PLOS ONE

A diagnostic real-time PCR assay for the rapid identification of the tomato-potato psyllid, Bactericera cockerelli (Šulc, 1909) and development of a psyllid barcoding database.

--Manuscript Draft--

Manuscript Number:	PONE-D-19-35047R1					
Article Type:	Research Article					
Full Title:	A diagnostic real-time PCR assay for the rapid identification of the tomato-potato psyllid, Bactericera cockerelli (Šulc, 1909) and development of a psyllid barcoding database.					
Short Title:	Bactericera cockerelli diagnostic assay					
Corresponding Author:	Jason Charles Sumner-Kalkun, Ph. D. Science and Advice for Scottish Agriculture Edinburgh, UNITED KINGDOM					
Keywords:	Bactericera cockerelli, Liberibacter, psyllids, pest insects, plant pathology, molecular biology, real-time PCR, TaqMan Assay, crop protection, phytosanitary, diagnostics, vector, biosecurity,					
Abstract:	The accurate and rapid identification of many insect pests is an important step in the prevention and control of outbreaks in areas that are otherwise pest free. The potatotomato psyllid Bactericera cockerelli (Šulc, 1909) is the main vector of 'Candidatus Liberibacter solanacearum' on potato and tomato crops in Central and Northern America and New Zealand. This study describes the design and validation of the first species - specific TaqMan probe-based real-time PCR assay, targeting the ITS2 gene region of B. cockerelli . The assay successfully detected B. cockerelli genomic DNA from adults (100% accuracy, n=72); immatures (100% accuracy, n=26) and eggs (100% accuracy, n=25) . This assay also detected DNA from cloned plasmids containing the ITS2 region of B. cockerelli (100% accuracy, n=24). The assay showed 0% false positives when tested on genomic and cloned DNA from 73 other psyllid species collected from across Europe, New Zealand and Mexico. This included 8 other species in the Bactericera genus and the main vectors of 'Candidatus Liberibacter solanacearum' worldwide. The limit of detection for this assay at optimum conditions was 0.000001ng DNA (~200 copies) of ITS2 DNA which equates to around a 1:10000 dilution of DNA from one single adult specimen. This assay is the first real-time PCR based method for accurate, robust, sensitive and specific identification of B. cockerelli from all life stages. It can be used as a surveillance and monitoring tool to further study this important crop pest and to aid the prevention of outbreaks, or to prevent their spread after establishment in new areas.					
Order of Authors:	Jason Charles Sumner-Kalkun, Ph. D.					
	MJ Sjölund					
	YM Arnsdorf					
	M Carnegie					
	F Highet					
	D Ouvrard					
	AFC Greenslade					
	JR Bell					
	R Sigvald					
	DM Kenyon					
Response to Reviewers:	Dear Dr Sean Michael Prager, Please find enclosed our revised manuscript entitled "A diagnostic real-time PCR assay for the rapid identification of the tomato-potato psyllid, Bactericera cockerelli (Šulc, 1909) and development of a psyllid barcoding database". We thank you and the					

reviewers for your careful review of our submitted manuscript and the opportunity to resubmit an improved version. We find the comments to be fair and constructive and have helped to improve the final manuscript. Please see below our responses to points raised by the reviewer's comments and the amendments we have made to the final manuscript. We provide a copy of the resubmitted manuscript with track changes and track changes accepted. Line numbers refer to those given in the resubmitted manuscript with track changes accepted.

We hope that you will consider this revised manuscript of a high enough standard to be published in PLOS ONE.

Yours Sincerely,

Dr Jason C Sumner-Kalkun (on behalf of all co-authors)

•Thank you for considering our work for publication in your journal. We found all reviewer comments to be useful and constructive and appreciate you overall assessment of the manuscript. We are pleased to have the opportunity to resubmit an improved version. We have made considerable efforts to condense the introduction and discussion section to include only relevant information and to streamline the manuscript. We agree that there was some duplication and repetition in the discussion, and it has been re-written accordingly. We decided, due to the technical nature of the paper that a separate results and discussion section was more appropriate. We have addressed the reviewer concerns regarding data availability and all sequence data has been uploaded to GenBank and is now free to be made publicly available. We hope that our amendments are deemed adequate to meet the high standards of PLOS ONE and are excited about the possibility of publishing with you.

REVIEWER COMMENTS TO AUTHOR

Reviewer #1: This manuscript describes a qPCR assay to identify potato psyllid intercepted in shipments. The assay is paramount to Europe's ability to detect potential introductions of this psyllid, which would be harmful to agricultural production. The authors describe the assay and confirmed that it does not amplify the ITS gene of other psyllids. My major concern for the manuscript is that it is overwritten and over-interpreted. The study is very simple - qPCR assay to detect potato psyllid - yet the text is over 50 pages long, includes unrelated information in the introduction, and includes an overly long discussion. The manuscript should be re-written to focus only on the assay and its use in trade commodities. Specific comments are provided in an attached document. I will apologize for my handwriting.

MAJOR POINTS

We appreciate your thorough assessment of our manuscript and thank you for your time. We found your comments very constructive and helpful. We have taken the care to reduce the introduction and discussion sections considerably to provide more focus on the assay and its uses, removing a lot of the duplication. The manuscript has been edited down to 31 pages + supplementary material. We attempted to produce a combined results and discussion section but felt that, due to the technical nature of the paper, keeping these separate was preferable. We hope that you will agree with this assessment on reading the improved version.

On the recommendation of the reviewer on line 486 of the previous manuscript we have performed the assay on Potato DNA to check for cross-reaction. No false positives were obtained from 8x reps of 3 Potato samples "Maris Piper" variety. MINOR POINTS

1.Line 45: Abstract overwritten, stats to be removed, word count reduced -The abstract Line 21-39 has been reduced in size with all stats removed and is now within the word limit (252 words)

2.Line 47: Remove "-" in "Potato-Psyllids"

-Changed to "Potato Psyllid" now line 41

3.Line 49: "The feeding of...." To be changed to "Feeding by"

-Changed as suggested now line 43

4.Line 53: Psyllid yellows refers to the feeding damage described above.

-Removed to avoid confusion and improve accuracy. Line 47

5.Lines 55-56: Change "...is also able to reproduce on..." to "...can also complete development on species of...."

-Changed as suggested line 49-50

6.Lines 56-58: Statement not deemed true

-Statement removed line 51

7.Line 61: Remove statement on Lso transmission to non-host plants of B. cockerelli -Statement removed line 53

8.Line 64-65: Remove claims about B.cockerelli populations observed to differ in their ability to spread Lso

-Changed to: "Evidence suggests that these genetic types may differ in their ability to spread Lso..." Lines 56-57

9.Line 86: Haplotype B is also found in Bactericera maculipennis

-Information added to the text line 71

10.Line 111: typo capsicum not italics

-Changed to "...Capsicum..." line 84

11.Line 223:This table is referenced a lot, make it a real table

-Supp Tab. S1 now changed to Table 1. In results section Line 244-250. Cited on lines: 244. Supp Tabs 2-4 renumbered to Supp Tabs 1-3 and Tables 1-3 renumbered to Tables 2-4.

12.Line 276: Submitted to NCBI? Provide accession numbers

-Accession numbers added to Table 1. Lines 246-252 and Table 4. Lines 271-276

13.Line 314-315: change "....cloned DNA as mentioned below." To "..DNA below".

-Changed to "....cloned DNA (see below)." Line 290

14.Line 319: change "immatures" to "nymphs"

-The term "immatures" is preferred by leading psyllid taxonomists Daniel Burckhardt and David Ouvrard, that latter of whom is an author on this paper. See ref: (Burckhardt et al. 2014). We have kept the term "immatures" or "immature life stages" throughout. Burckhardt D, Ouvrard D, Queiroz D, Percy D (2014) Psyllid Host-Plants (Hemiptera: Psylloidea): Resolving a Semantic Problem. Florida Entomol 97:242–246 . https://doi.org/10.1653/024.097.0132

15.Line 411: "...Bactericera..." to be italicised

-Changed to italics. Line 354

16.Lines 439-441: Section to be re-written as inaccurate wording used

-This section was removed in the re-write of the discussion.

17.Line 468: Suggestion to perform further validation on Solanaceous DNA

-3 x samples of Solanum tuberosum 'Maris Piper' were tested and were negative results added to lines: 194-196 and 284-285. Also results of primer blast etc. did not return any hits for Solanum species or any plant sequences.

Reviewer #2

-We are thankful to the reviewer for their detailed and careful examination of our paper. They have provided very useful, constructive comments regarding the technical aspects of the paper and have informed us of errors in the finer details. We hope we have incorporated changes to their satisfaction, and we have endeavoured to clear up the technical details that were missing or incorrect.

1.Data availability

-Psyllid DNA sequences have been uploaded to GenBank and accession numbers are provided in Tab1. And Tab4; lines 246-252 and 271-276 respectively.

2.Page 8 Line 163: What part of the body is used for micro-dissection to extract DNA? The authors should describe the micro-dissection procedure in more detail rather than only citing the papers.

-The non-destructive DNA extraction method is described on lines 121 – 132. "Microdissection" was used here to describe the piercing of the abdomen and thorax. "Microdissection" has been changed to "pierced" as a more appropriate term (line 126). 3.Page 8 Line 172: "For amplification of ITS2 primers CA55p8sFcm-F and CA28sB1d-

R [60] and for amplification of CO1 gene regions arthropod barcoding Primers LCO1490 and HCO2198 [61]." The authors should check the grammar here. It is not a complete sentence. It could be "For amplification of ITS2, primers CA55p8sFcm-F and CA28sB1d-R [60] were used, and for amplification of CO1 gene regions, arthropod barcoding Primers LCO1490 and HCO2198 [61] were used."

-Changed as suggested lines 135-137

4.Page 10 Line 204: "DNA was extracted as above using the non-destructive method, amplified and cloned into competent Escherichia coli cells using the TOPO TA cloning kit (Thermo-Fisher)." The authors should specify what genes (ITS2 or CO1?) they amplified for cloning, and what restriction enzyme (EcoRI?) they used to linearize the plasmid.

-Information added and moved from later section 2.5.2 Sensitivity. Now line 171-178 5.Page 10 Line 212: The authors need to list the real time PCR cycling conditions here, for example XX degrees for XX seconds.

-Added lines 178-181

6.Page 10 Line 223: "All reactions with non-target psyllid DNA were run in conjunction with a TaqMan Exogenous Internal Positive Control Reagent Kit (Applied Biosystems) to ensure false positives were not obtained due to inhibition within the reaction". Here, "ensure" should be "rule out the possibility that"

- Changed as suggested lines 196-201

7. Page 11 Line 226: "DNA from all non-target psyllids was sequenced to ensure psyllid DNA was present in all reactions to rule out false negatives due to inefficient DNA extraction." What DNA was sequenced? PCR product from ITS2 or CO1? The authors need to specify

- Details now added to new Tab 1 and citation to table included on lines 246-252 8. Page 11 Line 239: "6 subsequent dilutions were made. Stock DNA 10 ng/µl was linearised using EcoRI restrictions enzyme (New England Biolabs)," Here "6 subsequent dilutions" should be "8 subsequent dilutions", according to the nine point 10-fold dilution series mentioned on Page 11 Line 236.

- Corrected Line 212-213

9. Page 12 Line 252: "A six point 1:10 dilution series starting at 10ng/µl was used with each dilution being performed in triplicate." Here, "six point" should be "nine point" according to Page 11 Line 236.

- Only 6 points were used for repeatability. This is sufficient to analyse standard curves between runs. Lines 222-223 refer to sensitivity experiments only.

10. Page 12 Line 263: "For each tested parameter, optimization was performed across an eight point 1:10 dilution series starting at 10ng DNA." Here, "eight point" should be "nine point", "10ng" should be "10ng/ μ l".

- Corrected. Line 234

11. In Supplementary table S1, green and red color coding should be explained in the text. What does TBC mean? Accession numbers should be given for all the sequences. Accession numbers in Table 3 should also be given and TBC should be explained.

- We apologise for this error; this colouring has been removed as was an artefact of preparing the table and shouldn't have been included in the submitted version. TBC was used to show we were waiting for accession numbers. Accession numbers are now added to tables and TBC removed. Tab. 1 lines: 246-247 Tab.4 lines:

12. Page 14 Line 289: "CO1 genes showed higher similarity and generally less conserved and variable regions compared to ITS2 regions." Here "less conserved and variable" should be "less variable".

- Corrected line 266

13. Page 17 Line 310: "0.2 μ/mol" should be "0.2 μM".

- Corrected line 285

14. Page 18 Line 324: "The copy number calculator available at

http://scienceprimer.com/copy-number-calculator-for-realtime-pcr was used." Here a hyperlink should be created. According to the link and the formula given, 0.00001ng DNA equals 4.879×10000 copies, if length of gene region is considered 187bp (product length of ITS2 in real time PCR). However, the authors calculated that it equals to 200bp. Please double check the calculation.

-Limit of detection is actually 0.000001 ng DNA. This mistake of 10 fold higher amounts stated in the text was found throughout and in tables. We have now corrected them. The correct equation should be:

Number of Copies = (ng DNA(0.000001) x 6.022x1023) ÷ ((length of plasmid 4656bp + cloned fragment 700bp) * 1x109 * 660) = 170.36 copy numbers.

15. Page 18 Line 337: "At primer concentration, 0.5 μ M the assay was less sensitive only amplifying up to 0.001 ng DNA." It should be "At primer concentration 0.5 μ M, the assay was less sensitive only amplifying up to 0.001 ng DNA."

-Corrected. Lines 313-314

16. Page 18 Line 338: "At higher primer concentrations (0.5 and 1.0) the assay showed higher sensitivity" Here "(0.5 and 1.0)" should be "(1.0 μ M)".

-Corrected. Line 314

17. Page 19 Line 350: "The precision of the assay was lower at higher MgCl2 concentrations 6mM and 8mM (Supp Tab. S3)." Here "6mM and 8mM" should be "7.5mM and 9mM".

-Corrected. Lines 326-327

18. Page 19 Line 354: "Reactions at 58 °C were 10 to 100-fold less sensitive than reactions at 58 °C." Here it should be "Reactions at 58 °C were 10 to 100-fold less sensitive than reactions at 64 °C."

 -Corrected. Lines 330-331 19.Page 20 Line 367: "We have designed and validated the first species-specific, qualitative real-time PCR TaqMan assay for B. cockerelli by using the comparison of 73 non-target species to identify unique gene regions that were suitable for primer/probe design and species differentiation." Here "qualitative" should be "quantitative". -Changed to quantitative. Line 351 Reviewer #3 -We thank the reviewer for their thoughtful assessment of our manuscript and are pleased that only minor corrections were found throughout. The corrections have improved the manuscript greatly and have ironed out some important technical errors. We hope that our amendments are deemed satisfactory and have covered the issues they have raised. 1.Page 8 line 175: please replace amount of primers used with final concentration of primers (or add this) - Added. Line 138 2. Page 10 line 213: please add cycling conditions of real time PCR, as done for CO1 and ITS2 amplification -Added lines 178-181 3. Table 1: should include also B. cockerelli, so to include fragment size of amplicons for this species. In alternative, fragment sizes can be added to the main text -B. sockerelli added to table 2. Line 262-263 4. Table 3: not clear what the "/" symbol in the CO1 column means -Samples with / were not amplified in this region. Accession numbers for each sample have been added and this is explained better in the text. Lines: 252 Tab.1 ; 276 Tab. 4 5. Page 17 line 310: please check spelling of concentration -Corrected to JM. Line 285 6. Page 17 line 316: numbers seem not to add up: how many technical replicates were used per sample? -Information on technical reps is incorporated into table 4. Some samples were tested in duplicate, triplicate or 6x replicates. 7. Page 18 line 323: I have tried the formula myself using the concentration (0.00001 ng) and fragment size
to upload them to public databases.
Response
DK: This work was supported by the EU Horizon2020 Programme under grant agreement No. 635646, POnTE (Pest Organisms Threatening Europe) https://ec.europa.eu/programmes/horizon2020/en and the Scottish Government [RRL/001/14]. JB: The Rothamsted Insect Survey, a National Capability, is funded by the Biotechnology and Biological Sciences Research Council under the Core Capability Grant BBS/E/C/000J0200. https://bbsrc.ukri.org/funding/ The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

This statement is required for submission and **will appear in the published article** if the submission is accepted. Please make sure it is accurate.

Unfunded studies

Enter: The author(s) received no specific funding for this work.

Funded studies

Enter a statement with the following details:

- Initials of the authors who received each award
- Grant numbers awarded to each author
- The full name of each funder
- URL of each funder website
- Did the sponsors or funders play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript?
- NO Include this sentence at the end of your statement: The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
- YES Specify the role(s) played.

* typeset

Competing Interests	The authors have declared that no competing interests exist.
Use the instructions below to enter a	
competing interest statement for this	
submission. On behalf of all authors,	
disclose any competing interests that	
could be perceived to bias this	
work—acknowledging all financial support	
and any other relevant financial or non-	
financial competing interests.	
This statement will appear in the	
published article if the submission is	
accepted. Please make sure it is	
accurate. View published research articles	
from <u>PLOS ONE</u> for specific examples.	

NO authors have competing interests
Enter: The authors have declared that no competing interests exist.
Authors with competing interests
Enter competing interest details beginning
with this statement:
I have read the journal's policy and the
authors of this manuscript have the following
competing interests: [insert competing interests here]
* typeset
Ethics Statement
Enter an ethics statement for this
submission. This statement is required if the study involved:
Human participants
Human specimens or tissue
Vertebrate animals or cephalopodsVertebrate embryos or tissues
 Field research
Write "N/A" if the submission does not
require an ethics statement.
General guidance is provided below.
Consult the submission guidelines for
detailed instructions. Make sure that all
information entered here is included in the
Methods section of the manuscript.

Format for specific study types

Human Subject Research (involving human participants and/or tissue)

- Give the name of the institutional review board or ethics committee that approved the study
- Include the approval number and/or a statement indicating approval of this research
- Indicate the form of consent obtained (written/oral) or the reason that consent was not obtained (e.g. the data were analyzed anonymously)

Animal Research (involving vertebrate

animals, embryos or tissues)

- Provide the name of the Institutional Animal Care and Use Committee (IACUC) or other relevant ethics board that reviewed the study protocol, and indicate whether they approved this research or granted a formal waiver of ethical approval
- Include an approval number if one was obtained
- If the study involved *non-human primates*, add *additional details* about animal welfare and steps taken to ameliorate suffering
- If anesthesia, euthanasia, or any kind of animal sacrifice is part of the study, include briefly which substances and/or methods were applied

Field Research

Include the following details if this study involves the collection of plant, animal, or other materials from a natural setting:

- Field permit number
- Name of the institution or relevant body that granted permission

Data Availability

Authors are required to make all data underlying the findings described fully available, without restriction, and from the time of publication. PLOS allows rare exceptions to address legal and ethical concerns. See the <u>PLOS Data Policy</u> and FAQ for detailed information.

Yes - all data are fully available without restriction

A Data Availability Statement describing	
where the data can be found is required at	
submission. Your answers to this question	
constitute the Data Availability Statement	
and will be published in the article, if	
-	
accepted.	
Important: Stating 'data available on request	
from the author' is not sufficient. If your data	
are only available upon request, select 'No' for	
the first question and explain your exceptional	
situation in the text box.	
Do the authors confirm that all data	
underlying the findings described in their	
manuscript are fully available without	
restriction?	
Describe where the data may be found in	All Co1 and ITS2 sequences area available from GenBank accession numbers
full sentences. If you are copying our	(MT021761-MT021824; MT027551-MT027599; MT038907-MT038996; MT040955-
sample text, replace any instances of XXX	MT040966). These will be made accessible on request.
with the appropriate details.	
If the date are held aroutly he held in a	
If the data are held or will be held in a	
public repository, include URLs,	
accession numbers or DOIs. If this	
information will only be available after	
acceptance, indicate this by ticking the	
box below. For example: All XXX files	
are available from the XXX database	
(accession number(s) XXX, XXX.).	
 If the data are all contained within the 	
manuscript and/or Supporting	
Information files, enter the following:	
All relevant data are within the	
manuscript and its Supporting	
Information files.	
If neither of these applies but you are	
able to provide details of access	
elsewhere, with or without limitations,	
please do so. For example:	
Data cannot be shared publicly because	
of [XXX]. Data are available from the	
XXX Institutional Data Access / Ethics	
Committee (contact via XXX) for	
researchers who meet the criteria for	
researchers who meet the criteria for access to confidential data.	
access to confidential data.	
access to confidential data. The data underlying the results	
access to confidential data.	

and contact information or URL). This text is appropriate if the data are owned by a third party and authors do not have permission to share the data.
peset
Additional data availability information:

1	<i>Full Title:</i> A diagnostic real-time PCR assay for the rapid identification of the tomato-potato
2	psyllid, Bactericera cockerelli (Šulc, 1909) and development of a psyllid barcoding database.
3	<u>Authors</u>
4	JC Sumner-Kalkun ¹ *, MJ Sjölund ¹ , YM Arnsdorf ¹ , M Carnegie ¹ , F Highet ¹ , D Ouvrard ^{2, 5} , AFC
5	Greenslade ³ , JR Bell ³ , R Sigvald ⁴ , DM Kenyon ¹
6	¹ SASA, Roddinglaw Road, Edinburgh EH12 9FJ, UK. ² Department of Life Sciences, Natural
7	History Museum, Cromwell Road, London SW7 5BD, UK. ³ Rothamsted Insect Survey,
8	Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK. ⁴
9	Department of Ecology, Swedish University of Agricultural Sciences, Box 7044 750 07
10	Uppsala, Sweden. ⁵ Entomology and invasive plants Unit, Plant Health Laboratory, ANSES,
11	755 avenue du campus Agropolis, CS 30016, 34988 Montferrier-sur-Lez Cedex, France
12	*Corresponding author: jason.sumner-kalkun@sasa.gov.scot
13	<u>Short Title:</u> Bactericera cockerelli diagnostic assay
14	Keywords: Bactericera cockerelli, Biosecurity, Phytosanitary, Diagnostic, Pest, Vector,
15	'Candidatus Liberibacter solanacearum', real-time PCR
16	
17	
18	
19	

20 Abstract

21 The accurate and rapid identification of many insect pests is an important step in the 22 prevention and control of outbreaks in areas that are otherwise pest free. The potato-23 tomato psyllid Bactericera cockerelli (Šulc, 1909) is the main vector of 'Candidatus 24 Liberibacter solanacearum' on potato and tomato crops in Central and Northern America 25 and New Zealand. This study describes the design and validation of the first species-specific 26 TaqMan probe-based real-time PCR assay, targeting the ITS2 gene region of *B. cockerelli*. 27 The assay successfully detected *B. cockerelli* genomic DNA from adults (100% accuracy, <u>28</u> n=72); immatures (100% accuracy, n=26) and eggs (100% accuracy, n=25). This assay also 29 detected DNA from cloned plasmids containing the ITS2 region of B. cockerelli (100% 30 accuracy, n=24). The assay showed 0% false positives when tested on genomic and cloned 31 DNA from 73 other psyllid species collected from across Europe, New Zealand and Mexico. 32 This included 8 other species in the *Bactericera* genus and the main vectors of 'Candidatus' 33 Liberibacter solanacearum' worldwide. The limit of detection for this assay at optimum 34 conditions was 0.000001ng DNA (~200 copies) of ITS2 DNA which equates to around a 35 1:10000 dilution of DNA from one single adult specimen. This assay is the first real-time PCR based method for accurate, robust, sensitive and specific identification of B. cockerelli from 36 37 all life stages. It can be used as a surveillance and monitoring tool to further study this important crop pest and to aid the prevention of outbreaks, or to prevent their spread after 38 39 establishment in new areas.

40 1. Introduction

The psyllid *Bactericera cockerelli* (Šulc, 1909), (commonly known as "Potato Psyllids" or
"Tomato-Potato Psyllid"), is a major pest of cultivated Solanaceous crops including potato

and tomato [1]. Feeding by this psyllid causes severe damage to potato plants including:
deformed tubers; production of numerous small, poor quality tubers; curling of leaves and
petioles; and yellowing or purpling of leaves. This leads to stunted growth and loss of yield
[2]. *Bactericera cockerelli* is also the main vector of *'Candidatus* Liberibacter solanacearum'
(Lso) which is associated with Zebra Chip in Central and North America and New Zealand [3–
8].

49 While B. cockerelli prefers to complete its life cycle on Solanaceous plants it can also 50 complete development on species of Convolvulaceae (Bindweeds and Morning Glories) [9]. 51 In addition, adult B. cockerelli have been found on over 40 species belonging to 20 families, 52 however most of these are either casual, food or shelter plants on which the psyllid is 53 unable to complete a full life cycle [2,10–16]. Four biotypes of *B. cockerelli* have been 54 described according to polymorphisms in the mitochondrial cytochrome *c* oxidase subunit I 55 (COI) gene and represent geographically distinct populations; central, western, north-56 western, and south-western [17,18]. Evidence suggest that these genetic types may differ in 57 their ability to spread Lso [18,19].

B cer ricera cockerelli is thought to originate from South-Western USA and Mexico [2,11]
and from here has spread via natural and human-mediated dispersal to extend its range
[20]. Outside America it is now established in New Zealand [21] and more recently Western
Australia [22].

The phloem-limited bacterium '*Candidatus* Liberibacter solanacearum' (Lso) is a pathogen associated with Zebra Chip disease of potatoes [3,23–25] and disease in other Solanaceous crops such as cultivated tomato [1,3,26,27], pepper [28], eggplant [29], tobacco [30,31] and tomatillo [26]. Currently, *B. cockerelli* is the main vector of Lso in field and glasshouse-grown

Solanaceous plants in the United States, Mexico, areas of Central America [27–30], Canada
[32], New Zealand [5,6,25] and recently Ecuador [33]. T Lso haplotypes have been
described, only three of which are associated with disease in Solanaceous plants. Haplotypes
A, B, and F are associated with Zebra chip disease in America [3,34,35], whereas only
haplotype A has been found in New Zealand [5,36]. Haplotype B has also been found in *Bactericera maculipennis* (Crawford) [37]. The remaining haplotypes are not vectored by *B. cockerelli* but by closely related species in the Triozidae family.

73 The impact of B. cockerelli and associated Lso transmission on agriculture is significant. Since 74 its arrival in New Zealand circa 2005 via human-mediated dispersal it has caused millions of 75 dollars of economic losses [6,21]. Similarly, management of B. cockerelli in the US is 76 reported to have cost millions of dollars per year in major potato growing areas such as 77 Texas [38] and the Pacific North-West [39]. The introduction of *B. cockerelli* into potato 78 growing regions in Europe or Asia would be devastating to the agricultural industry of those 79 regions. If B. cockerelli, or a sufficient vector of Solanaceous Lso haplotypes, were to invade 80 Europe it is estimated that the effects of Lso damage on potato and tomato would cost € 81 222 million per year and the negative impact of social welfare could cost an additional 82 estimated € 114 million [40].

Currently, *B. cockerelli* is considered an A1 quarantine pest in the EPPO region [4].
Consignments of aubergine and *Capsicum* from Mexico infested with immature and adult
stages of *B. cockerelli* were intercepted four times during UK border inspections between
2017-2018; indicating that there is a real threat of this pest making an incursion into the
EPPO region if not properly monitored [41]. Monitoring and prevention of the spread of *B. cockerelli* is essential to prevent the risk of an outbreak of Lso on potato, tomato and other

89	Solanaceous crops in areas where it is not currently found [42]. There is therefore an
90	evident need for a rapid and accurate diagnostic test to identify B. cockerelli at all life stages
91	not only as a tool to support import inspections, but also to assist monitoring, eradication
92	and control strategies.
93	We designed a species-specific real-time PCR diagnostic assay to detect all life-stages of <i>B</i> .
94	cockerelli, eggs, immatures and adults. The assay provides a rapid diagnostic test to quickly
95	determine the presence of <i>B. cockerelli</i> , allowing for the early detection of
96	invasions/introductions and aiding in the prevention of spread of this psyllid.
97	
98	2. <u>Materials and Methods</u>
99	2.1. <u>Specimen collection</u>
100	The assay was tested on 28 target adults <i>B. cockerelli</i> specimens and 73 non-target species
101	consisting of 110 specimens see results section 3.1 for more info on samples. The
102	classification follows Burckhardt & Ouvrard [43], and a complete taxonomic account of each
103	species is given in Ouvrard [20]. Psyllid identifications were confirmed against reference
104	type specimens in the NHM London collections. To account for intraspecific genetic

105 variation, we obtained *B. cockerelli* specimens from Mexico (Universidad Autónoma Agraria

106 Antonio Narro) and USA (USDA, Agricultural Research Services) from colony collections of

107 each of the four recognised biotypes of *B. cockerelli* in Central America, the Central,

108 Western, North-Western, and South-Western biotypes [19]. Specimens of B. cockerelli were

also obtained from New Zealand lab-reared colonies (Plant Research, New Zealand). Non-

110 target specimens were mainly obtained from 12.2 m suction-traps in the United Kingdom

111 that form part of the Rothamsted Insect Survey network described here [44]. Specimens 112 were also obtained from suction-traps in Finland, Germany, Spain and Sweden; as well as 113 from field collections from Finland, Israel, Mexico, Serbia, Spain, UK and USA. Non-target specimens from different regions of the USA were used to test assay specificity on species 114 115 that are commonly found in the same region as *B. cockerelli*. As immatures and eggs are the 116 most likely life stages that inspectors might find on imported plant material, we also tested 117 the assay on DNA extracted from immatures and eggs from Mexico and the USA for 118 validation.

119 2.2. DNA extraction, PCR, and DNA sequencing for identification of psyllids

120 DNA for sequencing and assay validation was extracted from psyllids using a non-destructive 121 method first described in [45] and adapted from [46]. Psyllid specimens were preserved in 122 95% Ethanol: 5% Glycerol solution. Using a 15mm long, 0.15mm diameter stainless steel 123 entomological head-less pin (A3 size, Watkins and Doncaster) mounted in a holder, 124 specimens were initially pierced fully through the abdomen and half-way through the thorax 125 from the dorsal side while attempting to minimise damage to head, legs, wings, terminalia 126 and other body parts that are used for taxonomic identification. Pierced specimens were placed in a microcentrifuge tube containing 180 µl of ATL buffer and 20 µl of proteinase-k as 127 128 outlined in the DNeasy Blood and Tissue Kit from Animal Tissues (Qiagen). Samples were 129 placed in a shaking incubator over-night (~8-10 hrs) at 56 °C at 300 rpm. The protocol for 130 DNA extraction in DNeasy Blood and Tissue Kit Protocol from Animal Tissues (Qiagen) was 131 followed and the psyllid integument voucher specimen was stored in 95% Ethanol: 5% 132 Glycerol for morphological identification. Psyllids were DNA barcoded using one or two gene 133 regions. The internal transcribed spacer 2 (ITS2) and cytochrome c oxidase subunit 1 (CO1)

134 were amplified and sequenced for identification of different psyllid species. For 135 amplification of ITS2 primers CA55p8sFcm-F and CA28sB1d-R [47] were used; and for 136 amplification of CO1 gene regions arthropod barcoding Primers LCO1490 and HCO2198 [48] 137 were used. All reactions were performed in 20 µl consisting of: 10 µl 2x Type-It 138 Microsatellite PCR Kit Master Mix (Qiagen); 0.2 µM each forward and reverse primer; 7.2 µl 139 molecular grade water (Sigma-Aldrich) and 2 µl of psyllid template DNA. Reactions were run on a Veriti 96-well thermal cycler (Applied Biosystems) using the following programs. ITS2: 140 141 95°C for 5 mins; 25 x cycles of (95°C for 30 s, 56°C for 90 s, 72°C for 30 s); and a final 142 extension at 72°C for 10 mins. CO1: 94°C for 5 mins; 5 x cycles of (94°C for 30s, 45°C for 30s, 72°C for 1 min); 25 x cycles of (94°C for 30s, 51°C for 1 min, 72°C for 1 min); and a final 143 144 extension of 72°C for 10 mins. PCR amplified gene regions were cleaned-up using EXO-SAP 145 and Ethanol precipitation, then sequenced using the BigDye Terminator Cycle Sequencing 146 Kit (Applied Biosystems), forward and reverse complimentary DNA strands were sequenced 147 separately for each sample and analysed using a 3500xL Genetic Analyser (Applied 148 Biosystems).

149 2.3. Bioinformatics and Real-Time PCR Assay Design

Sequence editing, assembly and alignment were performed on ".AB1" trace files uploaded to Geneious R11 v 11.1.5 (Biomatters Ltd.). Contigs were assembled after trimming sections of low-quality sequence and aligning the complimentary strands using CLUSTAL-W multiple sequence alignment method [49]. Final contigs for each species and each gene region were aligned to identify variable areas suitable as targets for *B. cockerelli* specific primer and probe sets. Primers and probes were designed using manual selection of target-specific regions analysed using the "Basic Local Alignment Search Tool" (BLAST) [50] against the

157 NCBI GenBank database [51] and processing of selected regions for suitability/ specificity in 158 "Primer3" [52] and "Primer-BLAST" software [53]. Primer annealing temperature, hairpin 159 formation, self-complementarity, GC content and were assessed using "Primer3" [52]. 160 Potential amplification of non-specific insect species was checked using Primer BLAST which 161 includes all psyllid species present in the GenBank database. Primer and probe sets were 162 selected/rejected based on the following parameters: primer annealing temperature 59-62°C; primer annealing temperature + 8-10°C for probe annealing temperature; no more 163 164 than 2°C difference in annealing temperature between primers, max probe length 30bp, no more than 3 Gs in a row in probe, amplicon length max 300bp and specificity to B. cockerelli. 165

166

2.4. <u>Real-time PCR Set-up and Standards</u>

To calculate standard curves DNA standards of B. cockerelli were prepared using dilution 167 168 series of linearized cloned plasmid DNA. DNA was extracted as above using the non-169 destructive method, amplified and cloned into competent Escherichia coli cells using the 170 TOPO TA cloning kit (Thermo-Fisher). DNA from successfully transformed colonies was 171 extracted using "PureYield Plasmid Miniprep System" (Promega). For assay validation ITS2 172 DNA was cloned from other psyllid species (see results section 3.1). Stock DNA 10 ng/ μ l was 173 linearised from cloned plasmid DNA using EcoRI restrictions enzyme (New England Biolabs), 174 0.5 μ l of enzyme was added to 100 μ l of stock DNA, this solution was incubated in a heat 175 block (Thermomixer C, Eppendorf) at 37 °C for 15 mins. The enzyme was then deactivated at 65 °C for 20mins. Real-time PCRs were performed in 15 μl volumes including: 6.75 μl 176 177 Jumpstart Taq Ready Mix (Sigma); 1.2 μl MgCl₂ (25mM); 0.45 μl of each primer; 0.15 μl 178 probe; 4 µl of molecular grade water (Sigma); and 2 µl of template DNA. The standard real-179 time PCR cycle program was as follows. Hold stage: 50 °C for 2 mins then; 95 °C for 10 mins.

180	PCR stage: 40 cycles of (95 °C for 15 secs; X °C for 1 min), with primer annealing
181	temperature X being 58, 60, 62, 64, or 68; depending on the experiment. Primer
182	concentration, $MgCl_2$ concentration and temperature was adjusted for validation and
183	optimization of the assay as described below. Reactions were performed on a "QuantStudio
184	6 Flex" (Applied Biosystems) real-time PCR machine and analysis was done on the
185	"QuantStudio Real-Time PCR Software" (Applied Biosystems).

186 2.5. Assay validation

187 **2.5.1.** Specificity

188 The final primer and probe set was tested on genomic DNA from 47 B. cockerelli specimens 189 from different life stages. These included the 4 US biotypes [17,54] and specimens from 190 New Zealand to determine false negatives. The assay was tested for specificity against 191 genomic DNA of 73 non-target psyllid species collected as mentioned above, to detect false 192 positives. This included a total of 8 other closely related *Bactericera* spp. and the major 193 vectors of Lso on Apiaceous crops (B. nigricornis, B. trigonica and Trioza apicalis). 194 Information regarding samples tested is in results section 3.1. The assay was also checked 195 for cross-reaction against potato genomic DNA (Solanum tuberosum), 3 samples of S. 196 tuberosum 'Maris Piper' were tested in replicates of 8. All reactions with non-target DNA 197 were run in conjunction with a TaqMan Exogenous Internal Positive Control Reagent Kit 198 (Applied Biosystems) to rule out the possibility that false positives were not obtained due to 199 inhibition within the reaction. DNA from all non-target psyllids was sequenced in either ITS2, 200 CO1 or both to ensure psyllid DNA was present in all reactions to rule out false negatives 201 due to inefficient DNA extraction. Reactions were performed in duplicate at least, with a higher number of replicates for species closely related to B. cockerelli. False positives were 202

defined as reactions with non-target DNA that showed fluorescence above the cycle
threshold during 40 cycles; and false negatives were defined as reactions with *B. cockerelli*DNA that did not give a Ct after 40 cycles.

206 **2.5.2.** Sensitivity

207 Experiments were performed to determine the limit of detection of the assays. DNA 208 standards were produced using B. cockerelli linearized cloned DNA from the ITS2 region. A nine point 10-fold dilution series starting with 10 ng/ μ l DNA up to 10⁻⁸ ng/ μ l of linearised 209 210 plasmid DNA and genomic DNA was used to determine the limit of detection. $100 \text{ ng/}\mu\text{l}$ 211 stock DNA concentration was initially checked using QuBit 4 Fluorometer (Invitrogen) and 5 212 μl was added to 45 μl of molecular grade water (Sigma-Aldrich) to dilute 1:10; eight 213 subsequent dilutions were made. Linearised and non-linearised DNA was compared along 214 with genomic DNA. The ability of the assay to detect immatures and eggs was also tested. 215 DNA from various instars of immatures was extracted using the non-destructive protocol 216 described above. Batches of 1 egg, 5 eggs and 10 eggs were extracted using the DNeasy 217 Blood & Tissue kit (Qiagen) and initially broken with a pestle.

218 **2.5.3.** *Repeatability and Reproducibility*

Variation in the performance of the assay between runs and within runs was assessed at a
0.2 μM primer concentration, with 1.5mM MgCl₂, and 60 °C annealing temperature.

221 Linearised plasmid DNA from Escherichia coli transformed with B. cockerelli ITS2 DNA was

- used. A six point 1:10 dilution series starting at 10ng/µl was used with each dilution being
- 223 performed in triplicate. The same experiment was repeated 3x simultaneously. Runs and
- variations between the three experiments were recorded and analysed using QuantStudio 6

Real-Time PCR Software. An identical plate following the same plate set-up and reaction mix
was run simultaneously on another QuantStudio 6 real-time PCR machine to compare interrun variation.

228 2.5.4. Robustness/Optimization

229 Amplification of target DNA, specificity and sensitivity at different MgCl₂ concentration, 230 primer concentrations and annealing temperatures were performed to assess robustness. 231 The assay was tested with 1.5, 3.5, 5.5, 7.5 and 9.5mM MgCl₂ concentration. For primers, 232 0.1, 0.2, 0.3, 0.5 and 1.0 μ M concentrations were tested. The assay was also tested at 233 different annealing temperatures 58, 60, 62, 64, 68 °C across. For each tested parameter, 234 optimization was performed across a nine point 1:10 dilution series starting at $10ng/\mu I$ DNA. 235 All samples were tested in triplicates. Closely related Bactericera species were included in 236 these assays to assess specificity under different assay conditions. After optimization of the 237 assay a multifactorial robustness test was performed across two different real-time PCR 238 machines to test the combined effects of small changes/errors in the PCR set-up. The assays 239 were run on a "QuantStudio 6 Flex" (Applied Biosystems) and "CFX96 Real-Time System" 240 (BioRad); results were analysed using "QuantStudio 6 Real-Time PCR Software" (Applied Biosystems) and "CFX Manager 3.1" (BioRad). The methodology used followed the European 241 242 Network of GMO Laboratories (ENGL) recommendations [55].

243 **3.** <u>RESULTS</u>

244 **3.1.** DNA extraction, PCR, and DNA sequencing for identification of psyllids

245 DNA from 110 psyllid specimens comprising 73 different species were extracted, amplified
246 and sequenced successfully from either CO1 or ITS2 gene regions, or both (Tab. 1).

Family	Genus	Species	Voucher ID	Collection Location	Collection method	CO1 Ac#	ITS2 Ac#	Tech Reps	Vou hei Loca on
Aphalaridae	Aphalara	avicularis	160718.A.avi.23	Wellesbourne, UK	suction trap	MT021761	/	2	1
Aprialandae	, iprialara	polygoni	160718.A.pol.22	Wellesbourne, UK	suction trap	/	, MT038907	2	1
	Blastopsylla	occidentalis	180312.Bl.occ.24	Salamanca, Spain	•	•			3
			160825.5 US	Nevada, USA	suction trap	MN272146	MN316692	2	1
	Craspedolepta	gutierreziae			field collection	MT021786	MT038962	2	
		minutissima	160825.1 US	Nevada, USA	field collection	MT021787	MT038963	2	1
			160825.10 US	Oregon, USA	field collection	MT021789	/	2	1
			160825.4 US	Nevada, USA	field collection	MT021788	/	2	1
		nervosa	160728.Cra.ner.2	Gogarbank, UK	suction trap	MT021790	MT038964	2	1
		pinicola	160825.2 US	Nevada, USA	field collection	/	MT038965	2	1
		subpunctata	160421.C.sub.5	Gogarbank, UK	suction trap	MT021791	MT038966	2	1
	Rhinocola	aceris	151014.R.ace.14	Wellesbourne, UK	suction trap	MT021810	MT038979	2	2
Liviidae	Diaphorina	citri	160309.D.cit.6	Lab Colony,	Lab Reared	MT021794	MT038969	2	1
	Euphyllura	olivina	180125.Eup.oli.3	imports from Italy	imported Olea europeae	MT021797	MT038970	2	3
	Livia	crefeldensis	180312.L.cre.5	Salamanca, Spain	suction trap	MN316678	MN272127	2	3
	Livia	junci	160404.L.jun.1	Broom' s Barn, UK					2
					suction trap	MT021801	/	2	
		opaqua	160825.6 US	Nevada, USA	field collection	MT021802	MT038973	2	1
Psyllidae	Arytaina	genistae	151203.A.gen.2J	Ayr, UK	suction trap	/	MT038909	2	1
	Arytainilla	gredi	180312.A.gre.1	Salamanca, Spain	suction trap	MN272123	MN316677	2	3
		spartiophila	180716.A.spa.29	Edinburgh, UK	suction trap	MT021762	MT038908	2	3
	Baeopelma	foersteri	151203.B.foe.1J	Ayr, UK	suction trap	/	MT038944	2	1
		foersteri	160928.B.foe.2	SASA, UK	suction trap	, MT021776	/	2	1
	Cacopsylla	affinis	151203.C.aff.1	Wye, UK	suction trap	MT021770	/ MT038945	2	2
	Sucopsyna	ambiqua	160404.C.amb.4						2
		0		Wye, UK	suction trap	/	MT038946	2	
		ambigua	161024.C.amb.3	Preston, UK	suction trap	/	MT038947	2	1
		americana	160825.3 US	Nevada, USA	field collection	MT021778	MT038948	2	1
		brunneipennis	160309.C.bru.8	Wye, UK	suction trap	/	MT038949	2	2
		crataegi	160404.C.cra.3	Broom' s Barn, UK	suction trap	MT021779	MT038950	2	2
		mali	180910.C.mal.30	Elcho, UK	field collection	/	MT038951	2	3
		melanoneura	160718.C.mel.6	Kirton, UK	suction trap	,	MT038952	2	3
		moscovita	190109.C.mos.1	Germany		,	/	2	3
					suction trap	/	•		1
		peregrina	161024.C.per.11	Silwood Park, UK	suction trap	MT021780	MT038953	2	
		pruni	160203.C.pru.18	Wellesbourne, UK	suction trap	/	MT038954	2	2
		pulchra	160718.C.pul.15	Elgin, UK	suction trap	/	MT038955	2	1
		pyricola	160203.C.pco.2	Wye, UK	suction trap	MT021781	MT038956	2	2
		saliceti	161024.C.sal.7	York, UK	suction trap	/	MT038958	2	1
		sorbi	161024.C.sor.8	Preston, UK	suction trap	MT021782	MT038959	2	1
		rhamnicola	151014.C.rha.8	Wellesbourne, UK	suction trap	1	MT038957	2	2
		ulmi	171011.C.ulm.13	Germany	suction trap	, MT021783	MT038960	2	3
	Ceanothia	ceanothi	160825.9 US	Oregon, USA		MT021784			1
				-	field collection		/	2	
	Chamaepsylla	hartigii	160728.Ch.har.1	Gogarbank, UK	suction trap	MT021785	MT038961	2	1
	Euglyptoneura	fuscipennis	160825.7 US	Oregon, USA	field collection	MT021795	/	2	1
		robusta	160825.8 US	Oregon, USA	field collection	MT021796	/	2	1
	Heteropsylla	texana	160825.11 US	Texas, USA	field collection	MT021798	/	2	1
	Psylla	alni	161019.P.aln.1	Sweden	suction trap	MT021804	/	2	1
		buxi	180622.P.bux.22	Scotland, UK	suction trap	MT021806	, MT038976	2	3
		betulae	161123.P.bet.20	Jokioinen, Finland	suction trap	MT021805	MT038975	2	3
	Psyllopsis	discrepans	151002.P.dis.8	Sweden	•				1
	r synopsis	fraxini			suction trap	MT021807	/	2	
			180716.P.fri.33	Edinburgh, UK	suction trap	MT021808	MT038977	2	3
			1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			MT021809	MT038978	2	2
		fraxinicola	160203.P.fra.6	Wellesbourne, UK	suction trap	1011021005			3
	Spanioneura		160203.P.fra.6 180802.S.fon.29	Wellesbourne, UK Edinburgh, UK	suction trap field collection	/	MT038980	2	-
pondyliaspidae	Spanioneura Ctenarytaina	fraxinicola				/ MT021792	MT038980 MT038967	2	
pondyliaspidae		fraxinicola fonscolombii	180802.S.fon.29	Edinburgh, UK	field collection	/			2
	Ctenarytaina	fraxinicola fonscolombii spatulata spatulata	180802.S.fon.29 160404.Ct.spa.6 161024.Ct.spa.5	Edinburgh, UK Wye, UK Wye, UK	field collection suction trap suction trap	/ MT021792	MT038967 MT038968	2 2	2 1
pondyliaspidae Triozidae		fraxinicola fonscolombii spatulata spatulata albiventris	180802.S.fon.29 160404.Ct.spa.6 161024.Ct.spa.5 171214.B.alb.11	Edinburgh, UK Wye, UK Wye, UK Jokioinen, Finland	field collection suction trap suction trap suction trap	/ MT021792 MT021793 /	MT038967 MT038968 MT038910	2 2 5	2 1 3
	Ctenarytaina	fraxinicola fonscolombii spatulata spatulata albiventris curvatinervis	180802.S.fon.29 160404.Ct.spa.6 161024.Ct.spa.5 171214.B.alb.11 161123.B.cur.42	Edinburgh, UK Wye, UK Wye, UK Jokioinen, Finland Jokioinen, Finland	field collection suction trap suction trap suction trap suction trap	/ MT021792 MT021793 / /	MT038967 MT038968 MT038910 MT038911	2 2 5 5	2 1 3 3
	Ctenarytaina	fraxinicola fonscolombii spatulata spatulata albiventris curvatinervis dorsalis	180802.S.fon.29 160404.Ct.spa.6 161024.Ct.spa.5 171214.B.alb.11 161123.B.cur.42 160803.B.dor.2	Edinburgh, UK Wye, UK Wye, UK Jokioinen, Finland Jokioinen, Finland Florida, USA	field collection suction trap suction trap suction trap suction trap lab colony	/ MT021792 MT021793 /	MT038967 MT038968 MT038910 MT038911 MT038912	2 2 5 5 5 5	2 1 3 3 3
	Ctenarytaina	fraxinicola fonscolombii spatulata spatulata albiventris curvatinervis	180802.S.fon.29 160404.Ct.spa.6 161024.Ct.spa.5 171214.B.alb.11 161123.B.cur.42 160803.B.dor.2 190604.B.mac.1	Edinburgh, UK Wye, UK Wye, UK Jokioinen, Finland Jokioinen, Finland Florida, USA Lab Colony, USA	field collection suction trap suction trap suction trap lab colony Lab Reared	/ MT021792 MT021793 / /	MT038967 MT038968 MT038910 MT038911 MT038912 MT038913	2 2 5 5 5 5 2	2 1 3 3 3 3 3
	Ctenarytaina	fraxinicola fonscolombii spatulata spatulata albiventris curvatinervis dorsalis	180802.S.fon.29 160404.Ct.spa.6 161024.Ct.spa.5 171214.B.alb.11 161123.B.cur.42 160803.B.dor.2	Edinburgh, UK Wye, UK Vye, UK Jokioinen, Finland Jokioinen, Finland Florida, USA Lab Colony, USA Lab Colony, USA	field collection suction trap suction trap suction trap suction trap lab colony	/ MT021792 MT021793 / /	MT038967 MT038968 MT038910 MT038911 MT038912	2 2 5 5 5 5	2 1 3 3 3 3 3 3 3
	Ctenarytaina	fraxinicola fonscolombii spatulata spatulata albiventris curvatinervis dorsalis	180802.S.fon.29 160404.Ct.spa.6 161024.Ct.spa.5 171214.B.alb.11 161123.B.cur.42 160803.B.dor.2 190604.B.mac.1	Edinburgh, UK Wye, UK Wye, UK Jokioinen, Finland Jokioinen, Finland Florida, USA Lab Colony, USA	field collection suction trap suction trap suction trap lab colony Lab Reared	/ MT021792 MT021793 / /	MT038967 MT038968 MT038910 MT038911 MT038912 MT038913	2 2 5 5 5 5 2	2 1 3 3 3 3 3 3 3
	Ctenarytaina	fraxinicola fonscolombii spatulata spatulata albiventris curvatinervis dorsalis	180802.S.fon.29 160404.Ct.spa.6 161024.Ct.spa.5 171214.B.alb.11 161123.B.cur.42 160803.B.dor.2 190604.B.mac.1 190604.B.mac.2	Edinburgh, UK Wye, UK Vye, UK Jokioinen, Finland Jokioinen, Finland Florida, USA Lab Colony, USA Lab Colony, USA	field collection suction trap suction trap suction trap lab colony Lab Reared Lab Reared	/ MT021792 MT021793 / /	MT038967 MT038968 MT038910 MT038911 MT038912 MT038913 MT038914	2 2 5 5 5 2 2 2	2 1 3 3 3 3 3 3 3 3
	Ctenarytaina	fraxinicola fonscolombii spatulata spatulata albiventris curvatinervis dorsalis	180802.S.fon.29 160404.Ct.spa.6 161024.Ct.spa.5 171214.B.alb.11 161123.B.cur.42 160803.B.dor.2 190604.B.mac.1 190604.B.mac.3 190604.B.mac.4	Edinburgh, UK Wye, UK Jokioinen, Finland Jokioinen, Finland Florida, USA Lab Colony, USA Lab Colony, USA Lab Colony, USA Lab Colony, USA	field collection suction trap suction trap suction trap lab colony Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared	/ MT021792 MT021793 / /	MT038967 MT038968 MT038910 MT038911 MT038912 MT038913 MT038914 MT038915 MT038916	2 2 5 5 2 2 2 2 2 2 2	2 1 3 3 3 3 3 3 3 3 3 3 3
	Ctenarytaina	fraxinicola fonscolombii spatulata spatulata albiventris curvatinervis dorsalis	180802.S.fon.29 160404.Ct.spa.6 161024.Ct.spa.5 171214.B.alb.11 161123.B.cur.42 160803.B.dor.2 190604.B.mac.1 190604.B.mac.3 190604.B.mac.4 190604.B.mac.5	Edinburgh, UK Wye, UK Jokioinen, Finland Jokioinen, Finland Florida, USA Lab Colony, USA Lab Colony, USA Lab Colony, USA Lab Colony, USA Lab Colony, USA	field collection suction trap suction trap suction trap lab colony Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared	/ MT021792 MT021793 / /	MT038967 MT038968 MT038910 MT038911 MT038912 MT038913 MT038914 MT038915 MT038916 MT038917	2 2 5 5 2 2 2 2 2 2 2 2 2 2	2 1 3 3 3 3 3 3 3 3 3 3 3 3
	Ctenarytaina	fraxinicola fonscolombii spatulata spatulata albiventris curvatinervis dorsalis	180802.S.fon.29 160404.Ct.spa.6 161024.Ct.spa.5 171214.B.alb.11 161123.B.cur.42 160803.B.dor.2 190604.B.mac.1 190604.B.mac.3 190604.B.mac.4 190604.B.mac.5 190604.B.mac.6	Edinburgh, UK Wye, UK Uye, UK Jokioinen, Finland Jokioinen, Finland Florida, USA Lab Colony, USA Lab Colony, USA Lab Colony, USA Lab Colony, USA Lab Colony, USA Lab Colony, USA	field collection suction trap suction trap suction trap lab colony Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared	/ MT021792 MT021793 / /	MT038967 MT038968 MT038910 MT038911 MT038912 MT038913 MT038914 MT038915 MT038916 MT038917 MT038918	2 2 5 5 2 2 2 2 2 2 2 2 2 2 2 2	2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	Ctenarytaina	fraxinicola fonscolombii spatulata albiventris curvatinervis dorsalis maculipennis	180802.S.fon.29 160404.Ct.spa.6 161024.Ct.spa.5 171214.B.alb.11 161123.B.cur.42 160803.B.dor.2 190604.B.mac.1 190604.B.mac.3 190604.B.mac.4 190604.B.mac.5 190604.B.mac.6 190604.B.mac.7	Edinburgh, UK Wye, UK Wye, UK Jokioinen, Finland Jokioinen, Finland Florida, USA Lab Colony, USA	field collection suction trap suction trap suction trap lab colony Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared	/ MT021792 MT021793 / / MT021763 / / / / / / / / / / / /	MT038967 MT038968 MT038910 MT038911 MT038912 MT038913 MT038914 MT038915 MT038916 MT038917 MT038918 MT038919	2 2 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	Ctenarytaina	fraxinicola fonscolombii spatulata spatulata albiventris curvatinervis dorsalis	180802.S.fon.29 160404.Ct.spa.6 161024.Ct.spa.5 171214.B.alb.11 161123.B.cur.42 160803.B.dor.2 190604.B.mac.1 190604.B.mac.3 190604.B.mac.4 190604.B.mac.5 190604.B.mac.6 190604.B.mac.7 170324.B.nig.18	Edinburgh, UK Wye, UK Wye, UK Jokioinen, Finland Jokioinen, Finland Florida, USA Lab Colony, USA Spain	field collection suction trap suction trap suction trap lab colony Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared	/ MT021792 MT021793 / /	MT038967 MT038968 MT038910 MT038911 MT038912 MT038913 MT038914 MT038915 MT038916 MT038917 MT038918	2 2 5 5 2 2 2 2 2 2 2 2 2 2 2 2	2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	Ctenarytaina	fraxinicola fonscolombii spatulata albiventris curvatinervis dorsalis maculipennis	180802.S.fon.29 160404.Ct.spa.6 161024.Ct.spa.5 171214.B.alb.11 161123.B.cur.42 160803.B.dor.2 190604.B.mac.1 190604.B.mac.3 190604.B.mac.4 190604.B.mac.5 190604.B.mac.6 190604.B.mac.7	Edinburgh, UK Wye, UK Wye, UK Jokioinen, Finland Jokioinen, Finland Florida, USA Lab Colony, USA	field collection suction trap suction trap suction trap lab colony Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared	/ MT021792 MT021793 / / MT021763 / / / / / / / / / / / /	MT038967 MT038968 MT038910 MT038911 MT038912 MT038913 MT038914 MT038915 MT038916 MT038917 MT038918 MT038919	2 2 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
pondyliaspidae Triozidae	Ctenarytaina	fraxinicola fonscolombii spatulata albiventris curvatinervis dorsalis maculipennis	180802.S.fon.29 160404.Ct.spa.6 161024.Ct.spa.5 171214.B.alb.11 161123.B.cur.42 160803.B.dor.2 190604.B.mac.1 190604.B.mac.3 190604.B.mac.4 190604.B.mac.5 190604.B.mac.6 190604.B.mac.7 170324.B.nig.18	Edinburgh, UK Wye, UK Wye, UK Jokioinen, Finland Jokioinen, Finland Florida, USA Lab Colony, USA Spain	field collection suction trap suction trap suction trap lab colony Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared	/ MT021792 MT021793 / / MT021763 / / / / / / / / / / / / / / / / / / /	MT038967 MT038968 MT038910 MT038911 MT038912 MT038913 MT038914 MT038915 MT038916 MT038917 MT038918 MT038919 MT038920	2 2 5 5 2 2 2 2 2 2 2 2 2 2 5	2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	Ctenarytaina	fraxinicola fonscolombii spatulata albiventris curvatinervis dorsalis maculipennis	180802.S.fon.29 160404.Ct.spa.6 161024.Ct.spa.5 171214.B.alb.11 161123.B.cur.42 160803.B.dor.2 190604.B.mac.1 190604.B.mac.3 190604.B.mac.4 190604.B.mac.5 190604.B.mac.6 190604.B.mac.7 170324.B.nig.18 170324.B.nig.22	Edinburgh, UK Wye, UK Wye, UK Jokioinen, Finland Jokioinen, Finland Florida, USA Lab Colony, USA Spain Spain	field collection suction trap suction trap suction trap lab colony Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared Lab Reared field collection field collection	/ MT021792 MT021793 / MT021763 / / / / / / / / / / / / / / / / / / /	MT038967 MT038968 MT038910 MT038911 MT038912 MT038913 MT038914 MT038915 MT038916 MT038917 MT038918 MT038919 MT038920 MT038921	2 2 5 5 2 2 2 2 2 2 2 2 2 2 5 5	2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

		190604.B.tre.17	Spain	Lab Colony	/	MT038924	2	3
		190604.B.tre.18	Spain	Lab Colony	/	MT038925	2	3
		190604.B.tre.19	Spain	Lab Colony	/	MT038926	2	3
		190604.B.tre.20	Spain	Lab Colony	/	MT038927	2	3
		190604.B.tre.21	Spain	Lab Colony	/	MT038928	2	3
	trigonica	170629.B.tri.16	Tunisia	field collection	MT021766	MT038929	3	3
		170629.B.tri.17	Tunisia	field collection	/	MT038930	3	3
		170629.B.tri.18	Tunisia	field collection	MT021767	MT038931	3	3
		181010.B.tri.17	Spain	Lab Colony	MT021768	MT038932	2	3
		181010.B.tri.18	Spain	Lab Colony	MT021769	MT038933	2	3
		181010.B.tri.19	Spain	Lab Colony	/	MT038934	2	3
		181010.B.tri.20	Spain	Lab Colony	MT021770	MT038935	2	3
		181010.B.tri.21	Spain	Lab Colony	/	MT038936	2	3
		190604.B.tri.23	Spain	Lab Colony	MT021771	MT038937	2	3
		190604.B.tri.24	Spain	Lab Colony	/	MT038938	2	3
		190604.B.tri.25	Spain	Lab Colony	MT021772	MT038939	2	3
		190604.B.tri.26	Spain	Lab Colony	MT021773	MT038940	2	3
		190604.B.tri.27	Spain	Lab Colony	MT021774	MT038941	2	3
		190604.B.tri.28	Spain	Lab Colony	/	MT038942	2	3
		190604.B.tri.29	Spain	Lab Colony	MT021775	MT038943	2	3
Heterotrioza	chenopodii	160203.H.che.11	Kirton, UK	suction trap	/	MT038971	2	2
		160825.12 US	Washington, USA	field collection	MT021799	/	2	1
Lauritrioza	alacris	160816.L.ala.2	Spain	suction trap	MT021800	MT038972	2	1
Powellia	vitreoradiata	161024.P.vit.10	Kirton, UK	suction trap	MT021803	MT038974	2	1
Trioza	albifrons	160825.18.US	Nevada, USA	field collection	MT021811	MT038981	2	1
	anthrisci	150708.T.ant.11	Jokioinen, Finland	field collection	MT021812	/	2	3
	apicalis	161019.T.api.5	Sweden	field collection	MT021813	/	2	3
	buxtoni	170324.T.bux.11	Israel	field collection	MT021814	MT038982	2	3
	centranthi	161024.T.cen.9	Wye, UK	suction trap	MT021815	/	2	1
	cerastii	171214.T.cer.32	Vikki, Finland	suction trap	MT021816	MT038983	2	3
	dispar	160718.T.dis.26	Hellfreda, Sweden	suction trap	MT021817	/	2	1
	erytreae	160808.ICA.19	Spain	Lab Colony	/	MT038984	2	1
	flavipennis	160421.T.fla.3	Sweden	suction trap	MT021818	MT038985	2	1
	galii	160203.T.gal.23	Wellesbourne, UK	suction trap	/	MT038986	2	2
	remota	160718.T.rem.8	Sweden	suction trap	/	MT038987	2	1
		180424.T.rem.1	Dundee, UK	Suction trap	MT021819	MT038988	3	3
		180424.T.rem.6	Dundee, UK	Suction trap	MT021820	MT038989	3	3
		180424.T.rem.16	Dundee, UK	Suction trap	MT021821	MT038990	3	3
		180424.T.rem.18	Dundee, UK	Suction trap	MT021822	MT038991	3	3
		180424.T.rem.19	Dundee, UK	Suction trap	/	MT038992	3	3
		190116.T.rem.7	UK	Suction trap	MT021823	MT038993	3	3
	rhamni	151002.T.rha.13	Sweden	suction trap	MT021824	MT038994	2	1
	tatrensis	160718.T.tat.27	Sweden	suction trap	/	MT038995	2	1
	urticae	160816.T.urt.17	Spain	field collection	/	MT038996	2	1

Table 1: Information on non-target psyllid species and plant specimens tested using the *B*.

248 *cockerelli* real-time PCR assay Bcoc_JSK2 showing number of technical replicates and false

249 positives. All non-target species gave 0% false positives. GenBank Accession numbers are

included for ITS2 and CO1 regions if sequencing was successful. Voucher Location: 1= 1; 2= 2

251 Research Insect Survey; 3= SASA Hemipteran DNA Database. All DNA samples are stored in

the SASA Hemipteran DNA database. "/" = no sequence obtained

253 3.2. Bioinformatics and Real-Time PCR Assay Design.

254 While differentiation within both the ITS2 and CO1 gene regions was sufficient to

discriminate between psyllid species, the ITS2 gene region was more suitable for TaqMan

assay design for *B. cockerelli*. Similarities between CO1 gene sequences between members
of the *Bactericera* genus and *B. cockerelli* were higher than in the ITS2 region (average %
similarity = 82.51 ± 0.68 for CO1 and 77.80 ± 4.79 for ITS2) (Tab. 2). The ITS2 region showed
larger sections of variability along the gene on which to design primers and probes. Several
primer and probe sets passed the selection criteria, but most were unsuitable due to high
rate of false positives from closely related *Bactericera* species. The final primer and probe
set Bcoc_JSK2 (Tab. 3) targets a 187bp region of the ITS2 gene (Fig. 1).

	ITS2			C01			
Species	% Similarity	bp	GC content %	% Similarity	bp	GC content %	
B. trigonica	78.96	662	59.3	82.88	509	35.4	
B. tremblayi	79.16	665	59.1	82.97	682	33	
B. curvatinervis	80.30	655	58	82.23	678	34.7	
B. nigricornis	81.16	668	59.3	81.28	521	36.7	
B. albiventris	76.67	667	59.2	83.41	663	32.9	
B. dorsalis	65.59	560	61.3	82.31	685	32.6	
B. maculipennis	80.67	674	61.6	nd	nd	nd	
B. salicivora	nd	nd	nd	nd	nd	nd	
B. striola	79.91	663	59.1	nd	nd	nd	
B.cockerelli	N/A	569	61.0	N/A	595	32.6	

- 263 Table 2. Closely related Bactericera species tested with Bcoc_JSK2 assay. ITS similarity = %
- identity to DNA sample 150727.B.coc.02. CO1 similarity = % identity to a consensus
- 265 sequences of all *B. cockerelli* sequences obtained during this study. CO1 genes showed
- 266 higher similarity and fewer variable regions compared to ITS2 regions. Highest % similarity
- to *B. cockerelli* in the ITS2 region was found in *B. nigricornis* (81.16) and to *B. albiventris* in
- the CO1 region (83.41). The Bcoc_JSK2 assay does not give false positives with any of the
- 269 species listed here. (nd= not determined due to sequencing failing).

Oligo Name	Function	Sequence 5'-3'	<u>Tm</u>	Length (bp)
Bcoc_JSK2-f	forward primer	GAGGTCTCCTCATCGTGCGT	61	25
Bcoc_JSK2-r	reverse primer	GGACGAGCATTGCTGCTGC	62.2	23
Bcoc_JSK2-p	probe (FAM-BHQ)	GCAAACGCGGCACAAGTACCGCGC	70.9	25

Table 3. Final oligonucleotide sequences for the Bcoc_JSK2 TaqMan real-time PCR assay to

identify *B. cockerelli*. The assay targets a 187 bp region of the ITS2 gene region.

Sample name	Life Stage	Origin	Ct ave	Tech reps	CO1 Ac#	ITS2 Ac#	DNA Source
181119.B.coc.06	1 egg	Mexico	29.80	2	/	MT027568	Genomic
191003.B.coc.01	1 egg	Mexico	33.41	3	/	MT027592	Genomic
191003.B.coc.02	1 egg	Mexico	24.95	3	/	MT027593	Genomic
191003.B.coc.03	1 egg	Mexico	33.79	3	/	MT027594	Genomic
191003.B.coc.04	1 egg	Mexico	22.43	6	/	MT027595	Genomic
181119.B.coc.07	5 eggs	Mexico	24.42	2	/	MT027569	Genomic
181119.B.coc.21	5 eggs	Mexico	28.32	2	/	MT027582	Genomic
181119.B.coc.08	10 eggs	Mexico	29.61	2	/	MT027570	Genomic
181119.B.coc.22	10 eggs	Mexico	26.43	2	/	MT027583	Genomic
181119.B.coc.03	immature	Mexico	22.56	2	/	MT027565	Genomic
181119.B.coc.04	immature	Mexico	22.33	2	/	MT027566	Genomic
181119.B.coc.05	immature	Mexico	21.46	2	/	MT027567	Genomic
181119.B.coc.11	immature	Mexico	23.16	2	/	MT027573	Genomic
181119.B.coc.12	immature	Mexico	24.15	2	/	MT027574	Genomic
181119.B.coc.13	immature	Mexico	23.94	2	/	MT027575	Genomic
181119.B.coc.14	immature	Mexico	25.75	2	/	MT027576	Genomic
181119.B.coc.16	immature	Mexico	23.49	2	/	MT027578	Genomic
181119.B.coc.18	immature	Mexico	22.45	2	/	MT027580	Genomic
181119.B.coc.19	immature	Mexico	23.50	2	/	MT027581	Genomic
190604.B.coc.13	immature	Mexico	24.96	2	/	MT027588	Genomic
190604.B.coc.14	immature	Mexico	25.09	2	/	MT027589	Genomic
190604.B.coc.15	immature	Mexico	28.37	2	/	MT027590	Genomic
150727.B.coc.02	Adult	South Western, USA	22.18	2	MT040955	MG719775	Genomic
150827.B.coc.02	Adult	South Western, USA	22.18	2	MT040956	MT027597	Genomic
150827.B.coc.03	Adult	Central USA	24.49	6	MT040957	MT027598	Genomic
150827.B.coc.04	Adult	North Western, USA	24.77	2	MT040958	MT027599	Genomic
150827.B.coc.06	Adult	North Western, USA	23.68	2	MT040960	MT027552	Genomic
150827.B.coc.12	Adult	Western, USA	20.39	2	MT040961	MT027596	Genomic
150827.B.coc.17	Adult	South Western, USA	19.65	2	MT040962	MT027553	Genomic
160725.B.coc.05	Adult	Central, USA	21.45	2	MT040963	/	Genomic
160726.B.coc.01	Adult	New Zealand	21.56	2	/	MT027557	Genomic
160726.B.coc.02	Adult	New Zealand	21.02	2	/	MT027558	Genomic
160726.B.coc.03	Adult	New Zealand	20.48	2	/	MT027559	Genomic
160726.B.coc.04	Adult	New Zealand	21.98	2	/	MT027560	Genomic
160726.B.coc.05	Adult	New Zealand	19.43	2	/	MT027561	Genomic
160726.B.coc.06	Adult	New Zealand	20.96	2	/	MT027562	Genomic
180731.B.coc.04	Adult	North Western, USA	24.42	6	MT040964	/	Genomic
180731.B.coc.05	Adult	Western, USA	22.91	6	MT040965	/	Genomic
180731.B.coc.06	Adult	Western, USA	27.14	6	MT040966	/	Genomic
181119.B.coc.01	Adult	Mexico	21.47	2	/	MT027563	Genomic
181119.B.coc.02	Adult	Mexico	19.98	2	/	MT027564	Genomic
181119.B.coc.09	Adult	Mexico	21.83	2	/	MT027571	Genomic
181119.B.coc.10	Adult	Mexico	19.48	2	/	MT027572	Genomic

181119.B.coc.15	Adult	Mexico	21.27	2	/	MT027577	Genomic
181119.B.coc.17	Adult	Mexico	23.74	2	/	MT027579	Genomic
190604.B.coc.09	Adult	USDA, Lab Colony	21.51	2	/	MT027584	Genomic
190604.B.coc.10	Adult	Mexico	20.33	2	/	MT027585	Genomic
190604.B.coc.11	Adult	Mexico	22.67	2	/	MT027586	Genomic
190604.B.coc.12	Adult	Mexico	24.37	2	/	MT027587	Genomic
190604.B.coc.16	Adult	Mexico	27.15	2	/	MT027591	Genomic
150827.B.coc.05.col.04	transformed E. coli	Lab	11.23	6	MT040959	MT027551	Cloned, 10ng
160725.B.coc.01.col.06	transformed E. coli	Lab	11.55	6	/	MT027554	Cloned, 10ng
160725.B.coc.06.col.04	transformed E. coli	Lab	11.78	6	/	MT027555	Cloned, 10ng
160725.B.coc.07.col.08	transformed E. coli	Lab	11.67	6	/	MT027556	Cloned, 10ng

Table 4: Information on *Bactericera cockerelli* samples tested with Bcoc_JSK2 assay
including genomic DNA from adults, immatures, single eggs and egg batches. Location of
samples collection is also included. All samples gave 100% positives. Accession numbers for

276 CO1 and ITS2 (MT027551-MT027599) regions are included. "/" = no sequence obtained.

Figure 1. CLUSTAL-W alignment of ITS2 regions from closely related *Bactericera* species
showing variable regions and the gene target for the Bcoc_JSK2 primer and probe set. Bases
shades with black show differences to *B. cockerelli* sequence. Colour highlights locations of
forward primer (blue highlight); reverse primer (green highlight) and probe (yellow
highlight). The probe and reverse primer are reverse compliments of the highlighted regions
here.

283 3.3. Specificity and Sensitivity

284 This assay did not amplify DNA from any of the 73 non-target psyllid species or Solanum 285 tuberosum DNA when tested at 60 °C with primer concentration 0.2 µM. Samples included 286 nine closely related Bactericera species with similar ITS2 and CO1 sequences (Tab. 2). Under 287 optimal conditions, false negatives = 0% for all non-target species tested with pure genomic 288 DNA, giving a diagnostic specificity of 100%. Some suboptimal reaction conditions showed 289 33% false positives against high concentrations (10 ng / 1 ng) of Bactericera albiventris 290 cloned DNA (see below). All B. cockerelli genomic DNA samples gave positive results (Tab. 4) 291 giving 0% false negatives across 54 biological replicates and 147 technical replicates;

292 resulting in a diagnostic sensitivity of 100%. These included B. cockerelli specimens from 293 each of the four US biotypes as well as specimens from New Zealand. These specimens 294 included adults, immature stages and eggs. The assay can amplify B. cockerelli DNA from 295 both cloned and genomic samples. Under optimal conditions for PCR efficiency and 296 specificity (60 °C, 0.2 µM primer, 1.5 mM MgCl₂) the limit of detection was 0.000001 ng DNA 297 across a range of different reaction parameters this equates to 200 copy numbers of ITS2 calculated using the following equation: Number of Copies = (ng DNA x 6.022×10^{23}) ÷ (length 298 of plasmid (4656) + cloned fragment (700)bp) * $1x10^9$ * 660). The copy number calculator 299 300 available at http://scienceprimer.com/copy-number-calculator-for-realtime-pcr was used. 301 Diagnostic sensitivity was 100% on all DNA extracted from *B. cockerelli* immatures. False 302 negatives from DNA from egg extractions were 0% for single eggs and 0% for batches of 3 303 and 10 eggs.

304 3.4. <u>Repeatability and Reproducibility</u>

No significant differences were found between C_t means across the different replicates at different concentrations as tested by two-way ANOVA ($F_{5, 25}$ = 0.54, p = 0.955). The assay also performed consistently across different machines and there was no significant difference between runs across the two machines as tested by two-way ANOVA ($F_{1, 5}$ = 1.28, p = 0.279).

310 3.5. Robustness/Optimization

The assays amplified *B. cockerelli* DNA at all primer concentrations, MgCl₂ concentrations
and annealing temperatures with varying levels of efficiency, precision, and sensitivity (Supp
Tabs. S1-S3). At primer concentration 0.5 μM, the assay was less sensitive only amplifying

314 down to 0.0001 ng DNA. At higher primer concentrations (1.0 µM,) the assay showed higher 315 sensitivity, but efficiency was outside the range for acceptable use. The assay performed 316 optimally at 0.2 µM primer concentration showing good efficiency and high sensitivity 317 (0.000001 ng DNA) (Supp Tab. S1). Generally, standard deviation of the Ct was lower at 318 higher DNA concentrations and some of the primer concentrations showed SD slightly 319 above the accepted level for quantitative real-time PCR, however this module is intended 320 for qualitative use. At high DNA concentrations all primer concentrations are suitable for 321 use with Bcoc JSK2 primer and probe set to detect B. cockerelli but 0.2 µM is recommended 322 for best results. The assay did not amplify non-target DNA from the 8 other Bactericera 323 species tested at the different primer concentrations (0.1, 0.2, 0.3, 0.5 and 1.0 μ M).

324 The MgCl2 concentration of the assay made only small differences to the overall

325 performance of the assay (Supp Tab. S2) and the assay was able to amplify B. cockerelli DNA

326 at low concentrations (0.000001 ng) at each MgCl₂ concentration. The precision of the assay

327 was lower at higher MgCl₂ concentrations 7.5mM and 9.5mM (Supp Tab. S2).

Sensitivity was slightly higher at 64 °C giving 33.33% (n=3) positives for only 20 copies of *B*.

329 cockerelli DNA (0.0000001 ng), however at 64 °C and 66 °C 33.33% (n=3) false positives were

found with 10ng and 1 ng of *B. albiventris* cloned DNA (Supp Tab. S3). Reactions at 58 °C

331 were 10 to 100-fold less sensitive than reactions at 64 °C. For best sensitivity and specificity,

it is suggested that assays using the Bcoc_JSK2 primer and probe set should be performed at

333 60 °C or 62 °C. While higher temperatures appear to be more sensitive, they are not

recommended on unknown samples due to the small likelihood of returning false positives

with *B. albiventris* and possibly other un-tested *Bactericera* spp.

336 It is recommended that this assay be performed at 60 °C – 62 °C, with a MgCl₂ concentration 337 of 1.5mM and a primer concentration of 0.2 μ M. To test the robustness of these conditions 338 a multifactorial approach was taken [55]. The assay performed satisfactorily across the 339 different treatments and was shown to be robust and unaffected by small changes in assay 340 set-up (Supp Tab. S4). Each treatment gave 100% positives for amplification of *B. cockerelli* 341 genomic DNA.

342 **4.** *Discussion*

343 The Tomato-Potato psyllid is an economically damaging pest of solanaceous plants that has 344 spread by human mediated dispersal. It causes feeding damage to plants but also is the 345 major vector of 'Candidatus Liberibacter solanacearum' (Lso), a phloem limited bacterium 346 that is associated with disease in solanaceous and apiaceous plants. Management of this 347 insect pest requires accurate identification of B. cockerelli, this is often difficult if eggs or 348 immature life stages only are available for identification. Hitherto, identification of B. 349 cockerelli required either considerable expertise in psyllid taxonomy or the lengthy process 350 of DNA barcoding [54].

We have designed and validated the first species-specific, quantitative real-time PCR TaqMan assay for *B. cockerelli* by using the comparison of 73 non-target species to identify unique gene regions that were suitable for primer/probe design and species differentiation. The genus *Bactericera* currently contains 160 species [20] and <1% of these have been tested in the current study due to the difficulty in obtaining other specimens from the field or lab colonies. However Europe is home to 26 different species of *Bactericera* [20], 30% of which have been tested for false positives using this assay. Psyllid species that were tested

are most commonly found in potato and carrot fields in Europe and the wider EPPO region
which should minimize the potential for false positives and ensure the assay is efficient at
detecting outbreaks in European fields. The assay was also tested on nine closely related *Bactericera* species. The number of species used in our study is relatively high compared to
other reported TaqMan assays for plant pests that report lower numbers of non-target
species [56,57].

364 The assay is based on a 187 bp region of the ITS2 gene which was suitable as it contained 365 high interspecific variation consisting of stretches of insertions and deletions (INDELs). The 366 ITS2 region has been used to distinguish species phylogenetically and to identify cryptic 367 species in the Cacopsylla pruni complex [47]. DNA sequences obtained from this study will 368 improve psyllid representation on online DNA databases, reducing the chance of Type II 369 errors (i.e. misidentification due to lack of conspecific references) [58]. The B. cockerelli 370 sequences on which we tested this assay (and many of the non-target psyllid species) were 371 from different geographic locations to account for intraspecific variation. Bactericera 372 cockerelli specimens from the four USA biotypes and specimens from New Zealand all gave 373 100% true positives.

374 The success rates of eradications are dependent on the length of time between

introduction, detection, and implementation of eradication measures as Lso displays a short
transmission time from *B. cockerelli* to potatoes [4,25]. Feasibly, methodology described in
this study could be used to extract DNA from a specimen and test for *B. cockerelli* positives
within 6-12 hrs or quicker. This is faster than identification by DNA barcoding and could aid
in eradications/ prevention of incursions. This time could be reduced further if the real-time
assay is used in conjunction with faster DNA extraction protocols.

381 There are currently no methods described within the EPPO "agreed diagnostic protocol for 382 identification of *B. cockerelli*" [4]. In addition, the current EPPO control system for *B.* 383 cockerelli and Lso [4] highlights the importance of identifying psyllid eggs and immatures on 384 various plant materials during inspections and monitoring but gives minimal guidelines for 385 achieving this. Validation of this assay demonstrates that it would be a reliable and accurate 386 tool for use in this area and it will therefore be prepared for consideration by the EPPO 387 diagnostic panel. This assay is also useful for monitoring *B. cockerelli* occurrence at several 388 spatial scales, from local border checks to regional surveys which use different trapping 389 methods (water, sticky, suction, aerial balloon traps) where no host plant data is available. 390 Given the sensitivity of this assay it should be possible to detect B. cockerelli DNA from 391 insect fragments (e.g. legs, heads) if DNA extraction is adequate. However, further 392 validation should be performed to ensure the assay performs adequately on samples 393 obtained from different traps. This assay should be tested on additional congeneric species 394 and other closely related Triozidae psyllids. Another limitation of this assay is that it cannot yet be taken out into the field, making it less portable than LAMP assays or other NGS 395 396 sequencing techniques such as Nanopore technology.

In conclusion a rapid, specific, robust, repeatable and reliable real-time PCR assay has now been validated and can be used to detect the important pest *B. cockerelli*. This will be an important tool for providing much-needed support to prevent new outbreaks. The assay can be implemented by practitioners with molecular biology experience and does not require personnel to have classical taxonomic knowledge of insects or psyllids; making this tool more accessible than traditional methods. The assay can be used to complement field surveillance and may facilitate further ecological studies of *B. cockerelli* requiring the

identification of immatures and eggs. The strength of this assay lies in the collaboration of
molecular biologists and classical taxonomists working together to build a reliable database
for DNA barcoding of psyllids.

407 **6.** Funding

This work was supported by the EU Horizon2020 Programme under grant agreement No.
635646, POnTE (Pest Organisms Threatening Europe) and the Scottish Government
[RRL/001/14]. The Rothamsted Insect Survey, a National Capability, is funded by the
Biotechnology and Biological Sciences Research Council under the Core Capability Grant
BBS/E/C/000J0200. The authors declare there is no conflict of interest regarding the
publishing of this article.

414 **7. Acknowledgements**

415 We thank A. Fereres & C. A. Antolínez Delgado (Institute of Agricultural Sciences, CSIC, 416 Spain), A. Nissinen (Natural Resources Institute Finland), J. Munyaneza, R. Cooper, M. Heidt, 417 K. Swisher Grimm (USDA Agricultural Research Services), S. Bulman (Plant and Food 418 Research, New Zealand), A. Jensen, S. Halbert (Florida Department of Agriculture & 419 Consumer Services, Dept. of Plant Industry) and Alberto Flores (Universidad Autónoma 420 Agraria Antonio Narro) for specimens; and thank C. Jeffries, L. Webster, V. Mulholland, and 421 A. Reid (SASA) for providing advice. We also thank SASA Potato Genotyping team for 422 providing Potato DNA.

423 8. Author Contributions

424 JS-K: assay design and validation, investigation, performed analysis, collected data, 425 bioinformatics, visualization, writing- original draft, supervision, project administration; 426 MJS: assay design and validation, investigation, performed analysis, collected data, 427 bioinformatics, visualization, writing- original draft, supervision, project administration; YA: 428 investigation, performed analysis, validation, data curation, collected data; MC: provided 429 resources, data analysis, curation of data, investigation, taxonomy expertise; FH: conceived 430 the project, methodology, supervision, writing- original draft; DO: provided resources, data 431 analysis, curation of data, taxonomy expertise, writing - review and edit; AG: provided 432 resources, data analysis, taxonomy expertise, writing- review and edit; JB: conceived the 433 project, provided resources, methodology, writing- review and edit, supervision, project 434 administration; RS: provided resources, data analysis, methodology; DK: conceived the 435 project, conceptualization, funding acquisition, methodology, supervision, project 436 administration.

437 9. References

438	1.	Munyaneza JE, Sengoda VG, Crosslin JM, Garzon-Tiznado JA, Cardenas-Valenzuela
439		OG. First report of "Candidatus Liberibacter solanacearum" in tomato plants in
440		Mexico. Plant Dis. 2009;93: 1076. doi:10.1094/PDIS-93-10-1076A
441	2.	Wallis RL. Ecological studies on the Potato Psyllid as a pest of potatoes. USDA Tech
442		Bull. 1955;1107: 25.
443	3.	Hansen AK, Trumble JT, Stouthamer R, Paine TD. A new huanglongbing species,
444		"Candidatus Liberibacter psyllaurous," found to infect tomato and potato, is vectored
445		by the psyllid <i>Bactericera cockerelli</i> (Sulc). Appl Environ Microbiol. 2008;74: 5862–
446		5865. doi:10.1128/AEM.01268-08
447	4.	EPPO. PM 9/25 (1) Bactericera cockerelli and 'Candidatus Liberibacter solanacearum.'

448 EPPO Bull. 2017;47: 513–523. doi:10.1111/epp.12442

449	5.	Liefting LW, Perez-Egusquiza ZC, Clover GRG, Anderson JAD. A new 'Candidatus
450		Liberibacter' species in Solanum tuberosum in New Zealand. Plant Dis. 2008;92:
451		1474–1474. doi:10.1094/pdis-92-10-1474a
452	6.	Liefting LW, Sutherland PW, Ward LI, Paice KL, Weir BS, Clover GRG. A new
453		'Candidatus Liberibacter' species associated with diseases of solanaceous crops. Plant
454		Dis. 2009;93: 208–214. doi:10.1094/PDIS-93-3-0208
455	7.	Munyaneza JE. Zebra Chip disease of potato: Biology, epidemiology, and
456		management. Am J Potato Res. 2012;89: 329–350. doi:10.1007/s12230-012-9262-3
457	8.	Crosslin JM, Hamm PB, Eggers JE, Rondon SI, Sengoda VG, Munyaneza JE. First report
458		of Zebra Chip disease and "Candidatus Liberibacter solanacearum" on potatoes in
459		Oregon and Washington State. Plant Dis. 2012;96: 452. doi:10.1094/PDIS-10-11-0894
460	9.	Kaur N, Cooper WR, Duringer JM, Badillo-Vargas IE, Esparza-Díaz G, Rashed A, et al.
461		Survival and development of Potato Psyllid (Hemiptera: Triozidae) on Convolvulaceae:
462		Effects of a plant-fungus symbiosis (Periglandula). PLoS One. 2018;13: 1–19.
463		doi:10.1371/journal.pone.0201506
464	10.	Knowlton G, Thomas W. Host plants of the Potato Psyllid. J Econ Entomol. 1934;27:
465		547.
466	11.	Pletsch D. The Potato Psyllid Paratrioza cockerelli (Sulc), its biology and control. Bull
467		Mont Agric Exp Stn. 1947;446: 1–95.
468	12.	Wallis RL. Potato Psyllid selection of host plants. J Econ Entomol. 1951;44: 815–817.
469		doi:10.1093/jee/44.5.815

470	13.	Butler CD, Trumble JT. The Potato Psyllid, Bactericera cockerelli (Sulc) (Hemiptera:
471		Triozidae): life history, relationship to plant diseases, and management strategies.
472		Terr Arthropod Rev. 2012;5: 87–111. doi:10.1163/187498312X634266
473	14.	Prager SM, Esquivel I, Trumble JT. Factors influencing host plant choice and larval
474		performance in Bactericera cockerelli. PLoS One. 2014;9.
475		doi:10.1371/journal.pone.0094047
476	15.	Martin NA. Host plants of the Potato / Tomato Psyllid : A cautionary tale. Weta.
477		2008;35: 12–16.
478	16.	Cooper WR, Horton DR, Miliczky E, Wohleb CH, Waters TD. The weed link in Zebra
479		Chip epidemiology: suitability of non-crop Solanaceae and Convolvulaceae to Potato
480		Psyllid and "Candidatus Liberibacter solanacearum." Am J Potato Res. 2019; 262–271.
481		doi:10.1007/s12230-019-09712-z
482	17.	Swisher KD, Henne DC, Crosslin JM. Identification of a fourth haplotype of Bactericera
483		cockerelli (Hemiptera: Triozidae) in the United States. J Insect Sci. 2014;14: 1–7.
484		doi:10.1093/jisesa/ieu023
485	18.	Swisher KD, Munyaneza JE, Crosslin JM. High resolution melting analysis of the
486		Cytochrome Oxidase I gene identifies three haplotypes of the Potato Psyllid in the
487		United States. Environ Entomol. 2012;41: 1019–1028. doi:10.1603/EN12066
488	19.	Swisher KD, Sengoda VG, Dixon J, Echegaray E, Murphy AF, Rondon SI, et al.
489		Haplotypes of the potato psyllid, Bactericera cockerelli, on the wild host plant,
490		Solanum dulcamara, in the pacific Northwestern United States. Am J Potato Res.
491		2013;90: 570–577. doi:10.1007/s12230-013-9330-3

492	20.	Ouvrard D. 2018 Psyl'list - The World Psylloidea Database. 2019. Available:
493		http://www.hemiptera-databases.com/psyllist
494	21.	Teulon DA., Workman PJ, Thomas KL, Nielsen MC. Bactericera cockerelli: Incursion,
495		dispersal and current distribution on vegetable crops in New Zealand. New Zeal Plant
496		Prot. 2009;62: 136–144.
497	22.	Australian Government Department of Agriculture and Water Resources. Detection of
498		Bactericera cockerelli (Tomato-potato psyllid) in Western Australia. Canberra; 2017.
499		Available:
500		https://www.ippc.int/en/countries/australia/pestreports/2017/02/detection-of-
501		bactericera-cockerelli-tomato-potato-psyllid-in-western-australia/
502	23.	Munyaneza JE, Crosslin JM, Upton JE. Association of Bactericera cockerelli
503		(Homoptera: Psyllidae) with "Zebra Chip" a New Potato Disease in Southwestern
504		United States and Mexico. J Econ Entomol. 2007;100: 656–663. doi:10.1603/0022-
505		0493(2007)100[656:AOBCHP]2.0.CO;2
506	24.	Munyaneza JE, Fisher TW, Sengoda VG, Garczynski SF, Nissinen A, Lemmetty A.
507		Association of "Candidatus Liberibacter solanacearum" with the psyllid, Trioza
508		<i>apicalis</i> (Hemiptera: Triozidae) in Europe. J Econ Entomol. 2010;103: 1060–1070.
509		doi:10.1603/EC10027
510	25.	Munyaneza JE, Sengoda VG, Stegmark R, Arvidsson AK, Anderbrant O, Yuvaraj JK, et
511		al. First report of "Candidatus Liberibacter solanacearum" associated with psyllid-
512		affected carrots in Sweden. Plant Dis. 2012;96: 453–453. doi:10.1094/PDIS-10-11-
513		0871

514	26.	Liefting LW, Weir BS, Pennycook SR, Clover GRG. "Candidatus Liberibacter
515		solanacearum", associated with plants in the family Solanaceae. Int J Syst Evol
516		Microbiol. 2009;59: 2274–2276. doi:10.1099/ijs.0.007377-0
517	27.	Bextine B, Aguilar E, Rueda A, Caceres O, Sengoda VG, McCue KF, et al. First report of
518		"Candidatus Liberibacter solanacearum" on tomato in El Salvador. Plant Dis. 2013;97:
519		1245. doi:10.1094/PDIS-03-13-0248-PDN
520	28.	Munyaneza JE, Sengoda VG, Aguilar E, Bextine B, McCue KF. First report of
521		"Candidatus Liberibacter solanacearum" on pepper in Honduras. Plant Dis. 2014;98:
522		154. doi:10.1094/PDIS-06-13-0598-PDN
523	29.	Munyaneza JE, Sengoda VG, Aguilar E, Bextine BR, McCue KF. First report of
524		"Candidatus Liberibacter solanacearum" infecting eggplant in Honduras. Plant Dis.
525		2013;97: 1654. doi:10.1094/PDIS-06-13-0641-PDN
526	30.	Aguilar E, Sengoda VG, Bextine B, McCue KF, Munyaneza JE. First report of
527		"Candidatus Liberibacter solanacearum" on tobacco in Honduras. Plant Dis. 2013;97:
528		1376. doi:10.1094/PDIS-04-13-0453-PDN
529	31.	Munyaneza JE, Sengoda VG, Aguilar E, Bextine B, McCue KF. First report of
530		"Candidatus Liberibacter solanacearum" associated with psyllid-infested tobacco in
531		Nicaragua. Plant Dis. 2013;97: 1244. doi:10.1094/PDIS-03-13-0247-PDN
532	32.	Johnson D. Canadian Potato Psyllid and Zebra Chip Monitoring Network Report. News

- 533 Lett Can Potato Psyllid Zebra Chip Monit Netw. 2017; 1–19. doi:10.15713/ins.mmj.3
- 534 33. Castillo Carrillo C, Fu Z, Burckhardt D. First record of the Tomato Potato Psyllid

- 535 *Bactericera cockerelli* from South America. Bull Insectology. 2019;72: 85–91.
- 536 34. Swisher Grimm KD, Garczynski SF. Identification of a new haplotype of *'Candidatus*
- 537 Liberibacter solanacearum' in *Solanum tuberosum*. Plant Dis. 2019;103: 468–474.
- 538 doi:10.1094/PDIS-06-18-0937-RE
- 35. Nelson WR, Fisher TW, Munyaneza JE. Haplotypes of *"Candidatus* Liberibacter
 solanacearum" suggest long-standing separation. Eur J Plant Pathol. 2011;130: 5–12.
 doi:10.1007/s10658-010-9737-3
- 542 36. Wen A, Mallik I, Alvarado VY, Pasche JS, Wang X, Li W, et al. Detection, distribution,
- 543 and genetic variability of '*Candidatus* Liberibacter' species associated with zebra
- 544 complex disease of potato in North America. Plant Dis. 2009;93: 1102–1115.
- 545 doi:10.1094/pdis-93-11-1102
- 546 37. Borges KM, Cooper WR, Garczynski SF, Thinakaran J, Jensen AS, Horton DR, et al.
- 547 *"Candidatus* Liberibacter solanacearum" associated with the psyllid, *Bactericera*
- 548 *maculipennis* (Hemiptera: Triozidae). Environ Entomol. 2017;46: 210–216.
- 549 doi:10.1093/ee/nvw174
- 550 38. CNAS. Economic Impacts of Zebra Chip on the Texas Potato Industry. Texas; 2006.
- 39. Greenway G, Rondon SI. Economic impacts of Zebra Chip in Idaho, Oregon, and
- 552 Washington. Am J Potato Res. 2018;95: 362–367.
- 553 40. Soliman T. Economic impact assessment of invasive plant pests in the European
 554 Union. Wageningen University, Wageningen, Netherlands. 2012.
- 555 41. DEFRA. Pest Alert :*Bactericera cockerelli*. 2017. Available:

- 556 https://planthealthportal.defra.gov.uk/ph-
- 557 api/pests/27077/notices/6682/documents/4183/document
- 558 42. EPPO. Bactericera cockerelli. EPPO Bull. 2013;43: 202–208. doi:10.1111/epp.12044
- 559 43. Burckhardt D, Ouvrard D. A revised classification of the jumping plant-lice
- 560 (Hemiptera: Psylloidea). Zootaxa. 2012;34: 1–34.
- 561 44. Bell JR, Alderson L, Izera D, Kruger T, Parker S, Pickup J, et al. Long-term phenological
- 562 trends, species accumulation rates, aphid traits and climate: Five decades of change
- 563 in migrating aphids. J Anim Ecol. 2015;84: 21–34. doi:10.1111/1365-2656.12282
- 564 45. Sjolund MJ, Ouvrard D, Kenyon D, Highet F. Developing an RT-PCR assay for the
- identification of psyllid species. Proc Crop Prot North Britain. 2016; 279–282.
- 566 46. Percy DM. Radiation, diversity, and host-plant interactions among island and
- 567 continental legume-feeding psyllids. Evolution (N Y). 2003;57: 2540–2556.
- 568 doi:10.1111/j.0014-3820.2003.tb01498.x
- 569 47. Peccoud J, Labonne G, Sauvion N. Molecular test to assign individuals within the
- 570 Cacopsylla pruni complex. PLoS One. 2013;8: 1–8. doi:10.1371/journal.pone.0072454
- 571 48. EPPO. PM 7/129 (1) DNA barcoding as an identification tool for a number of regulated
- 572 pests. EPPO Bull. 2016;46: 501–537. doi:10.1111/epp.12344
- 573 49. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of
- 574 progressive multiple sequence alignment through sequence weighting, position-
- 575 specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22: 4673–
- 576 4680. doi:10.1093/nar/22.22.4673

- 577 50. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool.
- 578 J Mol Biol. 1990;215: 403–410. doi:https://doi.org/10.1016/S0022-2836(05)80360-2
- 579 51. Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res.
 580 2015/11/20. 2016;44: D67–D72. doi:10.1093/nar/gkv1276
- 581 52. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B, Remm M, et al. Primer3--
- 582 new capabilities and interfaces. Nucleic Acids Res. 2012;40: e115. Available:
- 583 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3424584/
- 584 53. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T. Primer-BLAST: A tool
- 585 to design target-specific primers for polymerase chain reaction. BMC Bioinfomatics.
- 586 2012;13: 134.
- 587 54. Liu D, Trumble JT, Stouthamer R. Genetic differentiation between eastern populations
- and recent introductions of Potato Psyllid (*Bactericera cockerelli*) into western North

589 America. Entomol Exp Appl. 2006;118: 177–183. doi:10.1111/j.1570-

- 590 7458.2006.00383.x
- 591 55. European Network of GMO Laboratories. Definition of minimum performance
- requirements for analytical methods of GMO testing. 2015. doi:10.2788/65827
- 593 56. Li D, Fan Q-H, Waite DW, Gunawardana D, George S, Kumarasinghe L. Development
- and validation of a Real-Time PCR assay for rapid detection of Two-Spotted Spider
- 595 Mite, *Tetranychus urticae* (Acari: Tetranychidae). PLoS One. 2015;10: e0131887.
- 596 doi:10.1371/journal.pone.0131887
- 597 57. Dhami MK, Dsouza M, Waite DW, Anderson D, Li D. Real-Time PCR assay for the

598		identification of the Brown Marmorated Stink Bug (Halyomorpha halys). Front Mol
599		Biosci. 2016;3: 1–6. doi:10.3389/fmolb.2016.00005
600	58.	Virgilio M, Jordaens K, Breman FC, Backeljau T, de Meyer M. Identifying insects with
601		incomplete DNA barcode libraries, African fruit flies (Diptera: Tephritidae) as a test

- 602 case. PLoS One. 2012;7. doi:10.1371/journal.pone.0031581
- 603 **10. Supporting Information Captions**

Supplementary Table 1. Assay performance across a range of primer concentrations at 60
 °C and 1.5mM MgCl₂. Optimum primer concentration was 0.2 μM showing the best
 combination of r², slope, efficiency, and sensitivity.

Supplementary Table 2. Performance of *B. cockerelli* real-time PCR assay at different
 magnesium chloride (MgCl₂) concentrations.

Supplementary Table 3. Summary of standard curves from optimisation of temperature on
Bcoc_JSK2 real-time PCR assay for identification of B. cockerelli. All DNA concentrations
tested above the limit of detection (10ng, 1 ng, 0.1ng, 0.01ng 0.001ng, 0.0001ng, 0.00001ng,
0.000001ng) gave 100% positives across 3 x replicates. LOD is given for each temperature.
All non-target Bactericera species tested at different DNA concentration gave 0% false
positives except for B. albiventris cloned DNA which cross reacted at 64 and 66 °C.
(*reactions at 64 °C gave 33.33% positives at 20 copy numbers).

Supplementary Table 4. Set-up and results of multifactorial robustness experiment testing
the Bcoc_JSK2 assay on *B. cockerelli* genomic DNA. All treatments showed 100% positives
despite small changes to the overall set-up.

619

Bactericera cockerelli Bactericera maculipentis Bactericera cumatinensis Bactericera signicaris Bactericera signicaris Bactericera trigonica Bactericera trigonica Bactericera albiventris Bactericera dorsalis	OTATCOACT COAACAT OAAT CAGT ACOAGT ACOAGT ACOACT CTCT COCCOACOAGCOT OT OT COCCOT ACCCAT COACT CO	3 540 3 540 3 540 3 540 3 540 3 540 3 540 3 540
Bactericera cockerelli Bactericera maculipennis Bactericera curvatinervis Bactericera striala Bactericera hipricomis Bactericera trigonita Bactericera trembilayi Bactericera disiventris Bactericera dorsalis	CCASTCTT CTCTTTCOADA DAA CTCOCCTTCCATOODAOTTCTTCOODOCOCAACCOUNTACTTCOCCCCCTTCOCCTCCTCAAATATTTCCTCCCCCCCTCAAATATTCCTCCCCCC	200 200 200 200 200 200 200 200 200 200
Bactericera cockerelli Bactericera maculipentis Bactericera cumotinervis Bactericera striolo Bactericera higricomis Bactericera trigonica Bactericera dipiventris Bactericera dibiventris Bactericera dorsalis	COORDENSATE CONTROLOGICA CONTROLOGIC CONTROL CONTRUCT CONTROL CONTROL CONTROL CONTROL CONTROL	420 420 420 420 420 420 420 420 420 420
Bactericera cockereli Bactericera maculipennia Bactericera curvatinernis Bactericera signicomi Bactericera nignico Bactericera trigonica Bactericera albiventria Bactericera disventria Bactericera dorsalia	00000TTC000AT0CT00 DCTTC0CC000ACACACACA ACCCCCCC0TT0A0C0T0ATTC0TCACACTCCA000AA000TT0CT0TT0CT0TT0T0AAC0CATTCC0CAAACT 0DTTCCAT0 000000TTC000A0CTC0 DCTTC0CC000ACACACACA ACACACACACACACACACACACA	559 560 560 560 560 560
Bactericera zackereli Bactericera maculipennis Bactericera cumotinernis Bactericera aspriata Bactericera nigricarnis Bactericera nigricarnis Bactericera premblogi Bactericera altiventris Bactericera dotsalis	TCACGAUGA ACCORCACCOMACCCATCTCACGOOACCOTOACCOTOACCCTCCCCACGTCCATCACCCATTCC COCOACGAAAACAAACCAAACCAAACCAAACCAAACC	699 699 699 699 699 699 699 699 699 699
Boctericera maculipennia Boctericera curvatinervia Boctericera strola Boctericera nigricornia Boctericera trigonica Boctericera trigonica Boctericera albiventria	ACAACCAACCCACTGAATTGATTCGAA ACAACCCACTGCACTG	728 728 728 728 728 728 728 729 729

Click here to access/download Supporting Information Sup Tab S1.docx Click here to access/download Supporting Information Sup Tab S2.docx Click here to access/download Supporting Information Sup Tab S3.docx Click here to access/download Supporting Information Sup Tab S4.docx

- 1 **<u>Full Title:</u>** A diagnostic real-time PCR assay for the rapid identification of the tomato-potato
- 2 psyllid, Bactericera cockerelli (Šulc, 1909) and development of a psyllid barcoding database.

3 <u>Authors</u>

- 4 JC Sumner-Kalkun¹*, MJ Sjölund¹, YM Arnsdorf¹, M Carnegie¹, F Highet¹, D Ouvrard^{2,5}, AFC
- 5 Greenslade³, JR Bell³, R Sigvald⁴, DM Kenyon¹
- 6 ¹SASA, Roddinglaw Road, Edinburgh EH12 9FJ, UK. ²Department of Life Sciences, Natural
- 7 History Museum, Cromwell Road, London SW7 5BD, UK. ³ Rothamsted Insect Survey,
- 8 Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK.⁴
- 9 Department of Ecology, Swedish University of Agricultural Sciences, Box 7044 750 07
- 10 Uppsala, Sweden. ⁵Entomology and invasive plants Unit, Plant Health Laboratory, ANSES,
- 11 755 avenue du campus Agropolis, CS 30016, 34988 Montferrier-sur-Lez Cedex, France
- 12 *Corresponding author: jason.sumner-kalkun@sasa.gov.scot
- 13 Short Title: Bactericera cockerelli diagnostic assay
- 14 Keywords: Bactericera cockerelli, Biosecurity, Phytosanitary, Diagnostic, Pest, Vector,
- 15 'Candidatus Liberibacter solanacearum', real-time PCR

16

- 17

18

21 Abstract

22	The accurate and rapid identification of many insect pests is an important step in the
23	prevention and control of outbreaks in areas that are otherwise pest free. The potato-
24	tomato psyllid Bactericera cockerelli (Šulc, 1909) is the main vector of 'Candidatus
25	Liberibacter solanacearum' on potato and tomato crops in Central and Northern America
26	and New Zealand. This study describes the design and validation of the first species-specific
27	TaqMan probe-based real-time PCR assay, targeting the ITS2 gene region of <i>B. cockerelli</i> .
28	The assay successfully detected B. cockerelli genomic DNA from adults (100% accuracy,
29	n=72); immatures (100% accuracy, n=26) and eggs (100% accuracy, n=25). This assay also
30	detected DNA from cloned plasmids containing the ITS2 region of <i>B. cockerelli</i> (100%
31	accuracy, n=24). The assay showed 0% false positives when tested on genomic and cloned
32	DNA from 73 other psyllid species collected from across Europe, New Zealand and Mexico.
33	This included 8 other species in the Bactericera genus and the main vectors of 'Candidatus
34	Liberibacter solanacearum' worldwide. The assay can amplify <i>B. cockerelli</i> DNA across a
35	range of MgCl ₂ concentrations (1.5,3.5,5.5,7.5,9.5 μ M), primer concentrations
36	(0.1,0.2,0.3,0.5,1.0 μM) and annealing temperatures (58,60,62,64,66,68 °C). The limit of
37	detection for this assay at optimum conditions was 0.000001ng DNA (~200 copies) of ITS2
38	DNA which equates to around a 1:10000 dilution of DNA from one single adult specimen. No
39	significant differences were found between 6 x repeats of a 1:10 dilution series with 7 points
40	when tested by two-way ANOVA ($F_{5,25}$ = 0.54, p = 0.955); two independent runs of
41	experiments on two separate real-time PCR machines also showed no significant differences
42	when tested by two-way ANOVA ($F_{1,5}$ = 1.28, p = 0.279). This assay is the first real-time PCR

based method for accurate, robust, sensitive and specific identification of *B. cockerelli* from
all life stages. It can be used as a surveillance and monitoring tool to further study this
important crop pest and to aid the prevention of outbreaks, or to prevent their spread after
establishment in new areas.

47 **1.** <u>Introduction</u>

48 The psyllid Bactericera cockerelli (Šulc, 1909), (commonly known as "Potato Psyllids" or 49 "Tomato-Potato Psyllid"), is a major pest of cultivated Solanaceous crops including potato 50 and tomato [1]. FThe feeding byof this psyllid causes severe damage to potato plants 51 including: deformed tubers; production of numerous small, poor quality tubers; curling of 52 leaves and petioles; and yellowing or purpling of leaves. This leads to stunted growth and 53 loss of yield [2]. Bactericera cockerelli is also the main vector of 'Candidatus Liberibacter 54 solanacearum' (Lso) which is associated with Zebra Chip and psyllid yellows in Central and 55 North America and New Zealand [3-8]. 56

While B. cockerelli prefers to complete its life cycle on Solanaceous plants it is also able to 57 reproduce oncan also complete development on species of Convolvulaceae (Bindweeds and 58 Morning Glories) [9]. There may also be an association with B. cockerelli and plants in the 59 Lamiaceae (mints and deadnettles) but this is based on incidental observations from glasshouses with high B. cockerelli infection [10]. In addition, adult B. cockerelli have been 60 61 found on over 40 species belonging to 20 families, however most of these are either casual, 62 food or shelter plants on which the psyllid is unable to complete a full life cycle and/or 63 transmit Lso [2,10–16]. Four biotypes of B. cockerelli have been described according to 64 polymorphisms in the mitochondrial cytochrome c oxidase subunit I (COI) gene and 65 represent geographically distinct populations; central, western, north-western, and south-

66	western [17,18]. Evidence suggest that these genetic types may These populations have	
67	been observed to differ in their ability to spread Lso [18,19].	
68	Bactericera cockerelli is thought to originate from South-Western USA and Mexico [2,11]	
69	and from here has spread via natural and human-mediated dispersal to extend its range	
70	[20]. Outside America in Northern and Central America and to Oceania where it is now	
71	established in New Zealand [21] and more recently Western Australia [22]. In Central	
72	America, B. cockerelli has been found as far south as Nicaragua [23] but has not currently	
73	been found in Costa Rica or Panama [24]. This psyllid has now established small populations	
74	in Canada [25] where previously it was not thought to overwinter. After a period of	
75	surveillance, in 2017, B. cockerelli was found in areas of Western Australia [22], however Lso	
76	has not yet been detected in psyllids or plants in these locations. In 2017, all developmental	
77	stages of <i>B. cockerelli</i> were found in two locations in Ecuador on potato plants. This	
78	represents the first finding of <i>B. cockerelli</i> in South America [26].	
79	The phloem-limited bacterium 'Candidatus Liberibacter solanacearum' (Lso) is a pathogen	
80	associated with Zebra Chip disease of potatoes [3,23–25] and disease in other Solanaceous	
81	crops such as cultivated tomato [1,3,26,27], pepper [28], eggplant [29], tobacco [30,31] and	
82	tomatillo [26]. Currently, B. cockerelli is the main vector of Lso in field and glasshouse-grown	
83	Solanaceous plants in the United States, Mexico, areas of Central America [27–30], Canada	
84	[32],-and New Zealand [5,6,25] and recently Ecuador [33]. Ten Lso haplotypes have been	
85	described, only three of which are associated with disease in Solanaceous plants. While 9	
86	haplotypes of Lso have hitherto been described in the literature (A, B, C, D, E, F, G, H, and U)	
87	only three of the haplotypes, A, B and F, are associated with disease in Solanaceous plants.	
88	Haplotypes A, B, and F are associated with Zebra chip disease in America [3,34,35], whereas	

89	only haplotype A has been found in New Zealand [5,36]. <u>Haplotype B has also been found in</u>
90	<u>Bactericera maculipennis (Crawford)</u> [37]. The remaining haplotypes are not vectored by B.
91	<i>cockerelli</i> but by closely related species in the Triozidae family. Haplotype G was found in 49
92	year-old herbarium specimens of <i>Solanum umbelliferum</i> [39] but it is not known if it is able
93	to infect potato. Haplotypes C, D, and E are associated with disease in Apiaceous crops in
94	Europe [28,40–43] and Northern Africa [44,45]. Lso Haplotypes D and E are vectored mainly
95	by Bactericera trigonica and to a lesser extent Bactericera nigricornis and Bactericera
96	tremblayi [42,45,46]. These closely related Bactericera spp. are morphologically similar and
97	substantial taxonomic expertise is required to accurately identify species. Currently the
98	geographic distribution of <i>B. cockerelli</i> does not overlap with <i>B. trigonica</i> and <i>B. nigricornis</i>
99	which makes field identification easier. However, in the event of an outbreak of B. cockerelli
100	molecular diagnostic methods allow rapid identification by non-specialists and is particularly
101	valuable in areas where other Bactericera spp. co-occur.
102	Haplotype C is found in Northern Europe where it is mainly vectored by <i>Trioza apicalis</i>
103	which, together with psyllid feeding, causes up to 100% loss of Apiaceaous crops in Finland
104	[47,48] and Sweden [28] following transmission. Haplotype U is found in asymptomatic
105	Urtica dioica (stinging nettle) and is vectored by the psyllid Trioza urticae but is not yet
106	known to cause economic damage [49]. It seems that psyllid-mediated infection of host
107	plants with Lso only occurs when the psyllid vector is on its preferred host. Infection of
108	carrot plants with Lso haplotypes vectored by B. cockerelli-and infection of potato plants by
109	carrot psyllid vectored Lso only occurs very rarely in-vitro and suggests that an efficient
110	vector is necessary for wide-scale spread of Lso [46]. Monitoring and prevention of the

Formatted: Space After: 22 pt, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

111	spread of B. cockerelli is essential to prevent the risk of an outbreak of Lso on potato,	
112	tomato and other Solanaceous crops in areas where it is not currently found [38].	
113	The impact of <i>B. cockerelli</i> and associated Lso transmission on agriculture is significant. Since	
114	its arrival in New Zealand circa 2005 via human-mediated dispersal it has caused millions of	
115	dollars of economic losses [6,21]. Similarly, management of <i>B. cockerelli</i> in the US is	
116	reported to have cost millions of dollars per year in major potato growing areas such as	
117	Texas [38] and the Pacific North-West [39]. In 2008, the reduction in exports of capsicum	Formattee
118	and losses in exports of tomato due to closure of New Zealand's export markets were	
119	estimated to have cost \$NZ 5.22 million and \$NZ 3 million respectively [21]. Direct crop	
120	losses caused by symptoms of Lso on tomato in glasshouse were estimated at \$NZ 1 million	
121	[6]. Within 3 years in the mid 2000s the management of <i>B. cockerelli</i> in Texas was estimated	
122	to have cost \$US 25.86 million [39]. Control of <i>B. cockerelli</i> in the Pacific North-West, where	
123	over 50% of US potatoes are grown, costs approximately \$US 11 million a year [40]. The	
124	introduction of <i>B. cockerelli</i> into potato growing regions in Europe or Asia would be	
125	devastating to the agricultural industry of those regions. If B. cockerelli, or a sufficient vector	
126	of Solanaceous Lso haplotypes, were to invade Europe it is estimated that the effects of Lso	
127	damage on potato and tomato would cost ${f \in}$ 222 million per year and the negative impact of	
128	social welfare could cost an additional estimated € 114 million [40].	
129	Currently, <i>B. cockerelli</i> is considered an A1 quarantine pest in the EPPO region and is not	
130	present in any part of the region [4]. Consignments of aubergine and <u>Capsicum</u> from Mexico	Formattee
131	that were infested with immatures and adult stagess of <i>B. cockerelli</i> were intercepted four	
132	times during UK border inspections between 2017-2018at Heathrow Airport (London,	
133	England, UK) in 2017;- indicating that there is a real threat of this pest making an incursion	
	6	

Formatted: Font: Italic

ormatted: Font: Italic

134	into the EPPO region if not properly monitored [41]. <u>Monitoring and prevention of the</u>
135	spread of <i>B. cockerelli</i> is essential to prevent the risk of an outbreak of Lso on potato,
136	tomato and other Solanaceous crops in areas where it is not currently found [42]. There is
137	therefore an evident need for a rapid and accurate diagnostic test to identify <i>B. cockerelli</i> at
138	all life stages not only as a tool to support import inspections, but also to assist monitoring,
139	eradication and control strategies. is evidentMonitoring and prevention of the spread of B.
140	cockerelli is essential to prevent the risk of an outbreak of Lso on potato, tomato and other
141	Solanaceous crops in areas where it is not currently found [38] It will assist the prevention
142	of accidental introductions via human mediated dispersal and, in the event of an existing
143	outbreak, will support the rapid identification of this pest and subsequent control strategies.
144	We designed a species-specific real-time PCR diagnostic assay to detect all life-stages of B.
145	cockerelli, eggs, immatures and adults. The assay provides a rapid diagnostic test to quickly
146	determine the presence of <i>B. cockerelli</i> , allowing for the early detection of
147	invasions/introductions and aiding in the prevention of spread of this psyllid.
148	
110	
149	2. <u>Materials and Methods</u>
150	2.1. <u>Specimen collection</u>
151	The assay was tested on 28 target adults <i>B. cockerelli</i> specimens and 73 non-target species
152	consisting of 110 specimens see results section 3.1 for more info on samples(Supp Tab. S1).
102	
153	The classification follows Burckhardt & Ouvrard [43], and a complete taxonomic account of
154	each species is given in Ouvrard [20]. Psyllid identifications were confirmed against

155 reference type specimens in the NHM London collections. To account for intraspecific

156 genetic variation, we obtained B. cockerelli specimens from Mexico (Universidad Autónoma 157 Agraria Antonio Narro) and USA (USDA, Agricultural Research Services) from colony 158 collections of each of the four recognised biotypes of *B. cockerelli* in Central America, the 159 Central, Western, North-Western, and South-Western biotypes [19]. Specimens of B. 160 cockerelli were also obtained from New Zealand lab-reared colonies (Plant Research, New 161 Zealand). Non-target specimens were mainly obtained from 12.2 m suction-traps in the 162 United Kingdom that form part of the Rothamsted Insect Survey network described here 163 [44]. Specimens were also obtained from suction-traps in Finland, Germany, Spain and 164 Sweden; as well as from field collections from Finland, Israel, Mexico, Serbia, Spain, UK and 165 USA. Non-target specimens from different regions of the USA were used to test assay specificity on species that are commonly found in the same region as B. cockerelli. As 166 167 immatures and eggs are the most likely life stages that inspectors might find on imported 168 plant material, we also tested the assay on DNA extracted from immatures and eggs from 169 Mexico and the USA for validation.

170 2.2. DNA extraction, PCR, and DNA sequencing for identification of psyllids

171 DNA for sequencing and assay validation was extracted from psyllids using a non-destructive 172 method first described in [45] and adapted from [46]. Psyllid specimens were preserved in 173 95% Ethanol: 5% Glycerol solution. Using a 15mm long, 0.15mm diameter stainless steel entomological head-less pin (A3 size, Watkins and Doncaster) mounted in a holder, 174 175 specimens were initially pierced fully through the abdomen and half-way through the thorax 176 from the dorsal side while attempting to minimise damage to head, legs, wings, terminalia 177 and other body parts that are used for taxonomic identification. Pierced-Micro-dissected 178 specimens were placed in a microcentrifuge tube containing 180 μ l of ATL buffer and 20 μ l

179	of proteinase-k as outlined in the DNeasy Blood and Tissue Kit from Animal Tissues (Qiagen).
180	Samples were placed in a shaking incubator over-night (~8-10 hrs) at 56 °C at 300 rpm. The
181	protocol for DNA extraction in DNeasy Blood and Tissue Kit Protocol from Animal Tissues
182	(Qiagen) was followed and the psyllid integument voucher specimen was stored in 95%
183	Ethanol: 5% Glycerol for morphological identification. Psyllids were DNA barcoded using one
184	or two gene regions. The internal transcribed spacer 2 (ITS2) and cytochrome c oxidase
185	subunit 1 (CO1) were amplified and sequenced for identification of different psyllid species.
186	For amplification of ITS2 primers CA55p8sFcm-F and CA28sB1d-R [47] were used; and for
187	amplification of CO1 gene regions arthropod barcoding Primers LCO1490 and HCO2198 [48]
188	were used. All reactions were performed in 20 μl consisting of: 10 μl 2x Type-It
189	Microsatellite PCR Kit Master Mix (Qiagen); 0.24 μΜ μΙ (10 μM stock) each forward and
190	reverse primer; 7.2 μI molecular grade water (Sigma-Aldrich) and 2 μI of psyllid template
191	DNA. Reactions were run on a Veriti 96-well thermal cycler (Applied Biosystems) using the
192	following programs. ITS2: 95°C for 5 mins; 25 x cycles of (95°C for 30 s, 56°C for 90 s, 72°C
193	for 30 s); and a final extension at 72°C for 10 mins. CO1: 94°C for 5 mins; 5 x cycles of (94°C
194	for 30s, 45°C for 30s, 72°C for 1 min); 25 x cycles of (94°C for 30s, 51°C for 1 min, 72°C for 1
195	min); and a final extension of 72°C for 10 mins. PCR amplified gene regions were cleaned-up
196	using EXO-SAP and Ethanol precipitation, then sequenced using the BigDye Terminator Cycle
197	Sequencing Kit (Applied Biosystems), forward and reverse complimentary DNA strands were
198	sequenced separately for each sample and analysed using a 3500xL Genetic Analyser
199	(Applied Biosystems).

200

2.3. Bioinformatics and Real-Time PCR Assay Design

201	Sequence editing, assembly and alignment were performed on ".AB1" trace files uploaded
202	to Geneious R11 v 11.1.5 (Biomatters Ltd.). Contigs were assembled after trimming sections
203	of low-quality sequence and aligning the complimentary strands using CLUSTAL-W multiple
204	sequence alignment method [49]. Final contigs for each species and each gene region were
205	aligned to identify variable areas suitable as targets for <i>B. cockerelli</i> specific primer and
206	probe sets. Primers and probes were designed using manual selection of target-specific
207	regions analysed using the "Basic Local Alignment Search Tool" (BLAST) [50] against the
208	NCBI GenBank database [51] and processing of selected regions for suitability/ specificity in
209	"Primer3" [52] and "Primer-BLAST" software [53]. Primer annealing temperature, hairpin
210	formation, self-complementarity, GC content and were assessed using "Primer3" [52].
211	Potential amplification of non-specific insect species was checked using Primer BLAST which
212	includes all psyllid species present in the GenBank database. Primer and probe sets were
213	selected/rejected based on the following parameters: primer annealing temperature 59-
214	62°C; primer annealing temperature + 8-10°C for probe annealing temperature; no more
215	than 2°C difference in annealing temperature between primers, max probe length 30bp, no
216	more than 3 Gs in a row in probe, amplicon length max 300bp and specificity to B. cockerelli.

217 2.4. <u>Real-time PCR Set-up and Standards</u>

To calculate standard curves DNA standards of *B. cockerelli* were prepared using dilution
series of linearized cloned plasmid DNA. DNA was extracted as above using the nondestructive method, amplified and cloned into competent *Escherichia coli* cells using the
TOPO TA cloning kit (Thermo-Fisher). DNA from successfully transformed colonies was
extracted using "PureYield Plasmid Miniprep System" (Promega). For assay validation DNA
was cloned from other psyllid species (see results section 3.1)(Supp Tab. S1). Stock DNA 10

224	ng/µl was linearised from cloned plasmid DNA using EcoRI restrictions enzyme (New
225	England Biolabs), 0.5 µl of enzyme was added to 100 µl of stock DNA, this solution was

- 226 incubated in a heat block (Thermomixer C, Eppendorf) at 37 °C for 15 mins. The enzyme was
- 227 then deactivated at 65 °C for 20mins. Real-time PCRs were performed in 15 μl volumes
- 228 including: 6.75 μl Jumpstart Taq Ready Mix (Sigma); 1.2 μl MgCl₂ (25mM); 0.45 μl of each
- primer; 0.15 μl probe; 4 μl of molecular grade water (Sigma); and 2 μl of template DNA. <u>The</u>
- 230 <u>standard real-time PCR cycle program was as follows. Hold stage: 50 °C for 2 mins then; 95</u>
- 231 <u>°C for 10 mins. PCR stage: 40 cycles of (95 °C for 15 secs; X °C for 1 min), with primer</u>
- 232 <u>annealing temperature X being 58, 60, 62, 64, or 68; depending on the experiment.</u> Primer
- 233 concentration, MgCl₂ concentration and temperature was adjusted for validation and
- 234 optimization of the assay as described below. Reactions were performed on a "QuantStudio
- 235 6 Flex" (Applied Biosystems) real-time PCR machine and analysis was done on the
- 236 "QuantStudio Real-Time PCR Software" (Applied Biosystems).

237 2.5. Assay validation

- 238 **2.5.1.** Specificity
- 239 The final primer and probe set was tested on genomic DNA from 47 *B. cockerelli* specimens
- 240 from different life stages. These included the 4 US biotypes [17,54] and specimens from
- 241 New Zealand to determine false negatives. The assay was tested for specificity against
- 242 genomic DNA of 73 non-target psyllid species collected as mentioned above, to detect false
- 243 positives. This included a total of 8 other closely related Bactericera spp. and the major
- 244 vectors of Lso on Apiaceous crops (B. nigricornis, B. trigonica and Trioza apicalis).
- 245 Information regarding samples tested is in results section 3.1. The assay was also checked
- 246 for cross-reaction against potato genomic DNA (Solanum tuberosum), 3 samples of S.

247 tuberosum 'Maris Piper' were tested in replicates of 8. All information on specimens and 248 DNA samples can be found in (Supp Tab. S1). All reactions with non-target psyllid-DNA were 249 run in conjunction with a TaqMan Exogenous Internal Positive Control Reagent Kit (Applied 250 Biosystems) to rule out the possibility thatensure false positives were not obtained due to 251 inhibition within the reaction. DNA from all non-target psyllids was sequenced in either ITS2, 252 <u>CO1 or both</u>-to ensure psyllid DNA was present in all reactions to rule out false negatives 253 due to inefficient DNA extraction. Reactions were performed in duplicate at least, with a 254 higher number of replicates for species closely related to *B. cockerelli*-(Supp Tab. S1). False 255 positives were defined as reactions with non-target DNA that showed fluorescence above 256 the cycle threshold during 40 cycles; and false negatives were defined as reactions with B. cockerelli DNA that did not give a Ct after 40 cycles. 257

258 **2.5.2.** Sensitivity

259 Experiments were performed to determine the limit of detection of the assays. DNA 260 standards were produced using B. cockerelli linearized cloned DNA from the ITS2 region. A 261 nine point 10-fold dilution series starting with 10 ng/ μ l DNA up to 10⁻⁸ ng/ μ l of linearised 262 plasmid DNA and genomic DNA was used to determine the limit of detection. 100ng/µl 263 stock DNA concentration was initially checked using QuBit 4 Fluorometer (Invitrogen) and 5 264 μl was added to 45 μl of molecular grade water (Sigma-Aldrich) to dilute 1:10; eight 265 subsequent dilutions were made. Stock DNA 10 ng/µl was linearised using EcoRI restrictions 266 enzyme (New England Biolabs), 0.5 µl of enzyme was added to 100 µl of stock DNA, this 267 solution was incubated in a heat block (Thermomixer C, Eppendorf) at 37 °C for 15 mins. The 268 enzyme was then deactivated at 65 °C for 20mins. Linearised and non-linearised DNA was 269 compared along with genomic DNA. The ability of the assay to detect immatures and eggs

270 was also tested. DNA from various instars of immatures was extracted using the non-

271 destructive protocol described above. Batches of 1 egg, 5 eggs and 10 eggs were extracted

272 using the DNeasy Blood & Tissue kit (Qiagen) and initially broken with a pestle.

273 2.5.3. Repeatability and Reproducibility

274 Variation in the performance of the assay between runs and within runs was assessed at a

 $275~0.2~\mu M$ primer concentration, with 1.5mM MgCl_2, and 60 °C annealing temperature.

276 Linearised plasmid DNA from Escherichia coli transformed with B. cockerelli ITS2 DNA was

277 used. A six point 1:10 dilution series starting at 10ng/µl was used with each dilution being

278 performed in triplicate. The same experiment was repeated 3x simultaneously. Runs and

279 variations between the three experiments were recorded and analysed using QuantStudio 6

280 Real-Time PCR Software. An identical plate following the same plate set-up and reaction mix

281 was run simultaneously on another QuantStudio 6 real-time PCR machine to compare inter-

282 run variation.

283 2.5.4. Robustness/Optimization

284 Amplification of target DNA, specificity and sensitivity at different MgCl₂ concentration, 285 primer concentrations and annealing temperatures were performed to assess robustness. The assay was tested with 1.5, 3.5, 5.5, 7.5 and 9.5mM MgCl₂ concentration. For primers, 286 287 0.1, 0.2, 0.3, 0.5 and 1.0 µM concentrations were tested. The assay was also tested at 288 different annealing temperatures 58, 60, 62, 64, 68 °C across. For each tested parameter, 289 optimization was performed across a ninen eight point 1:10 dilution series starting at 290 10ng/ul DNA. All samples were tested in triplicates. Closely related *Bactericera* species were 291 included in these assays to assess specificity under different assay conditions. After

two
errors in the
and "CFX96
me PCR
ogy used
[55].
r

298 **3.** <u>RESULTS</u>

299 **3.1.** DNA extraction, PCR, and DNA sequencing for identification of psyllids

300 DNA from 110 psyllid specimens comprising 73 different species were extracted, amplified

and sequenced successfully from either CO1 or ITS2 gene regions, or <u>both</u> (Supp-Tab. S1).

Family	Genus	Species	Voucher ID	Collection Location	Collection method	CO1 Ac#	ITS2 Ac#	Tech Reps	Vouc he
Aphalaridae	Aphalara	avicularis	160718.A.avi.23	Wellesbourne, UK	suction trap	MT021761	L	2	Formatted Table
	<u>Blastopsylla</u>	<u>polygoni</u> <u>occidentalis</u>	<u>160718.A.pol.22</u> <u>180312.Bl.occ.24</u>	Wellesbourne, UK Salamanca, Spain	suction trap suction trap	<u>/</u> <u>MN272146</u>	MT038907 MN316692	<u>2</u> 2	<u>1</u> <u>3</u>
	Craspedolepta	gutierreziae	160825.5 US	Nevada, USA	field collection	MT021786	MT038962	2	<u>1</u>
		minutissima	160825.1 US 160825.10 US	<u>Nevada, USA</u> <u>Oregon, USA</u>	field collection	MT021787 MT021789	MT038963	2	<u>1</u> <u>1</u>
			160825.4 US	Nevada, USA	field collection field collection	MT021789	L	<u>2</u> 2	<u>1</u>
		<u>nervosa</u>	160728.Cra.ner.2	Gogarbank, UK	suction trap	MT021790	MT038964	2	1
		<u>pinicola</u> subpunctata	<u>160825.2 US</u> 160421.C.sub.5	<u>Nevada, USA</u> Gogarbank, UK	field collection suction trap	<u>/</u> MT021791	MT038965 MT038966	<u>2</u> 2	$\frac{1}{1}$
	<u>Rhinocola</u>	aceris	151014.R.ace.14	Wellesbourne, UK	suction trap	MT021810	MT038979	2	2
Liviidae	<u>Diaphorina</u> <u>Euphyllura</u>	<u>citri</u> <u>olivina</u>	160309.D.cit.6 180125.Eup.oli.3	Lab Colony, Plants imported	Lab Reared on imported Olea	MT021794 MT021797	MT038969 MT038970	<u>2</u> 2	<u>1</u> <u>3</u>
	Livia	crefeldensis	180312.L.cre.5	Salamanca, Spain	Suction trap	MN316678	MN272127	2	<u>3</u>
		junci opagua	<u>160404.L.jun.1</u> 160825.6 US	Broom' s Barn, UK Nevada, USA	suction trap field collection	MT021801 MT021802	<u>/</u> <u>MT038973</u>	2 2	<u>2</u> 1
Psyllidae	Arytaina	<u>opaqua</u> genistae	151203.A.gen.2J	Ayr, UK	suction trap	<u>INITO21802</u>	MT038909	2	<u> </u>
	<u>Arytainilla</u>	<u>gredi</u>	180312.A.gre.1	Salamanca, Spain	suction trap	MN272123	MN316677	2	3
	Baeopelma	<u>spartiophila</u> foersteri	<u>180716.A.spa.29</u> <u>151203.B.foe.1J</u>	SASA, Edinburgh, Ayr, UK	suction trap suction trap	MT021762 2	MT038908 MT038944	<u>2</u> 2	<u>3</u> 1
	.	<u>foersteri</u>	160928.B.foe.2	SASA, UK	suction trap	MT021776	L	<u>2</u>	1
	<u>Cacopsylla</u>	<u>affinis</u> <u>ambiqua</u>	151203.C.aff.1 160404.C.amb.4	<u>Wye, UK</u> Wye, UK	suction trap suction trap	<u>MT021777</u> 	MT038945 MT038946	<u>2</u> 2	$\frac{2}{2}$
		ambigua	161024.C.amb.3	Preston, UK	suction trap	L	MT038947	<u>2</u>	1
		<u>americana</u> brunneipennis	<u>160825.3 US</u> 160309.C.bru.8	<u>Nevada, USA</u> <u>Wye, UK</u>	field collection suction trap	<u>МТ021778</u> _/	MT038948 MT038949	<u>2</u> 2	$\frac{1}{2}$
		<u>crataegi</u>	160404.C.cra.3	Broom's Barn, UK	suction trap	MT021779	MT038950	2	<u> </u>
		<u>mali</u> malananaura	180910.C.mal.30	Elcho Castle	field collection suction trap	Ĺ	MT038951 MT038952	2	3
		<u>melanoneura</u> <u>moscovita</u>	<u>160718.C.mel.6</u> <u>190109.C.mos.1</u>	Kirton, UK Quedlinburg,	suction trap	Ĺ	<u>WI1036952</u> L	<u>2</u> 2	<u>3</u> <u>3</u>
		peregrina	161024.C.per.11	Silwood Park, UK	suction trap	MT021780	MT038953	<u>2</u>	1
		<u>pruni</u> pulchra	<u>160203.C.pru.18</u> <u>160718.C.pul.15</u>	Wellesbourne, UK Elgin, UK	suction trap suction trap	Ĺ	MT038954 MT038955	<u>2</u> 2	2 1
		<u>pyricola</u>	160203.C.pco.2	Wye, UK	suction trap	MT021781	MT038956	2	2
		<u>saliceti</u> <u>sorbi</u>	161024.C.sal.7 161024.C.sor.8	York, UK Preston, UK	suction trap suction trap	<u>/</u> MT021782	MT038958 MT038959	<u>2</u> 2	$\frac{1}{1}$
		rhamnicola	151014.C.rha.8	Wellesbourne, UK	suction trap	L	MT038957	<u>2</u>	<u>2</u>
	<u>Ceanothia</u>	<u>ulmi</u> <u>ceanothi</u>	171011.C.ulmi.1 160825.9 US	<u>Quedlinburg.</u> <u>Oregon, USA</u>	suction trap field collection	MT021783 MT021784	<u>MT038960</u> /	<u>2</u> 2	<u>3</u> 1
	Chamaepsylla	hartigii	160728.Ch.har.1	Gogarbank, UK	suction trap	MT021785	MT038961	2	<u>1</u>
	Euglyptoneura	<u>fuscipennis</u> robusta	160825.7 US	Oregon, USA Oregon, USA	field collection	MT021795	L	2	1 1
	<u>Heteropsylla</u>	texana	<u>160825.8 US</u> 160825.11 US	Texas, USA	field collection field collection	MT021796 MT021798	L	<u>2</u> 2	<u>1</u>
	<u>Psylla</u>	<u>alni</u> humi	161019.P.aln.1	Sweden	suction trap	MT021804	L	2	1
		<u>buxi</u> betulae	<u>180622.P.buxi.22</u> 161123.P.bet.20	Scotland, UK Jokioinen, Finland	suction trap suction trap	MT021806 MT021805	MT038976 MT038975	<u>2</u> 2	<u>3</u> <u>3</u>
	Psyllopsis	discrepans	151002.P.dis.8	Sweden	suction trap	MT021807	L	<u>2</u>	1
		<u>fraxini</u> <u>fraxinicola</u>	<u>180716.P.fri.33</u> <u>160203.P.fra.6</u>	<u>SASA HQ,</u> Wellesbourne, UK	suction trap suction trap	MT021808 MT021809	MT038977 MT038978	<u>2</u> 2	<u>3</u> 2
	<u>Spanioneura</u>	fonscolombii	180802.S.fon.29	<u>SASA HQ.</u>	field collection	L	MT038980	2	3
<u>Spondyliaspidae</u>	<u>Ctenarytaina</u>	<u>spatulata</u> spatulata	<u>160404.Ct.spa.6</u> 161024.Ct.spa.5	<u>Wye, UK</u> Wye, UK	suction trap suction trap	MT021792 MT021793	MT038967 MT038968	2	2
Triozidae	Bactericera	albiventris	171214.B.alb.11	Jokioinen, Finland	suction trap	L	MT038910	<u><u></u></u>	<u></u>
		<u>curvatinervis</u> <u>dorsalis</u>	<u>161123.B.cur.42</u> <u>160803.B.dor.2</u>	Jokioinen, Finland Florida, USA	suction trap lab colony	<u>ل</u> <u>MT021763</u>	MT038911 MT038912	5	<u>3</u> 3
		<u>maculipennis</u>	190604.B.mac.1	Lab Colony, USA	Lab Reared	<u>L</u>	MT038912 MT038913	<u>5</u> 2	3
			190604.B.mac.2	Lab Colony, USA	Lab Reared	L	MT038914	2	3
			190604.B.mac.3 190604.B.mac.4	Lab Colony, USA Lab Colony, USA	Lab Reared Lab Reared	1	MT038915 MT038916	<u>2</u> 2	<u>3</u> <u>3</u>
			190604.B.mac.5	Lab Colony, USA	Lab Reared	Ĩ	MT038917	<u>2</u>	<u>3</u>
			190604.B.mac.6 190604.B.mac.7	Lab Colony, USA Lab Colony, USA	Lab Reared Lab Reared	Ĺ	MT038918 MT038919	2 2	<u>3</u> 3
		nigricornis	170324.B.nig.18	Spain	field collection	MT021764	MT038920	5	3
		salicivora	170324.B.nig.22 190116.B.sal.1	<u>Spain</u> Elgin, Scotland,	field collection	MT021765	MT038921	5	3
		<u>striola</u>	161123.B.str.9	Jokioinen, Finland	suction trap suction trap	Ĺ	<u>ل</u> <u>MT038922</u>	<u>6</u> -	3
		<u>tremblayi</u>	170731.B.tre.5	Slanci, Belgrade,	field collection	Ĺ	MT038923	5	3
			190604.B.trem.1 190604.B.trem.1	<u>Spain</u> Spain	<u>Lab Colony</u> Lab Colony	Ĺ	MT038924 MT038925	<u>2</u> 2	<u>3</u> <u>3</u>
			190604.B.trem.1	Spain	Lab Colony	Ī	MT038926	2	<u>3</u>
			190604.B.trem.2 190604.B.trem.2	<u>Spain</u> Spain	Lab Colony Lab Colony	Ĺ	MT038927 MT038928	<u>2</u> 2	<u>3</u> <u>3</u>
		trigonica	170629.B.tri.16	Tunisia	field collection	MT021766	MT038929	<u>3</u>	<u>3</u>
			170629.B.tri.17 170629.B.tri.18	<u>Tunisia</u> <u>Tunisia</u>	field collection field collection	<u>/</u> MT021767	MT038930 MT038931	<u>3</u> <u>3</u>	<u>3</u> <u>3</u>
								<u> ~</u>	-
								15	

		181010.B.tri.17	Spain	Lab Colony	MT021768	MT038932	2	3
		181010.B.tri.18	Spain	Lab Colony	MT021769	MT038933	<u>2</u> 2	3
		181010.B.tri.19	Spain	Lab Colony	L	MT038934	2	3
		181010.B.tri.20	Spain	Lab Colony	MT021770	MT038935	2	<u>3</u>
		181010.B.tri.21	Spain	Lab Colony	L	MT038936	2 2 2 2	ରା ଦା
		190604.B.tri.23	Spain	Lab Colony	MT021771	MT038937	2	<u>3</u>
		190604.B.tri.24	Spain	Lab Colony	L	MT038938	2	<u>3</u>
		190604.B.tri.25	Spain	Lab Colony	MT021772	MT038939	2	<u>3</u>
		190604.B.tri.26	<u>Spain</u>	Lab Colony	MT021773	MT038940	2	<u>3</u>
		190604.B.tri.27	Spain	Lab Colony	MT021774	MT038941	2	<u>3</u>
		190604.B.tri.28	Spain	Lab Colony	L	MT038942	2	<u>3</u>
		190604.B.tri.29	<u>Spain</u>	Lab Colony	MT021775	MT038943	<u>2</u>	<u>3</u>
<u>Heterotrioza</u>	<u>chenopodii</u>	160203.H.che.11	Kirton, UK	suction trap	L	MT038971	<u>2</u> 2	<u>2</u>
		160825.12 US	Washington, USA	field collection	MT021799	L	2	<u>1</u>
<u>Lauritrioza</u>	<u>alacris</u>	160816.L.ala.2	<u>Spain</u>	suction trap	MT021800	MT038972	2	<u>1</u>
Powellia	vitreoradiata	161024.P.vit.10	Kirtkon, UK	suction trap	MT021803	MT038974	2	<u>1</u>
Trioza	albifrons	160825.18.US	Nevada, USA	field collection	MT021811	MT038981	2	<u>1</u>
	anthrisci	150708.T.ant.11	Jokionen, Finland	field collection	MT021812	L	2	<u>3</u>
	<u>apicalis</u>	161019.T.api.5	Sweden	field collection	MT021813	L	2	<u>3</u>
	<u>buxtoni</u>	170324.T.bux.11	Israel	field collection	MT021814	MT038982	2	1 1 3 3 3 1 1 1 1 1
	<u>centranthi</u>	161024.T.cen.9	Wye, UK	suction trap	MT021815	L	2	<u>1</u>
	<u>cerastii</u>	171214.T.cer.32	Vikki, Finland	suction trap	MT021816	MT038983	2	<u>3</u>
	<u>dispar</u>	160718.T.disp.26	Hellfreda, Sweden	suction trap	MT021817	L	<u>2</u>	<u>1</u>
	erytreae	160808.ICA.19	<u>Spain</u>	Lab Colony	L	MT038984	2	
	<u>flavipennis</u>	160421.T.fla.3	Sweden	suction trap	MT021818	MT038985	2	<u>1</u>
	<u>galii</u>	160203.T.gal.23	Wellesbourne, UK	suction trap	L	MT038986	2	<u>2</u>
	<u>remota</u>	160718.T.rem.8	Sweden	suction trap	L	MT038987	<u>2</u>	<u>1</u>
		180424.T.rem.1	Dundee, UK	Suction trap	MT021819	MT038988	<u>3</u>	<u>3</u>
		180424.T.rem.6	Dundee, UK	Suction trap	MT021820	MT038989	<u>3</u>	<u>3</u>
		180424.T.rem.16	Dundee, UK	Suction trap	MT021821	MT038990	<u>3</u>	3
		180424.T.rem.18	Dundee, UK	Suction trap	MT021822	MT038991	<u>3</u>	3
		180424.T.rem.19	Dundee, UK	Suction trap	L	MT038992	<u>3</u>	3
		190116.T.rem.7	UK	Suction trap	MT021823	MT038993	<u>3</u>	<u>3</u>
	<u>rhamni</u>	151002.T.rha.13	Sweden	suction trap	MT021824	MT038994	<u>2</u> 2	1 2 1 3 3 3 3 3 3 1 1
	tatrensis	160718.T.tat.27	Sweden	suction trap	L.	MT038995		
	urticae	160816.T.urt.17	Spain	field collection	/	MT038996	2	1

Table 1: Information on non-target psyllid species and plant specimens tested using the *B*.
 cockerelli real-time PCR assay Bcoc_JSK2 showing number of technical replicates and false
 positives. All non-target species gave 0% false positives. GenBank Accession numbers are
 included for ITS2 and CO1 regions if sequencing was successful. Voucher Location: 1= 1; 2= 2
 Research Insect Survey; 3= SASA Hemipteran DNA Database. All DNA samples are stored in

307 the SASA Hemipteran DNA database.

308 3.2. Bioinformatics and Real-Time PCR Assay Design.

309 While differentiation within both the ITS2 and CO1 gene regions was sufficient to

310 discriminate between psyllid species, the ITS2 gene region was more suitable for TaqMan

- 311 assay design for *B. cockerelli*. Similarities between CO1 gene sequences between members
- 312 of the Bactericera genus and B. cockerelli were higher than in the ITS2 region (average %
- 313 similarity = 82.51 ± 0.68 for CO1 and 77.80 ± 4.79 for ITS2) (Tab. 21). The ITS2 region
- 314 showed larger sections of variability along the gene on which to design primers and probes.

Formatted: Line spacing: 1.5 lines

- 315 Several primer and probe sets passed the selection criteria, but most were unsuitable due to
- 316 high rate of false positives from closely related *Bactericera* species. The final primer and
- probe set Bcoc_JSK2 (Tab. <u>3</u>2) targets a 187bp region of the ITS2 gene (Fig. 1).

		ITS2		CO1			
Species	% Similarity	bp	GC content %	% Similarity	bp	GC content %	
B. trigonica	78.96	662	59.3	82.88	509	35.4	
B. tremblayi	79.16	665	59.1	82.97	682	33	
B. curvatinervis	80.30	655	58	82.23	678	34.7	
B. nigricornis	81.16	668	59.3	81.28	521	36.7	
B. albiventris	76.67	667	59.2	83.41	663	32.9	
B. dorsalis	65.59	560	61.3	82.31	685	32.6	
B. maculipennis	80.67	674	61.6	nd	nd	nd	
B. salicivora	nd	nd	nd	nd	nd	nd	
B. striola	79.91	663	59.1	nd	nd	nd	
<u>B.cockerelli</u>	<u>N/A</u>	<u>569</u>	<u>61.0</u>	<u>N/A</u>	<u>595</u>	<u>32.6</u>	

Oligo Name	Function	Sequence 5'-3'	Tm	Length (bp)
------------	----------	----------------	----	-------------

Bcoc_JSK2-f	forward primer	GAGGTCTCCTCATCGTGCGT	61	25
Bcoc_JSK2-r	reverse primer	GGACGAGCATTGCTGCTGC	62.2	23
Bcoc_JSK2-p	probe (FAM-BHQ)	GCAAACGCGGCACAAGTACCGCGC	70.9	25

Table 21. Closely related Bactericera species tested with Bcoc_JSK2 assay. ITS similarity = %

identity to DNA sample 150727.B.coc.1. CO1 similarity = % identity to a consensus

320 sequences of all *B. cockerelli* sequences obtained during this study. CO1 genes showed

higher similarity and <u>fewergenerally less</u> conserved and variable regions compared to ITS2

regions. Highest % similarity-in to *B. cockerelli* in the ITS2 region was found in *B._nigricornis*

(81.16) and to *B. albiventris* in the CO1 region (83.41). The Bcoc_JSK2 assay does not give

324 false positives with any of the species listed here. (nd= not determined due to sequencing

325 failing).

Table 32. Final oligonucleotide sequences for the Bcoc_JSK2 TaqMan real-time PCR assay to

identify *B. cockerelli*. The assay targets a 187 bp region of the ITS2 gene region.

Sample name	Life Stage	Origin	Ct ave	Tech reps	CO1 Ac#	ITS2 Ac#	DNA Source
					<u>COTAC#</u>		
181119.B.coc.06 191003.B.coc.01	1 eaa	Mexico Mexico	29.80 33.41	2 3 3 6 2 2	1	MT027568 MT027592	Genomic Genomic
191003.B.coc.02	1 egg	Mexico	24.95	2	1	MT027592	Genomic
191003.B.coc.02	1 egg 1 egg	Mexico	24.95	3	1	MT027593	Genomic
191003.B.coc.04		Mexico	22.43	3	1	MT027595	Genomic
181119.B.coc.07	1 egg 5 eggs	Mexico	22.43	0	1	MT027569	Genomic
181119.B.coc.21	5 eggs	Mexico	28.32	2	1	MT027582	Genomic
181119.B.coc.08	10 eggs	Mexico	29.61	2	1	MT027570	Genomic
181119.B.coc.22	10 equs	Mexico	26.43	22	1	MT027583	Genomic
181119.B.coc.03	immature	Mexico	20.43	2		MT027565	Genomic
181119.B.coc.04	immature	Mexico	22.33	2	1	MT027566	Genomic
181119.B.coc.05	immature	Mexico	21.46	2	1	MT027567	Genomic
181119.B.coc.11	immature	Mexico	23.16	2	',	MT027573	Genomic
181119.B.coc.12	immature	Mexico	24.15	2	1	MT027574	Genomic
181119.B.coc.13	immature	Mexico	23.94	2	· · ·	MT027575	Genomic
181119.B.coc.14	immature	Mexico	25.75	2	· · ·	MT027576	Genomic
181119.B.coc.16	immature	Mexico	23.49	2	1	MT027578	Genomic
181119.B.coc.18	immature	Mexico	22.45	2	· · ·	MT027580	Genomic
181119.B.coc.19	immature	Mexico	23.50	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	· · ·	MT027581	Genomic
190604.B.coc.13	immature	Mexico	24.96	2	1	MT027588	Genomic
190604.B.coc.14	immature	Mexico	25.09	2	· · ·	MT027589	Genomic
190604.B.coc.15	immature	Mexico	28.37	2	1	MT027590	Genomic
150727.B.coc.02	Adult	South Western, USA	22.18		MT040955	MG719775	Genomic
150827.B.coc.02	Adult	South Western, USA	22.18	2 2 6 2 2 2	MT040956	MT027597	Genomic
150827.B.coc.03	Adult	Central USA	24.49	6	MT040957	MT027598	Genomic
150827.B.coc.04	Adult	North Western, USA	24.77	ž	MT040958	MT027599	Genomic
150827.B.coc.06	Adult	North Western, USA	23.68	2	MT040960	MT027552	Genomic
150827.B.coc.12	Adult	Western, USA	20.39	2	MT040961	MT027596	Genomic
150827.B.coc.17	Adult	South Western, USA	19.65	2	MT040962	MT027553	Genomic
160725.B.coc.05	Adult	Central, USA	21.45	2 2 2 2 2 2 2 2 2 6 6	MT040963	1	Genomic
160726.B.coc.01	Adult	New Zealand	21.56	2	/	MT027557	Genomic
160726.B.coc.02	Adult	New Zealand	21.02	2	i i	MT027558	Genomic
160726.B.coc.03	Adult	New Zealand	20.48	2	1	MT027559	Genomic
160726.B.coc.04	Adult	New Zealand	21.98	2	1	MT027560	Genomic
160726.B.coc.05	Adult	New Zealand	19.43	2	1	MT027561	Genomic
160726.B.coc.06	Adult	New Zealand	20.96	2	1	MT027562	Genomic
180731.B.coc.04	Adult	North Western, USA	24.42	6	MT040964	/	Genomic
180731.B.coc.05	Adult	Western, USA	22.91	6	MT040965	1	Genomic
180731.B.coc.06	Adult	Western, USA	27.14	6	MT040966	/	Genomic
181119.B.coc.01	Adult	Mexico	21.47	2	/	MT027563	Genomic
181119.B.coc.02	Adult	Mexico	19.98	6 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	MT027564	Genomic
181119.B.coc.09	Adult	Mexico	21.83	2	/	MT027571	Genomic
181119.B.coc.10	Adult	Mexico	19.48	2	/	MT027572	Genomic
181119.B.coc.15	Adult	Mexico	21.27	2	/	MT027577	Genomic
181119.B.coc.17	Adult	Mexico	23.74	2	/	MT027579	Genomic
190604.B.coc.09	Adult	USDA, Lab Colony	21.51	2	1	MT027584	Genomic
190604.B.coc.10	Adult	Mexico	20.33	2	1	MT027585	Genomic
190604.B.coc.11	Adult	Mexico	22.67	2	1	MT027586	Genomic
190604.B.coc.12	Adult	Mexico	24.37	2	/	MT027587	Genomic

Sample name	Life Stage	Origin	Ct ave	Tech	%	CO1 Accession	ITS2 Accession	DNA Type	Formatted Table
181119.B.coc.06	1 egg	Mexico	29.80	2	100	4	TBC	Genomic	Formatted: Centered
191003.B.coc.01	1 egg	Mexico	33.41	3	100	4	TBC	Genomic	Formatted: Centered
191003.B.coc.02	1 egg	Mexico	<u>24.95</u>	3	100	4	TBC	Genomic	Formatted: Centered
191003.B.coc.03	1 egg	Mexico	33.79	3	100	ł	TBC	Genomic	Formatted: Centered
191003.B.coc.04	1 egg	Mexico	<u>22.43</u>	6	100	¥	TBC	Genomic	Formatted: Centered
181119.B.coc.07	5 eggs	Mexico	24.42	2	100	4	TBC	Genomic	Formatted: Centered
181119.B.coc.21	5 eggs	Mexico	28.32	2	100	4	TBC	Genomic	Formatted: Centered
181119.B.coc.08	10 eggs	Mexico	29.61	2	100	4	TBC	Genomic	Formatted: Centered
181119.B.coc.22	10 cggs	Mexico	26.43	2	100	4	TBC	Genomic	Formatted: Centered
181119.B.coc.03	immature	Mexico	22.56	2	100	+	TBC	Genomic	Formatted: Centered
181119.B.coc.04	immature	Mexico	22.33	2	100	t t	TBC	Genomic	Formatted: Centered
181119.B.coc.05	immature	Mexico	21.46	2	100	¥	TBC	Genomic	Formatted: Centered
181119.B.coc.11	immature	Mexico	23.16	2	100	¢.	TBC	Genomic	Formatted: Centered
181119.B.coc.12	immature	Mexico	24.15	2	100	Ļ	TBC	Genomic	
181119.B.coc.13	immature	Mexico	23.94	2	100	4	TBC	Genomic	Formatted: Centered
181119.B.coc.14	immature	Mexico	25.75	ž	100	4	TBC	Genomic	Formatted: Centered
181119.B.coc.16	immature	Movico	23.49	2	100	1	TBC	Genomic	Formatted: Centered
191110 B coc 18	immature	Movico	22.45	2	100	,	TRC	Genomic	Formatted: Centered
101115.0.000.10	inimatore	MEXICO			200	, t		Genomie	Formatted: Centered
181119.B.coc.19	immature	Mexico	23.50	2	100	<i>+</i>	TBC	Genomic	Formatted: Centered
190604.B.coc.13	immature	Mexico	<u>24.96</u>	2	100	4	TBC	Genomic	Formatted: Centered
190604.B.coc.14	immature	Mexico	25.09	2	100	4	TBC	Genomic	Formatted: Centered
190604.B.coc.15	immature	Mexico	<u>28.37</u>	2	100	4	TBC	Genomic	Formatted: Centered
150727.B.coc.02	Adult	South Western,	<u>22.18</u>	2	100	¥	TBC	Genomic	Formatted: Centered
150827.B.coc.02	Adult	South Western,	<u>22.18</u>	2	100	4	TBC	Genomic	Formatted: Centered
150827.B.coc.03	Adult	Central USA	24.49	6	100	4	TBC	Genomic	Formatted: Centered
150827.B.coc.04	Adult	North Western.	24.77	2	100	4	TBC	Genomic	Formatted: Centered
150827.B.coc.06	Adult	North Western.	23.68	2	100	4	TBC	Genomic	Formatted: Centered
150827.B.coc.12	Adult	Western. USA	20.39	2	100	ŧ	TBC	Genomic	Formatted: Centered
150827.B.coc.17	Adult	South Western.	19.65	2	100	4	TBC	Genomic	Formatted: Centered

	I	1	1	1		1	1		
160725.B.coc.05	Adult	Central. USA	21.45	2	100	+	TBC	Genomic 🗲	Formatted: Centered
160726.B.coc.01	Adult	New Zealand	21.56	2	100	+	TBC	Genomic 🔸	Formatted: Centered
160726.B.coc.02	Adult	New Zealand	21.02	2	100	+	TBC	Genomic 🖛	Formatted: Centered
160726.B.coc.03	Adult	New Zealand	<u>20.48</u>	2	100	+	TBC	Genomic 🔸	Formatted: Centered
160726.B.coc.04	Adult	New Zealand	<u>21.98</u>	2	100	+	TBC	Genomic 🗲	Formatted: Centered
160726.B.coc.05	Adult	New Zealand	19.43	2	100	+	TBC	Genomic 🗲	Formatted: Centered
160726.B.coc.06	Adult	New Zealand	20.96	2	100	+	TBC	Genomic 🖛	Formatted: Centered
180731.B.coc.04	Adult	North Western.	24.42	6	100	<u> </u>	TBC	Genomic 🗲	Formatted: Centered
180731.B.coc.05	Adult	Western, USA	22.91	6	100	+	TBC	Genomic 🗲	Formatted: Centered
180731.B.coc.06	Adult	Western, USA	27.14	6	100	+	TBC	Genomic 🗲	Formatted: Centered
181119.B.coc.01	Adult	Mexico	21.47	2	100	+	TBC	Genomic 🗲	Formatted: Centered
181119.B.coc.02	Adult	Mexico	19.98	2	100	+	TBC	Genomic 🗲	Formatted: Centered
181119.B.coc.09	Adult	Mexico	21.83	2	100	<u> </u>	TBC	Genomic 🔹	Formatted: Centered
181119.B.coc.10	Adult	Mexico	19.48	2	100	<u> </u>	TBC	Genomic 🗲	Formatted: Centered
181119.B.coc.15	Adult	Mexico	21.27	2	100	<u> </u>	TBC	Genomic	Formatted: Centered
181119.B.coc.17	Adult	Mexico	23.74	2	100	<u> </u>	TBC	Genomic 🗲	Formatted: Centered
190604.B.coc.09	Adult	USDA, Lab Colony	21.51	2	100	<u> </u>	TBC	Genomic 4	Formatted: Centered
190604.B.coc.10	Adult	Mexico	20.33	2	100	<u> </u>	TBC	Genomic	Formatted: Centered
190604.B.coc.11	Adult	Mexico	22.67	2	100	L	TBC	Genomic	Formatted: Centered
190604.B.coc.12	Adult	Mexico	24.37	2	100	<u> </u>	TBC	Genomic 4	Formatted: Centered
190604.B.coc.16	Adult	Mexico	27.15	2	100	<u> </u>	TBC	Genomic 🗲	Formatted: Centered
150827.B.coc.05.col.	transformed E.	Lab	11.23	6	100	4	TBC	Cloned.	Formatted: Centered
160725.B.coc.01.col.	transformed E.	Lab	11.55	6	100		TBC	Cloned,	Formatted: Centered
160725.B.coc.06.col.	transformed E.	Lab	<u>11.78</u>	6	100	Ļ	TBC	Cloned,	Formatted: Centered
160725.B.coc.07.col.	transformed E.	Lab	11.67	6	100	<u> </u>	TBC	Cloned,	Formatted: Centered
									Tornattea: centerea

329 **Table 43**: Information on *Bactericera cockerelli* samples tested with Bcoc_JSK2 assay

330 including genomic DNA from adults, immatures, single eggs and egg batches. Location of

samples collection is also included. All samples gave 100% positives with the assay, samples

332 were run in at least duplicate. GenBank accession numbers relating to sequenced CO1 and

333 ITS2 (MT027551-MT027599), regions are included.

- **Figure 1**. CLUSTAL-W alignment of ITS2 regions from closely related *Bactericera* species
- showing variable regions and the gene target for the Bcoc_JSK2 primer and probe set. Bases

Formatted: Font: 12 pt
Formatted: Font: 18 pt

shades with black show differences to *B. cockerelli* sequence. Colour highlights locations of
forward primer (blue highlight); reverse primer (green highlight) and probe (yellow
highlight). The probe and reverse primer are reverse compliments of the highlighted regions
here.

340 3.3. Specificity and Sensitivity

341 This assay did not amplify DNA from any of the 73 non-target psyllid species or Solanum 342 <u>tuberosum DNA</u> when tested at 60 °C with primer concentration 0.2 μ M/mol. This Samples 343 included <u>nine</u> closely related *Bactericera* species with similar ITS2 and CO1 sequences (Tab. 344 21). Under optimal conditions, false negatives = 0% for all non-target species tested with pure genomic DNA, giving a diagnostic specificity of 100%. Some suboptimal reaction 345 346 conditions showed 33% false positives against high concentrations (10 ng / 1 ng) of 347 Bactericera albiventris cloned DNA (see as mentioned below). All B. cockerelli genomic DNA 348 samples gave positive results (Tab. 43) giving 0% false negatives across 54 biological 349 replicates and 147 technical replicates; resulting in a diagnostic sensitivity of 100%. These 350 included B. cockerelli specimens from each of the four US biotypes as well as specimens 351 from New Zealand. These specimens included adults, immature stagess and eggs. The assay 352 can amplify B. cockerelli DNA from both cloned and genomic samples. Under optimal 353 conditions for PCR efficiency and specificity (60 °C, 0.2 µM primer, 1.5 mM MgCl₂) the limit 354 of detection was 0.000001 ng DNA across a range of different reaction parameters this 355 equates to 200 copy numbers of ITS2 calculated using the following equation: Number of 356 Copies = (ng DNA x 6.022x10²³) ÷ ((length of gene region in plasmid (4656) + cloned 357 fragment (700) bpase pairs) * 1x10⁹ * 660). The copy number calculator available at

358 http://scienceprimer.com/copy-number-calculator-for-realtime-pcr was used. Diagnostic

359 sensitivity was 100% on all DNA extracted from *B. cockerelli* immatures. False negatives

- 360 from DNA from egg extractions were 0% for single eggs and 0% for batches of 3 and 10 eggs.
- 361 **3.4.** <u>Repeatability and Reproducibility</u>

No significant differences were found between Ct means across the different replicates at different concentrations as tested by two-way ANOVA ($F_{5, 25}$ = 0.54, p = 0.955). The assay also performed consistently across different machines and there was no significant difference between runs across the two machines as tested by two-way ANOVA ($F_{1, 5}$ = 1.28, p = 0.279).

367 3.5. <u>Robustness/Optimization</u>

368 The assays amplified B. cockerelli DNA at all primer concentrations, MgCl₂ concentrations 369 and annealing temperatures with varying levels of efficiency, precision, and sensitivity (Supp 370 Tabs. S₁₂-S₃₄). At primer concentration, 0.5 μ M, the assay was less sensitive only amplifying 371 downup to 0.0001 ng DNA. At higher primer concentrations $\{(0.5 \text{ and } 1.0 \mu M,)\}$ the assay 372 showed higher sensitivity, but efficiency was outside the range for acceptable use. The assay 373 performed optimally at 0.2 µM primer concentration showing good efficiency and high 374 sensitivity (0.000001 ng DNA) (Supp Tab. S12). Generally, standard deviation of the Ct was 375 lower at higher DNA concentrations and some of the primer concentrations showed SD 376 slightly above the accepted level for quantitative real-time PCR, however this module is 377 intended for qualitative use. At high DNA concentrations all primer concentrations are 378 suitable for use with Bcoc_JSK2 primer and probe set to detect B. cockerelli but 0.2 μ M is 379 recommended for best results. The assay did not amplify non-target DNA from the 8 other

Bactericera species tested at the different primer concentrations (0.1, 0.2, 0.3, 0.5 and 1.0
µM).

382	The MgCl2 concentration of the assay made only small differences to the overall
383	performance of the assay (Supp Tab. S23) and the assay was able to amplify <i>B. cockerelli</i>
384	DNA at low concentrations (0.000001 ng) at each MgCl ₂ concentration. The precision of the
385	assay was lower at higher MgCl ₂ concentrations $\frac{7.5}{6}$ mM and $\frac{9.58}{2}$ mM (Supp Tab. S $\frac{23}{2}$).

386 Sensitivity was slightly higher at 64 °C giving 33.33% (n=3) positives for only 20 copies of B. 387 cockerelli DNA (0.0000001 ng), however at 64 °C and 66 °C 33.33% (n=3) false positives were 388 found with 10ng and 1 ng of *B. albiventris* cloned DNA (Supp Tab. S₂₄). Reactions at 58 °C 389 were 10 to 100-fold less sensitive than reactions at 6458 °C. For best sensitivity and 390 specificity, it is suggested that assays using the Bcoc_JSK2 primer and probe set should be performed at 60 °C or 62 °C. While higher temperatures appear to be more sensitive, they 391 are not recommended on unknown samples due to the small likelihood of returning false 392 393 positives with *B. albiventris* and possibly other un-tested *Bactericera* spp.

394 It is recommended that this assay be performed at 60 °C – 62 °C, with a MgCl₂ concentration 395 of 1.5mM and a primer concentration of 0.2 μ M. To test the robustness of these conditions 396 a multifactorial approach was taken [55]. The assay performed satisfactorily across the 397 different treatments and was shown to be robust and unaffected by small changes in assay 398 set-up (Supp Tab. S<u>4</u>5). Each treatment gave 100% positives for amplification of *B. cockerelli* 399 genomic DNA.

400

4. Discussion

Formatted: Font: Bold, Italic, Underline

401	The Tomato-Potato psyllid is an economically damaging pest of solanaceous plants 🔹 🔶	Formatte
402	that has spread by human mediated dispersal. It causes feeding damage to plants but also is	
403	the major vector of 'Candidatus Liberibacter solanacearum' (Lso), a phloem limited	
404	bacterium that is associated with disease in solanaceous and apiaceous plants. Management	
405	of this insect pest requires accurate identification of <i>B. cockerelli</i> , this is often difficult if eggs	
406	or immature life stages only are available for identification. Hitherto, identification of <i>B</i> .	
407	cockerelli required either considerable expertise in psyllid taxonomy or the lengthy process	
408	of DNA barcoding [54].	
409	We have designed and validated the first species-specific, qualitative real-time PCR TaqMan	
410	assay for <i>B. cockerelli</i> by using the comparison of 73 non-target species to identify unique	
411	gene regions that were suitable for primer/probe design and species differentiation. The	
412	genus Bactericera currently contains 160 species [20] and <1% of these have been tested in	
413	the current study due to the difficulty in obtaining other specimens from the field or lab	
414	colonies. However Europe is home to 26 different species of Bactericera [20], 30% of which	
415	have been tested for false positives using this assay. Psyllid species that were tested are	
416	most commonly found in potato and carrot fields in Europe and the wider EPPO region	
417	which should minimize the potential for false positives and ensure the assay is efficient at	
418	detecting outbreaks in European Thfields. Thee assay was also tested on nine9 closely	
419	related Bactericera species. The number of species used in our study is relatively high	
420	compared to other reported TaqMan assays for plant pests that report lower numbers of	
421	non-target species [56,57].	
422	The <u>assay is based on a 187 bp region of the I</u> TS2 <u>gene</u> region was found to be suitable for	
423	assay designwhich was suitable as it contained high interraspecific variation consisting of	

Formatted: Normal, No bullets or numbering

424	stretches of insertions and deletions (INDELs) , which are ideal diagnostic sites for primer
425	and probe design. Although COI is classically used for species discrimination, mutations
426	were less clustered which is likely due to third base degeneracy. The ITS2 region can alsohas
427	be <u>en</u> used to distinguish species phylogenetically and has been used to identify cryptic
428	species in the <i>Cacopsylla pruni</i> complex [47]. <u>DNA sThe s</u> equences obtained from this study
429	will improve psyllid the current species representation on online DNA databases, reducing
430	the chance of Type II errors (i.e. misidentification due to lack of conspecific references) [58].
431	The B. cockerelli sequences on which we tested this assay (and many of the non-target
432	psyllid species) were from different geographic locations to account for intraspecific
433	variation. Bactericera cockerelli specimens from the four USA biotypes and specimens from
434	New Zealand all gave 100% true positives. It is important to note that the target and non-
435	target specimens consisted of multiple samples of each species from different geographical
436	regions. This reduced the risk of false negatives that may arise if during assay design, the
437	target specimens were obtained from a limited geographic spread and were therefore not
438	representative of the genetic variation within the species. To account for interspecific
439	variation, B. cockerelli samples used in the assay validation consisted of specimens from the
440	four USA biotypes and specimens from New Zealand.
441	Species identification can be achieved for <i>B. cockerelli</i> by sequencing the ITS2 or COI regions
442	as both loci, to date, have entries in the National Centre for Biotechnology Information
443	(NCBI) database. However, DNA sequencing is a lengthy process compared to real-time PCR,
444	which in contrast is a rapid identification method involving fewer pieces of equipment,
445	reagents, and time both for running the sample, and processing it digitally. The success rates
446	of eradications are dependent on the length of time between introduction, detection, and

447	implementation of eradication measures as Lso displays a short transmission time from <i>B</i> .	
448	cockerelli to potatoes [4,25]. Feasibly, methodology described in this study could be used to	
449	extract DNA from a specimen and test for <i>B. cockerelli</i> positives within <u>6-</u> 12 hrs or quicker.	
450	This is faster than identification by DNA barcoding and could aid in eradications/ prevention	
451	of incursions. This time could be reduced further if the real-time assay is used in conjunction	
452	with faster DNA extraction protocols.	
453	The assay described in this study can identify <i>B. cockerelli</i> specimens from all life stages. It is	
454	robust, reliable and can detect 200 copies (0.00001 ng DNA) of the ITS2 gene region. This is	
455	the first assay which uses a TaqMan real time PCR module to specifically identify this	
456	important pest species. The assay performs well across a range of annealing temperatures,	
457	MgCl ₂ concentrations and primer concentrations and is a robust tool that can be used to	
458	give reliable results despite human error, different lab practices, equipment, standard	
459	operating procedures or PCR set-ups.	
460	The assay can be used on eggs and immatures, as well as adults of <i>B. cockerelli,</i> which will	
461	enable the rapid identification of this species from specimens that may be otherwise	
462	impossible to identify. For example, identification of eggs of <i>B. cockerelli</i> is not possible	
463	using classical taxonomy methods alone and it is now possible to rapidly identify this cryptic	
464	life stage. In addition, adult females and immatures are considerably more difficult to	
465	identify compared to adult males. The genus Bactericera currently contains 160 species [20]	
466	and <1% of these have been tested in the current study due to the difficulty obtaining other	
467	specimens from the field or lab colonies. However Europe is home to 26 different species of	
468	Bactericera 30% of which have been validated using this assay [20]. This assay has been	
469	tested against the <i>Bactericera</i> species which are most commonly found in potato and carrot	

Formatted: Font: Italic

470	fields in Europe and the wider EPPO region which should minimize the potential for false
471	positives and ensure the assay is efficient at detecting outbreaks in European fields. There
472	are currently no methods described within the EPPO "agreed diagnostic protocol for
473	identification of <i>B. cockerelli</i> ["] [4]. In addition, the current EPPO control system for <i>B</i> .
474	cockerelli and Lso [4] highlights the importance of identifying psyllid eggs and immatures on
475	various plant materials during inspections and monitoring but gives minimal guidelines for
476	achieving this. Validation of this assay demonstrates that it would be a reliable and accurate
477	tool for use in this area and it will therefore be prepared for consideration by the EPPO
478	diagnostic panel. This assay is also useful for monitoring B. cockerelli occurrence at several
479	spatial scales, from local border checks to regional surveys which use different trapping
480	methods (water, sticky, suction, aerial balloon traps) where no host plant data is available.
481	Given the sensitivity of this assay it should be possible to detect B. cockerelli DNA from
482	insect fragments (e.g. legs, heads) if DNA extraction is adequate. However, further
483	validation should be performed to ensure the assay performs adequately on samples
484	obtained from different traps. This assay should be tested on additional congeneric species
485	and other closely related Triozidae psyllids. Another limitation of this assay is that it cannot
486	yet be taken out into the field, making it less portable than LAMP assays or other NGS
487	sequencing techniques such as Nanopore technology.
488	The ability to identify insects to species accurately and quickly is essential to support
489	national biosecurity measures for the prevention and early detection of new pests and
490	vectors of disease. Psyllids can be difficult to identify and certain species of concern, such as
491	B. cockerelli, require skilled specialist taxonomists to accurately differentiate between
492	closely related species that may or may not be of risk to plant health. Entomologists with

493	the skills required to do so are a valuable yet sparse resource and incorrect identification of
494	a psyllid species could lead to a delay in national response or inappropriate allocation of
495	resources to resolve a problem that is not present, possibly leading to the unnecessary
496	destruction of crops. We have designed a functional tool for reliable, rapid, robust and
497	accurate identification of the tomato-potato psyllid B. cockerelli to support national
498	biosecurity measures should this pest be found within the EPPO region or other regions
499	where it could become damaging to agriculture. The situation in New Zealand and recent
500	interceptions of <i>B. cockerelli</i> on aubergine in plant material imported into the UK from
501	Mexico highlight the risk and pathways for introduction into new areas [42]. Furthermore
502	immature stages of <i>B. cockerelli</i> are commonly intercepted on vegetable material from the
503	Western-United States and Mexico and adults are occasionally found on leafy vegetables
504	such as lettuce [42]. Recent studies suggest <i>B. cockerelli</i> can utilize multiple host-plants
505	within the Solanaceae and other plant families; the potential for eggs and immatures of B.
506	cockerelli to be present on yet undetermined host-plants is likely.
507	The identification of psyllids using classical taxonomy is often aided using information about
508	the host-plant on which the specimen was found [59]. However, although psyllids are
509	typically monophagous, some species feed on a few closely related plant species. For
510	example, northern hemisphere pest species, such as <i>B. cockerelli</i> and <i>B. trigonica</i> , feed on
511	several plant species within a family [60]. In the case of <i>B. cockerelli</i> its range of host plants
512	(reproductive, food and incidental) is much wider than originally thought [9,16,61,62]. Adult
513	psyllids may also settle on plants that they do not feed on, known as a casual plant [62]. It is
514	possible that: A) B. cockerelli can utilise other host-plants and could be overlooked; B) other
515	psyllid species morphologically/ecologically similar to B. cockerelli could be mistaken for this
1	

516	pest if only considering the host plant on which they are found. Therefore, the identification
517	of suspected host-plant material alone cannot be reliably used for psyllid identification and
518	for most psyllid species their host-plant range is unknown or fragmentary at best. This assay
519	can be used to study life parameters of <i>B. cockerelli</i> in the field such as oviposition on
520	reproductive host-plants, as eggs can now be identified.
521	Additionally, host-plant data is sometimes unavailable depending on the trapping method
522	employed. For example, indirect host-plant data is available from trapping methods at
523	ground level (e.g. water/sticky traps) with less data available for insects caught beyond the
524	vegetation layer (e.g. 12.2m suction traps or aerial balloon traps). Unlike spot checks
525	performed by inspectors directly on plant produce, canopy-level or aerial traps which
526	provide data at field or regional level [63,64]. A diagnostic assay for <i>B. cockerelli</i> is therefore
527	useful for monitoring its occurrence at several spatial scales, from local border checks to
528	regional surveys. As some collection methods obtain specimens where host-plant data is not
529	available, this tool enables rapid screening of psyllids from suction-traps or those collected
530	in sticky traps, pan traps or similar. However, further validation should be performed to
531	ensure the assay performs adequately on <i>B. cockerelli</i> fragments obtained from these kinds
532	of traps. The assay can also be used in areas currently known to have B. cockerelli to easily
533	quantify numbers from the field or to monitor migration, distribution and spread of this pest
534	species.
535	Further validation of this assay however should include its use in several different
536	laboratories with different practitioners. Different reaction mixes should be tested for their
537	suitability with this assay and its compatibility with alternative qPCR machines. It is also
I	

538	valuable to test these primers in a set-up using an inter-collating dye such as Sybr Green.
539	Additionally, this assay should be tested on further samples of Bactericera and other closely
540	related Triozidae psyllids. Further validation of this assay should be performed on more
541	Bactericera species not included in this study and on DNA from Solanaceous host plants.
542	This will ensure false positives are not obtained from DNA extracted from complex matrices.
543	Due to being based on real-time PCR chemistry, one limitation of this assay is that it cannot
544	be taken out into the field, making it less portable than a LAMP assay or other NGS
545	sequencing techniques such as Nanopore technology.
546	In conclusion a rapid, specific, robust, repeatable and reliable real-time PCR assay has now
547	been validated and can be used to detect the important pest <i>B. cockerelli</i> . This will be work
548	has developed an important tool for detection of this pest and will providinge much-needed
549	support to prevent <u>new</u> outbreaks of this pest. The assay can be implemented by
550	practitioners with molecular biology experience and does not require personnel to have
551	classical taxonomic knowledge of insects or psyllids; making this tool more accessible than
552	traditional methods. The assay can be used to complement field surveillance and may
553	facilitate further ecological studies of <i>B. cockerelli-requiring the identification of immatures</i>
554	and eggsthat were previously not possible as they required the identification of immatures
555	and eggs in the field or were too time consuming without this assay. The strength of this
556	assay lies in the collaboration of molecular biologists and classical taxonomists working
557	together to build a reliable database for DNA barcoding of psyllids.

558 6. Funding

559	This work was supported by the EU Horizon2020 Programme under grant agreement No.
560	635646, POnTE (Pest Organisms Threatening Europe) and the Scottish Government
561	[RRL/001/14]. The Rothamsted Insect Survey, a National Capability, is funded by the
562	Biotechnology and Biological Sciences Research Council under the Core Capability Grant
563	BBS/E/C/000J0200. The authors declare there is no conflict of interest regarding the
564	publishing of this article.

565 7. Acknowledgements

- 566 We thank A. Fereres & C. A. Antolínez Delgado (Institute of Agricultural Sciences, CSIC,
- 567 Spain), A. Nissinen (Natural Resources Institute Finland), J. Munyaneza, R. Cooper, M. Heidt,
- 568 K. Swisher Grimm (USDA Agricultural Research Services), S. Bulman (Plant and Food
- 569 Research, New Zealand), A. Jensen, S. Halbert (Florida Department of Agriculture &
- 570 Consumer Services, Dept. of Plant Industry) and Alberto Flores (Universidad Autónoma
- 571 Agraria Antonio Narro) for specimens; and thank C. Jeffries, L. Webster, V. Mulholland, and
- A. Reid (SASA) for providing advice. We also thank SASA Potato Genotyping team for
- 573 providing Potato DNA.

574 8. Author Contributions

- 575 JS-K: assay design and validation, investigation, performed analysis, collected data,
- 576 bioinformatics, visualization, writing- original draft, supervision, project administration;
- 577 MJS: assay design and validation, investigation, performed analysis, collected data,
- 578 bioinformatics, visualization, writing- original draft, supervision, project administration; YA:
- 579 investigation, performed analysis, validation, data curation, collected data; MC: provided
- 580 resources, data analysis, curation of data, investigation, taxonomy expertise; FH: conceived
- 581 the project, methodology, supervision, writing- original draft; **DO:** provided resources, data

analysis, curation of data, taxonomy expertise, writing – review and edit; AG: provided
resources, data analysis, taxonomy expertise, writing- review and edit; JB: conceived the
project, provided resources, methodology, writing- review and edit, supervision, project
administration; RS: provided resources, data analysis, methodology; DK: conceived the
project, conceptualization, funding acquisition, methodology, supervision, project
administration.

588 9. References

- - - -

589	1.	Munyaneza JE, Sengoda VG, Crossiin JM, Garzon-Tiznado JA, Cardenas-Valenzuela
590		OG. First report of "Candidatus Liberibacter solanacearum" in tomato plants in
591		Mexico. Plant Dis. 2009;93: 1076. doi:10.1094/PDIS-93-10-1076A
592	2.	Wallis RL. Ecological studies on the Potato Psyllid as a pest of potatoes. USDA Tech
593		Bull. 1955;1107: 25.
594	3.	Hansen AK, Trumble JT, Stouthamer R, Paine TD. A new huanglongbing species,
595		"Candidatus Liberibacter psyllaurous," found to infect tomato and potato, is vectored
596		by the psyllid Bactericera cockerelli (Sulc). Appl Environ Microbiol. 2008;74: 5862–
597		5865. doi:10.1128/AEM.01268-08
598	4.	EPPO. PM 9/25 (1) Bactericera cockerelli and 'Candidatus Liberibacter solanacearum.'
599		EPPO Bull. 2017;47: 513–523. doi:10.1111/epp.12442
600	5.	Liefting LW, Perez-Egusquiza ZC, Clover GRG, Anderson JAD. A new 'Candidatus
601		Liberibacter' species in Solanum tuberosum in New Zealand. Plant Dis. 2008;92:
602		1474–1474. doi:10.1094/pdis-92-10-1474a

603 6. Liefting LW, Sutherland PW, Ward LI, Paice KL, Weir BS, Clover GRG. A new '

604		Candidatus Liberibacter' species associated with diseases of solanaceous crops. Plant
605		Dis. 2009;93: 208–214. doi:10.1094/PDIS-93-3-0208
606	7.	Munyaneza JE. Zebra Chip disease of potato: Biology, epidemiology, and
607		management. Am J Potato Res. 2012;89: 329–350. doi:10.1007/s12230-012-9262-3
608	8.	Crosslin JM, Hamm PB, Eggers JE, Rondon SI, Sengoda VG, Munyaneza JE. First report
609		of Zebra Chip disease and "Candidatus Liberibacter solanacearum" on potatoes in
610		Oregon and Washington State. Plant Dis. 2012;96: 452. doi:10.1094/PDIS-10-11-0894
611	9.	Kaur N, Cooper WR, Duringer JM, Badillo-Vargas IE, Esparza-Díaz G, Rashed A, et al.
612		Survival and development of Potato Psyllid (Hemiptera: Triozidae) on Convolvulaceae:
613		Effects of a plant-fungus symbiosis (Periglandula). PLoS One. 2018;13: 1–19.
614		doi:10.1371/journal.pone.0201506
615	10.	Knowlton G, Thomas W. Host plants of the Potato Psyllid. J Econ Entomol. 1934;27:
616		547.
617	11.	Pletsch D. The Potato Psyllid Paratrioza cockerelli (Sulc), its biology and control. Bull
618		Mont Agric Exp Stn. 1947;446: 1–95.
619	12.	Wallis RL. Potato Psyllid selection of host plants. J Econ Entomol. 1951;44: 815-817.
620		doi:10.1093/jee/44.5.815
621	13.	Butler CD, Trumble JT. The Potato Psyllid, Bactericera cockerelli (Sulc) (Hemiptera:
622		Triozidae): life history, relationship to plant diseases, and management strategies.
623		Terr Arthropod Rev. 2012;5: 87–111. doi:10.1163/187498312X634266
624	14.	Prager SM. Esquivel I. Trumble JT. Factors influencing host plant choice and larval

626		doi:10.1371/journal.pone.0094047
627	15.	Martin NA. Host plants of the Potato / Tomato Psyllid : A cautionary tale. Weta.
628		2008;35: 12–16.
629	16.	Cooper WR, Horton DR, Miliczky E, Wohleb CH, Waters TD. The weed link in Zebra
630		Chip epidemiology: suitability of non-crop Solanaceae and Convolvulaceae to Potato
631		Psyllid and "Candidatus Liberibacter solanacearum." Am J Potato Res. 2019; 262–271.
632		doi:10.1007/s12230-019-09712-z
633	17.	Swisher KD, Henne DC, Crosslin JM. Identification of a fourth haplotype of Bactericera
634		cockerelli (Hemiptera: Triozidae) in the United States. J Insect Sci. 2014;14: 1–7.
635		doi:10.1093/jisesa/ieu023
636	18.	Swisher KD, Munyaneza JE, Crosslin JM. High resolution melting analysis of the
637		Cytochrome Oxidase I gene identifies three haplotypes of the Potato Psyllid in the
638		United States. Environ Entomol. 2012;41: 1019–1028. doi:10.1603/EN12066
639	19.	Swisher KD, Sengoda VG, Dixon J, Echegaray E, Murphy AF, Rondon SI, et al.
640		Haplotypes of the potato psyllid, Bactericera cockerelli, on the wild host plant,
641		Solanum dulcamara, in the pacific Northwestern United States. Am J Potato Res.
642		2013;90: 570–577. doi:10.1007/s12230-013-9330-3
643	20.	Ouvrard D. 2018 Psyl'list - The World Psylloidea Database. 2019. Available:
644		http://www.hemiptera-databases.com/psyllist

performance in Bactericera cockerelli. PLoS One. 2014;9.

625

645 21. Teulon DA., Workman PJ, Thomas KL, Nielsen MC. Bactericera cockerelli: Incursion,

646		dispersal and current distribution on vegetable crops in New Zealand. New Zeal Plant
647		Prot. 2009;62: 136–144.
648	22.	Australian Government Department of Agriculture and Water Resources. Detection of
649		Bactericera cockerelli (Tomato-potato psyllid) in Western Australia. Canberra; 2017.
650		Available:
651		https://www.ippc.int/en/countries/australia/pestreports/2017/02/detection-of-
652		bactericera-cockerelli-tomato-potato-psyllid-in-western-australia/
653	23.	Munyaneza JE, Crosslin JM, Upton JE. Association of Bactericera cockerelli
654		(Homoptera: Psyllidae) with "Zebra Chip" a New Potato Disease in Southwestern
655		United States and Mexico. J Econ Entomol. 2007;100: 656–663. doi:10.1603/0022-
656		0493(2007)100[656:AOBCHP]2.0.CO;2
657	24.	Munyaneza JE, Fisher TW, Sengoda VG, Garczynski SF, Nissinen A, Lemmetty A.
658		Association of "Candidatus Liberibacter solanacearum" With the Psyllid, Trioza
659		apicalis (Hemiptera: Triozidae) in Europe. J Econ Entomol. 2010;103: 1060–1070.
660		doi:10.1603/EC10027
661	25.	Munyaneza JE, Sengoda VG, Stegmark R, Arvidsson AK, Anderbrant O, Yuvaraj JK, et
662		al. First report of "Candidatus Liberibacter solanacearum" associated with psyllid-
663		affected carrots in Sweden. Plant Dis. 2012;96: 453-453. doi:10.1094/PDIS-10-11-
664		0871
665	26.	Liefting LW, Weir BS, Pennycook SR, Clover GRG. "Candidatus Liberibacter
666		solanacearum", associated with plants in the family Solanaceae. Int J Syst Evol
667		Microhiol 2009:59: 2274–2276 doi:10.1099/iis.0.007377-0

668	27.	Bextine B, Aguilar E, Rueda A, Caceres O, Sengoda VG, McCue KF, et al. First report of
669		"Candidatus Liberibacter solanacearum" on tomato in El Salvador. Plant Dis. 2013;97:
670		1245. doi:10.1094/PDIS-03-13-0248-PDN
671	28.	Munyaneza JE, Sengoda VG, Aguilar E, Bextine B, McCue KF. First report of
672		"Candidatus Liberibacter solanacearum" on pepper in Honduras. Plant Dis. 2014;98:
673		154. doi:10.1094/PDIS-06-13-0598-PDN
674	29.	Munyaneza JE, Sengoda VG, Aguilar E, Bextine BR, McCue KF. First report of
675		"Candidatus Liberibacter solanacearum" infecting eggplant in Honduras. Plant Dis.
676		2013;97: 1654. doi:10.1094/PDIS-06-13-0641-PDN
677	30.	Aguilar E, Sengoda VG, Bextine B, McCue KF, Munyaneza JE. First report of
678		"Candidatus Liberibacter solanacearum" on tobacco in Honduras. Plant Dis. 2013;97:
679		1376. doi:10.1094/PDIS-04-13-0453-PDN
680	31.	Munyaneza JE, Sengoda VG, Aguilar E, Bextine B, McCue KF. First report of
681		"Candidatus Liberibacter solanacearum" associated with psyllid-infested tobacco in
682		Nicaragua. Plant Dis. 2013;97: 1244. doi:10.1094/PDIS-03-13-0247-PDN
683	32.	Johnson D. Canadian Potato Psyllid and Zebra Chip Monitoring Network Report. News
684		Lett Can Potato Psyllid Zebra Chip Monit Netw. 2017; 1–19. doi:10.15713/ins.mmj.3
685	33.	Castillo Carrillo C, Fu Z, Burckhardt D. First record of the Tomato Potato Psyllid
686		Bactericera cockerelli from South America. Bull Insectology. 2019;72: 85–91.
687	34.	Swisher Grimm KD, Garczynski SF. Identification of a new haplotype of 'Candidatus
688		Liberibacter solanacearum' in Solanum tuberosum. Plant Dis. 2019;103: 468–474.

689 doi:10.1094/PDIS-06-18-0937-RE

690	35.	Nelson WR, Fisher TW, Munyaneza JE. Haplotypes of "Candidatus Liberibacter	
-----	-----	--	--

- 691 solanacearum" suggest long-standing separation. Eur J Plant Pathol. 2011;130: 5–12.
- 692 doi:10.1007/s10658-010-9737-3
- 693 36. Wen A, Mallik I, Alvarado VY, Pasche JS, Wang X, Li W, et al. Detection, distribution,
- 694 and genetic variability of 'Candidatus Liberibacter' species associated with zebra
- 695 complex disease of potato in North America. Plant Dis. 2009;93: 1102–1115.
- 696 doi:10.1094/pdis-93-11-1102
- 697 37. Borges KM, Cooper WR, Garczynski SF, Thinakaran J, Jensen AS, Horton DR, et al.
- 698 *"Candidatus* Liberibacter solanacearum" associated with the psyllid, Bactericera
- 699 *maculipennis* (Hemiptera: Triozidae). Environ Entomol. 2017;46: 210–216.
- 700 doi:10.1093/ee/nvw174
- 701 38. CNAS. Economic Impacts of Zebra Chip on the Texas Potato Industry. Texas; 2006.
- 702 39. Greenway G, Rondon SI. Economic impacts of Zebra Chip in Idaho, Oregon, and
- 703 Washington. Am J Potato Res. 2018;95: 362–367.
- 40. Soliman T. Economic impact assessment of invasive plant pest in the European Union.
- 705 Wageningen University, Wageningen, Netherlands. 2012.
- 706 41. DEFRA. Pest Alert :Bactericera cockerelli. 2017. Available:
- 707 https://planthealthportal.defra.gov.uk/ph-
- 708 api/pests/27077/notices/6682/documents/4183/document
- 709 42. EPPO. Bactericera cockerelli. EPPO Bull. 2013;43: 202-208. doi:10.1111/epp.12044

/10	43.	Burckhardt D, Ouvrard D. A revised classification of the jumping plant-lice
711		(Hemiptera: Psylloidea). Zootaxa. 2012;34: 1–34.
712	44.	Bell JR, Alderson L, Izera D, Kruger T, Parker S, Pickup J, et al. Long-term phenological
713		trends, species accumulation rates, aphid traits and climate: Five decades of change
714		in migrating aphids. J Anim Ecol. 2015;84: 21–34. doi:10.1111/1365-2656.12282
715	45.	Sjolund MJ, Ouvrard D, Kenyon D, Highet F. Developing an RT-PCR assay for the
716		identification of psyllid species. Proc Crop Prot North Britain. 2016; 279–282.
717	46.	Percy DM. Radiation, diversity, and host-plant interactions among island and
718		continental legume-feeding psyllids. Evolution (N Y). 2003;57: 2540–2556.
719		doi:10.1111/j.0014-3820.2003.tb01498.x
720	47.	Peccoud J, Labonne G, Sauvion N. Molecular test to assign individuals within the
721		<i>Cacopsylla pruni</i> complex. PLoS One. 2013;8: 1–8. doi:10.1371/journal.pone.0072454
722	48.	EPPO. PM 7/129 (1) DNA barcoding as an identification tool for a number of regulated
723		pests. EPPO Bull. 2016;46: 501–537. doi:10.1111/epp.12344
724	49.	Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of
725		progressive multiple sequence alignment through sequence weighting, position-
726		specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22: 4673–
727		4680. doi:10.1093/nar/22.22.4673
728	50.	Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool.
729		J Mol Biol. 1990;215: 403–410. doi:https://doi.org/10.1016/S0022-2836(05)80360-2
730	51	Clark K, Karsch-Mizrachi I, Linman DJ, Ostell J, Savers FW, GenBank, Nucleic Acids Res

731		2015/11/20. 2016;44: D67–D72. doi:10.1093/nar/gkv1276
732	52.	Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B, Remm M, et al. Primer3
733		new capabilities and interfaces. Nucleic Acids Res. 2012;40: e115. Available:
734		http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3424584/
735	53.	Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T. Primer-BLAST: A tool
736		to design target-specific primers for polymerase chain reaction. BMC Bioinfomatics.
737		2012;13: 134.
738	54.	Liu D, Trumble JT, Stouthamer R. Genetic differentiation between eastern populations
739		and recent introductions of Potato Psyllid (Bactericera cockerelli) into western North
740		America. Entomol Exp Appl. 2006;118: 177–183. doi:10.1111/j.1570-
741		7458.2006.00383.x
742	55.	European Network of GMO Laboratories. Definition of minimum performance
743		requirements for analytical methods of GMO testing. 2015. doi:10.2788/65827
744	56.	Li D, Fan Q-H, Waite DW, Gunawardana D, George S, Kumarasinghe L. Development
745		and validation of a Real-Time PCR assay for rapid detection of Two-Spotted Spider
746		Mite, Tetranychus urticae (Acari: Tetranychidae). PLoS One. 2015;10: e0131887.
747		doi:10.1371/journal.pone.0131887
748	57.	Dhami MK, Dsouza M, Waite DW, Anderson D, Li D. Real-Time PCR assay for the
749		identification of the Brown Marmorated Stink Bug (Halyomorpha halys). Front Mol
750		Biosci. 2016;3: 1–6. doi:10.3389/fmolb.2016.00005

751 58. Virgilio M, Jordaens K, Breman FC, Backeljau T, de Meyer M. Identifying insects with

752	incomplete DNA barcode libraries, African fruit flies (Diptera: Tephritidae) as a test
753	case. PLoS One. 2012;7. doi:10.1371/journal.pone.0031581
754	10. Supporting Information Captions
755	Supplementary Table 1. Information on non-target psyllid species and specimens tested
756	using the B. cockerelli real-time PCR assay Bcoc_JSK2 showing number of technical replicates
757	and false positives. All non-target species gave 0% false positives. GenBank Accession
758	numbers are included for ITS2 and CO1 regions if sequencing was successful.
759	Supplementary Table 12. Assay performance across a range of primer concentrations at 60
760	°C and 1.5mM MgCl_2. Optimum primer conc <u>entration</u> was 0.2 μ M showing the best
761	combination of r ² , slope, efficiency, and sensitivity.
762	Supplementary Table 23. Performance of B. cockerelli real-time PCR assay at different
763	magnesium chloride (MgCl ₂) concentrations.
764	Supplementary Table <u>3</u> 4. Summary of standard curves from optimisation of temperature on
765	Bcoc_JSK2 real-time PCR assay for identification of B. cockerelli. All DNA concentrations
766	tested above the limit of detection (10ng, 1 ng, 0.1ng, 0.01ng 0.001ng, 0.0001ng, 0.00001ng,
767	0.000001ng)-were gave 100% positives across 3 x replicates. LOD is given for each
768	temperature. All non-target Bactericera species tested at different DNA concentration gave
769	0% false positives except for B. albiventris cloned DNA which cross reacted at 64 and 66 $^\circ$ C.
770	(*reactions at 64 °C gave 33.33% positives at 20 copy numbers).
771	Supplementary Table 45. Set-up and results of multifactorial robustness experiment testing
772	the Bcoc_JSK2 assay on B. cockerelli genomic DNA. All treatments showed 100% positives
773	despite small changes to the overall set-up.

RESPONSE TO REVIEWERS

Dear Dr Sean Michael Prager,

Please find enclosed our revised manuscript entitled "A diagnostic real-time PCR assay for the rapid identification of the tomato-potato psyllid, *Bactericera cockerelli* (Šulc, 1909) and development of a psyllid barcoding database". We thank you and the reviewers for your careful review of our submitted manuscript and the opportunity to resubmit an improved version. We find the comments to be fair and constructive and have helped to improve the final manuscript. Please see below our responses to points raised by the reviewer's comments and the amendments we have made to the final manuscript. We provide a copy of the resubmitted manuscript with track changes and track changes accepted. Line numbers refer to those given in the resubmitted manuscript with track changes accepted.

We hope that you will consider this revised manuscript of a high enough standard to be published in PLOS ONE.

Yours Sincerely,

Dr Jason C Sumner-Kalkun

(on behalf of all co-authors)

EDITOR'S COMMENTS TO AUTHORS

15/01/2020

Editor: Sean Michael Prager, PhD Dear Dr. Sumner-Kalkun,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE's publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

This manuscript fell in a grey area between minor and major revisions. Three different reviewers examined the manuscript, and I also reviewed it. I agree with the 1st reviewer that you may be stretching a bit and could possibly focus some. This work will provide a useful tool. I think that alone makes it worth publication, and that opinion is shared by the reviewers. I also think that it is a complete and comprehensive piece of work. I, therefore, encourage you to focus on the comments from reviewer 1 and those about length etc. when preparing a resubmission.

We look forward to receiving your revised manuscript.

Kind regards,

Sean Michael Prager, Ph.D. Academic Editor PLOS ONE

Response:

Thank you for considering our work for publication in your journal. We found all reviewer comments to be useful and constructive and appreciate you overall assessment of the manuscript. We are pleased to have the opportunity to resubmit an improved version. We have made considerable efforts to condense the introduction and discussion section to include only relevant information and to streamline the manuscript. We agree that there was some duplication and repetition in the discussion, and it has been re-written accordingly. We decided, due to the technical nature of the paper that a separate results and discussion section was more appropriate. We have addressed the reviewer concerns regarding data availability and all sequence data has been uploaded to GenBank and is now free to be made publicly available. We hope that our amendments are deemed adequate to meet the high standards of PLOS ONE and are excited about the possibility of publishing with you.

REVIEWER COMMENTS TO AUTHOR

Reviewer #1: This manuscript describes a qPCR assay to identify potato psyllid intercepted in shipments. The assay is paramount to Europe's ability to detect potential introductions of this psyllid, which would be harmful to agricultural production. The authors describe the assay and confirmed that it does not amplify the ITS gene of other psyllids. My major concern for the manuscript is that it is overwritten and over-interpreted. The study is very simple - qPCR assay to detect potato psyllid - yet the text is over 50 pages long, includes unrelated information in the introduction, and includes an overly long discussion. The manuscript should be re-written to focus only on the assay and its use in trade commodities. Specific comments are provided in an attached document. I will apologize for my handwriting.

MAJOR POINTS

We appreciate your thorough assessment of our manuscript and thank you for your time. We found your comments very constructive and helpful. We have taken the care to reduce the introduction and discussion sections considerably to provide more focus on the assay and its uses, removing a lot of the duplication. The manuscript has been edited down to 31 pages + supplementary material. We attempted to produce a combined results and discussion section but felt that, due to the technical nature of the paper, keeping these separate was preferable. We hope that you will agree with this assessment on reading the improved version.

On the recommendation of the reviewer on line 486 of the previous manuscript we have performed the assay on Potato DNA to check for cross-reaction. No false positives were obtained from 8x reps of 3 Potato samples "Maris Piper" variety.

MINOR POINTS

- 1. Line 45: Abstract overwritten, stats to be removed, word count reduced
- The abstract Line 21-39 has been reduced in size with all stats removed and is now within the word limit (252 words)
- 2. Line 47: Remove "-" in "Potato-Psyllids"
- Changed to "Potato Psyllid" now line 41
- 3. Line 49: "The feeding of...." To be changed to "Feeding by"
- Changed as suggested now line 43
- 4. Line 53: Psyllid yellows refers to the feeding damage described above.
- Removed to avoid confusion and improve accuracy. Line 47
- 5. Lines 55-56: Change "...is also able to reproduce on..." to "...can also complete development on species of...."
- Changed as suggested line 49-50
- 6. Lines 56-58: Statement not deemed true
- Statement removed line 51
- 7. Line 61: Remove statement on Lso transmission to non-host plants of *B. cockerelli*
- Statement removed line 53
- 8. Line 64-65: Remove claims about *B.cockerelli* populations observed to differ in their ability to spread Lso
- Changed to: "Evidence suggests that these genetic types may differ in their ability to spread Lso..." Lines 56-57
- 9. Line 86: Haplotype B is also found in *Bactericera maculipennis*
- Information added to the text line 71

- 10. Line 111: typo capsicum not italics
- Changed to "...Capsicum..." line 84
- 11. Line 223: This table is referenced a lot, make it a real table
- Supp Tab. S1 now changed to Table 1. In results section Line 244-250. Cited on lines: 244. Supp Tabs 2-4 renumbered to Supp Tabs 1-3 and Tables 1-3 renumbered to Tables 2-4.
- 12. Line 276: Submitted to NCBI? Provide accession numbers
- Accession numbers added to Table 1. Lines 246-252 and Table 4. Lines 271-276
- 13. Line 314-315: change "....cloned DNA as mentioned below." To "..DNA below".
- Changed to "....cloned DNA (see below)." Line 290
- 14. Line 319: change "immatures" to "nymphs"
- The term "immatures" is preferred by leading psyllid taxonomists Daniel Burckhardt and David Ouvrard, that latter of whom is an author on this paper. See ref: (Burckhardt et al. 2014). We have kept the term "immatures" or "immature life stages" throughout.

Burckhardt D, Ouvrard D, Queiroz D, Percy D (2014) Psyllid Host-Plants (Hemiptera: Psylloidea): Resolving a Semantic Problem. Florida Entomol 97:242–246. https://doi.org/10.1653/024.097.0132

- 15. Line 411: "...Bactericera..." to be italicised
- Changed to italics. Line 354
- 16. Lines 439-441: Section to be re-written as inaccurate wording usedThis section was removed in the re-write of the discussion.
- 17. Line 468: Suggestion to perform further validation on Solanaceous DNA
- 3 x samples of *Solanum tuberosum* 'Maris Piper' were tested and were negative results added to lines: 194-196 and 284-285. Also results of primer blast etc. did not return any hits for *Solanum* species or any plant sequences.

Reviewer #2

- We are thankful to the reviewer for their detailed and careful examination of our paper. They have provided very useful, constructive comments regarding the technical aspects of the paper and have informed us of errors in the finer details. We hope we have incorporated changes to their satisfaction, and we have endeavoured to clear up the technical details that were missing or incorrect.

1. Data availability

- Psyllid DNA sequences have been uploaded to GenBank and accession numbers are provided in Tab1. And Tab4; lines 246-252 and 271-276 respectively.
- 2. Page 8 Line 163: What part of the body is used for micro-dissection to extract DNA? The authors should describe the micro-dissection procedure in more detail rather than only citing the papers.
- The non-destructive DNA extraction method is described on lines 121 132. "Microdissection" was used here to describe the piercing of the abdomen and thorax. "Microdissection" has been changed to "pierced" as a more appropriate term (line 126).
- Page 8 Line 172: "For amplification of ITS2 primers CA55p8sFcm-F and CA28sB1d-R [60] and for amplification of CO1 gene regions arthropod barcoding Primers LCO1490 and HCO2198 [61]." The authors should check the grammar here. It is not a complete sentence. It could be "For amplification of ITS2, primers CA55p8sFcm-F and CA28sB1d-R [60] were used, and for amplification of CO1 gene regions, arthropod barcoding Primers LCO1490 and HCO2198 [61] were used."

- Changed as suggested lines 135-137
- 4. Page 10 Line 204: "DNA was extracted as above using the non-destructive method, amplified and cloned into competent Escherichia coli cells using the TOPO TA cloning kit (Thermo-Fisher)." The authors should specify what genes (ITS2 or CO1?) they amplified for cloning, and what restriction enzyme (EcoRI?) they used to linearize the plasmid.
- Information added and moved from later section 2.5.2 Sensitivity. Now line 171-178
- 5. Page 10 Line 212: The authors need to list the real time PCR cycling conditions here, for example XX degrees for XX seconds.
- Added lines 178-181
- 6. Page 10 Line 223: "All reactions with non-target psyllid DNA were run in conjunction with a TaqMan Exogenous Internal Positive Control Reagent Kit (Applied Biosystems) to ensure false positives were not obtained due to inhibition within the reaction". Here, "ensure" should be "rule out the possibility that"
- Changed as suggested lines 196-201
- 7. Page 11 Line 226: "DNA from all non-target psyllids was sequenced to ensure psyllid DNA was present in all reactions to rule out false negatives due to inefficient DNA extraction." What DNA was sequenced? PCR product from ITS2 or CO1? The authors need to specify
- Details now added to new Tab 1 and citation to table included on lines 246-252
- Page 11 Line 239: "6 subsequent dilutions were made. Stock DNA 10 ng/µl was linearised using EcoRI restrictions enzyme (New England Biolabs)," Here "6 subsequent dilutions" should be "8 subsequent dilutions", according to the nine point 10-fold dilution series mentioned on Page 11 Line 236.
- Corrected Line 212-213
- 9. Page 12 Line 252: "A six point 1:10 dilution series starting at 10ng/µl was used with each dilution being performed in triplicate." Here, "six point" should be "nine point" according to Page 11 Line 236.
- Only 6 points were used for repeatability. This is sufficient to analyse standard curves between runs. Lines 222-223 refer to sensitivity experiments only.
- Page 12 Line 263: "For each tested parameter, optimization was performed across an eight point 1:10 dilution series starting at 10ng DNA." Here, "eight point" should be "nine point", "10ng" should be "10ng/µl".
- Corrected. Line 234
- 11. In Supplementary table S1, green and red color coding should be explained in the text. What does TBC mean? Accession numbers should be given for all the sequences. Accession numbers in Table 3 should also be given and TBC should be explained.
- We apologise for this error; this colouring has been removed as was an artefact of preparing the table and shouldn't have been included in the submitted version. TBC was used to show we were waiting for accession numbers. Accession numbers are now added to tables and TBC removed. Tab. 1 lines: 246-247 Tab.4 lines:
- 12. Page 14 Line 289: "CO1 genes showed higher similarity and generally less conserved and variable regions compared to ITS2 regions." Here "less conserved and variable" should be "less variable".

- Corrected line 266

13. Page 17 Line 310: "0.2 $\mu/mol"$ should be "0.2 $\mu M".$

- Corrected line 285

14. Page 18 Line 324: "The copy number calculator available at

http://scienceprimer.com/copy-number-calculator-for-realtime-pcr was used." Here a hyperlink should be created. According to the link and the formula given, 0.00001ng DNA equals 4.879×10000 copies, if length of gene region is considered 187bp (product length of ITS2 in real time PCR). However, the authors calculated that it equals to 200bp. Please double check the calculation.

- Limit of detection is actually 0.000001 ng DNA. This mistake of 10 fold higher amounts stated in the text was found throughout and in tables. We have now corrected them. The correct equation should be:
- Number of Copies = (ng DNA(0.000001) x 6.022×10^{23}) ÷ ((length of plasmid 4656bp + cloned fragment 700bp) * 1×10^9 * 660) = 170.36 copy numbers.
- 15. Page 18 Line 337: "At primer concentration, 0.5 μ M the assay was less sensitive only amplifying up to 0.001 ng DNA." It should be "At primer concentration 0.5 μ M, the assay was less sensitive only amplifying up to 0.001 ng DNA."
- Corrected. Lines 313-314
- 16. Page 18 Line 338: "At higher primer concentrations (0.5 and 1.0) the assay showed higher sensitivity" Here "(0.5 and 1.0)" should be "(1.0 μM)".
- Corrected. Line 314
- 17. Page 19 Line 350: "The precision of the assay was lower at higher MgCl2 concentrations 6mM and 8mM (Supp Tab. S3)." Here "6mM and 8mM" should be "7.5mM and 9mM".
- Corrected. Lines 326-327
- 18. Page 19 Line 354: "Reactions at 58 °C were 10 to 100-fold less sensitive than reactions at 58 °C." Here it should be "Reactions at 58 °C were 10 to 100-fold less sensitive than reactions at 64 °C."
- Corrected. Lines 330-331
- 19. Page 20 Line 367: "We have designed and validated the first species-specific, qualitative real-time PCR TaqMan assay for B. cockerelli by using the comparison of 73 non-target species to identify unique gene regions that were suitable for primer/probe design and species differentiation." Here "qualitative" should be "quantitative".
 - Changed to quantitative. Line 351

Reviewer #3

- We thank the reviewer for their thoughtful assessment of our manuscript and are pleased that only minor corrections were found throughout. The corrections have improved the manuscript greatly and have ironed out some important technical errors.

We hope that our amendments are deemed satisfactory and have covered the issues they have raised.

1. Page 8 line 175: please replace amount of primers used with final concentration of primers (or add this)

- Added. Line 138
- 2. Page 10 line 213: please add cycling conditions of real time PCR, as done for CO1 and ITS2 amplification
- Added lines 178-181
- **3.** Table 1: should include also B. cockerelli, so to include fragment size of amplicons for this species. In alternative, fragment sizes can be added to the main text
- B. cockerelli added to table 2. Line 262-263

4. Table 3: not clear what the "/" symbol in the CO1 column means

- Samples with / were not amplified in this region. Accession numbers for each sample have been added and this is explained better in the text. Lines: 252 Tab.1 ; 276 Tab. 4

5. Page 17 line 310: please check spelling of concentration

- Corrected to µM. Line 285
- 6. Page 17 line 316: numbers seem not to add up: how many technical replicates were used per sample?
- Information on technical reps is incorporated into table 4. Some samples were tested in duplicate, triplicate or 6x replicates.
- 7. Page 18 line 323: I have tried the formula myself using the concentration (0.00001 ng) and fragment size (187 bp) specified by the authors, but I get a quite different number of ITS2 copies (about 50,000 versus 200). Please double check, and add actual numbers to the formula.
- Limit of detection is actually 0.000001 ng DNA. This mistake of 10-fold higher amounts stated in the text was found throughout and in tables. We have now corrected them. The correct equation should be:

Number of Copies = (ng DNA(0.000001) x 6.022×10^{23}) ÷ ((length of plasmid 4656bp + cloned fragment 700bp) * 1×10^9 * 660) = 170.36 copy numbers.

8. Of some concern is the author's answer to the data accessibility question. Authors stated that they are not going to make all data available, with a generic "Some restrictions will apply". Please explain what data will not be made accessible and why.

- All data will be made available. Accession numbers were not available at the time of submission as they were restricted by one or more of our projects until we had consent to upload them to public databases.