Appendix A: Variance of the cure point estimator

In the following, we derive a variance estimator for the cure point estimator using the delta method under the assumption that the hazard function $h(t, \theta)$ has a parametric form with parameters θ . Denote the parameter estimate by $\hat{\theta}$, and assume that $\sqrt{n}(\hat{\theta} - \theta_0)$ is asymptotically normal with mean **0** and variance Σ , where θ_0 is the true parameter value and Σ is the inverse information matrix, i.e., minus the inverse of the expected Hessian matrix of the likelihood function evaluated at θ_0 .

Let $G(t, \theta) = G(h, h^*)(t)$ be the strictly monotone comparison measure at time t obtained by inserting the parameters of the hazard function into the comparison measure and assume that G is continuously differentiable with respect to θ and t. Furthermore, let $t_{\epsilon} = G^{-1}(\epsilon, \theta)$ and $\hat{t}_{\epsilon} = G^{-1}(\epsilon, \hat{\theta})$ for a fixed clinical relevant margin, ϵ . The variance of \hat{t}_{ϵ} can then be approximated directly by using the the delta method, i.e.,

$$\operatorname{Var}\left[\hat{t}_{\epsilon}\right] \approx \frac{1}{n} \left(\nabla_{\theta} t_{\epsilon} |_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} \right) \Sigma \left(\nabla_{\theta} t_{\epsilon} |_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} \right)^{T}.$$

$$\tag{1}$$

Due to the definition of t_{ϵ} ,

$$\nabla_{\boldsymbol{\theta}} G(t_{\epsilon}, \boldsymbol{\theta})|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} = \mathbf{0}, \tag{2}$$

and by the chain rule of vector functions we have that

$$\nabla_{\boldsymbol{\theta}} G(t_{\epsilon}, \boldsymbol{\theta})|_{\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}} = \frac{\partial G(t, \boldsymbol{\theta})}{\partial t}|_{t=\hat{t}_{\epsilon}, \boldsymbol{\theta}=\hat{\boldsymbol{\theta}}} \nabla_{\boldsymbol{\theta}} t_{\epsilon}|_{\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}} + \nabla_{\boldsymbol{\theta}} G(t, \boldsymbol{\theta})|_{t=\hat{t}_{\epsilon}, \boldsymbol{\theta}=\hat{\boldsymbol{\theta}}}$$

Thus,

$$\nabla_{\theta} t_{\epsilon}|_{\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}} = -\left(\frac{\partial G(t,\boldsymbol{\theta})}{\partial t}|_{t=\hat{t}_{\epsilon},\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}}\right)^{-1} \nabla_{\boldsymbol{\theta}} G(t,\boldsymbol{\theta})|_{t=\hat{t}_{\epsilon},\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}}.$$
(3)

Inserting into (1) yields

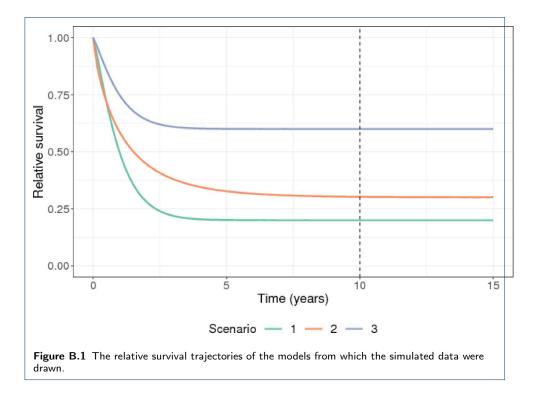
$$\operatorname{Var}\left[\hat{t}_{\epsilon}\right] \approx \frac{1}{n} \left(\frac{\partial G(t, \boldsymbol{\theta})}{\partial t} |_{t=\hat{t}_{\epsilon}, \boldsymbol{\theta}=\hat{\boldsymbol{\theta}}} \right)^{-2} \left(\nabla_{\boldsymbol{\theta}} G(t, \boldsymbol{\theta}) |_{t=\hat{t}_{\epsilon}, \boldsymbol{\theta}=\hat{\boldsymbol{\theta}}} \right) \Sigma \left(\nabla_{\boldsymbol{\theta}} G(t, \boldsymbol{\theta}) |_{t=\hat{t}_{\epsilon}, \boldsymbol{\theta}=\hat{\boldsymbol{\theta}}} \right)^{T}$$

$$\tag{4}$$

$$\approx \left(\frac{\partial G(t,\boldsymbol{\theta})}{\partial t}\big|_{t=\hat{t}_{\epsilon},\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}}\right)^{-2} \operatorname{Var}\left[G(t,\hat{\boldsymbol{\theta}})\right]|_{t=\hat{t}_{\epsilon}},\tag{5}$$

where $\operatorname{Var}\left[G(t,\hat{\theta})\right]|_{t=\hat{t}_{\epsilon}}$ is the variance of $G(\hat{t}_{\epsilon},\hat{\theta})$ without taking into account the uncertainty of \hat{t}_{ϵ} , i.e., the point-wise variance of G evaluated at the point \hat{t}_{ϵ} . For obtaining a non-negative confidence interval for the cure point, \hat{t}_{ϵ} , the variance of the log-transformed estimator is computed by the delta method:

$$\operatorname{Var}\left[\log(\hat{t}_{\epsilon})\right] \approx \frac{1}{\hat{t}_{\epsilon}^{2}} \operatorname{Var}\left[\hat{t}_{\epsilon}\right] \approx \frac{1}{\hat{t}_{\epsilon}^{2}} \left(\frac{\partial G(t,\boldsymbol{\theta})}{\partial t}\big|_{t=\hat{t}_{\epsilon},\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}}\right)^{-2} \operatorname{Var}\left[G(t,\hat{\boldsymbol{\theta}})\right]\big|_{t=\hat{t}_{\epsilon}}.$$
 (6)



Appendix B: Additional figures and tables

Data were simulated from a Weibull mixture cure model, formulated by

$$R(t) = \pi + (1 - \pi) \exp(\gamma_2 t_1^{\gamma}),$$
(7)

with parameter values displayed in Table B.1.

Scenario	π	γ_1	γ_2
1	0.2	1.2	1
2	0.3	0.8	0.9
3	0.6	1.2	1

Table B.1 Parameter values used for simulating survival data.

