h)	0.24	. 155
Polymeric	P(LA-co-TMCC)- g-PEG; Taxane-binding peptide; Anti-HER2 antibody, Fab 73J [active]	Spherical	121	-2.4	Human breast adenocarcinoma (MDA-MB-231) transplanted to mammary fat pad of mice (24 g) [breast/xenograft orthotopic]	150 mm ³ ~0.2 g	DTX: 5 (1 d)	0.16	154
Polymeric	Acetylated carboxymethyl- cellulose; PEG_2kDa [passive]	Spherical	96	NA (assumed neutral)	Resistant human prostate carcinoma (PC3-RES) s.c. injected to right flank of mice (20 g) [prostate/xenograft heterotopic]	~80 mm ³ ~0.1 g	CTX: 20 (6 d)	2.89	155
	Heparin [passive]	Spherical		~5	Human KB epidermoid carcinoma (KB-3-1, HeLa	~100 mm ³	CDDP: 2.5	1.67	
Polymeric	Heparin; Folate [active]		20		derivative) s.c. injected to right flank of mice (20 g) [cervix/xenograft heterotopic]	~0.1 g	(1 d)	3.21	156
Polymeric	PLGA-PEG _{5k} ; Perfluorooctyl bromide [passive]	Spherical	120	-18	Murine colon adenocarcinoma (C-26) s.c. injected on left flank of mice (22 g) [colon/allograft heterotopic]	~320 mm ³ ~0.4 g	PTX: 5 (1 d)	0.15	157
Polymeric	PLGA loaded with AuNRs and DTX; MnO ₂ nanosheets coating [passive]	Spherical	282.1	-9.7	Murine sarcoma cell line (S180) s.c. inoculated to armpit of mice (18–20 g) [other cancer type/ allograft orthotopic]	~90 mm ³ ~0.1 g	DTX: 15 (8 h)	0.17	158

Lipid- polymer	Lipid-PLGA; DSPE-PEG [passive]	Spherical	163.4	-19.6	Human cervical carcinoma (HeLa) s.c. injected at right	100 mm ³	CDDP: 1 CUR: 5	17.34	159
hybrid	PLGA [passive]		118.5	-13.7	[cervix/xenograft heterotopic]	~0.1 g	(2 d)	14.59	
Lipid- polymer hybrid	DOX and MMC added into fatty acid-block copolymer nanoemulsion [passive]	Spherical	146	-22.7	Murine mammary carcinoma (EMT6/WT) orthotopically injected into the right mammary fat pad of mice (21 g) [breast/allograft orthotopic]	~175 mm ³ ~0.2 g	DOX: 9.2 MMC: 2.9 (1 d)	0.14	160
	PLA _{16k} -PEG _{5k} ; Cholic acid [passive]					399 mm ³	30 (2 d)	1.67	-
			102.8			~0 5 g	70 (2 d)	1.70	I
		-		_			140 (2 d)	1.70	-
	PLA _{30k} -PEG _{5k} ; Pamoic acid [passive]	- Spherical		NA	Human breast carcinoma	572 mm ³	30 (2 d)	2.22	-
			108		(MX-1) s.c. inoculated in the right flank of mice (22 g)	07~	70 (2 d)	2.78	-
Polymeric						~0.7 g	140 (2 d)	2.31	161
I orymene	PLA50k-PEG5k		118			432 mm ³	30 (2 d)	1.37	
	Pamoic acid			(assumed			70 (2 d)	1.18	
	[passive]			neutral)	[breast/xenograft heterotopic]	~0.5 g	140 (2 d)	1.52	
	PI A tele-PEGste	-		-		525 mm ³	30 (2 d)	1.78	
	Decanoic acid		92			525 mm	70 (2 d)	2.40	
	[passive]					~0.6 g	140 (2 d)	2.32	
Liposomes	Phospholipid [passive]	Spherical	157.7	-17.4	Murine sarcoma cell line (S180) s.c. inoculated in right armpit of mice (20 g) [other cancer type/ allograft orthotopic]	100 mm ³ ~0.1 g	SN38: 8 (2 h)	0.02	162
Liposomes	HSPC; mPEG _{2k} -DSPE; Cholesterol [passive]	Spherical	103.9	-15	Murine colon adenocarcinoma (C-26) s.c. injected to right flank of mice (20 g) [colon/allograft heterotopic]	70 mm ³	159.6 (2 d)	0.20	163
----------------------	---	-----------	-------	-------	---	----------------------	----------------	------	-----
	HSPC; DSPG; Cholesterol [passive]		102.5	-39.5		~0.08 g	70.9 (2 d)	0.19	
	Nanostructured lipid carrier (NLC) [passive]		89	-40				0.09	
Lipid nanocarrier	Layer-by-layer attachment of polyelectrolytes (PEs) on NLCs [passive]	Spherical	138	-14	Murine mammary carcinoma (4T1) s.c. injected to left flank region of mice (20 g)	~125 mm ³	DOX: 5	0.13	164
(Liposomes)	Layer-by-layer PEs attachment on NLCs; mPEG_5kDa coating [passive]		128	5	[breast/allograft heterotopic]	~0.15 g	(4 h)	0.14	
	DSPC; Cholesterol; mPEG _{2k} -DSPE [passive]		93	-32.2	Human prostate carcinoma (PC3)	~250 mm ³	DOX: 2	0.15	
Liposomes	DSPC; Cholesterol; mPEG _{2k} -DSPE; SP204-PEG _{3.4k} - DSPE [active]	Spherical	102	-12.2	s.c. inoculated in mice (20 g) [prostate/xenograft heterotopic]	0.3 g	(2 d)	0.40	165

Dendrosome (Liposomes)	Fe ₃ O ₄ ; FA-PAMAM G4.0 dendrimers entrapped [active]	Spherical	12.4	27.2	Human cervical carcinoma (HeLa) s.c. inoculated in mice (21 g) [cervix/xenograft heterotopic]	~1 cm ³ 1.2 g	4 (1 d)	3.98	166
Liposomes	CFL; DHPC; DSPE-PEG_2kDa; Silica-coated bicelles [passive]	Disc (Plate)	56.2	NA (assumed neutral)	Human breast adenocarcinoma (MDA-MB-231) s.c. inoculated to back of mice (20 g) [breast/xenograft heterotopic]	100 mm ³ ~0.1 g	DOX: 5 (1 d)	0.38	167
Liposomes	Cholesterol; Stearic acid; DSPE-PEG_2kDa; PLGA [passive]	Spherical	115.7	-36.4	Human Burkitt's lymphoma cell line s.c. inoculated to flank of mice (18–22 g) [other cancer type/ xenograft heterotopic]	50 mm ³ 0.06 g	VCR: 10 QU: 10 (2 d)	0.25	168
Lipid nanocarrier (Liposomes)	Organic solvent mixed with VCR and DOX-GEM prodrug added into polyvinyl acetate [passive]	Spherical	112.6	-39.7	Human Burkitt's lymphoma cell line s.c. inoculated to flank of mice (18–22 g) [other cancer type/ xenograft heterotopic]	100 mm ³ ~0.1 g	DOX: 5 GEM: 5 VCR: 5 (12 h)	4.39	169
Solid	Nanoemulsion [passive]		57.3	34.5	Human ovarian carcinoma	200 mm ³	PTX: 10	0.39	
(Liposomes)	Nanoemulsion; HA_0.5kDa [active]	Spherical	80.3	-36.9	[ovary/xenograft heterotopic]	~0.2 g	(1 d)	0.59	170
Lipid	PEG 0.4kDa;		113.2	-53.2	Human breast adenocarcinoma	100 3	DTL 15	0.10	
emulsion	Blank lipid emulsion	Spherical	226.6	-52.4	(MCF-7) s.c. inoculated in mice (18–20 g)	$\sim 0.1 \text{ g}$	(12 h)	0.07	171
(Liposomes)	[passive]		383.1	-53.9	[breast/xenograft heterotopic]	;] ~0.1 g (12 h)	(12 11)	0.05	

Folate-PPI G3.0 [active]				Human breast adenocarcinoma	50 mm ³	MP· 1	5.89	
Folate-PPI G4.0 [active]	Spherical	7.7	NA	(MCF-7) s.c. inoculated in mice (25 g)	50 1111		8.19	172
Folate-PPI G5.0 [active]				[breast/xenograft heterotopic]	0.06 g	(1 d)	10.42	
PAMAM G4.0 [passive]		6.7	16.3	Murine sarcoma cell line (S180) s.c. inoculated to armpit of mice	100 mm ³	1	4.57	
Dendrimers PAMAM G4.0; Tat peptide [active]		69.1	36.7	(18–22 g) [other cancer type/ allograft orthotopic]	~0.1 g	(2 d)	16.23	173
PAMAM G4.0 [passive]		227	30.3	Murine colon adenocarcinoma		2.5	6.88	
PAMAM G4.0; α-cyclodextrin; Folate-PEG [active]	Spherical	148	18.4	(C-26) s.c. inoculated in mice (20 g) [colon/allograft heterotopic]	~0.6 g	(5 h)	31.15	174
PAMAM G4.0; PEG_7.5kDa; Folic acid [active]	Spherical	69.9	-2.1	Murine mammary carcinoma (4T1) s.c. injected to right post neck region of mice (16 g) [breast/allograft heterotopic]	619 mm ³ ~0.7 g	46.9 (1 d)	8.51	175
BSA [active]		158.2	-18.1	Murine melanoma (B16-F10) s.c. inoculated to back of mice	100 mm ³	PTX: 10	1.11	176
Cholesterol-BSA [active]	Spherical	147.6	-20.5	(20–25 g) [skin/allograft orthotopic]	~0.1 g	(8 h)	2.00	170
HSA loaded with lapatinib [active]	Spherical	140 (TEM)	21.7	Murine mammary carcinoma (4T1) injected to the mammary fat pad of mice (20 g) [breast/allograft orthotopic]	100 mm ³ ~0.1 g	10 (12 h)	0.03	177
	Folate-PPI G3.0 [active]Folate-PPI G4.0 [active]Folate-PPI G5.0 [active]PAMAM G4.0 [passive]PAMAM G4.0; [active]PAMAM G4.0 [passive]PAMAM G4.0; [active]PAMAM G4.0; [active]	Folate-PPI G3.0 [active]SphericalFolate-PPI G5.0 [active]SphericalFolate-PPI G5.0 [active]SphericalPAMAM G4.0 [passive]SphericalPAMAM G4.0; [active]SphericalPAMAM G4.0; [passive]SphericalPAMAM G4.0; [active]SphericalPAMAM G4.0; [active]SphericalPAMAM G4.0; [active]SphericalPAMAM G4.0; [active]SphericalPAMAM G4.0; [active]SphericalPAMAM G4.0; [active]SphericalPAMAM G4.0; [active]SphericalHSA loaded with [active]SphericalHSA loaded with [active]Spherical	Folate-PPI G3.0 [active]Spherical7.7Folate-PPI G5.0 [active]Spherical7.7Folate-PPI G5.0 [active]6.7PAMAM G4.0 [passive]Spherical69.1PAMAM G4.0; Tat peptide [active]SphericalPAMAM G4.0; [passive]Spherical69.1PAMAM G4.0; [passive]Spherical148PAMAM G4.0; [passive]Spherical69.1PAMAM G4.0; [passive]Spherical69.9PAMAM G4.0; [active]Spherical69.9PAMAM G4.0; [active]Spherical69.9ItalSpherical69.9BSA [active]Spherical1158.2Cholesterol-BSA [active]Spherical147.6HSA loaded with lapatinib [active]Spherical140 (TEM)	Folate-PPI G3.0 [active]Spherical7.7NAFolate-PPI G5.0 [active]Spherical7.7NAPAMAM G4.0 [passive] 6.7 16.3PAMAM G4.0; [passive]Spherical69.136.7PAMAM G4.0 [passive] 69.1 36.7PAMAM G4.0 [passive]Spherical69.136.7PAMAM G4.0 [passive] 69.1 36.7 PAMAM G4.0; [passive] 7.7 8.7 PAMAM G4.0; [passive] 8.7 148 18.4 PAMAM G4.0; [active]Spherical 69.9 -2.1 PAMAM G4.0; [active]Spherical 69.9 -2.1 PAMAM G4.0; [active]Spherical 69.9 -2.1 PAMAM G4.0; [active]Spherical 69.9 -2.1 PAMAM G4.0; [active]Spherical 147.6 -20.5 HSA loaded with [active]Spherical 140 (TEM) 21.7	Folate-PPI G3.0 [active]Spherical7.7NAHuman breast adenocarcinoma (MCF-7) s.c. inoculated in mice (25 g) [breast/xenograft heterotopic]PAMAM G4.0 [passive]5pherical6.716.3Murine sarcoma cell line (\$180) s.c. inoculated to armpit of mice (18-22 g) [other cancer type/ allograft orthotopic]]PAMAM G4.0 [passive]5pherical69.136.716.3Murine sarcoma cell line (\$180) s.c. inoculated to armpit of mice (18-22 g) [other cancer type/ allograft orthotopic]]PAMAM G4.0 [passive]22730.3Murine colon adenocarcinoma (C-26) s.c. inoculated in mice (20 g) [colon/allograft heterotopic]]PAMAM G4.0; [passive]Spherical14818.4Murine mammary carcinoma (C-26) s.c. injected to right post neck region of mice (16 g) [breast/allograft heterotopic]PAMAM G4.0; [active]Spherical69.9-2.1Murine mammary carcinoma (4T1) s.c. injected to right post neck region of mice (16 g) [breast/allograft heterotopic]BSA [active]158.2-18.1Murine mammary carcinoma (4T1) s.c. injected to back of mice (20-25 g) [skin/allograft orthotopic]HSA loaded with lapatinib [active]Spherical140 (TEM)21.7Murine mammary carcinoma (4T1) injected to the mammary fat pad of mice (20 g) [breast/allograft orthotopic]	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

	BSA [active]		100.5 (assumed)	-23.1 (assumed)	Murine hepatocellular carcinoma	100 mm ³	DOX: 5	0.04	
Albumin	BSA crosslinked with vanillin [active]	Spherical	100.5	-23.1	[liver/allograft heterotopic]	~0.1 g	(2 d)	0.04	178
Albumin	HSA [active]	Spherical	125 (SEM)	NA	Human prostate carcinoma (PC3) s.c. injected in right flank of mice (20 g) [prostate/xenograft heterotopic]	100 mm ³ ~0.1 g	CTX: 8 (12 h)	0.24	179
	HSA [active]		134.7	-35.1	Murine sarcoma cell line (S180) s.c. inoculated to armpit of mice	300 mm ³	PTX: 15	2.83	
Albumin HSA; PEG_6kDa [active]	HSA; PEG_6kDa [active]	Spherical	142.2	-31	(18–22 g) [other cancer type/ allograft orthotopic]	~0.4 g	(12 h)	4.15	180
Zinc-	Zinc-crosslinked PMAA hydrogel; PEG_1kDa [passive]	Spherical	122.5	-30.1	Murine hepatocellular carcinoma (H22) s.c. inoculated to flank region of mice (20–25 g) [liver/allograft heterotopic]	100 mm ³	DOX: 5	0.04	
polymeric hydrogel	Zinc-crosslinked PMAA hydrogel; PEG_1kDa; Folate [active]		218.6	-30.1 (assumed)		~0.1 g	(1 d)	0.05	181
Hyphyropia	Redox-responsive HA hydrodel [active]		79.1	-40	Murine hepatocellular carcinoma (H22) s.c. inoculated to left flank	100 mm ³	DOX: 4.5	0.43	
Hyaluronic — acid hydrogel	Non-redox- responsive HA hydrogel [active]	Spherical	66.3	-40	of mice (20–25 g) [liver/allograft heterotopic]	~0.1 g	(3 d)	0.20	- 182

Chitosan hydrogel	Methacrylated succinyl chitosan dispersed in OEAM [passive]	Spherical	161	-30.9	Murine hepatocellular carcinoma (H22) s.c. inoculated to left flank of mice (20–25 g) [liver/allograft heterotopic]	50 mm ³ 0.06 g	DOX: 6 (2 d)	0.31	183
	MWCNTs [passive]		230.4	NA				6.42	
Multiwalled	Oxidized MWCNTs [passive]		230.1	-10	Human breast adenocarcinoma	100 mm ³	DOX: 5	6.56	
carbon nanotubes	PEGylated MWCNTs [passive]	Rod	241	NA (assumed neutral)	(MCF-7) s.c. inoculated in right hind leg of mice (20–25 g)		20110	5.88	184
(MWCNTs)	PEG-MWCNTs; Folic acid [active]		242.3	3.8	[breast/xenograft heterotopic]	~0.1 g	(1 d)	13.92	
	PEG-MWCNTs; Estrone [active]		240.3	-10 (assumed)				14.10	
Hyaluronic acid	HA-based NPs [active]	Spherical	206.4	-20	Human colorectal carcinoma (HT-29) s.c. inoculated in mice (20 g) [colon/xenograft heterotopic]	300 mm ³ ~0.4 g	DOX: 7 (2 d)	0.71	185
HCPT suspension	10-HCPT crystal nanosuspension; Cholesterol; PEG_0.6kDa [passive]	Spherical	115	-31.8	Murine hepatocellular carcinoma (H22) s.c. inoculated to right armpit of mice (20 g) [liver/allograft heterotopic]	100 mm ³ ~0.1 g	HCPT: 8 (1 d)	0.08	186
Mesoporous carbon nanosphere	Glucose-based mesoporous carbon; phospholipid [passive]	Spherical	180	34.4	Murine mammary carcinoma (4T1) s.c. inoculated in mice (20 g) [breast/allograft heterotopic]	~275 mm ³ ~0.3 g	SNX- 2112: 9 (12 h)	0.25	187

	HA-based NPs [active] 180.2 -20.3 Murine hepatocellular carcin		Murine hepatocellular carcinoma	100 3	DOV 5	0.08			
Hyaluronic acid	HA-based NPs encapsulated in liposomes [active]	Spherical	130.5	-8.2	(H22) s.c. injected to right flank of mice (29 g) [liver/allograft heterotopic]	~100 mm ³	(2 h)	0.10	188
CPDG assembly	CPDG; CHS-PEG_1.5kDa [passive]	Spherical	54.4	-22.3	Murine hepatocellular carcinoma (H22) s.c. injected under left forelimb armpit of mice (20–24 g) [liver/allograft heterotopic]	~100 mm ³ ~0.1 g	CPDG: 10 (2.5 h)	1.18	189
Docetaxel	DTX NPs; LPLTPLP peptide [active]	Spherical	161.1	-31.1	Human alveolar adenocarcinoma (A549) s.c. inoculated to right axilla of mice (20 g) [lung/xenograft heterotopic]	150 mm ³ ~0.2 g	DTX: 30 (4 h)	0.09	190
HCPT nanocrystal	Anticancer drug HCPT nanocrystal [passive]	Spherical	133.5	-27.1	Murine mammary carcinoma (4T1) s.c. injected into right underarm of mice (18–22 g) [breast/allograft heterotopic]	100 mm ³ ~0.1 g	HCPT: 8 (1 d)	0.05	191
Graphene	Gd decorated; PEG_2kDa [passive]	Sheet	32.5		Murine sarcoma cell line (S180) s.c. inoculated to right shoulder	20 mm ³	DOX: 5	0.13	100
oxide	Gd decorated; PEG_2kDa; Folic acid [active]	(Plate)	(TEM)	-6	of mice (18–20 g) [other cancer type/ allograft orthotopic]	~0.02 g	(12 h)	0.17	192
	Soy protein NPs [passive]		204.7	-26.9	Murine hepatocellular carcinoma	200 mm ³	DOX: 4	0.34	
Soy protein	Soy protein NPs; Folic acid [active]		220.3	-38	limb armpit of mice (18–22 g) [liver/allograft heterotopic]	~0.2 g	(2 d)	0.44	193

Curcumin suspension	CUR suspension; mPEG _{2k} -DSPE; Soybean lecithin [passive]	Spherical	186.3	-19	Murine hepatocellular carcinoma (H22) s.c. inoculated into right armpit of mice (26–28 g) [liver/allograft heterotopic]	100 mm ³ ~0.1 g	CUR: 8 (1 d)	0.008	194
Curcumin	DOX loaded with CUR NPs; PEG_3.4kDa; Transferrin [active]	Spherical	89	-15.6	Human breast adenocarcinoma (MCF-7) s.c. inoculated to posterolateral region of mice (25 g) [breast/xenograft heterotopic]	200 mm ³ ~0.2 g	CUR: 50 DOX: 50 (2 d)	1.28	195
HCPT- loaded nanorod	PAMAM-b- oligoethylene glycols codendrimer [passive]	AR 6.0 Rod	168.6 120×20 (TEM)	24.2	Murine hepatocellular carcinoma (H22) s.c. inoculated into right armpit of mice (18–22 g) [liver/allograft heterotopic]	400 mm ³ ~0.5 g	HCPT: 5 (1 d)	0.80	196
BSA-based polymeric	BSA surrounded by cross-linked PMPC and benzaldehyde [passive]	Spherical	18.6	-1.8	Human hepatocellular carcinoma (HepG2) s.c. injected into right flank of mice (20 g) [liver/xenograft heterotopic]	100 mm ³ ~0.1 g	DOX: 5 (1 d)	1.01	197
CDDP- SAHA conjugate	CDDP-SAHA NPs [passive]	Spherical	54	0	Human alveolar adenocarcinoma (A549 ^{DDP}) s.c. inoculated in mice (18–20 g) [lung/xenograft heterotopic]	100 mm ³ ~0.1 g	CDDP- SAHA: 5 (16 h)	0.21	198
Ginseng	Ginsenoside Rb1/ PPD-type extracts [passive]	Spherical	122.5	-13.2	Murine Lewis lung carcinoma (LLC) s.c. inoculated in mice (18 g) [lung/allograft heterotopic]	300 mm ³ ~0.4 g	Rb1/PPD: 10 (2 d)	0.85	199
Paclitaxel nanocrystal	PTX nanocrystal with albumin coating [passive]	AR 6.2 Rod	190.5 260×42 (TEM)	-10.1	Murine melanoma (B16-F10) s.c. inject to right arm of mice (23 g) [skin/allograft orthotopic]	100 mm ³ ~0.1 g	PTX: 30 (1 d)	0.12	200

Abbreviations: ADR, adriamycin; AFM, atomic force microscopy; AuNPs, gold nanoparticles; AuNRs, gold nanorods; BSA, bovine serum albumin; CDDP/DDP, cisplatin or *cis*-diamminedichloroplatinum(II); ChL6 mAb, chimeric L6 monoclonal antibody; CPDG, cyclic phosphoryl *N*-dodecanoyl gemcitabine; cRGD, cyclo(Arg-Gly-Asp) peptide; cRGDY, cyclo(Arg-Gly-Asp-Tyr) peptide; cRGDfC, cyclo(Arg-Gly-Asp-D-Phe-Cys); cRGDfK, cyclo(Arg-Gly-Asp-D-Phe-Lys) peptide; cRGDyK, cyclo(Arg-Gly-Asp-D-Tyr-Lys) peptide; CTX/CBZ: cabazitaxel; CUR, curcumin; DOX, doxorubicin; DTX/DOC, docetaxel; EGFR, epidermal growth factor receptor; EMO, emodin; EPB/EPI, epirubicin; GEM, gemcitabine; HCPT, 10-hydroxycamptothecin; HER2, human epidermal growth factor receptor 2; HMSN, hollow mesoporous silica NPs; HSA, human serum albumin; IgG, immunoglobulin G; i.m., intramuscular injection; LA, lipoic acid; LacA, lactobionic acid; LHRH, luteinizing hormone-releasing hormone (or gonadotropin-releasing hormone); LPLTPLP, a targeting peptide specifically bound to non-small cell lung cancer (NSCLC); MHPCNs, magnetic hollow porous carbon nanoparticles; MMC, mitomycin C; MP, melphalan; mPEG, methoxypolyethylene glycol; MSN, mesoporous silica NPs; NA, not available from original literature; NPs, nanoparticles; OP, oxaliplatin; PAMAM, polyamidoamine dendrime; PBA, phenylboronic acid; PDA, polydopamine; PEG, polyethylene glycol; PEI, polyethylenimine; PPD, protopanaxadiols; PPI, poly(propyleneimine); PPT: podophyllotoxin; PSMA, prostate-specific membrane antigen; PTX, paclitaxel; QU, quercetin; RGD, Arg-Gly-Asp peptide; SAHA, vorinostat; s.c., subcutaneous injection; SEM, scanning electron microscopy; Tat, twin-arginine translocation peptide; TEM, transmission electron microscopy; TRC105, human/murine chimeric IgG1 mAb; VCR, vincristine; VEGF, vascular endothelial growth factor.

^a If only the tumor volume was reported, the tumor weight was approximated using an average tumor density of 1.2 g/cm³ according to Sykes *et al.*²⁰¹ ^b DE_{Tlast_PK}: Tumor delivery efficiency (percent injected dose, %ID) was calculated by dividing the area under the tumor-concentration curve (AUC) (%ID*h) with the biodistribution time period (h) reported by the original study. AUC was estimated using non-compartmental linear trapezoidal method.^{202,203}

^c Value was not reported in the original study, adopted from Wilhelm et al.²⁰³

1	,	0		1	1			
Material	NM ID ^a	Targeting strategy	Distribution coefficient (PT) [unitless]	Permeability coefficient (PATC) [unitless]	Maximum uptake rate constant (K _{max, T}) [per h]	Releasing rate constant (K _{re, T}) [per h]	Delivery efficiency (DE _{Tlast}) [%ID] ^b	Ref.
Gold	INM-1	Active	0.265	0.01	0.055	0.001	2.06	1
Gold	INM-2	Passive	0.1	0.1	0.4	0.055	1.62	2
	INM-3A	Active	0.07	0.07	0.045	0.007	2.83	3
Gold	INM-3B	Passive	0.2	0.1	0.006	0.0001	2.99	
Gold	INM-4	Active	0.055	0.005	24	0.001	0.74	4
Gold	INM-5A		0.048	0.09	1.75	0.115	19.38	
	INM-5B	Passive	0.046	0.09	1.4	0.14	14.63	-
	INM-5C	Passive	0.041	0.09	1.3	0.14	12.17	-
	INM-5D		0.132	0.017	0.2	0.001	5.18	5
Gold	INM-5E		0.076	0.09	2.5	0.105	25.20	
	INM-5F		0.12	0.2	2.3	0.19	25.83	
	INM-5G	Active	0.175	0.1	5	1.2	24.40	
	INM-5H		0.05	0.1	5	1.05	8.79	
Gold	INM-6	Passive	0.145	0.015	0.85	0.3	1.13	6
Gold	INM-7	Passive	0.0085	0.0025	0.05	3	0.11	7
Cald	INM-8A	Deasing	0.086	0.01	0.185	0.023	1.24	8
Gold	INM-8B	Passive	0.07	0.01	0.18	0.047	0.64	

Table S2. Summary of tumor microenvironment-associated nanomaterial (NM) parameters, including distribution coefficient, permeability coefficient, maximum uptake rate constant, and releasing rate constant in the tumor compartment calibrated based upon 376 NM datasets.

	INM-9A		0.0355	0.03	0.12	0.05	0.38	
Cald	INM-9B	Passive	0.045	0.03	0.15	0.048	0.55	9
Gold	INM-9C		0.041	0.03	0.2	0.041	0.61	
	INM-9D	Active	0.115	0.03	0.22	0.055	1.63	
Gold	INM-10	Active	1.55	0.095	2.7	0.0195	9.10	10
	INM-11A		0.023	0.03	1.98	0.06	1.85	
Gold	INM-11B		0.023	0.035	1	0.248	0.48	11
Gold	INM-11C	Passive	0.0252	0.03	0.6	0.38	0.16	
	INM-11D		0.0169	0.01	3.6	0.264	0.68	
Gold	INM-12	Passive	0.195	0.03	0.1	0.65	1.26	12
Gold	INM-13	Active	0.065	0.03	0.065	0.0009	2.25	13
	INM-14A		0.04	0.012	2.5	0.375	2.67	14
Gold	INM-14B	Passive	0.028	0.01	1.25	0.95	0.48	
	INM-15A		0.018	0.02	0.86	0.21	0.67	
	INM-15B	Passive	0.016	0.02	6.3	1.65	0.60	15
Gold	INM-15C]	0.0011	0.003	0.25	0.01	0.03	
	INM-15D	Active	0.016	0.02	4.7	0.8	0.61	

Gold	INM-16	Passive	0.03	0.02	1.25	0.245	0.37	16
C-H	INM-17A	Passive	0.115	0.03	0.05	0.001	1.41	17
Gold	INM-17B	Active	0.0415	0.03	0.032	0.001	0.26	
C-14	INM-18A	Dession	0.016	0.01	0.1	0.1	0.47	18
Gold	INM-18B	Passive	0.11	0.025	0.01	0.01	3.98	
	INM-19A		0.0003	0.0005	1.3	1.05	0.02	
	INM-19B		0.0165	0.01	6	3.5	1.86	-
Gold	INM-19C	Passive	0.0011	0.0005	2.55	0.01	0.70	19
	INM-19D		0.011	0.001	1.5	1.15	0.92	-
	INM-19E		0.022	0.1	0.05	0.1	0.97	
	INM-20A		0.004	0.0007	0.6	0.028	0.76	
	INM-20B	Passive	0.003	0.0007	0.5	0.055	0.34	20
Gold	INM-20C	Passive	0.002	0.0005	0.33	0.026	0.24	
	INM-20D		0.0105	0.005	0.115	0.038	0.47	
Dendrimer entrapped AuNPs	INM-21	Active	0.027	0.001	3	0.03	0.03	21
	INM-22A		0.173	0.016	0.044	0.006	2.93	
	INM-22B		0.093	0.011	0.05	0.007	1.75	-
Gold-dendrimer	INM-22C	Dessive	0.09	0.011	0.05	0.007	1.69	22
composite – nanodevice –	INM-22D	Passive	0.025	0.05	0.15	0.005	0.28	
	INM-22E		0.097	0.015	0.125	0.0045	1.03	
	INM-22F		0.055	0.0065	0.155	0.004	0.62	

	INM-23A	Dession	0.0085	0.0035	1.2	0.03	0.68	
	INM-23B	Passive	0.0195	0.00085	1	0.33	1.15	
	INM-23C		0.02	0.0008	1	0.185	1.20	23
Gold	INM-23D	A	0.017	0.0035	0.9	0.2	1.02	23
	INM-23E	Active	0.0157	0.00063	1	0.45	0.87	
	INM-23F		0.028	0.005	0.16	0.001	1.55	
Gold	INM-24	Active	0.15	0.0017	0.68	0.004	2.51	24
Magnetic AuNPs	INM-25	Passive	0.065	0.00123	0.4	0.225	1.20	25
	INM-26A	D .	0.35	0.03	0.075	0.023	3.18	26
Gold	INM-26B	Passive	0.51	0.00197	0.157	0.095	4.12	
Gold	INM-27	Passive	0.065	0.015	0.43	0.001	7.84	27
Gold- iron oxide	INM-28	Active	0.12	0.00043	0.56	0.024	1.07	28
Iron oxide	INM-29	Active	0.18	0.008	0.34	0.0155	0.78	29
Iron oxide	INM-30	Active	0.0325	0.0005	0.28	0.0165	0.40	30
T '1	INM-31A	Passive	0.077	0.0022	0.043	0.001	0.56	31
Iron oxide	INM-31B	Active	0.167	0.0045	0.043	0.003	1.20	
Iron oxide	INM-32	Passive	0.06	0.01	0.1	0.1	1.10	32
Iron oxide	INM-33	Active	0.076	0.0055	0.34	0.0155	5.25	33

	INM-34A		0.071	0.006	0.11	0.002	5.20	
T · 1	INM-34B		0.071	0.0072	0.143	0.002	5.00	34
Iron oxide	INM-34C	Active	0.133	0.0085	0.042	0.0001	9.46	
	INM-34D		0.135	0.0115	2	0.063	7.20	
Silica	INM-35A	Active	0.225	0.02	0.15	3	1.31	35
(HMSN)	INM-35B	Passive	0.125	0.0035	0.5	5	0.74	
Silica	INM-36	Passive	0.108	0.002	0.8	0.07	0.32	36
Silica	INM-37A	Passive	0.078	0.00078	0.45	2.1	0.18	37
(MSN)	INM-37B	Active	0.225	0.0037	0.45	2.1	0.53	
Silica	INM-38A	Passive	0.106	0.0035	0.8	2	0.63	38
(HMSN)	INM-38B	Active	0.245	0.03	0.8	1.8	1.63	
Silica	INM-39A	Passive	0.057	0.0023	0.15	0.04	0.41	39
(MSN)	INM-39B	Active	0.125	0.012	0.11	0.025	0.86	
C'11	INM-40A	Passive	0.023	0.0004	0.125	0.01	0.08	40
Silica	INM-40B	Active	0.044	0.0004	0.14	0.0125	0.17	
Silica	INM-41A	Passive	0.069	0.003	0.11	0.012	0.50	41
(MSN)	INM-41B	Active	0.137	0.007	0.105	0.03	0.93	
Enzyme & iron oxide entrapped dendritic MSN	INM-42	Passive	0.082	0.00043	0.098	0.0062	0.23	42

Liposome coated HMSN	INM-43	Passive	0.0315	0.007	1	8	0.90	43
Liposome coated HMSN	INM-44	Passive	0.76	0.05	0.31	0.0195	6.29	44
Silica (MSN)	INM-45	Passive	0.15	0.004	0.6	3	2.08	45
Hollow	INM-46A	Passive	0.175	0.005	0.1	0.005	6.69	46
mesoporous silica	INM-46B	Active	0.152	0.016	0.85	0.03	16.54	10
Magnetic silica (MSN)	INM-47	Passive	0.056	0.00027	0.09	0.21	0.29	47
Polymer and carbon coated silica	INM-48	Active	0.41	0.0018	0.19	0.082	2.76	48
Periodic mesoporous organosilica	INM-49	Passive	0.35	0.0036	1.13	0.2	5.32	49
Silica coated Mn3O4	INM-50	Active	0.165	0.0063	0.6	1	5.96	50
NaGdF ₄	INM-51	Active	0.06	0.009	0.5	5	4.27	51
MoS2/Fe3O4 composite	INM-52	Passive	0.065	0.0004	0.052	0.025	0.19	52
CaP	INM-53	Passive	0.08	0.00016	0.55	1.1	0.39	53
MnO	INM-54	Active	8	0.8	8	14	18.96	54
Mg2Al layered double hydroxide	INM-55	Passive	0.16	0.0028	0.6	1.8	1.74	55

Cobalt nanotube	INM-56	Active	0.035	0.005	0.5	10	0.23	56
AuNPs coated	INM-57A	Dessive	0.22	0.00055	0.05	2	0.74	57
fullerene	INM-57B	Passive	0.155	0.00071	0.05	1	0.58	
Bi ₂ Se ₃	INM-58	Passive	0.148	0.00058	4	6	1.99	58
CaP	INM-59	Passive	0.14	0.000128	1.9	0.04	0.96	59
Gd ₃ N	INM-60	Passive	0.093	0.00065	2.2	0.045	0.30	60
Hollow mesoporous CuS	INM-61	Active	0.0225	0.02	0.05	0.035	0.05	61
Polymeric	ONM-1	Passive	0.058	0.017	0.175	0.04	1.30	62
Polymeric	ONM-2A	Active	0.131	0.0044	0.1	0.06	0.89	63
	ONM-2B	Passive	0.0685	0.0032	0.12	0.012	0.50	
Dalamania	ONM-3A	Passive	0.248	0.0011	0.15	0.029	1.05	64
Polymeric	ONM-3B	Passive	0.124	0.0059	0.165	0.005	1.15	
Delamaria		Dessive	0.052	0.01	0.1	2	0.44	65
Polymeric	UNIVI-4	Passive	0.04	0.003	2	5	0.44	
Delamaria	ONM-5A	Passive	0.018	0.0004	0.4	0.2	0.02	66
Polymeric	ONM-5B	Active	0.0435	0.00058	0.2	0.2	0.06	
Dalamania	ONM-6A	Passive	0.049	0.0105	0.238	0.005	0.29	67
Polymeric –	ONM-6B	Passive	0.048	0.0075	0.25	0.0065	0.22	
Polymeric	ONM-7A	Passive	0.12	0.3	0.06	0.015	0.20	68

Polymeric	ONM-7B	Passive	0.12	0.3	0.07	0.011	0.21	
	ONM-8A	Active	0.07	0.023	0.25	0.01	1.15	69
Polymeric	ONM-8B	Passive	0.05	0.0145	0.1	3	0.43	
	ONM-9A		0.12	0.00035	0.26	0.005	0.78	
	ONM-9B		0.136	0.00042	0.25	0.06	0.81	
	ONM-9C		0.126	0.00078	0.25	0.08	0.91	
Polymeric	ONM-9D	Dessire	0.09	0.00045	0.22	0.085	0.70	70
	ONM-9E	Passive	0.155	0.00035	0.255	0.08	0.91	
	ONM-9F		0.08	0.00052	0.265	0.06	0.60	
	ONM-9G		0.05	0.00055	0.265	0.07	0.39	
	ONM-9H		0.05	0.00032	0.23	0.065	0.37	
	ONM-10A	Active	0.285	0.001	0.4	0.005	0.60	
Polymeric	ONM-10B	Active	0.238	0.00078	0.4	0.005	0.50	71
	ONM-10C	Passive	0.0925	0.005	0.2	0.065	0.36	
Dalamania	ONM-11A	Dession	0.059	0.0055	0.135	0.05	0.31	72.
Polymeric	ONM-11B	Passive	0.039	0.0058	0.11	0.05	0.19	
	ONM-12A	Passive	0.151	0.0009	0.4	0.01	0.63	
Polymeric	ONM-12B		0.138	0.00095	0.4	0.005	0.58	73
	ONM-12C	Active	0.165	0.00125	0.4	0.005	0.70	/3
	ONM-12D	_	0.157	0.00115	0.4	0.005	0.66	

	ONM-12E		0.18	0.00115	0.4	0.005	0.76	
	ONM-12F	Active	0.175	0.00155	0.4	0.005	0.74	-
Polymeric	ONM-13	Passive	0.135	0.00042	0.24	0.07	1.50	74
Polymeric	ONM-14	Active	0.095	0.007	0.091	0.0089	4.51	75
Polymeric	ONM-15	Passive	0.143	0.00255	0.19	0.035	1.17	76
Polymeric	ONM-16	Passive	0.245	0.0016	0.5	0.01	1.96	77
	ONM-17A	Active	0.053	0.01	1.5	0.8	0.23	78
Polymeric	ONM-17B	Passive	0.057	0.0021	0.91	0.37	0.31	78
Polymeric	ONM-18	Passive	0.015	0.005	1	1	0.80	79
	ONM-19A		0.6	0.15	25	7	10.67	
	ONM-19B		0.53	0.11	25	7.6	9.01	
	ONM-19C		0.5	0.15	25	7.8	8.40	80
Dalamania	ONM-19D	Dession	1.02	0.006	0.1	0.005	4.13	
Polymeric	ONM-19E	Passive	0.115	0.025	12	3	2.43	
	ONM-19F		0.18	0.035	17	4.6	3.54	
	ONM-19G		0.2	0.025	16.5	3.85	4.36	
	ONM-19H		0.15	0.008	18	6.5	2.38	-
Polymeric	ONM-20	Passive	0.125	0.00036	0.24	0.075	1.35	81
Dalamania	ONM-21A	Passive	0.009	0.00115	0.7	2.5	0.58	82
Polymeric	ONM-21B	Passive	0.052	0.0043	0.65	2.5	3.20	82

	ONM-22A	Passive	0.069	0.009	0.5	0.05	0.46	83
Graphene oxide	ONM-22B	Active	0.138	0.0053	0.55	0.09	0.97	
Cranhana avida	ONM-23A	Passive	0.05	0.003	0.059	0.001	0.46	84
Graphene oxide	ONM-23B	Active	0.128	0.016	0.55	0.075	0.89	
Graphene oxide	ONM-24	Passive	0.23	0.045	9.5	3.7	6.93	85
Cranhana avida	ONM-25A	Passive	0.093	0.005	0.45	0.015	0.21	86
Graphene oxide	ONM-25B	Active	0.18	0.0023	0.29	0.035	0.39	
Granhana avida	ONM-26A	Passive	0.083	0.0029	0.055	0.005	0.64	87
Graphene oxide	ONM-26B	Active	0.095	0.0044	0.37	0.46	0.99	
	ONM-27A	Passive	0.051	0.0013	1.1	0.46	0.77	
Single-walled carbon nanotubes	ONM-27B	Active	0.095	0.0016	0.39	0.23	1.26	88
(SWCNTs)	ONM-27C	Passive	0.085	0.00127	0.47	0.24	1.14	
	ONM-27D	Active	0.264	0.0053	0.49	0.24	3.59	
Liposomes	ONM-28	Passive	0.029	0.018	0.205	0.004	1.85	89
Linggomes	ONM-29A	Dessive	0.031	0.00056	0.035	0.001	0.15	90
Liposomes -	ONM-29B	Passive	0.115	0.00045	0.055	0.0005	0.40	
Lipid nanocarrier (Liposomes)	ONM-30	Active	0.078	0.0035	0.1	0.09	1.68	91
Liposomes	ONM-31	Passive	0.205	0.0002	0.2	0.08	0.97	92

Lipid	ONM-32A		0.045	0.01	0.3	0.55	0.10	
nanocapsule	ONM-32B	Passive	0.0205	0.004	0.185	0.14	0.06	93
(Liposomes)	ONM-32C		0.0195	0.004	0.28	0.12	0.07	
T :	ONM-33A	Passive	0.056	0.00074	0.19	0.005	0.52	94
Liposomes	ONM-33B	Active	0.076	0.0005	0.62	0.005	0.92	
Lipid nanocapsule (Liposomes)	ONM-34	Passive	0.215	0.0004	0.1	0.2	0.53	95
Liposomes	ONM-35	Passive	0.065	0.003	0.01	0.005	0.82	96
Liposomes	ONM-36	Passive	0.034	0.0005	0.4	0.015	0.94	97
	ONM-37A		0.3	0.000005	1	0.005	0.03	
Hyaluronic acid	ONM-37B	Active	0.3	0.000005	1	0.005	0.03	98
hydrogel	ONM-37C		5	0.00001	3	0.005	0.07	
	ONM-37D		0.1	0.000008	3	0.005	0.05	
Hyaluronic acid hydrogel	ONM-38	Active	0.092	0.00084	0.07	0.001	0.13	99
Heparin-based hydrogel	ONM-39	Passive	0.145	0.00067	0.13	0.072	0.44	100
Chitosan	ONM-40A	Passive	0.09	0.000125	0.105	0.005	0.22	101
hydrogel	ONM-40B	Active	0.105	0.00022	0.09	0.04	0.24	
Hyaluronic acid hydrogel	ONM-41	Active	0.03	0.0001	3	0.006	0.48	102

	ONM-42A	Passive	0.165	0.04	0.4	0.4	1.08	
Gelatin hydrogel	ONM-42B	Passive	0.255	0.05	0.4	1	1.65	103
	ONM-42C	Active	0.4	0.022	0.4	1	2.56	
Alginic acid hydrogel	ONM-43	Passive	0.146	0.00315	0.09	0.002	0.67	104
Cellulose hydrogel	ONM-44	Passive	0.065	0.00072	0.074	0.001	0.17	105
Dendrimers <i>vs</i> . copolymers	ONM-45A	Dessive	0.165	0.022	0.038	0.0005	10.77	106
	ONM-45B	Passive	0.08	0.052	0.01	0.0005	4.09	
Den Inimere	ONM-46A	Dessive	0.066	0.0027	0.1	0.085	0.26	107
Dendrimers	ONM-46B	Passive	0.179	0.001	0.242	0.09	1.30	107
	ONM-47A	Passive	0.076	0.027	0.157	0.005	1.94	108
Dendrimers	ONM-47B	Active	0.153	0.018	0.32	0.0039	7.96	100
Dendrimers <i>vs</i> . copolymers	ONM-48	Passive	0.12	0.049	0.012	0.0005	2.34	109
Tabacco mosaic virus	ONM-49	Passive	0.011	0.00001	0.01	0.005	0.05	110
	ONM-50A		0.39	0.05	0.3	0.092	3.52	
Anticancer drug (HCPT)	ONM-50B	Passive –	0.34	0.03	0.22	0.143	2.81	111
	ONM-50C		0.295	0.01	0.215	0.15	2.43	- 111
	ONM-50D		0.26	0.006	0.24	0.15	2.16	

	ONM-51A	Passive	0.044	0.00052	0.24	0.16	0.14	
Solid lipid NPs	ONM-51B	Passive	0.065	0.0007	0.23	0.185	0.39	112
	ONM-51C	Active	0.07	0.00045	0.23	0.187	0.41	
Solid lipid NPs	ONM-52	Passive	0.0013	0.000049	0.4	0.275	0.05	113
	ONM-53A	Passive	0.057	0.00061	0.35	0.1	0.43	
Polymer-lipid	ONM-53B	Active	0.107	0.00103	0.35	0.185	0.61	114
hybrid	ONM-53C	Passive	0.088	0.00102	0.36	0.121	0.54	
	ONM-53D	Active	0.155	0.0025	0.33	0.2	0.89	
Polymeric	ONM-54	Passive	0.0065	0.000046	0.1	1	0.03	115
Polymeric	ONM-55	Passive	0.013	0.0015	2	10	0.03	116
	ONM-56A		0.046	0.0003	1	2	0.17	
	ONM-56B		0.106	0.003	2	1	0.78	
Polymeric	ONM-56C	Passive	0.142	0.005	2.5	1	1.20	117
	ONM-56D		0.205	0.03	4	0.95	2.65	
	ONM-56E		0.35	0.05	6	0.75	7.30	
		Dession	0.028	0.00014	0.005	0.4	0.07	
Polymeric -	UNM-5/A	Passive	0.0295	0.00015	0.005	0.4	0.07	118
	ONIM 57D °		0.058	0.00023	0.005	0.5	0.16	
		Active	0.069	0.00033	0.005	0.5	0.16	

Polymeric	ONM-58	Passive	0.08	0.0025	0.7	0.095	1.60	119
Polymeric	ONM-59	Passive	0.095	0.00032	0.04	0.6	0.35	120
Delever	ONM-60A	Passive	0.0465	0.00125	0.365	0.55	0.95	121
Polymeric	ONM-60B	Active	0.07	0.00143	0.36	0.45	1.46	
Polymeric	ONM-61	Passive	0.111	0.000183	0.06	0.023	0.47	122
Polymeric	ONM-62	Passive	0.2	0.0013	0.05	0.1	0.84	123
Polymeric	ONM-63	Passive	0.026	0.00025	0.005	0.5	0.01	124
	ONM-64A		0.065	0.005	0.2	0.05	0.28	
	ONM-64B		0.092	0.00059	0.32	0.01	0.78	125
Polymeric	ONM-64C	Passive	0.094	0.00135	0.26	0.08	1.06	
	ONM-64D		0.097	0.00141	0.25	0.082	1.07	
	ONM-64E		0.09	0.0007	0.23	0.038	1.03	
Polymeric	ONM-65	Passive	0.075	0.00043	0.09	0.066	0.31	126
Polymeric	ONM-66	Passive	0.133	0.00085	0.095	0.014	1.36	127
Polymeric	ONM-67	Passive	0.03	0.00057	0.25	3.5	0.24	128
	ONM-68A	Passive	0.062	0.00054	0.1	2.5	0.12	129
Polymeric	ONM-68B	Active	0.115	0.00078	0.13	2.5	0.23	129
Deleveri	ONM-69A	Passive	0.0145	0.002	0.4	4	0.07	130
Polymeric	ONM-69B	Passive	0.0192	0.0016	0.65	1.5	0.12	150

Polymeric	ONM-70	Passive	0.00193	0.000025	0.62	0.3	0.01	131
	ONM-71A	Passive	0.00335	0.001	1.6	0.106	0.16	132
Polymeric	ONM-71B	Active	0.0036	0.0002	2.2	0.101	0.22	152
Polymeric	ONM-72	Passive	0.03	0.01	0.42	0.07	0.45	133
	ONM-73A	Passive	0.068	0.00084	0.5	3.5	0.31	
Polymeric	ONM-73B	Passive	0.0678	0.00091	0.5	3.5	0.31	134
	ONM-73C	Active	0.0925	0.00085	0.7	3	0.43	
	ONM-74A	Passive	0.028	0.000055	0.1	0.058	0.15	
	ONM-74B	Active	0.0305	0.000057	0.15	0.048	0.20	135
Polymeric	ONM-74C	Passive	0.04	0.000025	0.2	0.3	0.16	155
	ONM-74D	Active	0.101	0.000046	0.1	3	0.31	
Polymeric	ONM-75	Passive	0.036	0.008	0.6	1.2	0.75	136
	ONM-76A	Passive	0.0444	0.002	0.11	0.001	0.20	137
Polymeric	ONM-76B	Active	0.0835	0.0015	0.107	0.062	0.31	157
Polymeric	ONM-77	Passive	0.095	0.06	1	6	6.26	138
	ONM-78A	Active	0.09	0.004	0.4	0.075	0.58	
Polymeric	ONM-78B	Passive	0.0745	0.004	0.65	0.087	0.69	139
-	ONM-78C	Active	0.255	0.004	0.35	0.069	1.15	
Polymeric	ONM-79A	Passive	0.08	0.000178	0.185	0.0025	0.56	140
	ONM-79B	Passive	0.265	0.00047	0.25	0.002	1.77	

Polymeric	ONM-80	Active	0.0495	0.000125	0.08	0.105	0.17	141
Dalamania	ONM-81A	Passive	0.086	0.00067	0.105	0.42	0.21	142
Polymeric	ONM-81B	Passive	0.1155	0.00102	0.095	0.225	0.30	
Polymeric	ONM-82	Passive	0.0186	0.00021	0.132	0.087	0.15	143
Polymeric	ONM-83	Passive	0.128	0.0007	0.08	0.022	0.19	144
Dalamania	ONM-84A	Passive	0.024	0.01	0.988	0.435	0.40	145
Polymeric	ONM-84B	Active	0.043	0.05	1.1	0.48	0.73	
Dalamania	ONM-85A	Passive	0.0115	0.0005	2.3	0.5	0.15	146
Polymeric	ONM-85B	Active	0.0185	0.00043	2.3	0.75	0.22	
Polymeric	ONM-86	Passive	0.083	0.0005	0.115	0.0005	0.77	147
	ONM-87A		0.227	0.004	2	0.42	2.62	
Polymeric	ONM-87B	Active	0.19	0.0022	3	0.66	2.25	148
	ONM-87C		0.08	0.0015	3	0.62	0.96	
Dalamaria	ONM-88A	Passive	0.235	0.0019	3	0.6	2.65	149
Polymeric	ONM-88B	Passive	0.36	0.0024	3	0.55	3.99	
Polymeric	ONM-89A	Passive	0.29	0.3	3.61	1.21	10.72	150
	ONM-89B	Active	0.8	0.038	3.61	1.21	23.83	
Polymeric	ONM-90	Passive	0.165	0.0005	3.5	2.5	1.36	151

Dalamania	ONM-91A	Passive	0.064	0.0018	1	1.2	0.89	152
Polymeric	ONM-91B	Active	0.056	0.0016	1	2	0.65	
Dalamaria	ONM-92A	Passive	0.0275	0.0035	1	3.4	0.32	153
Polymeric	ONM-92B	Passive	0.0226	0.008	0.99	4	0.26	
Polymeric	ONM-93	Active	0.031	0.0007	0.6	5	0.17	154
Polymeric	ONM-94	Passive	1.14	0.011	0.8	0.023	2.79	155
Dalamaaria	ONM-95A	Passive	0.255	0.05	0.4	0.31	1.71	156
Polymeric	ONM-95B	Active	0.257	0.05	0.85	0.36	3.35	
Polymeric	ONM-96	Passive	0.014	0.008	0.1	6	0.18	157
Polymeric	ONM-97	Passive	0.0245	0.00035	2	8	0.13	158
			2.65	0.022	0.27	0.019	17.16	
Lipid-polymer	UNM-98A °	Passive	0.8	0.009	0.19	0.0055	17.16	159
hybrid		Dessive	2.13	0.01	0.26	0.006	14 68	
	UNM-98D	Passive	0.9	0.0031	0.128	0.005	14.08	
Lipid-polymer		Dessire	0.0235	0.05	0.4	1	0.19	160
hybrid	UNM-99	Passive	0.024	0.1	1	10	0.18	
	ONM-100A		0.084	0.00053	0.07	0.002	1.71	
Polymeric	ONM-100B	Passive	0.101	0.00031	0.07	0.002	1.71	161
	ONM-100C		0.101	0.00031	0.07	0.002	1.71	

	ONM-100D		0.045	0.0009	0.084	0.004	2.19		
	ONM-100E	Passive	0.06	0.0009	0.089	0.004	2.84		
	ONM-100F		0.07	0.00066	0.097	0.004	2.44		
	ONM-100G		0.052	0.0008	0.21	0.132	1.47		
Polymeric	ONM-100H	Passive	0.0293	0.001	0.098	0.008	1.17		
	ONM-100I		0.071	0.00082	0.083	0.002	1.53		
	ONM-100J		0.086	0.0006	0.04	0.064	1.88		
	ONM-100K	Passive	0.083	0.00067	0.067	0.004	2.42		
	ONM-100L		0.059	0.00075	0.102	0.001	2.37		
Liposomes	ONM-101	Passive	0.0047	0.009	0.001	0.1	0.02	162	
	ONM-102A	Passive	0.092	0.00028	0.065	0.6	0.25	163	
Liposomes	ONM-102B	Passive	0.079	0.00025	0.04	0.6	0.21		
Linid noncoerrier	ONM-103A		0.0102	0.004	0.84	0.125	0.10		
	ONM-103B	Passive	0.0094	0.0007	1.6	0.1	0.13	164	
(Liposomes)	ONM-103C		0.0092	0.005	1.65	0.1	0.14		
I in each an	ONM-104A	Passive	0.0041	0.0001	0.405	0.095	0.15	165	
Liposomes	ONM-104B	Active	0.011	0.00025	0.405	0.099	0.40		
Dendrosome (Liposomes)	ONM-105	Active	0.105	0.0017	0.05	4	3.67	166	
Liposomes	ONM-106	Passive	0.095	0.000195	0.0165	0.001	0.40	167	

1 :	ONIN 107 C	Passive	0.12	0.05	0.39	0.13	0.24	168	
Liposomes	UNM-107	Passive	0.114	0.04	0.44	0.1	0.24	100	
Lipid papagarriar			0.88	0.1	0.28	0.095			
(Liposomes)	ONM-108 ^c	Passive	0.452	0.05	0.24	0.095	4.42	169	
			0.688	0.08	0.16	0.08			
Solid emulsion (Liposomes)	ONM-109A	Passive	0.0105	0.0005	3.5	3	0.19	170	
	ONM-109B	Active	0.0165	0.001	3.5	3.25	0.29		
Lipid emulsion (Liposomes)	ONM-110A		0.0205	0.0045	1.1	6	0.12		
	ONM-110B	Passive	0.014	0.0022	1.25	7	0.08	171	
	ONM-110C		0.0111	0.0008	1.3	7	0.07		
	ONM-111A		0.5	0.008	3.5	0.435	6.05		
Dendrimers	ONM-111B	Active	1.35	0.03	1.1	0.105	8.78	172	
	ONM-111C		1.95	0.05	0.85	0.088	11.04		
Dondrimore	ONM-112A	Passive	0.69	0.025	0.139	0.008	4.71	173	
Denarmers	ONM-112B	Active	2.998	0.12	0.115	0.005	16.70		
Dan daine and	ONM-113A	Passive	0.35	0.012	0.1	0.4	7.06	174	
Dendrimers	ONM-113B	Active	1	0.031	2.3	0.4	29.80		
Dendrimers	ONM-114	Active	0.253	0.0056	0.06	0.06	9.01	175	
Albumin	ONM-115A	Active	0.3	0.01	1	6	1.46	176	
Albumin	ONM-115B	Active	0.305	0.06	3	4	2.24	1/0	

Albumin	ONM-116	Active	0.0067	0.0005	0.1	3.5	0.03	177	
A 11	ONM-117A	Active	0.013	0.000085	0.1	0.02	0.04	178	
Albumin	ONM-117B	Active	0.015	0.00007	0.102	0.005	0.04		
Albumin	ONM-118	Active	0.039	0.005	0.9	1.44	0.25	179	
A 11	ONM-119A	Active	0.222	0.1	0.4	2	3.09	180	
Albuilli	ONM-119B	Active	0.25	0.014	1.5	8	4.00	100	
Zinc-crosslinked	ONM-120A	Passive	0.00885	0.0003	0.1	0.167	0.04	181	
hydrogel	ONM-120B	Active	0.012	0.0003	0.107	0.167	0.05	101	
Hyaluronic acid hydrogel	ONM-121A	Active	0.16	0.0022	0.8	0.02	0.45	182	
	ONM-121B	Active	0.083	0.005	0.8	0.025	0.22		
Chitosan hydrogel	ONM-122	Passive	0.073	0.01	0.29	0.058	0.34	183	
	ONM-123A	Passive	0.815	0.05	0.22	0.103	6.58		
Multiwalled	ONM-123B	Passive	0.865	0.05	0.196	0.102	6.67		
carbon nanotubes	ONM-123C	Passive	0.83	0.05	0.205	0.107	6.04	184	
(MWCNTs)	ONM-123D	Active	2.27	0.05	0.22	0.093	14.53		
	ONM-123E	Active	2.35	0.05	0.22	0.092	14.59		
Hyaluronic acid	ONM-124	Active	0.06	0.000245	0.065	0.1	0.73	185	
HCPT suspension	ONM-125	Passive	0.0162	0.00012	0.1	0.1	0.08	186	

Mesoporous carbon nanosphere	ONM-126	Passive 0.0193 0.00072 0.24		3.5	0.25	187			
TT 1 · · · 1	ONM-127A	Active	0.0222	0.00065	0.4	6	0.08	188	
Hyaluronic acid	ONM-127B	Active	0.0265	0.00065	0.4	5	0.09		
CPDG assembly	ONM-128	Passive	0.3	0.05	0.1	6	1.41	189	
Docetaxel	ONM-129	Active	0.0152	0.000165	0.02	0.03	0.09	190	
HCPT nanocrystal	ONM-130	Passive	0.012	0.000122	0.01	0.3	0.05	191	
Graphene oxide	ONM-131A	Passive	0.06	0.025	0.74	0.55	0.13	192	
	ONM-131B	Active	0.065	0.0012	0.8	0.375	0.18		
~ .	ONM-132A	Passive	0.017	0.003	3.7	1.8	0.37	193	
Soy protein	ONM-132B	Active	0.023	0.003	3.8	1.1	0.46		
Curcumin suspension	ONM-133	Passive	0.00174	0.0001	0.056	0.069	0.008	194	
Companyin	ONDA 124 C	A atima	0.102	0.00265	0.032	0.0005	1 21	195	
Curcumin	UNM-134 °	Active	0.155	0.004	0.038	0.0005	1.31	170	
HCPT-loaded nanorod	ONM-135	Passive	0.045	0.1	0.2	2.5	0.83	196	
BSA-based polymeric	ONM-136	Passive	0.225	0.00053	0.027	0.07	1.01	197	
CDDP-SAHA conjugate	ONM-137	Passive	0.044	0.000135	1.1	3.2	0.21	198	

Ginseng	ONM-138	Passive	0.052	0.0009	0.26	0.25	0.87	199
Paclitaxel nanocrystal	ONM-139	Passive	0.023	0.004	3	12	0.11	200

Abbreviations: AuNPs, gold nanoparticles; BSA, bovine serum albumin; CDDP, cisplatin or *cis*-diamminedichloroplatinum(II); CPDG, cyclic phosphoryl *N*-dodecanoyl gemcitabine; HCPT, 10-hydroxycamptothecin; HMSN, hollow mesoporous silica nanoparticles; INM, inorganic nanomaterial; MSN, mesoporous silica nanoparticles; ONM, organic nanomaterial; SAHA, vorinostat.

^a Each nanomaterial has been provided with an identification number (NM ID) throughout this summary table. Please refer to Table S1 to look up specific NM characteristics for each study.

^b DE_{Tlast}: Tumor delivery efficiency (%ID) was calculated by dividing AUC (%ID*h) estimated using the constructed NM-specific PBPK model with the biodistribution time period (h) reported by the original study.

^c For those NM types that have only one tumor delivery efficiency but with different sets of parameter values represent a specific NM loaded with 2–3 anticancer drugs and delivery efficiency was estimated based upon the averaged value of each drug.

			24 h	× *	,		<u> </u>	168 h		
	AUCCP	AUCCL	AUCCS	AUCCK	AUCCT	AUCCP	AUCCL	AUCCS	AUCCK	AUCCT
Physiologic	al paramo	eters								
QCC	-0.13	0.06	-0.14	-0.13	-0.12	-0.20	-0.34	-0.28	-0.30	-0.21
QSC	-0.08	0.27	-0.08	-0.08	-0.08	-0.09	0.21	-0.09	-0.12	-0.09
VLC	-0.21	0.62	-0.20	-0.21	-0.21	-0.24	0.63	-0.31	-0.32	-0.23
VSC	-0.01	-0.01	0.99	-0.01	-0.01	-0.09	-0.30	0.73	-0.23	-0.09
VKC	-0.04	-0.04	-0.04	0.96	-0.04	-0.03	0.00	0.00	0.99	-0.03
VPlasmaC	0.74	-0.26	-0.25	-0.25	-0.25	0.85	0.09	0.02	0.01	-0.15
VTC	-0.01	-0.01	-0.01	-0.01	0.98	-0.01	-0.02	-0.02	-0.02	0.98
BVL	-0.19	-0.52	-0.18	-0.19	-0.19	-0.23	0.55	-0.31	-0.33	-0.21
BVK	-0.03	-0.03	-0.03	-0.34	-0.03	-0.01	0.01	0.00	-0.31	-0.02
Nanomater	ial-specifi	ic parame	eters							
PL	-0.03	0.76	-0.03	-0.03	-0.03	-0.02	0.04	-0.01	0.00	-0.02
PS	-0.01	-0.01	0.99	-0.01	-0.01	-0.09	-0.30	0.73	-0.23	-0.08
PK	-0.01	-0.01	-0.01	0.98	-0.01	-0.01	-0.01	-0.01	0.99	-0.01
PT	-0.02	-0.01	-0.02	-0.02	0.98	-0.02	-0.03	-0.03	-0.02	0.97
Kmax,L	0.00	0.03	0.00	0.00	0.00	-0.12	0.51	-0.32	-0.34	-0.10
<i>t</i> 50, <i>L</i>	0.01	-0.15	0.01	0.01	0.00	0.30	-1.35	0.85	0.81	0.29
nL	0.01	-0.15	0.01	0.01	0.00	0.07	-0.28	0.16	0.12	0.07
Kmax,S	0.00	0.00	0.25	0.00	0.00	-0.09	-0.31	0.72	-0.23	-0.08
<i>t</i> 50, <i>S</i>	0.01	0.00	-1.15	0.01	0.01	0.18	0.52	-1.35	0.41	0.18
ns	0.01	0.00	-0.85	0.01	0.00	0.02	0.02	-0.12	0.02	0.03
Kmax,K	0.00	0.00	0.00	0.00	0.00	0.00	-0.01	-0.01	0.64	0.00
<i>t</i> 50, <i>K</i>	0.00	0.00	0.00	-0.01	0.00	0.01	0.03	0.03	-1.59	0.01
пк	0.00	0.00	0.00	-0.01	0.00	0.00	0.00	0.00	-0.29	0.00
Kmax,T	-0.01	0.00	-0.01	-0.01	0.33	-0.01	-0.03	-0.03	-0.02	0.86

Table S3. Normalized sensitivity coefficients (NSCs) for highly influential parameters on tissue delivery of gold nanoparticles (AuNPs) in tumor-bearing mice.¹³

AUCCP, AUCCL, AUCCS, AUCCK, and AUCCT represent the area-under-theconcentration curve of AuNPs in venous plasma, liver, spleen, kidneys, and tumor, respectively. QCC, cardiac output; QSC, fractional cardiac output to spleen; VLC, VSC, VKC, VPlasmaC, and VTC are volume fractions of liver, spleen, kidneys, plasma, and tumor tissue, respectively, in the body; BVL and BVK represent the blood volume fractions of liver and kidneys, respectively; PL, PS, PK, and PT are plasma:tissue distribution coefficients for liver, spleen, kidneys, and tumor tissue, respectively; $K_{max,L}$, $K_{max,S}$, $K_{max,K}$, and $K_{max,T}$ represent maximum uptake rate by endocytic/phagocytic or tumor cells in liver, spleen, kidney, and tumor tissues, respectively; $t_{50,L}$, $t_{50,S}$, and $t_{50,K}$ are time reaching half maximum uptake rate for endocytic/phagocytic cells in liver, spleen, and kidney tissues, respectively; n_L , n_S , and n_K are the Hill coefficients for endocytic/phagocytic uptake in liver, spleen, and kidney tissues, respectively. **Table S4.** Summary of statistical analysis and multivariable linear regression results to identify critical tumor microenvironment-related factors affecting tumor delivery efficiency for gold nanomaterials (66 datasets) based upon the tumor delivery efficiency estimated at the last sampling time point (DE_{Tlast}) according to the original pharmacokinetic study.

Statistical analysis									
Mann-Whitney test for 2 groups of tumor delivery efficiency (high vs. low)									
Distribution coefficient	Permeability coefficient	Maximum uptake rate constant	Releasing rate constant						
(PT)	(PATC)	$(K_{max, T})$	(K _{re, T})						
<0.001***	0.004**	0.438	0.133						

Multivariable linear regression analysis $Y = -0.25 + 0.60^{*}PT + 9.25^{*}PATC(^{***}) + 0.01^{*}K_{max, T} - 0.06^{*}K_{re, T}; R^{2} = 0.40; P < 0.001$

P*<0.01; *P*<0.001.

Table S5. Summary of statistical analysis results for comparing different groups of tumor delivery efficiencies estimated from 376 datasets of various types of nanomaterials (NMs).

Group of comparison									
Modeling approach (non-physiologically vs. physiologically based)									
Welch's <i>t</i> -test	0.998								
Mann-Whitney rank-sum test	0.745								
Non-physiologically-based (2005–2015 vs. 2015–2018)									
Welch's <i>t</i> -test	0.811								
Mann-Whitney rank-sum test	0.245								
Physiologically-based (2005–2015 vs. 2015–2018)									
Welch's <i>t</i> -test	0.647								
Mann-Whitney rank-sum test	0.155								
Type of nanomaterials (inorganic vs. organic)									
Welch's <i>t</i> -test	0.021*								
Mann-Whitney rank-sum test	<0.001***								
Targeting strategy (passive vs. active)									
Welch's <i>t</i> -test	0.004**								
Mann-Whitney rank-sum test	0.075								

*P < 0.05; **P < 0.01; ***P < 0.001. *,**, and *** indicate that there are significant differences between two groups of mean (*t*-test) and median (rank-sum test) tumor delivery efficiency.

Variable	DE _{Tlast}	DE _{Tlast_PK}	DE ₂₄	DE168	DE _{max}
Gold NMs					
Targeting strategy	0.099	0.047*	0.114	0.021*	0.080
Cancer type	0.174	0.069	0.105	0.032*	0.102
Tumor model	0.011*	0.005**	0.004**	0.014*	0.005**
Shape	0.902	0.706	0.728	0.812	0.724
Hydrodynamic diameter (log(HD))	0.597	0.790	0.646	0.892	0.306
Zeta potential	0.861	0.547	0.773	0.562	0.584
Inorganic NMs					
Core materials	0.530	0.474	0.654	0.090	0.568
Targeting strategy	0.009**	0.005**	0.011*	0.002**	0.009**
Cancer type	0.013*	0.003**	0.004**	< 0.001***	0.009**
Tumor model	0.053	0.018*	0.012*	0.009**	0.017*
Shape	0.915	0.754	0.881	0.692	0.911
Hydrodynamic diameter (log(HD))	0.799	0.869	0.963	0.404	0.676
Zeta potential	0.357	0.531	0.476	0.503	0.540
Organic NMs					
Core materials	< 0.001***	< 0.001***	< 0.001***	< 0.001***	< 0.001***
Targeting strategy	0.502	0.419	0.546	0.366	0.462
Cancer type	0.105	0.053	0.121	< 0.001***	0.033*
Tumor model	0.361	0.359	0.329	0.077	0.184
Shape	0.004**	0.039*	0.003**	0.029*	0.016*
Hydrodynamic diameter (log(HD))	0.018*	0.008**	0.020*	0.006**	0.022*
Zeta potential	0.001**	< 0.001***	0.001**	0.002**	< 0.001***
Inorganic and organic NMs (INMs	and ONMs)				
INMs or ONMs	< 0.001***	< 0.001***	< 0.001***	< 0.001***	< 0.001***
Core materials	< 0.001***	< 0.001***	< 0.001***	< 0.001***	< 0.001***
Targeting strategy	0.037*	0.020*	0.048*	0.013*	0.034*
Cancer type	< 0.001***	< 0.001***	< 0.001***	< 0.001***	< 0.001***
Tumor model	0.011*	0.007**	0.005**	0.004**	0.004**
Shape	0.068	0.147	0.056	0.063	0.083
Hydrodynamic diameter (log(HD))	0.005**	0.002**	0.003**	< 0.001***	0.007**
Zeta potential	< 0.001***	0.001**	0.001**	0.001**	< 0.001***

Table S6. Statistical analysis results of simple linear regression analyses (continuous variable) and one-way analysis of variance (ANOVA) (categorical variable) tests for identifying variables with significant effects on log-transformed tumor delivery efficiency estimated from all the 376 datasets of various types of nanomaterials (NMs).

*P<0.05; **P<0.01; ***P<0.001. *,**, and *** indicate that the variable has significant contribution to the tumor delivery efficiency. DE_{Tlast} and DE_{Tlast_PK} are tumor delivery efficiencies estimated at the last sampling time point according to the original literature using the PBPK modeling approach and non-compartmental trapezoidal integration method, respectively; DE₂₄ and DE₁₆₈ represent tumor delivery efficiency estimated at 24 h and 168 h using the PBPK modeling approach, respectively; DE_{max} is the maximum tumor delivery efficiency obtained by implementing the PBPK model.

Variable	DE _{Tlast}	DE _{Tlast_PK}	DE24	DE168	DEmax
Gold NMs					
Targeting strategy	0.188	0.095	0.176	0.042*	0.127
Cancer type	0.017*	0.002**	0.010*	< 0.001***	0.012*
Tumor model	< 0.001***	< 0.001***	< 0.001***	< 0.001***	< 0.001***
Shape	0.499	0.215	0.232	0.435	0.443
Hydrodynamic diameter (log(HD))	0.410	0.985	0.473	0.869	0.314
Zeta potential	0.897	0.605	0.888	0.633	0.926
Inorganic NMs					
Core materials	0.266	0.217	0.375	0.042*	0.328
Targeting strategy	0.038*	0.026*	0.035*	< 0.01**	0.030*
Cancer type	0.005**	0.001**	0.001**	< 0.001***	0.004**
Tumor model	0.001**	< 0.001***	< 0.001***	< 0.001***	< 0.001***
Shape	0.841	0.577	0.677	0.710	0.854
Hydrodynamic diameter (log(HD))	0.173	0.422	0.170	0.269	0.109
Zeta potential	0.418	0.600	0.487	0.530	0.398
Organic NMs					
Core materials	< 0.001***	< 0.001***	< 0.001***	< 0.001***	< 0.001***
Targeting strategy	0.107	0.126	0.085	0.184	0.139
Cancer type	< 0.001***	< 0.001***	< 0.001***	< 0.001***	< 0.001***
Tumor model	0.200	0.145	0.247	0.075	0.110
Shape	< 0.001***	0.004**	< 0.001***	0.018*	0.009**
Hydrodynamic diameter (log(HD))	0.030*	0.017*	0.030*	0.029*	0.033*
Zeta potential	< 0.001***	< 0.001***	0.002**	< 0.01**	0.001**
Inorganic and organic NMs (INMs	and ONMs)				
INMs or ONMs	< 0.001***	< 0.001***	< 0.001***	< 0.001***	< 0.001***
Core materials	< 0.001***	< 0.001***	< 0.001***	< 0.001***	< 0.001***
Targeting strategy	0.007**	0.006**	0.005**	0.006**	0.008**
Cancer type	< 0.001***	< 0.001***	< 0.001***	< 0.001***	< 0.001***
Tumor model	0.001**	< 0.001***	0.001**	< 0.001***	< 0.001***
Shape	0.040*	0.072	0.078	0.103	0.084
Hydrodynamic diameter (log(HD))	0.005**	0.033*	0.004**	0.006**	0.002**
Zeta potential	0.002**	0.002**	0.004**	0.016*	0.002**

Table S7. Statistical analysis results of simple linear regression analyses (continuous variable) and one-way analysis of variance (ANOVA) (categorical variable) tests for identifying variables with significant effects on log-transformed tumor delivery efficiency estimated from 313 confidently predicted datasets of various types of nanomaterials (NMs).

*P<0.05; **P<0.01; ***P<0.001. *,**, and *** indicate that the variable has significant contribution to the tumor delivery efficiency. DE_{Tlast} and DE_{Tlast_PK} are tumor delivery efficiencies estimated at the last sampling time point according to the original literature using the PBPK modeling approach and non-compartmental trapezoidal integration method, respectively; DE₂₄ and DE₁₆₈ represent tumor delivery efficiency estimated at 24 h and 168 h using the PBPK modeling approach, respectively; DE_{max} is the maximum tumor delivery efficiency obtained by implementing the PBPK model.

Quarticular al activation	DE	Tlast	DET	last_PK	D	E ₂₄	DI	E168	DF	E _{max}
Statistical criteria	Full	Best	Full	Best	Full	Best	Full	Best	Full	Best
Gold nanomaterials										
R^2	0.31	0.28	0.32	0.32	0.33	0.32	0.33	0.33	0.36	0.31
$\operatorname{Adj} - R^2$	0	0	0.004	0.03	0.005	0.02	0.02	0.04	0.06	0.14
P-value	0.533	0.49	0.468	0.389	0.464	0.412	0.427	0.365	0.309	0.076
AIC	131	129	132	130	132	130	130	129	124	115
BIC	172	166	173	169	172	169	171	167	165	141
Inorganic nanomaterials										
R^2	0.44	0.42	0.45	0.43	0.43	0.43	0.49	0.46	0.46	0.45
Adj- <i>R</i> ²	0.24	0.24	0.26	0.26	0.23	0.23	0.30	0.30	0.26	0.28
<i>P</i> -value	0.005	0.003	0.003	0.002	0.007	0.002	<0.001	<0.001	0.003	<0.001
AIC	184	182	188	186	180	176	182	181	174	170
BIC	253	243	258	247	249	237	252	243	244	232
Organic nanomaterials										
R^2	0.28	0.28	0.28	0.28	0.29	0.29	0.33	0.32	0.29	0.29
$\operatorname{Adj}-R^2$	0.19	0.19	0.19	0.20	0.20	0.20	0.25	0.25	0.21	0.21
<i>P</i> -value	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
AIC	463	463	458	457	454	454	478	476	449	448
BIC	560	560	555	550	551	551	575	566	546	541
All nanomaterials										
R^2	0.27	0.26	0.26	0.26	0.27	0.27	0.33	0.33	0.28	0.27
$\operatorname{Adj}-R^2$	0.19	0.19	0.18	0.18	0.19	0.19	0.25	0.25	0.21	0.20
<i>P</i> -value	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
AIC	655	652	658	656	641	639	669	667	633	627
BIC	792	782	795	789	778	773	806	800	770	741

Table S8. Multivariable linear regression results of selected models for the log-transformed tumor delivery efficiencies based on all the 376 datasets.

 R^2 , coefficient of determination; Adj- R^2 , adjusted R^2 ; AIC, Akaike information criterion; BIC, Bayesian information criterion; DE_{Tlast} and DE_{Tlast_PK} are tumor delivery efficiency estimated at the last sampling time point according to original literature using PBPK modeling approach and non-physiologically based trapezoidal integration method, respectively; DE₂₄ and DE₁₆₈ represent tumor delivery efficiency estimated at 24 h and 168 h, respectively; DE_{max} is the maximum tumor delivery efficiency; Full and Best represent full and best regression models for different sets of log-transformed tumor delivery efficiency.
Q	DE _{Tlast_PK}		DE_{24}		DE168		DE _{max}	
Statistical criteria	Full conf.	Best conf.	Full conf.	Best conf.	Full conf.	Best conf.	Full conf.	Best conf.
Gold nanomaterials								
R^2	0.65	0.61	0.61	0.59	0.62	0.61	0.61	0.60
$\operatorname{Adj} - R^2$	0.47	0.49	0.41	0.46	0.42	0.48	0.41	0.47
<i>P</i> -value	<0.001	<0.001	0.004	<0.001	0.003	<0.001	0.004	<0.001
AIC	83	79	87	81	85	77	84	76
BIC	119	105	124	107	122	104	120	103
Inorganic nanomaterials								
R^2	0.51	0.46	0.53	0.53	0.57	0.53	0.52	0.51
$\operatorname{Adj} - R^2$	0.33	0.33	0.36	0.38	0.41	0.42	0.34	0.36
<i>P</i> -value	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
AIC	155	150	141	136	147	142	144	140
BIC	216	194	203	190	208	188	205	194
Organic nanomaterials								
R^2	0.43	0.43	0.42	0.42	0.46	0.46	0.44	0.44
$Adj-R^2$	0.34	0.34	0.33	0.33	0.37	0.37	0.34	0.34
<i>P</i> -value	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
AIC	303	303	298	298	335	335	303	303
BIC	393	393	388	388	426	426	393	393
All nanomaterials								
R^2	0.35	0.35	0.36	0.36	0.40	0.40	0.37	0.37
$Adj-R^2$	0.26	0.26	0.27	0.27	0.32	0.32	0.28	0.28
<i>P</i> -value	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
AIC	486	484	469	467	511	509	471	469
BIC	616	611	599	593	641	635	601	596

Table S9. Multivariable linear regression results of selected models for the log-transformed tumor delivery efficiencies based on the 313 confidently predicted datasets.

 R^2 , coefficient of determination; Adj- R^2 , adjusted R^2 ; AIC, Akaike information criterion; BIC, Bayesian information criterion; DE_{Tlast_PK} is the tumor delivery efficiency estimated at the last sampling time point according to the original pharmacokinetic study; DE₂₄ and DE₁₆₈ represent tumor delivery efficiency at 24 h and 168 h; DE_{max} is the maximum tumor delivery efficiency; Full conf. and Best conf. represent regression models based upon confidently estimated tumor delivery efficiency from 313 datasets.

References

- Zhong, J.; Wen, L.; Yang, S.; Xiang, L.; Chen, Q.; Xing, D. Imaging-Guided High-Efficient Photoacoustic Tumor Therapy with Targeting Gold Nanorods. *Nanomedicine (N. Y., NY, U. S.)* 2015, *11*, 1499–1509.
- (2) Goodrich, G. P.; Bao, L.; Gill-Sharp, K.; Sang, K. L.; Wang, J.; Payne, J. D. Photothermal Therapy in a Murine Colon Cancer Model Using Near-Infrared Absorbing Gold Nanorods. J. Biomed. Opt. 2010, 15, 018001.
- Meyers, J. D.; Cheng, Y.; Broome, A. M.; Agnes, R. S.; Schluchter, M. D.; Margevicius, S.; Wang,
 X.; Kenney, M. E.; Burda, C.; Basilion, J. P. Peptide-Targeted Gold Nanoparticles for
 Photodynamic Therapy of Brain Cancer. *Part. Part. Syst. Charact.* 2015, *32*, 448–457.
- (4) Dam, D. H. M.; Culver, K. S. B.; Kandela, I.; Lee, R. C.; Chandra, K.; Lee, H.; Mantis, C.; Ugolkov, A.; Mazar, A. P.; Odom, T. W. Biodistribution and *In Vivo* Toxicity of Aptamer-Loaded Gold Nanostars. *Nanomedicine (N. Y., NY, U. S.)* 2015, *11*, 671–679.
- (5) Sykes, E. A.; Chen, J.; Zheng, G.; Chan, W. C. W. Investigating the Impact of Nanoparticle Size on Active and Passive Tumor Targeting Efficiency. *ACS Nano* **2014**, *8*, 5696–5706.
- Hu, H.; Huang, P.; Weiss, O. J.; Yan, X.; Yue, X.; Zhang, M. G.; Tang, Y.; Nie, L.; Ma, Y.; Niu, G.; Wu, K.; Chen, X. PET and NIR Optical Imaging Using Self-Illuminating ⁶⁴Cu-Doped Chelator-Free Gold Nanoclusters. *Biomaterials* 2014, *35*, 9868–9876.
- Razzak, R.; Zhou, J.; Yang, X. H.; Pervez, N.; Bédard, E. L. R.; Moore, R. B.; Shaw, A.; Amanie, J.; Roa, W. H. The Biodistribution and Pharmacokinetic Evaluation of Choline-Bound Gold Nanoparticles in a Human Prostate Tumor Xenograft Model. *Clin. Investig. Med.* 2013, *36*, E133–E142.
- (8) Liu, X.; Li, H.; Chen, Y.; Jin, Q.; Ren, K.; Ji, J. Mixed-Charge Nanoparticles for Long Circulation, Low Reticuloendothelial System Clearance, and High Tumor Accumulation. *Adv. Healthcare Mater.* 2014, *3*, 1439–1447.

- Cheng, K.; Kothapalli, S. R.; Liu, H.; Koh, A. L.; Jokerst, J. V.; Jiang, H.; Yang, M.; Li, J.; Levi, J.; Wu, J. C.; Gambhir, S. S.; Cheng, Z. Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects. J. Am. Chem. Soc. 2014, 136, 3560–3571.
- (10) Zhang, C.; Li, C.; Liu, Y.; Zhang, J.; Bao, C.; Liang, S.; Wang, Q.; Yang, Y.; Fu, H.; Wang, K.;
 Cui, D. Gold Nanoclusters-Based Nanoprobes for Simultaneous Fluorescence Imaging and Targeted Photodynamic Therapy with Superior Penetration and Retention Behavior in Tumors.
 Adv. Funct. Mater. 2015, 25, 1314–1325.
- Black, K. C. L.; Wang, Y.; Luehmann, H. P.; Cai, X.; Xing, W.; Pang, B.; Zhao, Y.; Cutler, C. S.;
 Wang, L. V.; Liu, Y.; Xia, Y. Radioactive ¹⁹⁸Au-Doped Nanostructures with Different Shapes for *In Vivo* Analyses of Their Biodistribution, Tumor Uptake, and Intratumoral Distribution. *ACS Nano* 2014, 8, 4385–4394.
- (12) Liu, J.; Yu, M.; Ning, X.; Zhou, C.; Yang, S.; Zheng, J. PEGylation and Zwitterionization: Pros and Cons in the Renal Clearance and Tumor Targeting of Near-IR-Emitting Gold Nanoparticles. *Angew. Chem. Int. Ed.* **2013**, *52*, 12572–12576.
- (13) Karmani, L.; Labar, D.; Valembois, V.; Bouchat, V.; Nagaswaran, P. G.; Bol, A.; Gillart, J.; Levêque, P.; Bouzin, C.; Bonifazi, D.; Michiels, C.; Feron, O.; Grégoire, V.; Lucas, S.; Borght, T. Vander; Gallez, B. Antibody-Functionalized Nanoparticles for Imaging Cancer: Influence of Conjugation to Gold Nanoparticles on the Biodistribution of ⁸⁹Zr-Labeled Cetuximab in Mice. *Contrast Media Mol. Imaging* **2013**, *8*, 402–408.
- Wang, Y.; Liu, Y.; Luehmann, H.; Xia, X.; Brown, P.; Jarreau, C.; Welch, M.; Xia, Y. Evaluating the Pharmacokinetics and *In Vivo* Cancer Targeting Capability of Au Nanocages by Positron Emission Tomography Imaging. *ACS Nano* 2012, *6*, 5880–5888.
- (15) Shah, N. B.; Vercellotti, G. M.; White, J. G.; Fegan, A.; Wagner, C. R.; Bischof, J. C. Blood-Nanoparticle Interactions and *In Vivo* Biodistribution: Impact of Surface PEG and Ligand

Properties. Mol. Pharmaceutics 2012, 9, 2146–2155.

- (16) Kennedy, L. C.; Bear, A. S.; Young, J. K.; Lewinski, N. A.; Kim, J.; Foster, A. E.; Drezek, R. A. T Cells Enhance Gold Nanoparticle Delivery to Tumors *In Vivo. Nanoscale Res. Lett.* 2011, *6*, 283.
- (17) Gormley, A. J.; Malugin, A.; Ray, A.; Robinson, R.; Ghandehari, H. Biological Evaluation of RGDfK-Gold Nanorod Conjugates for Prostate Cancer Treatment. J. Drug Targeting 2011, 19, 915–924.
- (18) Arnida; Janát-Amsbury, M. M.; Ray, A.; Peterson, C. M.; Ghandehari, H. Geometry and Surface Characteristics of Gold Nanoparticles Influence Their Biodistribution and Uptake by Macrophages. *Eur. J. Pharm. Biopharm.* **2011**, *77*, 417–423.
- (19) Perrault, S. D.; Walkey, C.; Jennings, T.; Fischer, H. C.; Chan, W. C. W. Mediating Tumor Targeting Efficiency of Nanoparticles through Design. *Nano Lett.* **2009**, *9*, 1909–1915.
- (20) Wang, J.; Bai, R.; Yang, R.; Liu, J.; Tang, J.; Liu, Y.; Li, J.; Chai, Z.; Chen, C. Size- and Surface Chemistry-Dependent Pharmacokinetics and Tumor Accumulation of Engineered Gold Nanoparticles after Intravenous Administration. *Metallomics* 2015, 7, 516–524.
- (21) Chen, Q.; Wang, H.; Liu, H.; Wen, S.; Peng, C.; Shen, M.; Zhang, G.; Shi, X. Multifunctional Dendrimer-Entrapped Gold Nanoparticles Modified with RGD Peptide for Targeted Computed Tomography/Magnetic Resonance Dual-Modal Imaging of Tumors. *Anal. Chem.* 2015, 87, 3949– 3956.
- Balogh, L.; Nigavekar, S. S.; Nair, B. M.; Lesniak, W.; Zhang, C.; Sung, L. Y.; Kariapper, M. S. T.; El-Jawahri, A.; Llanes, M.; Bolton, B.; Mamou, F.; Tan, W.; Hutson, A.; Minc, L.; Khan, M. K. Significant Effect of Size on the *In Vivo* Biodistribution of Gold Composite Nanodevices in Mouse Tumor Models. *Nanomedicine (N. Y., NY, U. S.)* 2007, *3*, 281–296.
- (23) Poon, W.; Zhang, X.; Bekah, D.; Teodoro, J. G.; Nadeau, J. L. Targeting B16 Tumors In Vivo

with Peptide-Conjugated Gold Nanoparticles. Nanotechnology 2015, 26, 285101.

- (24) Chen, W. H.; Yang, C. X.; Qiu, W. X.; Luo, G. F.; Jia, H. Z.; Lei, Q.; Wang, X. Y.; Liu, G.; Zhuo, R. X.; Zhang, X. Z. Multifunctional Theranostic Nanoplatform for Cancer Combined Therapy Based on Gold Nanorods. *Adv. Healthcare Mater.* 2015, *4*, 2247–2259.
- (25) Elbialy, N. S.; Fathy, M. M.; Khalil, W. M. Doxorubicin Loaded Magnetic Gold Nanoparticles for *In Vivo* Targeted Drug Delivery. *Int. J. Pharm. (Amsterdam, Neth.)* 2015, 490, 190–199.
- (26) Robinson, R.; Gerlach, W.; Ghandehari, H. Comparative Effect of Gold Nanorods and Nanocages for Prostate Tumor Hyperthermia. J. Controlled Release 2015, 220, 245–252.
- (27) Camerin, M.; Moreno, M.; Marín, M. J.; Schofield, C. L.; Chambrier, I.; Cook, M. J.; Coppellotti,
 O.; Jori, G.; Russell, D. A. Delivery of a Hydrophobic Phthalocyanine Photosensitizer Using
 PEGylated Gold Nanoparticle Conjugates for the *In Vivo* Photodynamic Therapy of Amelanotic
 Melanoma. *Photochem. Photobiol. Sci.* 2016, *15*, 618–625.
- (28) Yang, M.; Cheng, K.; Qi, S.; Liu, H.; Jiang, Y.; Jiang, H.; Li, J.; Chen, K.; Zhang, H.; Cheng, Z. Affibody Modified and Radiolabeled Gold-Iron Oxide Hetero-Nanostructures for Tumor PET, Optical and MR Imaging. *Biomaterials* **2013**, *34*, 2796–2806.
- (29) Zolata, H.; Abbasi Davani, F.; Afarideh, H. Synthesis, Characterization and Theranostic Evaluation of Indium-111 Labeled Multifunctional Superparamagnetic Iron Oxide Nanoparticles. *Nucl. Med. Biol.* 2015, *42*, 164–170.
- Behnam Azad, B.; Banerjee, S. R.; Pullambhatla, M.; Lacerda, S.; Foss, C. A.; Wang, Y.; Ivkov,
 R.; Pomper, M. G. Evaluation of a PSMA-Targeted BNF Nanoparticle Construct. *Nanoscale* 2015, 7, 4432–4442.
- (31) Yang, X.; Hong, H.; Grailer, J. J.; Rowland, I. J.; Javadi, A.; Hurley, S. A.; Xiao, Y.; Yang, Y.; Zhang, Y.; Nickles, R. J.; Cai, W.; Steeber, D. A.; Gong, S. CRGD-Functionalized, DOX-Conjugated, and ⁶⁴Cu-Labeled Superparamagnetic Iron Oxide Nanoparticles for Targeted

Anticancer Drug Delivery and PET/MR Imaging. Biomaterials 2011, 32, 4151–4160.

- (32) Quan, Q.; Xie, J.; Gao, H.; Yang, M.; Zhang, F.; Liu, G.; Lin, X.; Wang, A.; Eden, H. S.; Lee, S.; Zhang, G.; Chen, X. HSA Coated Iron Oxide Nanoparticles as Drug Delivery Vehicles for Cancer Therapy. *Mol. Pharmaceutics* **2011**, *8*, 1669–1676.
- (33) DeNardo, S. J.; DeNardo, G. L.; Natarajan, A.; Miers, L. A.; Foreman, A. R.; Gruettner, C.;
 Adamson, G. N.; Ivkov, R. Thermal Dosimetry Predictive of Efficacy of 111In-ChL6
 Nanoparticle AMF-Induced Thermoablative Therapy for Human Breast Cancer in Mice. *J. Nucl. Med.* 2007, 48, 437–444.
- (34) Kanazaki, K.; Sano, K.; Makino, A.; Shimizu, Y.; Yamauchi, F.; Ogawa, S.; Ding, N.; Yano, T.; Temma, T.; Ono, M.; Saji, H. Development of Anti-HER2 Fragment Antibody Conjugated to Iron Oxide Nanoparticles for *In Vivo* HER2-Targeted Photoacoustic Tumor Imaging. *Nanomedicine* (*N. Y., NY, U. S.*) 2015, *11*, 2051–2060.
- (35) Chakravarty, R.; Goel, S.; Hong, H.; Chen, F.; Valdovinos, H. F.; Hernandez, R.; Barnhart, T. E.;
 Cai, W. Hollow Mesoporous Silica Nanoparticles for Tumor Vasculature Targeting and PET Image-Guided Drug Delivery. *Nanomedicine (London, U. K.)* 2015, *10*, 1233–1246.
- (36) Chen, M.; Fang, X.; Tang, S.; Zheng, N. Polypyrrole Nanoparticles for High-Performance *In Vivo* Near-Infrared Photothermal Cancer Therapy. *Chem. Commun. (Cambridge, U. K.)* 2012, 48, 8934–8936.
- (37) Goel, S.; Chen, F.; Hong, H.; Valdovinos, H. F.; Hernandez, R.; Shi, S.; Barnhart, T. E.; Cai, W. VEGF₁₂₁-Conjugated Mesoporous Silica Nanoparticle: A Tumor Targeted Drug Delivery System. *ACS Appl. Mater. Interfaces* **2014**, *6*, 21677–21685.
- (38) Chen, F.; Hong, H.; Shi, S.; Goel, S.; Valdovinos, H. F.; Hernandez, R.; Theuer, C. P.; Barnhart, T. E.; Cai, W. Engineering of Hollow Mesoporous Silica Nanoparticles for Remarkably Enhanced Tumor Active Targeting Efficacy. *Sci. Rep.* 2014, *4*, 5080.

- (39) Chen, F.; Nayak, T. R.; Goel, S.; Valdovinos, H. F.; Hong, H.; Theuer, C. P.; Barnhart, T. E.; Cai,
 W. *In Vivo* Tumor Vasculature Targeted PET/NIRF Imaging with TRC105(Fab)-Conjugated,
 Dual-Labeled Mesoporous Silica Nanoparticles. *Mol. Pharmaceutics* 2014, *11*, 4007–4014.
- (40) Benezra, M.; Penate-Medina, O.; Zanzonico, P. B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S.; Wolchok, J.; Larson, S. M.; Wiesner, U.; Bradbury, M. S. Multimodal Silica Nanoparticles Are Effective Cancer-Targeted Probes in a Model of Human Melanoma Find the Latest Version : Technical Advance Multimodal Silica Nanoparticles Are Effective Cancer-Targeted Probes in a Model of Human Melanoma. *J. Clin. Invest.* 2011, *121*, 2768–2780.
- (41) Chen, F.; Hong, H.; Zhang, Y.; Valdovinos, H. F.; Shi, S.; Kwon, G. S.; Theuer, C. P.; Barnhart, T. E.; Cai, W. *In Vivo* Tumor Targeting and Image-Guided Drug Delivery with Antibody-Conjugated, Radiolabeled Mesoporous Silica Nanoparticles. *ACS Nano* 2013, *7*, 9027–9039.
- (42) Huo, M.; Wang, L.; Chen, Y.; Shi, J. Tumor-Selective Catalytic Nanomedicine by Nanocatalyst Delivery. *Nat. Commun.* 2017, *8*, 357.
- (43) Xue, H.; Yu, Z.; Liu, Y.; Yuan, W.; Yang, T.; You, J.; He, X.; Lee, R. J.; Li, L.; Xu, C. Delivery of MiR-375 and Doxorubicin Hydrochloride by Lipid-Coated Hollow Mesoporous Silica Nanoparticles to Overcome Multiple Drug Resistance in Hepatocellular Carcinoma. *Int. J. Nanomed.* 2017, *12*, 5271–5287.
- Kong, M.; Tang, J.; Qiao, Q.; Wu, T.; Qi, Y.; Tan, S.; Gao, X.; Zhang, Z. Biodegradable Hollow Mesoporous Silica Nanoparticles for Regulating Tumor Microenvironment and Enhancing Antitumor Efficiency. *Theranostics* 2017, *7*, 3276–3292.
- (45) Su, J.; Sun, H.; Meng, Q.; Zhang, P.; Yin, Q.; Li, Y. Enhanced Blood Suspensibility and Laser-Activated Tumor-Specific Drug Release of Theranostic Mesoporous Silica Nanoparticles by Functionalizing with Erythrocyte Membranes. *Theranostics* 2017, *7*, 523–537.

- (46) Hou, J.; Guo, C.; Shi, Y.; Liu, E.; Dong, W.; Yu, B.; Liu, S.; Gong, J. A Novel High Drug Loading Mussel-Inspired Polydopamine Hybrid Nanoparticle as a pH-Sensitive Vehicle for Drug Delivery. *Int. J. Pharm. (Amsterdam, Neth.)* 2017, *533*, 73–83.
- (47) Ansari, L.; Jaafari, M. R.; Bastami, T. R.; Malaekeh-Nikouei, B. Improved Anticancer Efficacy of Epirubicin by Magnetic Mesoporous Silica Nanoparticles: *In Vitro* and *In Vivo* Studies. *Artif. Cells, Nanomed., Biotechnol.* **2018**, *46*, 594–606.
- (48) Wu, F.; Zhang, M.; Lu, H.; Liang, D.; Huang, Y.; Xia, Y.; Hu, Y.; Hu, S.; Wang, J.; Yi, X.; Zhang, J. Triple Stimuli-Responsive Magnetic Hollow Porous Carbon-Based Nanodrug Delivery System for Magnetic Resonance Imaging-Guided Synergistic Photothermal/Chemotherapy of Cancer. *ACS Appl. Mater. Interfaces* 2018, *10*, 21939–21949.
- (49) Cheng, X.; Li, D.; Lin, A.; Xu, J.; Wu, L.; Gu, H.; Huang, Z.; Liu, J.; Zhang, Y.; Yin, X. Fabrication of Multifunctional Triple-Responsive Platform Based on CuS-Capped Periodic Mesoporous Organosilica Nanoparticles for Chemo-Photothermal Therapy. *Int. J. Nanomed.* 2018, *13*, 3661–3677.
- (50) Hu, H.; Dai, A.; Sun, J.; Li, X.; Gao, F.; Wu, L.; Fang, Y.; Yang, H.; An, L.; Wu, H.; Yang, S. Aptamer-Conjugated Mn₃O₄@SiO₂ Core-Shell Nanoprobes for Targeted Magnetic Resonance Imaging. *Nanoscale* **2013**, *5*, 10447–10454.
- Lee, J.; Lee, T. S.; Ryu, J.; Hong, S.; Kang, M.; Im, K.; Kang, J. H.; Lim, S. M.; Park, S.; Song,
 R. RGD Peptide-Conjugated Multimodal NaGdF4:Yb3+/Er3+ Nanophosphors for Upconversion
 Luminescence, MR, and PET Imaging of Tumor Angiogenesis. *J. Nucl. Med.* 2013, *54*, 96–103.
- Yu, J.; Yin, W.; Zheng, X.; Tian, G.; Zhang, X.; Bao, T.; Dong, X.; Wang, Z.; Gu, Z.; Ma, X.;
 Zhao, Y. Smart MoS₂/Fe₃O₄ Nanotheranostic for Magnetically Targeted Photothermal Therapy
 Guided by Magnetic Resonance/Photoacoustic Imaging. *Theranostics* 2015, *5*, 931–945.
- (53) Mi, P.; Kokuryo, D.; Cabral, H.; Kumagai, M.; Nomoto, T.; Aoki, I.; Terada, Y.; Kishimura, A.;

Nishiyama, N.; Kataoka, K. Hydrothermally Synthesized PEGylated Calcium Phosphate Nanoparticles Incorporating Gd-DTPA for Contrast Enhanced MRI Diagnosis of Solid Tumors. *J. Controlled Release* **2014**, *174*, 63–71.

- Huang, H.; Yue, T.; Xu, K.; Golzarian, J.; Yu, J.; Huang, J. Fabrication and Evaluation of Tumor-Targeted Positive MRI Contrast Agent Based on Ultrasmall MnO Nanoparticles. *Colloids Surf.*, *B* 2015, *131*, 148–154.
- (55) Shi, S.; Fliss, B. C.; Gu, Z.; Zhu, Y.; Hong, H.; Valdovinos, H. F.; Hernandez, R.; Goel, S.; Luo, H.; Chen, F.; Barnhart, T. E.; Nickles, R. J.; Xu, Z. P.; Cai, W. Chelator-Free Labeling of Layered Double Hydroxide Nanoparticles for *In Vivo* PET Imaging. *Sci. Rep.* 2015, *5*, 16930.
- Liu, L. X.; Li, B. X.; Wang, Q. Y.; Dong, Z. P.; Li, H. M.; Jin, Q. M.; Hong, H.; Zhang, J.; Wang,
 Y. An Integrative Folate-Based Metal Complex Nanotube as a Potent Antitumor Nanomedicine as well as an Efficient Tumor-Targeted Drug Carrier. *Bioconjugate Chem.* 2016, 27, 2863–2873.
- (57) Shi, J.; Chen, Z.; Wang, L.; Wang, B.; Xu, L.; Hou, L.; Zhang, Z. A Tumor-Specific Cleavable Nanosystem of PEG-Modified C60@Au Hybrid Aggregates for Radio Frequency-Controlled Release, Hyperthermia, Photodynamic Therapy and X-Ray Imaging. *Acta Biomater.* 2016, 29, 282–297.
- (58) Li, Z.; Hu, Y.; Howard, K. A. A.; Jiang, T.; Fan, X.; Miao, Z.; Sun, Y.; Besenbacher, F.; Yu, M. Multifunctional Bismuth Selenide Nanocomposites for Antitumor Thermo-Chemotherapy and Imaging. ACS Nano 2016, 10, 984–997.
- (59) Dewi, N.; Mi, P.; Yanagie, H.; Sakurai, Y.; Morishita, Y.; Yanagawa, M.; Nakagawa, T.; Shinohara, A.; Matsukawa, T.; Yokoyama, K.; Cabral, H.; Suzuki, M.; Sakurai, Y.; Tanaka, H.; Ono, K.; Nishiyama, N.; Kataoka, K.; Takahashi, H. *In Vivo* Evaluation of Neutron Capture Therapy Effectivity Using Calcium Phosphate-Based Nanoparticles as Gd-DTPA Delivery Agent. *J. Cancer Res. Clin. Oncol.* 2016, *142*, 767–775.

- (60) Gao, Z.; Nakanishi, Y.; Noda, S.; Omachi, H.; Shinohara, H.; Kimura, H.; Nagasaki, Y. Development of Gd₃N@C₈₀ Encapsulated Redox Nanoparticles for High-Performance Magnetic Resonance Imaging. *J. Biomater. Sci., Polym. Ed.* **2017**, *28*, 1036–1050.
- (61) Hou, L.; Shan, X.; Hao, L.; Feng, Q.; Zhang, Z. Copper Sulfide Nanoparticle-Based Localized Drug Delivery System as an Effective Cancer Synergistic Treatment and Theranostic Platform. *Acta Biomater.* 2017, 54, 307–320.
- (62) Yu, H.; Tang, Z.; Zhang, D.; Song, W.; Zhang, Y.; Yang, Y.; Ahmad, Z.; Chen, X. Pharmacokinetics, Biodistribution and *In Vivo* Efficacy of Cisplatin Loaded Poly(L-Glutamic Acid)-g-Methoxy Poly(Ethylene Glycol) Complex Nanoparticles for Tumor Therapy. *J. Controlled Release* 2015, 205, 89–97.
- (63) Guo, J.; Hong, H.; Chen, G.; Shi, S.; Zheng, Q.; Zhang, Y.; Theuer, C. P.; Barnhart, T. E.; Cai, W.; Gong, S. Image-Guided and Tumor-Targeted Drug Delivery with Radiolabeled Unimolecular Micelles. *Biomaterials* 2013, *34*, 8323–8332.
- (64) Shi, Y.; van der Meel, R.; Theek, B.; Oude Blenke, E.; Pieters, E. H. E.; Fens, M. H. A. M.; Ehling, J.; Schiffelers, R. M.; Storm, G.; van Nostrum, C. F.; Lammers, T.; Hennink, W. E. Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel *via* ∏ ∏ Stacking Stabilized Polymeric Micelles. *ACS Nano* 2015, *9*, 3740–3752.
- (65) Chen, Y.; Zhang, W.; Huang, Y.; Gao, F.; Sha, X.; Fang, X. Pluronic-Based Functional Polymeric Mixed Micelles for Co-Delivery of Doxorubicin and Paclitaxel to Multidrug Resistant Tumor. *Int. J. Pharm. (Amsterdam, Neth.)* 2015, 488, 44–58.
- (66) Ding, M.; Song, N.; He, X.; Li, J.; Zhou, L.; Tan, H.; Fu, Q.; Gu, Q. Toward the Next-Generation Nanomedicines: Design of Multifunctional Multiblock Polyurethanes for Effective Cancer Treatment. ACS Nano 2013, 7, 1918–1928.
- (67) Chu, K. S.; Hasan, W.; Rawal, S.; Walsh, M. D.; Enlow, E. M.; Luft, J. C.; Bridges, A. S.; Kuijer,

J. L.; Napier, M. E.; Zamboni, W. C.; DeSimone, J. M. Plasma, Tumor and Tissue Pharmacokinetics of Docetaxel Delivered *via* Nanoparticles of Different Sizes and Shapes in Mice Bearing SKOV-3 Human Ovarian Carcinoma Xenograft. *Nanomedicine (N. Y., NY, U. S.)* **2013**, *9*, 686–693.

- (68) Chu, K. S.; Schorzman, A. N.; Finniss, M. C.; Bowerman, C. J.; Peng, L.; Luft, J. C.; Madden, A. J.; Wang, A. Z.; Zamboni, W. C.; DeSimone, J. M. Nanoparticle Drug Loading as a Design Parameter to Improve Docetaxel Pharmacokinetics and Efficacy. *Biomaterials* 2013, *34*, 8424–8429.
- (69) Ma, Y.; Sadoqi, M.; Shao, J. Biodistribution of Indocyanine Green-Loaded Nanoparticles with Surface Modifications of PEG and Folic Acid. *Int. J. Pharm. (Amsterdam, Neth.)* 2012, 436, 25– 31.
- (70) Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M.; Nishiyama, N.; Kataoka, K. Accumulation of Sub-100 nm Polymeric Micelles in Poorly Permeable Tumours Depends on Size. *Nat. Nanotechnol.* 2011, *6*, 815–823.
- (71) Guo, X.; Shi, C.; Wang, J.; Di, S.; Zhou, S. pH-Triggered Intracellular Release from Actively Targeting Polymer Micelles. *Biomaterials* 2013, 34, 4544–4554.
- (72) Sumitani, S.; Oishi, M.; Nagasaki, Y. Carborane Confined Nanoparticles for Boron Neutron Capture Therapy: Improved Stability, Blood Circulation Time and Tumor Accumulation. *React. Funct. Polym.* 2011, 71, 684–693.
- (73) Bae, Y.; Nishiyama, N.; Kataoka, K. *In Vivo* Antitumor Activity of the Folate-Conjugated pH-Sensitive Polymeric Micelle Selectively Releasing Adriamycin in the Intracellular Acidic Compartments. *Bioconjugate Chem.* 2007, 18, 1131–1139.
- (74) Cabral, H.; Nishiyama, N.; Okazaki, S.; Koyama, H.; Kataoka, K. Preparation and Biological

Properties of Dichloro(1,2-Diaminocyclohexane) Platinum(II) (DACHPt)-Loaded Polymeric Micelles. *J. Controlled Release* **2005**, *101*, 223–232.

- Bibby, D. C.; Talmadge, J. E.; Dalal, M. K.; Kurz, S. G.; Chytil, K. M.; Barry, S. E.; Shand, D. G.; Steiert, M. Pharmacokinetics and Biodistribution of RGD-Targeted Doxorubicin-Loaded Nanoparticles in Tumor-Bearing Mice. *Int. J. Pharm. (Amsterdam, Neth.)* 2005, 293, 281–290.
- (76) Bae, Y.; Nishiyama, N.; Fukushima, S.; Koyama, H.; Yasuhiro, M.; Kataoka, K. Preparation and Biological Characterization of Polymeric Micelle Drug Carriers with Intracellular pH-Triggered Drug Release Property: Tumor Permeability, Controlled Subcellular Drug Distribution, and Enhanced *In Vivo* Antitumor Efficacy. *Bioconjugate Chem.* 2005, *16*, 122–130.
- (77) Sasatsu, M.; Onishi, H.; Machida, Y. Preparation and Biodisposition of Methoxypolyethylene Glycol Amine-Poly(_{DL}-Lactic Acid) Copolymer Nanoparticles Loaded with Pyrene-Ended Poly(_{DL}-Lactic Acid). *Int. J. Pharm. (Amsterdam, Neth.)* **2008**, *358*, 271–277.
- (78) Rossin, R.; Pan, D.; Qi, K.; Turner, J. L.; Sun, X.; Wooley, K. L.; Welch, M. J. Radiotherapy:
 Synthesis, Radiolabeling, and Biologic Evaluation. *Blood Vessels* 2005, 46, 1210–1218.
- Mondal, N.; Halder, K. K.; Kamila, M. M.; Debnath, M. C.; Pal, T. K.; Ghosal, S. K.; Sarkar, B.
 R.; Ganguly, S. Preparation, Characterization, and Biodistribution of Letrozole Loaded PLGA
 Nanoparticles in Ehrlich Ascites Tumor Bearing Mice. *Int. J. Pharm. (Amsterdam, Neth.)* 2010, 397, 194–200.
- (80) He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of Particle Size and Surface Charge on Cellular
 Uptake and Biodistribution of Polymeric Nanoparticles. *Biomaterials* 2010, *31*, 3657–3666.
- (81) Cabral, H.; Nishiyama, N.; Kataoka, K. Optimization of (1,2-Diamino-Cyclohexane)Platinum(II)-Loaded Polymeric Micelles Directed to Improved Tumor Targeting and Enhanced Antitumor Activity. *J. Controlled Release* 2007, *121*, 146–155.
- (82) Pathak, A.; Kumar, P.; Chuttani, K.; Jain, S.; Mishra, A. K.; Vyas, S. P.; Gupta, K. C. Gene

Expression, Biodistribution, and Pharmacoscintigraphic Evaluation of Chondroitin Sulfate – PEI Nanoconstructs Mediated Tumor Gene Therapy. *ACS Nano* **2009**, *3*, 1493–1505.

- (83) Shi, S.; Yang, K.; Hong, H.; Valdovinos, H. F.; Nayak, T. R.; Zhang, Y.; Theuer, C. P.; Barnhart, T. E.; Liu, Z.; Cai, W. Tumor Vasculature Targeting and Imaging in Living Mice with Reduced Graphene Oxide. *Biomaterials* 2013, *34*, 3002–3009.
- (84) Hong, H.; Yang, K.; Zhang, Y.; Engle, J. W.; Feng, L.; Yang, Y.; Nayak, T. R.; Goel, S.; Bean, J.; Theuer, C. P.; Barnhart, T. E.; Liu, Z.; Cai, W. *In Vivo* Targeting and Imaging of Tumor Vasculature with Radiolabeled, Antibody-Conjugated Nanographene. *ACS Nano* 2012, *6*, 2361–2370.
- (85) Xu, H.; Fan, M.; Elhissi, A. M. A.; Zhang, Z.; Wan, K. W.; Ahmed, W.; Phoenix, D. A.; Sun, X.
 PEGylated Graphene Oxide for Tumor-Targeted Delivery of Paclitaxel. *Nanomedicine (London, U. K.)* 2015, *10*, 1247–1262.
- (86) Shi, S.; Yang, K.; Hong, H.; Chen, F.; Valdovinos, H. F.; Goel, S.; Barnhart, T. E.; Liu, Z.; Cai,
 W. VEGFR Targeting Leads to Significantly Enhanced Tumor Uptake of Nanographene Oxide *In Vivo. Biomaterials* 2015, *39*, 39–46.
- (87) Hong, H.; Zhang, Y.; Engle, J. W.; Nayak, T. R.; Theuer, C. P.; Nickles, R. J.; Barnhart, T. E.; Cai, W. *In Vivo* Targeting and Positron Emission Tomography Imaging of Tumor Vasculature with ⁶⁶Ga-Labeled Nano-Graphene. *Biomaterials* **2012**, *33*, 4147–4156.
- (88) Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H. In Vivo Biodistribution and Highly Efficient Tumour Targeting of Carbon Nanotubes in Mice. Nat. Nanotechnol. 2007, 2, 47–52.
- (89) Ekdawi, S. N.; Stewart, J. M. P.; Dunne, M.; Stapleton, S.; Mitsakakis, N.; Dou, Y. N.; Jaffray,
 D. A.; Allen, C. Spatial and Temporal Mapping of Heterogeneity in Liposome Uptake and
 Microvascular Distribution in an Orthotopic Tumor Xenograft Model. *J. Controlled Release* 2015,

207, 101–111.

- (90) Song, G.; Darr, D. B.; Santos, C. M.; Ross, M.; Valdivia, A.; Jordan, J. L.; Midkiff, B. R.; Cohen, S.; Nikolaishvili-Feinberg, N.; Miller, C. R.; Tarrant, T. K.; Rogers, A. B.; Dudley, A. C.; Perou, C. M.; Zamboni, W. C. Effects of Tumor Microenvironment Heterogeneity on Nanoparticle Disposition and Efficacy in Breast Cancer Tumor Models. *Clin. Cancer Res.* 2014, *20*, 6083–6095.
- (91) Negi, L. M.; Talegaonkar, S.; Jaggi, M.; Verma, A. K.; Verma, R.; Dobhal, S.; Kumar, V. Surface Engineered Nanostructured Lipid Carriers for Targeting MDR Tumor: Part II. *In Vivo* Biodistribution, Pharmacodynamic and Hematological Toxicity Studies. *Colloids Surf.*, *B* 2014, *123*, 610–615.
- (92) Wong, A. W.; Ormsby, E.; Zhang, H.; Seo, J. W.; Mahakian, L. M.; Caskey, C. F.; Ferrara, K. W. A Comparison of Image Contrast with ⁶⁴Cu-Labeled Long Circulating Liposomes and ¹⁸F-FDG in a Murine Model of Mammary Carcinoma. *Am. J. Nucl. Med. Mol. Imaging* **2013**, *3*, 32–43.
- (93) Hirsjärvi, S.; Sancey, L.; Dufort, S.; Belloche, C.; Vanpouille-Box, C.; Garcion, E.; Coll, J. L.;
 Hindré, F.; Benoiî, J. P. Effect of Particle Size on the Biodistribution of Lipid Nanocapsules:
 Comparison between Nuclear and Fluorescence Imaging and Counting. *Int. J. Pharm.*(*Amsterdam, Neth.*) 2013, 453, 594–600.
- (94) Miyajima, Y.; Nakamura, H.; Kuwata, Y.; Lee, J.-D.; Masunaga, S.; Ono, K.; Maruyama, K. Transferrin-Loaded Nido-Carborane Liposomes: Tumor-Targeting Boron Delivery System for Neutron Capture Therapy. *Bioconjugate Chem.* 2006, 17, 1314–1320.
- (95) Khalid, M. N.; Simard, P.; Hoarau, D.; Dragomir, A.; Leroux, J. C. Long Circulating Poly(Ethylene Glycol)-Decorated Lipid Nanocapsules Deliver Docetaxel to Solid Tumors. *Pharm. Res.* 2006, 23, 752–758.
- (96) Paolino, D.; Cosco, D.; Racanicchi, L.; Trapasso, E.; Celia, C.; Iannone, M.; Puxeddu, E.;

Costante, G.; Filetti, S.; Russo, D.; Fresta, M. Gemcitabine-Loaded PEGylated Unilamellar Liposomes *vs* GEMZAR[®]: Biodistribution, Pharmacokinetic Features and *In Vivo* Antitumor Activity. *J. Controlled Release* **2010**, *144*, 144–150.

- (97) Zamboni, W. C.; Strychor, S.; Joseph, E.; Walsh, D. R.; Zamboni, B. A.; Parise, R. A.; Tonda, M. E.; Yu, N. Y.; Engbers, C.; Eiseman, J. L. Plasma, Tumor, and Tissue Disposition of STEALTH Liposomal CKD-602 (S-CKD602) and Nonliposomal CKD-602 in Mice Bearing A375 Human Melanoma Xenografts. *Clin. Cancer Res.* 2007, *13*, 7217–7223.
- (98) Han, X.; Li, Z.; Sun, J.; Luo, C.; Li, L.; Liu, Y.; Du, Y.; Qiu, S.; Ai, X.; Wu, C.; Lian, H.; He, Z. Stealth CD44-Targeted Hyaluronic Acid Supramolecular Nanoassemblies for Doxorubicin Delivery: Probing the Effect of Uncovalent Pegylation Degree on Cellular Uptake and Blood Long Circulation. *J. Controlled Release* 2015, *197*, 29–40.
- (99) Yang, C.; Wang, X.; Yao, X.; Zhang, Y.; Wu, W.; Jiang, X. Hyaluronic Acid Nanogels with Enzyme-Sensitive Cross-Linking Group for Drug Delivery. J. Controlled Release 2015, 205, 206–217.
- (100) Wu, W.; Yao, W.; Wang, X.; Xie, C.; Zhang, J.; Jiang, X. Bioreducible Heparin-Based Nanogel Drug Delivery System. *Biomaterials* 2015, *39*, 260–268.
- (101) Wang, X.; Yang, C.; Zhang, Y.; Zhen, X.; Wu, W.; Jiang, X. Delivery of Platinum(IV) Drug to Subcutaneous Tumor and Lung Metastasis Using Bradykinin-Potentiating Peptide-Decorated Chitosan Nanoparticles. *Biomaterials* 2014, 35, 6439–6453.
- (102) Ganesh, S.; Iyer, A. K.; Gattacceca, F.; Morrissey, D. V.; Amiji, M. M. In Vivo Biodistribution of siRNA and Cisplatin Administered Using CD44-Targeted Hyaluronic Acid Nanoparticles. J. Controlled Release 2013, 172, 699–706.
- (103) Xu, J.; Gattacceca, F.; Amiji, M. Biodistribution and Pharmacokinetics of EGFR-Targeted Thiolated Gelatin Nanoparticles Following Systemic Administration in Pancreatic Tumor-

Bearing Mice. Mol. Pharmaceutics 2013, 10, 2031–2044.

- (104) Cheng, Y.; Yu, S.; Zhen, X.; Wang, X.; Wu, W.; Jiang, X. Alginic Acid Nanoparticles Prepared through Counterion Complexation Method as a Drug Delivery System. ACS Appl. Mater. Interfaces 2012, 4, 5325–5332.
- (105) Qian, H.; Wang, X.; Yuan, K.; Xie, C.; Wu, W.; Jiang, X.; Hu, L. Delivery of Doxorubicin In Vitro and In Vivo Using Bio-Reductive Cellulose Nanogels. Biomater. Sci. 2014, 2, 220–232.
- (106) Sadekar, S.; Ray, A.; Janàt-Amsbury, M.; Peterson, C. M.; Ghandehari, H. Comparative Biodistribution of PAMAM Dendrimers and HPMA Copolymers in Ovarian-Tumor-Bearing Mice. *Biomacromolecules* 2011, *12*, 88–96.
- (107) Okuda, T.; Kawakami, S.; Akimoto, N.; Niidome, T.; Yamashita, F.; Hashida, M. PEGylated Lysine Dendrimers for Tumor-Selective Targeting after Intravenous Injection in Tumor-Bearing Mice. J. Controlled Release 2006, 116, 330–336.
- (108) Kukowska-Latallo, J. F.; Candido, K. A.; Cao, Z.; Nigavekar, S. S.; Majoros, I. J.; Thomas, T. P.; Balogh, L. P.; Khan, M. K.; Baker, J. R. Nanoparticle Targeting of Anticancer Drug Improves Therapeutic Response in Animal Model of Human Epithelial Cancer. *Cancer Res.* 2005, 65, 5317–5324.
- (109) Sadekar, S.; Linares, O.; Noh, G. J.; Hubbard, D.; Ray, A.; Janát-Amsbury, M.; Peterson, C. M.;
 Facelli, J.; Ghandehari, H. Comparative Pharmacokinetics of PAMAM-OH Dendrimers and HPMA Copolymers in Ovarian Tumor-Bearing Mice. *Drug Delivery Transl. Res.* 2013, *3*, 260–271.
- (110) Wu, M.; Shi, J.; Fan, D.; Zhou, Q.; Wang, F.; Niu, Z.; Huang, Y. Biobehavior in Normal and Tumor-Bearing Mice of Tobacco Mosaic Virus. *Biomacromolecules* **2013**, *14*, 4032–4037.
- (111) Tian, B.; Zhang, X.; Yu, C.; Zhou, M.; Zhang, X. The Aspect Ratio Effect of Drug Nanocrystals on Cellular Internalization Efficiency, Uptake Mechanisms, and *In Vitro* and *In Vivo* Anticancer

Efficiencies. Nanoscale 2015, 7, 3588–3593.

- (112) Kim, J. H.; Kim, Y.; Bae, K. H.; Park, T. G.; Lee, J. H.; Park, K. Tumor-Targeted Delivery of Paclitaxel Using Low Density Lipoprotein-Mimetic Solid Lipid Nanoparticles. *Mol. Pharmaceutics* 2015, *12*, 1230–1241.
- (113) Harivardhan Reddy, L.; Sharma, R. K.; Chuttani, K.; Mishra, A. K.; Murthy, R. S. R. Influence of Administration Route on Tumor Uptake and Biodistribution of Etoposide Loaded Solid Lipid Nanoparticles in Dalton's Lymphoma Tumor Bearing Mice. *J. Controlled Release* 2005, *105*, 185–198.
- (114) Agrawal, U.; Chashoo, G.; Sharma, P. R.; Kumar, A.; Saxena, A. K.; Vyas, S. P. Tailored Polymer-Lipid Hybrid Nanoparticles for the Delivery of Drug Conjugate: Dual Strategy for Brain Targeting. *Colloids Surf.*, *B* 2015, *126*, 414–425.
- (115) Alibolandi, M.; Sadeghi, F.; Abnous, K.; Atyabi, F.; Ramezani, M.; Hadizadeh, F. The Chemotherapeutic Potential of Doxorubicin-Loaded PEG-*b*-PLGA Nanopolymersomes in Mouse Breast Cancer Model. *Eur. J. Pharm. Biopharm.* **2015**, *94*, 521–531.
- (116) Dalela, M.; Shrivastav, T. G.; Kharbanda, S.; Singh, H. pH-Sensitive Biocompatible Nanoparticles of Paclitaxel-Conjugated Poly(Styrene-Co-Maleic Acid) for Anticancer Drug Delivery in Solid Tumors of Syngeneic Mice. ACS Appl. Mater. Interfaces 2015, 7, 26530–26548.
- (117) Du, X. J.; Wang, J. L.; Liu, W. W.; Yang, J. X.; Sun, C. Y.; Sun, R.; Li, H. J.; Shen, S.; Luo, Y. L.; Ye, X. D.; Zhu, Y. H.; Yang, X. Z.; Wang, J. Regulating the Surface Poly(Ethylene Glycol) Density of Polymeric Nanoparticles and Evaluating Its Role in Drug Delivery *In Vivo. Biomaterials* 2015, 69, 1–11.
- (118) He, Z.; Huang, J.; Xu, Y.; Zhang, X.; Teng, Y.; Huang, C.; Wu, Y.; Zhang, X.; Zhang, H.; Sun,
 W. Co-Delivery of Cisplatin and Paclitaxel by Folic Acid Conjugated Amphiphilic PEG-PLGA
 Copolymer Nanoparticles for the Treatment of Non-Small Lung Cancer. *Oncotarget* 2015, 6,

42150-42168.

- (119) He, C.; Liu, D.; Lin, W. Self-Assembled Core-Shell Nanoparticles for Combined Chemotherapy and Photodynamic Therapy of Resistant Head and Neck Cancers. *ACS Nano* **2015**, *9*, 991–1003.
- (120) Kudo, S.; Nagasaki, Y. A Novel Nitric Oxide-Based Anticancer Therapeutics by Macrophage-Targeted Poly(L-Arginine)-Based Nanoparticles. *J. Controlled Release* **2015**, *217*, 256–262.
- (121) Li, M.; Tang, Z.; Zhang, Y.; Lv, S.; Li, Q.; Chen, X. Targeted Delivery of Cisplatin by LHRH-Peptide Conjugated Dextran Nanoparticles Suppresses Breast Cancer Growth and Metastasis. *Acta Biomater.* 2015, 18, 132–143.
- (122) Mastria, E. M.; Chen, M.; McDaniel, J. R.; Li, X.; Hyun, J.; Dewhirst, M. W.; Chilkoti, A. Doxorubicin-Conjugated Polypeptide Nanoparticles Inhibit Metastasis in Two Murine Models of Carcinoma. *J. Controlled Release* 2015, 208, 52–58.
- (123) Poon, C.; He, C.; Liu, D.; Lu, K.; Lin, W. Self-Assembled Nanoscale Coordination Polymers Carrying Oxaliplatin and Gemcitabine for Synergistic Combination Therapy of Pancreatic Cancer. *J. Controlled Release* 2015, 201, 90–99.
- (124) Yao, X.; Xie, C.; Chen, W.; Yang, C.; Wu, W.; Jiang, X. Platinum-Incorporating Poly(*N*-Vinylpyrrolidone)-Poly(Aspartic Acid) Pseudoblock Copolymer Nanoparticles for Drug Delivery. *Biomacromolecules* 2015, *16*, 2059–2071.
- (125) Wang, J.; Mao, W.; Lock, L. L.; Tang, J.; Sui, M.; Sun, W.; Cui, H.; Xu, D.; Shen, Y. The Role of Micelle Size in Tumor Accumulation, Penetration, and Treatment. *ACS Nano* 2015, *9*, 7195–7206.
- (126) Xiong, H.; Zhou, D.; Qi, Y.; Zhang, Z.; Xie, Z.; Chen, X.; Jing, X.; Meng, F.; Huang, Y. Doxorubicin-Loaded Carborane-Conjugated Polymeric Nanoparticles as Delivery System for Combination Cancer Therapy. *Biomacromolecules* **2015**, *16*, 3980–3988.
- (127) Starmans, L. W. E.; Hummelink, M. A. P. M.; Rossin, R.; Kneepkens, E. C. M.; Lamerichs, R.;

Donato, K.; Nicolay, K.; Grüll, H. ⁸⁹Zr- and Fe-Labeled Polymeric Micelles for Dual Modality PET and T₁-Weighted MR Imaging. *Adv. Healthcare Mater.* **2015**, *4*, 2137–2145.

- (128) Xu, P.; Meng, Q.; Sun, H.; Yin, Q.; Yu, H.; Zhang, Z.; Cao, M.; Zhang, Y.; Li, Y. Shrapnel Nanoparticles Loading Docetaxel Inhibit Metastasis and Growth of Breast Cancer. *Biomaterials* 2015, 64, 10–20.
- (129) Zhang, L.; Liu, F.; Li, G.; Zhou, Y.; Yang, Y. Twin-Arginine Translocation Peptide Conjugated Epirubicin-Loaded Nanoparticles for Enhanced Tumor Penetrating and Targeting. *J. Pharm. Sci.* (*Philadelphia, PA, U. S.*) 2015, *104*, 4185–4196.
- (130) Wei, H.; Xu, L.; Sun, Y.; Li, G.; Cui, Z.; Yan, G.; Chen, Q.; Yin, H.; Ma, C. Preliminary Pharmacokinetics of PEGylated Oxaliplatin Polylactic Acid Nanoparticles in Rabbits and Tumor-Bearing Mice. *Artif. Cells, Nanomed., Biotechnol.* **2015**, *43*, 258–262.
- (131) Zhang, W.; Sun, J.; Fang, W.; Ai, X.; Cai, C.; Tang, Y.; Su, X.; Feng, Z.; Liu, Y.; Tao, M.; Yan, X.; Chen, G.; He, Z. Nanomicelles Based on X-Shaped Four-Armed Peglyated Distearylglycerol as Long Circulating System for Doxorubicin Delivery. *Eur. J. Pharm. Sci.* 2015, *66*, 96–106.
- (132) Dai, Y.; Xing, H.; Song, F.; Yang, Y.; Qiu, Z.; Lu, X.; Liu, Q.; Ren, S.; Chen, X.; Li, N. Biotin-Conjugated Multilayer Poly [D,L-Lactide-Co-Glycolide]-Lecithin-Polyethylene Glycol Nanoparticles for Targeted Delivery of Doxorubicin. J. Pharm. Sci. (Philadelphia, PA, U. S.) 2016, 105, 2949–2958.
- (133) He, C.; Poon, C.; Chan, C.; Yamada, S. D.; Lin, W. Nanoscale Coordination Polymers Codeliver Chemotherapeutics and Sirnas to Eradicate Tumors of Cisplatin-Resistant Ovarian Cancer. J. Am. Chem. Soc. 2016, 138, 6010–6019.
- (134) Huang, P.; Liu, J.; Wang, W.; Zhang, Y.; Zhao, F.; Kong, D.; Liu, J.; Dong, A. Zwitterionic Nanoparticles Constructed from Bioreducible RAFT–ROP Double Head Agent for Shell Shedding Triggered Intracellular Drug Delivery. *Acta Biomater.* 2016, 40, 263–272.

- (135) Nascimento, A. V.; Gattacceca, F.; Singh, A.; Bousbaa, H.; Ferreira, D.; Sarmento, B.; Amiji, M.
 M. Biodistribution and Pharmacokinetics of Mad2 siRNA-Loaded EGFR-Targeted Chitosan Nanoparticles in Cisplatin Sensitive and Resistant Lung Cancer Models. *Nanomedicine (London, U. K.)* 2016, *11*, 767–781.
- (136) Chen, Y.; Xia, R.; Huang, Y.; Zhao, W.; Li, J.; Zhang, X.; Wang, P.; Venkataramanan, R.; Fan, J.; Xie, W.; Ma, X.; Lu, B.; Li, S. An Immunostimulatory Dual-Functional Nanocarrier That Improves Cancer Immunochemotherapy. *Nat. Commun.* 2016, *7*, 13443.
- (137) Tang, Z.; Zhang, L.; Wang, Y.; Li, D.; Zhong, Z.; Zhou, S. Redox-Responsive Star-Shaped Magnetic Micelles with Active-Targeted and Magnetic-Guided Functions for Cancer Therapy. *Acta Biomater.* 2016, 42, 232–246.
- (138) Liu, H.; Gao, M.; Xu, H.; Guan, X.; Lv, L.; Deng, S.; Zhang, C.; Tian, Y. A Promising Emodin-Loaded Poly (Lactic-*Co*-Glycolic Acid)-*d*-α-Tocopheryl Polyethylene Glycol 1000 Succinate Nanoparticles for Liver Cancer Therapy. *Pharm. Res.* **2016**, *33*, 217–236.
- (139) Qu, Q.; Wang, Y.; Zhang, L.; Zhang, X.; Zhou, S. A Nanoplatform with Precise Control over Release of Cargo for Enhanced Cancer Therapy. *Small* **2016**, *12*, 1378–1390.
- (140) Tomalova, B.; Sirova, M.; Rossmann, P.; Pola, R.; Strohalm, J.; Chytil, P.; Cerny, V.; Tomala, J.; Kabesova, M.; Rihova, B.; Ulbrich, K.; Etrych, T.; Kovar, M. The Structure-Dependent Toxicity, Pharmacokinetics and Anti-Tumour Activity of HPMA Copolymer Conjugates in the Treatment of Solid Tumours and Leukaemia. *J. Controlled Release* 2016, 223, 1–10.
- (141) Ghanghoria, R.; Tekade, R. K.; Mishra, A. K.; Chuttani, K.; Jain, N. K. Luteinizing Hormone-Releasing Hormone Peptide Tethered Nanoparticulate System for Enhanced Antitumoral Efficacy of Paclitaxel. *Nanomedicine (London, U. K.)* 2016, *11*, 797–816.
- (142) Zhang, L.; Li, G.; Gao, M.; Liu, X.; Ji, B.; Hua, R.; Zhou, Y.; Yang, Y. RGD-Peptide Conjugated Inulin-Ibuprofen Nanoparticles for Targeted Delivery of Epirubicin. *Colloids Surf.*, *B* **2016**, *144*,

81-89.

- (143) Mei, L.; Liu, Y.; Zhang, H. J.; Zhang, Z.; Gao, H.; He, Q. Antitumor and Antimetastasis Activities of Heparin-Based Micelle Served as Both Carrier and Drug. ACS Appl. Mater. Interfaces 2016, 8, 9577–9589.
- (144) Svenson, S.; Case, R. I.; Cole, R. O.; Hwang, J.; Kabir, S. R.; Lazarus, D.; Lim Soo, P.; Ng, P. S.;
 Peters, C.; Shum, P.; Sweryda-Krawiec, B.; Tripathi, S.; van der Poll, D.; Eliasof, S. Tumor
 Selective Silencing Using an RNAi-Conjugated Polymeric Nanopharmaceutical. *Mol. Pharmaceutics* 2016, *13*, 737–747.
- (145) Zou, Y.; Fang, Y.; Meng, H.; Meng, F.; Deng, C.; Zhang, J.; Zhong, Z. Self-Crosslinkable and Intracellularly Decrosslinkable Biodegradable Micellar Nanoparticles: A Robust, Simple and Multifunctional Nanoplatform for High-Efficiency Targeted Cancer Chemotherapy. *J. Controlled Release* 2016, 244, 326–335.
- (146) He, R.; Yin, C. Trimethyl Chitosan Based Conjugates for Oral and Intravenous Delivery of Paclitaxel. Acta Biomater. 2017, 53, 355–366.
- (147) Roy, A.; Zhao, Y.; Yang, Y.; Szeitz, A.; Klassen, T.; Li, S. D. Selective Targeting and Therapy of Metastatic and Multidrug Resistant Tumors Using a Long Circulating Podophyllotoxin Nanoparticle. *Biomaterials* 2017, 137, 11–22.
- (148) Yan, G.; Wang, J.; Hu, L.; Wang, X.; Yang, G.; Fu, S.; Cheng, X.; Zhang, P.; Tang, R. Stepwise Targeted Drug Delivery to Liver Cancer Cells for Enhanced Therapeutic Efficacy by Galactose-Grafted, Ultra-pH-Sensitive Micelles. *Acta Biomater.* 2017, *51*, 363–373.
- (149) Yan, G.; Wang, J.; Qin, J.; Hu, L.; Zhang, P.; Wang, X.; Tang, R. Well-Defined Poly(Ortho Ester Amides) for Potential Drug Carriers: Probing the Effect of Extra- and Intracellular Drug Release on Chemotherapeutic Efficacy. *Macromol. Biosci.* **2017**, *17*, 1600503.
- (150) Wang, F.; Wang, Y.; Ma, Q.; Cao, Y.; Yu, B. Development and Characterization of Folic Acid-

Conjugated Chitosan Nanoparticles for Targeted and Controlled Delivery of Gemcitabinein Lung Cancer Therapeutics. *Artif. Cells, Nanomed., Biotechnol.* **2017**, *45*, 1530–1538.

- (151) Deng, H.; Zhao, X.; Deng, L.; Liu, J.; Dong, A. Reactive Oxygen Species Activated Nanoparticles with Tumor Acidity Internalization for Precise Anticancer Therapy. *J. Controlled Release* 2017, 255, 142–153.
- (152) Wu, J.; Tang, C.; Yin, C. Co-Delivery of Doxorubicin and Interleukin-2 via Chitosan Based Nanoparticles for Enhanced Antitumor Efficacy. Acta Biomater. 2017, 47, 81–90.
- (153) Gou, J.; Liang, Y.; Miao, L.; Guo, W.; Chao, Y.; He, H.; Zhang, Y.; Yang, J.; Wu, C.; Yin, T.; Wang, Y.; Tang, X. Improved Tumor Tissue Penetration and Tumor Cell Uptake Achieved by Delayed Charge Reversal Nanoparticles. *Acta Biomater.* **2017**, *62*, 157–166.
- (154) Logie, J.; Ganesh, A. N.; Aman, A. M.; Al-Awar, R. S.; Shoichet, M. S. Preclinical Evaluation of Taxane-Binding Peptide-Modified Polymeric Micelles Loaded with Docetaxel in an Orthotopic Breast Cancer Mouse Model. *Biomaterials* 2017, *123*, 39–47.
- (155) Hoang, B.; Ernsting, M. J.; Tang, W. H. S.; Bteich, J.; Undzys, E.; Kiyota, T.; Li, S. D. Cabazitaxel-Conjugated Nanoparticles for Docetaxel-Resistant and Bone Metastatic Prostate Cancer. *Cancer Lett.* (*N. Y., NY, U. S.*) **2017**, *410*, 169–179.
- (156) Wang, J.; Lee, G. Y.; Lu, Q.; Peng, X.; Wu, J.; Wu, S.; Kairdolf, B. A.; Nie, S.; Wang, Y.; Lane,
 L. A. Quantitative Examination of the Active Targeting Effect: The Key Factor for Maximal Tumor Accumulation and Retention of Short-Circulated Biopolymeric Nanocarriers. *Bioconjugate Chem.* 2017, 28, 1351–1355.
- (157) Boissenot, T.; Bordat, A.; Larrat, B.; Varna, M.; Chacun, H.; Paci, A.; Poinsignon, V.; Fattal, E.; Tsapis, N. Ultrasound-Induced Mild Hyperthermia Improves the Anticancer Efficacy of Both Taxol[®] and Paclitaxel-Loaded Nanocapsules. *J. Controlled Release* 2017, 264, 219–227.
- (158) Wang, L.; Li, D.; Hao, Y.; Niu, M.; Hu, Y.; Zhao, H.; Chang, J.; Zhang, Z.; Zhang, Y. Gold

Nanorod-Based Poly(Lactic-*Co*-Glycolic Acid) with Manganese Dioxide Core-Shell Structured Multifunctional Nanoplatform for Cancer Theranostic Applications. *Int. J. Nanomed.* **2017**, *12*, 3059–3075.

- (159) Li, C.; Ge, X.; Wang, L. Construction and Comparison of Different Nanocarriers for Co-Delivery of Cisplatin and Curcumin: A Synergistic Combination Nanotherapy for Cervical Cancer. *Biomed. Pharmacother.* 2017, 86, 628–636.
- (160) Zhang, R. X.; Cai, P.; Zhang, T.; Chen, K.; Li, J.; Cheng, J.; Pang, K. S.; Adissu, H. A.; Rauth, A. M.; Wu, X. Y. Polymer-Lipid Hybrid Nanoparticles Synchronize Pharmacokinetics of Co-Encapsulated Doxorubicin-Mitomycin C and Enable Their Spatiotemporal Co-Delivery and Local Bioavailability in Breast Tumor. *Nanomedicine (N. Y., NY, U. S.)* 2016, *12*, 1279–1290.
- (161) Shalgunov, V.; Zaytseva-Zotova, D.; Zintchenko, A.; Levada, T.; Shilov, Y.; Andreyev, D.; Dzhumashev, D.; Metelkin, E.; Urusova, A.; Demin, O.; McDonnell, K.; Troiano, G.; Zale, S.; Safarova, E. Comprehensive Study of the Drug Delivery Properties of Poly(L-Lactide)-Poly(Ethylene Glycol) Nanoparticles in Rats and Tumor-Bearing Mice. *J. Controlled Release* 2017, 261, 31–42.
- (162) Liu, H.; Lu, H.; Liao, L.; Zhang, X.; Gong, T.; Zhang, Z. Lipid Nanoparticles Loaded with 7-Ethyl-10-Hydroxycamptothecin-Phospholipid Complex: *In Vitro* and *In Vivo* Studies. *Drug Delivery* 2015, 22, 701–709.
- (163) Nikpoor, A. R.; Tavakkol-Afshari, J.; Gholizadeh, Z.; Sadri, K.; Babaei, M. H.; Chamani, J.;
 Badiee, A.; Jalali, S. A.; Jaafari, M. R. Nanoliposome-Mediated Targeting of Antibodies to Tumors: IVIG Antibodies as a Model. *Int. J. Pharm. (Amsterdam, Neth.)* 2015, 495, 162–170.
- (164) Mussi, S. V.; Parekh, G.; Pattekari, P.; Levchenko, T.; Lvov, Y.; Ferreira, L. A. M.; Torchilin, V.P. Improved Pharmacokinetics and Enhanced Tumor Growth Inhibition Using a Nanostructured Lipid Carrier Loaded with Doxorubicin and Modified with a Layer-by-Layer Polyelectrolyte

Coating. Int. J. Pharm. (Amsterdam, Neth.) 2015, 495, 186–193.

- (165) Yeh, C. Y.; Hsiao, J. K.; Wang, Y. P.; Lan, C. H.; Wu, H. C. Peptide-Conjugated Nanoparticles for Targeted Imaging and Therapy of Prostate Cancer. *Biomaterials* **2016**, *99*, 1–15.
- (166) Wang, M.; Li, J.; Li, X.; Mu, H.; Zhang, X.; Shi, Y.; Chu, Y.; Wang, A.; Wu, Z.; Sun, K. Magnetically and pH Dual Responsive Dendrosomes for Tumor Accumulation Enhanced Folate-Targeted Hybrid Drug Delivery. *J. Controlled Release* **2016**, *232*, 161–174.
- (167) Lin, L.; Wang, X.; Li, X.; Yang, Y.; Yue, X.; Zhang, Q.; Dai, Z. Modulating Drug Release Rate from Partially Silica-Coated Bicellar Nanodisc by Incorporating PEGylated Phospholipid. *Bioconjugate Chem.* 2017, 28, 53–63.
- (168) Zhu, B.; Yu, L.; Yue, Q. C. Co-Delivery of Vincristine and Quercetin by Nanocarriers for Lymphoma Combination Chemotherapy. *Biomed. Pharmacother.* 2017, *91*, 287–294.
- (169) Ni, S.; Qiu, L.; Zhang, G.; Zhou, H.; Han, Y. Lymph Cancer Chemotherapy: Delivery of Doxorubicin-Gemcitabine Prodrug and Vincristine by Nanostructured Lipid Carriers. *Int. J. Nanomed.* 2017, *12*, 1565–1576.
- (170) Kim, J. E.; Park, Y. J. Paclitaxel-Loaded Hyaluronan Solid Nanoemulsions for Enhanced Treatment Efficacy in Ovarian Cancer. *Int. J. Nanomed.* **2017**, *12*, 645–658.
- (171) Chen, L.; Chen, B.; Deng, L.; Gao, B.; Zhang, Y.; Wu, C.; Yu, N.; Zhou, Q.; Yao, J.; Chen, J. An Optimized Two-Vial Formulation Lipid Nanoemulsion of Paclitaxel for Targeted Delivery to Tumor. *Int. J. Pharm. (Amsterdam, Neth.)* **2017**, *534*, 308–315.
- (172) Kesharwani, P.; Tekade, R. K.; Jain, N. K. Generation Dependent Safety and Efficacy of Folic Acid Conjugated Dendrimer Based Anticancer Drug Formulations. *Pharm. Res.* 2015, *32*, 1438–1450.
- (173) Yan, C.; Gu, J.; Hou, D.; Jing, H.; Wang, J.; Guo, Y.; Katsumi, H.; Sakane, T.; Yamamoto, A. Improved Tumor Targetability of Tat-Conjugated PAMAM Dendrimers as a Novel Nanosized

Anti-Tumor Drug Carrier. Drug Dev. Ind. Pharm. 2015, 41, 617–622.

- (174) Ohyama, A.; Higashi, T.; Motoyama, K.; Arima, H. *In Vitro* and *In Vivo* Tumor-Targeting siRNA Delivery Using Folate-PEG-Appended Dendrimer (G4)/α-Cyclodextrin Conjugates. *Bioconjugate Chem.* **2016**, *27*, 521–532.
- (175) Narmani, A.; Yavari, K.; Mohammadnejad, J. Imaging, Biodistribution and *In Vitro* Study of Smart ^{99m}Tc-PAMAM G4 Dendrimer as Novel Nano-Complex. *Colloids Surf.*, B 2017, 159, 232– 240.
- (176) Battogtokh, G.; Kang, J. H.; Ko, Y. T. Long-Circulating Self-Assembled Cholesteryl Albumin Nanoparticles Enhance Tumor Accumulation of Hydrophobic Anticancer Drug. *Eur. J. Pharm. Biopharm.* 2015, 96, 96–105.
- (177) Wan, X.; Zheng, X.; Pang, X.; Zhang, Z.; Jing, T.; Xu, W.; Zhang, Q. The Potential Use of Lapatinib-Loaded Human Serum Albumin Nanoparticles in the Treatment of Triple-Negative Breast Cancer. Int. J. Pharm. (Amsterdam, Neth.) 2002, 8, 131–138.
- (178) Li, F.; Zheng, C.; Xin, J.; Chen, F.; Ling, H.; Sun, L.; Webster, T. J.; Ming, X.; Liu, J. Enhanced Tumor Delivery and Antitumor Response of Doxorubicin-Loaded Albumin Nanoparticles Formulated Based on a Schiff Base. *Int. J. Nanomed.* **2016**, *11*, 3875–3890.
- (179) Qu, N.; Lee, R. J.; Sun, Y.; Cai, G.; Wang, J.; Wang, M.; Lu, J.; Meng, Q.; Teng, L.; Wang, D.; Teng, L. Cabazitaxel-Loaded Human Serum Albumin Nanoparticles as a Therapeutic Agent against Prostate Cancer. *Int. J. Nanomed.* **2016**, *11*, 3451–3459.
- (180) Yin, T.; Cai, H.; Liu, J.; Cui, B.; Wang, L.; Yin, L.; Zhou, J.; Huo, M. Biological Evaluation of PEG Modified Nanosuspensions Based on Human Serum Albumin for Tumor Targeted Delivery of Paclitaxel. *Eur. J. Pharm. Sci.* **2016**, *83*, 79–87.
- (181) Zhang, Z.; Wan, J.; Sun, L.; Li, Y.; Guo, J.; Wang, C. Zinc Finger-Inspired Nanohydrogels with Glutathione/pH Triggered Degradation Based on Coordination Substitution for Highly Efficient

Delivery of Anti-Cancer Drugs. J. Controlled Release 2016, 225, 96–108.

- (182) Yang, C.; Li, C.; Zhang, P.; Wu, W.; Jiang, X. Redox Responsive Hyaluronic Acid Nanogels for Treating RHAMM (CD168) Over-Expressive Cancer, Both Primary and Metastatic Tumors. *Theranostics* 2017, 7, 1719–1734.
- (183) Yang, G.; Wang, X.; Fu, S.; Tang, R.; Wang, J. pH-Triggered Chitosan Nanogels *via* an Ortho Ester-Based Linkage for Efficient Chemotherapy. *Acta Biomater.* 2017, 60, 232–243.
- (184) Mehra, N. K.; Jain, N. K. One Platform Comparison of Estrone and Folic Acid Anchored Surface Engineered MWCNTs for Doxorubicin Delivery. *Mol. Pharmaceutics* 2015, *12*, 630–643.
- (185) Oh, Y.; Swierczewska, M.; Kim, T. H.; Lim, S. M.; Eom, H. N.; Park, J. H.; Na, D. H.; Kim, K.; Lee, K. C.; Pomper, M. G.; Lee, S. Delivery of Tumor-Homing TRAIL Sensitizer with Long-Acting TRAIL as a Therapy for TRAIL-Resistant Tumors. *J. Controlled Release* 2015, 220, 671– 681.
- (186) Yang, L.; Jiang, J.; Hong, J.; Di, J.; Liao, Y.; Kuang, H.; Wang, X. High Drug Payload 10-Hydroxycamptothecin Nanosuspensions Stabilized by Cholesterol-PEG: *In Vitro* and *In Vivo* Investigation. *J. Biomed. Nanotechnol.* **2015**, *11*, 711–721.
- (187) Zhang, X.; Zhang, T.; Ye, Y.; Chen, H.; Sun, H.; Zhou, X.; Ma, Z.; Wu, B. Phospholipid-Stabilized Mesoporous Carbon Nanospheres as Versatile Carriers for Systemic Delivery of Amphiphobic SNX-2112 (a Hsp90 Inhibitor) with Enhanced Antitumor Effect. *Eur. J. Pharm. Biopharm.* 2015, *94*, 30–41.
- (188) Li, W.; Yi, X.; Liu, X.; Zhang, Z.; Fu, Y.; Gong, T. Hyaluronic Acid Ion-Pairing Nanoparticles for Targeted Tumor Therapy. J. Controlled Release 2016, 225, 170–182.
- (189) Du, L.; Zhang, B.; Lei, Y.; Wang, S.; Jin, Y. Long-Circulating and Liver-Targeted Nanoassemblies of Cyclic Phosphoryl *N*-Dodecanoyl Gemcitabine for the Treatment of Hepatocellular Carcinoma. *Biomed. Pharmacother.* **2016**, *79*, 208–214.

- (190) Jiang, Y.; Yang, N.; Zhang, H.; Sun, B.; Hou, C.; Ji, C.; Zheng, J.; Liu, Y.; Zuo, P. Enhanced *In Vivo* Antitumor Efficacy of Dual-Functional Peptide-Modified Docetaxel Nanoparticles through Tumor Targeting and Hsp90 Inhibition. *J. Controlled Release* **2016**, *221*, 26–36.
- (191) Yang, X.; Liu, Y.; Zhao, Y.; Han, M.; Guo, Y.; Kuang, H.; Wang, X. A Stabilizer-Free and Organic Solvent-Free Method to Prepare 10-Hydroxycamptothecin Nanocrystals: *In Vitro* and *In Vivo* Evaluation. *Int. J. Nanomed.* **2016**, *11*, 2979–2994.
- (192) Shi, J.; Wang, B.; Chen, Z.; Liu, W.; Pan, J.; Hou, L.; Zhang, Z. A Multi-Functional Tumor Theranostic Nanoplatform for MRI Guided Photothermal-Chemotherapy. *Pharm. Res.* 2016, *33*, 1472–1485.
- (193) Cheng, X.; Wang, X.; Cao, Z.; Yao, W.; Wang, J.; Tang, R. Folic Acid-Modified Soy Protein Nanoparticles for Enhanced Targeting and Inhibitory. *Mater. Sci. Eng., C* **2017**, *71*, 298–307.
- (194) Hong, J.; Liu, Y.; Xiao, Y.; Yang, X.; Su, W.; Zhang, M.; Liao, Y.; Kuang, H.; Wang, X. High Drug Payload Curcumin Nanosuspensions Stabilized by MPEG-DSPE and SPC: *In Vitro* and *In Vivo* Evaluation. *Drug Delivery* 2017, 24, 109–120.
- (195) Cui, T.; Zhang, S.; Sun, H. Co-Delivery of Doxorubicin and pH-Sensitive Curcumin Prodrug by Transferrin-Targeted Nanoparticles for Breast Cancer Treatment. *Oncol. Rep.* 2017, *37*, 1253– 1260.
- (196) Guo, Y.; Zhao, Y.; Wang, T.; Li, R.; Han, M.; Dong, Z.; Zhu, C.; Wang, X. Hydroxycamptothecin Nanorods Prepared by Fluorescently Labeled Oligoethylene Glycols (OEG) Codendrimer: Antitumor Efficacy *In Vitro* and *In Vivo. Bioconjugate Chem.* 2017, 28, 390–399.
- (197) Liu, G.; Tsai, H.-I.; Zeng, X.; Zuo, Y.; Tao, W.; Han, J.; Mei, L. Phosphorylcholine-Based Stealthy Nanocapsules Enabling Tumor Microenvironment-Responsive Doxorubicin Release for Tumor Suppression. *Theranostics* **2017**, *7*, 1192–1203.
- (198) Xu, S.; Zhu, X.; Huang, W.; Zhou, Y.; Yan, D. Supramolecular Cisplatin-Vorinostat Nanodrug

for Overcoming Drug Resistance in Cancer Synergistic Therapy. *J. Controlled Release* **2017**, 266, 36–46.

- (199) Dai, L.; Zhu, W.; Si, C.; Lei, J. "Nano-Ginseng" for Enhanced Cytotoxicity AGAINST Cancer Cells. Int. J. Mol. Sci. 2018, 19, 627.
- (200) Park, J.; Park, J. E.; Hedrick, V. E.; Wood, K. V.; Bonham, C.; Lee, W.; Yeo, Y. A Comparative In Vivo Study of Albumin-Coated Paclitaxel Nanocrystals and Abraxane. Small 2018, 14, 1703670.
- (201) Sykes, E. A.; Dai, Q.; Sarsons, C. D.; Chen, J.; Rocheleau, J. V.; Hwang, D. M.; Zheng, G.; Cramb, D. T.; Rinker, K. D.; Chan, W. C. W. Tailoring Nanoparticle Designs to Target Cancer Based on Tumor Pathophysiology. *Proc. Natl. Acad. Sci. U. S. A.* 2016, *113*, E1142–E1151.
- (202) Chiou, W. L. Critical Evaluation of the Potential Error in Pharmacokinetic Studies of Using the Linear Trapezoidal Rule Method for the Calculation of the Area under the Plasma Level-Time Curve. J. Pharmacokinet. Biopharm. 1978, 6, 539–546.
- (203) Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of Nanoparticle Delivery to Tumours. *Nat. Rev. Mater.* **2016**, *1*, 16014.

Berkeley Madonna example code for PBPK modeling in tumor-bearing mice (Karmani *et al.*, 2013)

METHOD RK4

STARTTIME = 0STOPTIME = 168 DT = 0.00015625DTOUT = 0.1{Physiological parameters} ; Blood flow rate (Fraction of cardiac output, unitless) QCC = 16.5: Cardiac output (L/h/kg^0.75) (Brown et al., 1997) QLuC = 1; Fraction of blood flow to lung (Brown et al., 1997) ; Fraction of artery blood flow to liver (Brown et al., 1997, Table 23) QLC = 0.02QBRC = 0.033; Fraction of blood flow to brain (Brown et al., 1997, Table 23) QKC = 0.091 ; Fraction of blood flow to kidneys (Brown et al., 1997, Table 23) ; Fraction of blood flow to spleen (Lin et al., 2008; Davies and Morris, 1993) QSC = 0.011QMC = 0.159; Fraction of blood flow to muscle (Brown et al., 1997, Tables 23 & 24) ; Fraction of blood flow to tumor (fitted) QTC = 0.01QRC = 1-(QLC+QSC+QKC+QBRC+QMC+QTC); Fraction of blood flow to rest of body (Calculated) : Tissue volumes (Fraction of body weight, unitless) ; Body weight (kg) (Cho et al., 2009; 2010) BW = 0.0345; Liver (Brown et al., 1997, Table 21) VLC = 0.055VBRC = 0.017 ; Brain (Brown et al., 1997, Table 21) VKC = 0.017; Kidneys (Brown et al., 1997, Table 21) VSC = 0.005; Spleen (Lin et al., 2008; Davies and Morris, 1993) VLuC = 0.007; Lungs (Brown et al., 1997, Table 21) VBloodC = 0.06; Blood (Chen et al., 2015) VPlasmaC = 0.0355; Plasma (Davies and Morris, 1993 with hematocrit of 0.41 for red blood cells) VMC = 0.384; Muscle (Brown et al., 1997, Table 21) : Tumor (Svkes et al., 2014: Wilhelm et al., 2016) VTC = 0.021VRC = 1-(VLC+VSC+VKC+VLuC+VBRC+VMC+VPlasmaC+VTC) ; Rest of body (Calculated) ; Blood volume fraction in organs and tissues (percentage of organs/tissues, unitless) ; Liver (Brown et al., 1997; Table 30) BVL = 0.31 BVBR = 0.03; Brain (Brown et al., 1997, Table 30) BVK = 0.24; Kidneys (Brown et al., 1997, Table 30) ; Spleen (Brown et al., 1997, Table 30) BVS = 0.17 ; Lungs (Brown et al., 1997, Table 30) BVLu = 0.5BVM = 0.04; Muscle (Brown et al., 1997, Table 30) BVR = 0.04 ; Rest of body (Brown et al., 1997, Table 30, assume equal to the muscle) BVT = 0.01 ; Tumor (fitted) ; Tissue:plasma distribution coefficients (PCs), unitless; these values were from our published mouse PBPK model (Lin et al., 2016) or fitted by calibrating with healthy mouse pharmacokinetic data for gold nanoparticles from (Cho et al., 2010) PL = 0.08: Liver : Brain PBR = 0.15PK = 0.15· Kidnevs

	, , , , , , , , , , , , , , , , , , , ,
PS = 0.15	; Spleen
PLu = 0.15	; Lungs
PM = 0.15	; Muscle
PR = 0.15	; Rest of body
PT = 0.065	; Tumor (fitted)

; Membrane-limited permeability coefficient constants, unitless; these values were from our published mouse PBPK model (Lin *et al.*, 2016) or fitted by calibrating with healthy mouse pharmacokinetic data for gold nanoparticles from (Cho *et al.*, 2010)

PALC = 0.001: Liver PABRC = 0.000001 : Brain PAKC = 0.01; Kidneys ; Spleen PASC =0.15 PALuC = 0.001 ; Lungs PAMC = 0.00005: Muscle PARC = 0.00005 : Rest of body : Tumor (fitted) PATC = 0.03; Endocytic parameters; RES represent endocytic/phagocytic cells; L, S, K, Lu, M, R, and T represent liver, spleen, kidneys, lungs, muscle, rest of body, and tumor, respectively. : Release rate constant of phagocytic cells, (h-1) KLRESrelease = 0.0015KLRESmax = 0.3; Maximum uptake rate constant of phagocytic cells, (h-1) KLRES50 = 48; Time reaching half maximum uptake rate, (h) KLRESn = 5; Hill coefficient, (unitless) KSRESrelease = 0.001 : Release rate constant of phagocytic cells, (h-1) KSRESmax = 5: Maximum uptake rate constant of phagocytic cells. (h-1) KSRES50 = 36; Time reaching half maximum uptake rate, (h) ; Hill coefficient, (unitless) KSRESn = 5; Release rate constant of phagocytic cells, (h-1) KKRESrelease = 0.001 KKRESmax = 0.12 : Maximum uptake rate constant of phagocytic cells, (h-1) ; Time reaching half maximum uptake rate, (h) KKRES50 = 48; Hill coefficient, (unitless) KKRESn = 5KLuRESrelease = 0.003 ; Release rate constant of phagocytic cells, (h-1) KLuRESmax = 0.085 ; Maximum uptake rate constant of phagocytic cells, (h-1) KLuRES50 = 48: Time reaching half maximum uptake rate, (h) KLuRESn = 5; Hill coefficient, (unitless) KMRESrelease = 0.005; Release rate constant of phagocytic cells, (h-1) KMRESmax = 0.4 ; Maximum uptake rate constant of phagocytic cells, (h-1) KMRES50 = 48; Time reaching half maximum uptake rate, (h) KMRESn = 5; Hill coefficient, (unitless) KRRESrelease = 0.005 ; Release rate constant of phagocytic cells, (h-1) ; Maximum uptake rate constant of phagocytic cells, (h-1) KRRESmax = 0.4: Time reaching half maximum uptake rate. (h) KRRES50 = 48KRRESn = 5; Hill coefficient, (unitless) KTRESrelease = 0.0009; Release rate constant of phagocytic cells, (h-1) KTRESmax = 0.065; Maximum uptake rate constant of phagocytic cells, (h-1) KTRES50 = 4.2; Time reaching half maximum uptake rate, (h) KTRESn = 5; Hill coefficient, (unitless) ; Biliary excretion ; Biliary clearance (L/hr/kg^0.75) KbileC = 0.00003; L/hr/kg changed to L/h/kg^0.75 for interspecies extrapolation : Urine excretion KurineC = 0.000003: Urine clearance (L/hr/kg^0.75) ; L/hr changed to L/h/kg^0.75 for interspecies extrapolation

: Scaled parameters ; Cardiac output and regional blood blow (L/h) $QC = QCC^*BW^{**}0.75$; Cardiac output $QL = QC^*QLC$: Blood flow to liver $QBR = QC^*QBRC$; Blood flow to brain $QK = QC^*QKC$; Blood flow to kidneys $QS = QC^*QSC$; Blood flow to spleen $QM = QC^*QMC$; Blood flow to muscle $QR = QC^*QRC$: Blood flow to rest of body $QT = QC^*QTC$: Blood flow to tumor Qbal = QC-QL-QBR-QK-QS-QM-QR-QT ; Blood flow balance equation ; Tissue volumes (L) VL = BW*VLC : Liver VBR = BW*VBRC : Brain VK = BW*VKC; Kidneys VS = BW*VSC ; Spleen VLu = BW*VLuC; Lungs VBlood = BW*VBloodC ; Blood ; Plasma VPlasma = BW*VPlasmaC VM = BW*VMC: Muscle VR = BW*VRC; Rest of body VT = BW*VTC: Tumor Vbal = BW-VL-VBR-VK-VS-VLu-VPlasma-VM-VR-VT ; Tissue volume balance equation VLb = VL*BVL; Weight/volume of capillary blood in liver compartment VLt = VL-VLbWeight/volume of tissue in liver compartment VBRb = VBR*BVBR ; Weight/volume of capillary blood in brain compartment ; Weight/volume of tissue in brain compartment VBRt = VBR-VBRb ; Weight/volume of capillary blood in kidney compartment VKb = VK*BVKVKt = VK-VKb; Weight/volume of tissue in kidney compartment VSb = VS*BVS; Weight/volume of capillary blood in spleen compartment VSt = VS-VSbWeight/volume of tissue in spleen compartment VLub = VLu*BVLuWeight/volume of capillary blood in lung compartment ; Weight/volume of tissue in lung compartment VLut = VLu-VLubVMb = VM*BVMWeight/volume of capillary blood in muscle compartment VMt = VM-VMbWeight/volume of tissue in muscle compartment VRb = VR*BVRWeight/volume of capillary blood in rest of body compartment VRt = VR-VRb; Weight/volume of tissue in rest of body compartment ; Weight/volume of capillary blood in tumor compartment VTb = VT*BVTVTt = VT-VTb; Weight/volume of tissue in tumor compartment : Permeability coefficient-surface area cross-product (L/h) PAL = PALC*QL: Liver PABR = PABRC*QBR : Brain PAK = PAKC*QK; Kidnevs PAS = PASC*QS ; Spleen PALu = PALuC*QC; Lungs PAM = PAMC*QM: Muscle PAR = PARC*QR; Rest of body PAT = PATC*QT ; Tumor : Endocytosis rate (h-1) KLRESUP = (KLRESmax*TIME^KLRESn)/(KLRES50^KLRESn+TIME^KLRESn) : Liver KSRESUP = (KSRESmax*TIME^KSRESn)/(KSRES50^KSRESn+TIME^KSRESn) ; Spleen KKRESUP = (KKRESmax*TIME^KKRESn)/(KKRES50^KKRESn+TIME^KKRESn) ; Kidneys KLuRESUP = (KLuRESmax*TIME^KLuRESn)/(KLuRES50^KLuRESn+TIME^KLuRESn) : Lunas KMRESUP = (KMRESmax*TIME^KMRESn)/(KMRES50^KMRESn+TIME^KMRESn) : Muscle

KRRESUP = (KRRESmax*TIME^KRRESn)/(KRRES50^KRRESn+TIME^KRRESn) KTRESUP = (KTRESmax*TIME^KTRESn)/(KTRES50^KTRESn+TIME^KTRESn) ; Rest of body ; Tumor

; IV Dosing

Timeiv = 0.005 ; IV infusion time (h), set, approximately 15-20 seconds, on average 18 sec PDOSEiv = 8.17 ; mg/kg (Karmani *et al.* (2013); mice, IV route)

DOSEiv = PDOSEiv*BW : ma IVR = DOSEiv/Timeiv ; mg/h $RIV = IVR^{*}(1.-step(1,Timeiv))$; mg/h d/dt(AIV) = RIVinit AIV = 0: Elimination Kbile = KbileC*BW**0.75 ; L/h Kurine = KurineC*BW**0.75 ; L/h {Blood compartment} ; CA = Arterial blood concentration (mg/L or μ g/ml) $RA = QC^*CVLu - QC^*CA$ d/dt(AA) = RAinit AA = 0CA = AA/(VPlasma*0.2)d/dt(AUCCA) = CAinit AUCCA = 0; CV = Venous blood concentration (mg/L or ug/ml) RV = QL*CVL + QBR*CVBR + QK*CVK + QM*CVM + QR*CVR + QT*CVT + RIV - QC*CV d/dt(AV) = RVinit AV = 0CV = AV/(VPlasma*0.8)d/dt(AUCCV) = CVinit AUCCV = 0APlasma = AA+AV CPlasma = APlasma/VPlasma {Lung compartment (mg/kg or ug/g)} ; Membrane-limited model: AuNP in capillary blood of Lung RLub = QC*(CV-CVLu) - PALu*CVLu + (PALu*CLut)/PLu d/dt(ALub) = RLubinit ALub = 0CVLu = ALub/VLub; Membrane-limited model: AuNP in interstitial tissue of Lung RLut = PALu*CVLu - (PALu*CLut)/PLu - KLuRESup*ALut + KLuRESrelease*ALuRES d/dt(ALut) = RLutinit ALut = 0CLut = ALut/VLut; Phagocytosis: AuNP in phagocytic cells of Lung tissue RLuRES = KLuRESUP*ALut-KLuRESrelease*ALuRES d/dt(ALuRES) = RLuRES init ALuRES = 0; Total AuNP in Lung ALung = ALub+ALut+ALuRES CLung = (ALub+ALut+ALuRES)/VLu

ALunat = ALut+ALuRESCLungt = (ALut+ALuRES)/VLut {Brain compartment (mg/kg or ug/g)} ; Membrane-limited model: AuNP in capillary blood of Brain RBRb = QBR*(CA-CVBR) - PABR*CVBR + (PABR*CBRt)/PBR d/dt(ABRb) = RBRbinit ABRb = 0CVBR = ABRb/VBRb ; Membrane-limited model: AuNP in interstitial tissue of Brain RBRt = PABR*CVBR - (PABR*CBRt)/PBR d/dt(ABRt) = RBRtinit ABRt = 0CBRt = ABRt/VBRt; Total AuNP in Brain ABrain = ABRb+ABRtCBrain = ABrain/VBR {Muscle compartment (mg/kg or ug/g)} ; Membrane-limited model: AuNP in capillary blood of Muscle $RMb = QM^{*}(CA-CVM) - PAM^{*}CVM + (PAM^{*}CMt)/PM$ d/dt(AMb) = RMbinit AMb = 0CVM = AMb/VMb; Membrane-limited model: AuNP in interstitial tissue of Muscle RMt = PAM*CVM - (PAM*CMt)/PM - KMRESUP*AMt + KMRESrelease*AMRES d/dt(AMt) = RMtinit $\dot{A}Mt = 0$ CMt = AMt/VMt

; Phagocytosis: AuNP in phagocytic cells of Muscle RMRES = KMRESUP*AMt-KMRESrelease*AMRES d/dt(AMRES) = RMRES init AMRES = 0

; Total AuNP in Muscle AMuscle = AMb+AMt+AMRES CMuscle = (AMb+AMt+AMRES)/VM AMusclet = AMt+AMRES CMusclet = (AMt+AMRES)/VMt

{Rest of body compartment (mg/kg or ug/g)} ; Membrane-limited model: AuNP in capillary blood of Rest of body RRb = QR*(CA-CVR) - PAR*CVR + (PAR*CRt)/PR d/dt(ARb) = RRb init ARb = 0 CVR = ARb/VRb

```
; Membrane-limited model: AuNP in interstitial tissue of Rest of body
RRt = PAR*CVR - (PAR*CRt)/PR - KRRESUP*ARt + KRRESrelease*ARRES
d/dt(ARt) = RRt
init ARt = 0
CRt = ARt/VRt
```

; Phagocytosis: AuNP in phagocytic cells of Rest of body tissue RRRES = KRRESUP*ARt-KRRESrelease*ARRES d/dt(ARRES) = RRRESinit ARRES = 0; Total AuNP in Rest of body Arestall = ARb+ARt+ARRES Crestall = (ARb+ARt+ARRES)/VR Aresttissue = ARt+ARRES Cresttissue = (ARt+ARRES)/VRt {Kidney compartment (mg/kg or ug/g)} ; Membrane-limited model: AuNP in capillary blood of Kidney RKb = QK*(CA-CVK) - PAK*CVK + (PAK*CKt)/PK - Rurine d/dt(AKb) = RKbinit AKb = 0CVK = AKb/VKb; Membrane-limited model: AuNP in interstitial tissue of Kidney RKt = PAK*CVK - (PAK*CKt)/PK - KKRESUP*AKt + KKRESrelease*AKRES d/dt(AKt) = RKtinit AKt = 0CKt = AKt/VKt; Phagocytosis: AuNP in phagocytic cells of Kidney tissue RKRES = KKRESUP*AKt-KKRESrelease*AKRES d/dt(AKRES) = RKRES init AKRES = 0; Total AuNP in Kidney AKidney = AKb+AKt+AKRES CKidney = (AKb+AKt+AKRES)/VK AKidneyt = AKt+AKRES CKidneyt = (AKt+AKRES)/VKt ; Urinary excretion Rurine = Kurine*CVK ;mg/h d/dt(Aurine) = Rurine init Aurine = 0{Spleen compartment (mg/kg or ug/g)} ; Membrane-limited model: AuNP in capillary blood of Spleen RSb = QS*(CA-CVS) - PAS*CVS + (PAS*CSt)/PS d/dt(ASb) = RSbinit ASb = 0CVS = ASb/VSb; Membrane-limited model: AuNP in interstitial tissue of Spleen RSt = PAS*CVS - (PAS*CSt)/PS - KSRESUP*ASt + KSRESrelease*ASRES d/dt(ASt) = RStinit ASt = 0CSt = ASt/VSt; Phagocytosis: AuNP in phagocytic cells of Spleen tissue ;RSRES = KSRESUP*AA-KSRESrelease*ASRES RSRES = KSRESUP*ASt-KSRESrelease*ASRES d/dt(ASRES) = RSRESinit ASRES = 0

```
; Total AuNP in Spleen
ASpleen = ASb+ASt+ASRES
CSpleen = (ASb+ASt+ASRES)/VS
ASpleent = ASt+ASRES
CSpleent = (ASt+ASRES)/VSt
d/dt(AUCCS) = CSpleen
init AUCCS = 0
{Liver compartment (mg/kg or ug/g)}
; Membrane-limited model: AuNP in capillary blood of Liver
RLb = QL*(CA-CVL) + QS*CVS - PAL*CVL + (PAL*CLt)/PL - KLRESUP*ALb + KLRESrelease*ALRES
d/dt(ALb) = RLb
init ALb = 0
CVL = ALb/VLb
; Membrane-limited model: AuNP in interstitial tissue of Liver
RLt = PAL*CVL - (PAL*CLt)/PL - Rbile
d/dt(ALt) = RLt
init ALt = 0
CLt = ALt/VLt
; Phagocytosis: AuNP in phagocytic cells attach to Liver capillary wall
;RLRES = KLRESUP*AA-KLRESrelease*ALRES
RLRES = KLRESUP*ALb-KLRESrelease*ALRES
d/dt(ALRES) = RLRES
init ALRES = 0
; Total AuNP in Liver
ALiver = ALb+ALt+ALRES
CLiver = (ALb+ALt+ALRES)/VL
ALivert = ALt+ALRES
CLivert = (ALt+ALRES)/VLt
d/dt(AUCCL) = CLiver
init AUCCL = 0
; Biliary excretion
Rbile = Kbile*CLt ; mg/h
d/dt(Abile) = Rbile
init Abile = 0
{Tumor compartment (mg/kg or ug/g)}
; Membrane-limited model: AuNP in capillary blood of Tumor
RTb = QT*(CA-CVT) - PAT*CVT + (PAT*CTt)/PT
d/dt(ATb) = RTb
init ATb = 0
CVT = ATb/VTb
; Membrane-limited model: AuNP in Tumor interstitium
RTt = PAT*CVT - (PAT*CTt)/PT - KTRESUP1*ATt + KTRESrelease*ATRES
d/dt(ATt) = RTt
init ATt = 0
CTt = ATt/VTt
```

; Phagocytosis: AuNP in tumor cells of Tumor interstitium RTRES = KTRESUP*ATt-KTRESrelease*ATRES RTRESUP = KTRESUP*ATt RTRESrelease = KTRESrelease*ATRES d/dt(ATRES) = RTRES init ATRES = 0

; Total AuNP in Tumor ATumor = ATb+ATt+ATRES CTumor = (ATb+ATt+ATRES)/VT ATumort = ATt+ATRES CTumort = (ATt+ATRES)/VTt; mg/kg or ug/g tumor d/dt(AUCCT) = 100*(ATumort/Doseiv) init AUCCT = 0

Tumorperc = 100*(ATumort/Doseiv)/VTt/1000	; %ID/g
TumorpercID = 100*(ATumort/Doseiv)	; %ID

; Mass balance Tmass = AA+AV+ALiver+ABrain+AKidney+ALung+Arestall+AMuscle+ASpleen+Abile+Aurine+ATumor Bal = AIV-Tmass