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1 Section S1: Update dynamics

1.1 Update dynamics as random matrix A(t).

Consider the set of signals si(t) possessed by a positively oriented agent i at time t (i.e., i ∈ B+).

This will consist of a set of signals retained from the previous time step, si(t− 1), and a set of

biased signals s′i(t) constructed from the signals available from the nodes j ∈ ∂i at the end of

time (t− 1).

Let s∗i (t) =
⋃
j sj(t − 1) be the set of the unbiased signals available to node i at time t,

i.e. the set of nodes i will receive from her neighbors before applying the confirmation bias

function. Let s∗(a)i (a = 1, . . . , k(k + 1)t−1) be a generic signal in the set s∗i (t). After the

application of the confirmation bias function, this will be turned into a signal s′(a)i (t) ∈ s′i(t)

such that s′(a)i (t) = ±s∗(a)i (t) according to the following probabilities:
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Prob(s
′(a)
i = +1|s∗(a)i = −1) = q

Prob(s
′(a)
i = −1|s∗(a)i = −1) = (1− q)

Prob(s
′(a)
i = +1|s∗(a)i = +1) = 1

Prob(s
′(a)
i = −1|s∗(a)i = +1) = 0 .

According to the above rules, agent i checks the value of the new incoming signal, and flips

it with probability q if it is incongruent with respect to her current orientation. This is entirely

equivalent to node i sampling with probability q from the set s∗i (t), and with probability 1 − q

from an equally sized set of positive signals belonging to a positively oriented “ghost” node.

Let us consider the number N+
i (t) of positive signals possessed by agent i at time t. Due to

the above rules, its time evolution will be such that

N+
i (t) = N+

i (t− 1) +
∑
j∈∂i

(
N+
j (t− 1) + wi(t)N

−
j (t− 1)

)
,

where wi(t) ∈ [0, 1] is a random variable denoting the fraction of negative signals success-

fully distorted by i of those received by its neighbours at time t, with distribution such that

wi(t)N
−
∂i

(t) ∼ Bin(N−∂i(t), q), where N−∂i(t) is the number of negative signals received by i

from her neighbourhood at time t. When considering agent i’s signal mix1, the above translates

to

xi(t) =
1

k + 1

(
xi(t− 1) + (1− wi(t))

∑
j∈∂i

xj(t− 1) + wi(t)k

)
. (1)

Similarly, for a negatively oriented biased agent (i.e., i ∈ B−) we have

xi(t) =
1

k + 1

(
xi(t− 1) + (1− wi(t))

∑
j∈∂i

xj(t− 1)

)
, (2)

1We recall that the signal mix, as per Eq. (1) of the main paper, is defined as the fraction of positive signals
possessed by an agent at a certain time, i.e., xi(t) = N+

i (t)/(N+
i (t) +N−i (t)) = N+

i (t)/(k + 1)t.

3



with wi(t)N+
∂i

(t) ∼ Bin(N+
∂i

(t), q).

Combining Eqs. (1) and (2) with the time evolution for the signal mix of unbiased agents,

which reads

xi(t) =
1

k + 1

(
xi(t− 1) +

∑
j∈∂i

xj(t− 1)

)
,

we can see that the time evolution for the vector of signal mixes x(t) can be written as

x̂(t) = Â(t)x̂(t− 1) , (3)

where x̂ = [xT , 1, 0]T where the latter terms represent the (fixed) signal mixes of the ghost

nodes and the x̂(t) the signal mixes of the original set. Â(t) is an (n + 2) × (n + 2) random

matrix with entries with a block structure as follows:

Â(t) =

[
Q(t) R(t)

0 I

]
,

where Q(t) is an (n × n) matrix representing the original graph structure with Qii(t) = 1
k+1

,

Qij(t) = 1
k+1

where i is a unbiased agent connected to j, Qij(t) = 1−wi(t)
k+1

where i is a biased

agent connected to j, and 0 otherwise. R(t) is an (n× 2) matrix representing connections from

biased agents to their preferred ghost node (which we index by + and −). Ri+(t) = wi(t)k
k+1

if

i ∈ B+ and 0 otherwise. Analogous weights exist for negatively biased agents to the negative

ghost node. I is a (2×2) identity matrix representing the weights of ghost nodes to themselves.

0 is the (2× n) block of zeros representing the (lack of) edges outbound from the ghost nodes.

Finally, it is worth noting that the above formulation consisting of two ghost nodes is fully

equivalent to a formulation where each biased agent has a “personalized” ghost node that reflects

their positive or negative orientation appropriately. In this case Â(t) is an (n+ fn)× (n+ fn)

matrix with an extra fn ghost nodes added, one for each biased agent. However, while this

formulation has a more favourable interpretation in terms of “content personalization”, it is less

convenient analytically, so for the reminder of the Supplementary Information the simplified

ghost node formulation will be utilised.
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1.2 Almost sure convergence of Â(t).

We now proceed to show that stochastic weights wi(t) appearing in the matrix Â(t) of (3)

converge almost surely to q when t → ∞ as long as at least one signal of each type is held by

at least one node in the network. As such the random matrix Â(t) converges almost surely to a

fixed matrix Â = E(Â(t)).

Let us consider i ∈ B+. As established in the previous section, wi(t) is simply the fraction

of negative signals held by node i’s neighbours that i successfully flips to positive at time t.

Let us also recall that N−∂i(t) represents this set of negative signals available from all j ∈ ∂i,

and that each one is independently flipped to positive with probability q. If we can establish

that N−∂i(t) grows indefinitely as t → ∞, the Strong Law of Large Numbers (SLLN) can then

be invoked to establish the desired result. Since N−∂i(t) =
∑

j∈∂i N
−
j (t), then if i’s neighbours

possess an increasing and unbounded number of negative signals over time, then N−∂i(t) will

also be increasing and unbounded. As such, each wi(t) will converge almost surely to q.

Consider an arbitrary j ∈ ∂i. Note that since information sets are retained by agents at every

time step, we can immediately rule out the possibility of that the number of negative signals held

by agent j shrinks over time, and we merely need to show that her set of negative signals does

not remain constant over time.

Let us assume that at least one negative signal has been injected into the network at t = 0,

and that one agent ` possesses such negative signal. In a strongly connected network (such as

the k-regular network we consider in the main paper), there exists at least one directed path

from k to j of length d. Let us indicate the probability of a negative signal successfully being

transmitted from an agent a to an agent b along such path as pab. We note that pab = 1 − q if

b ∈ B+ and pab = 1 otherwise. Therefore, the probability of the signal successfully reaching j

in d time steps is:
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p`j =
∏
(a,b)

pab ≥ (1− q)d > 0 ,

Which allows us to conclude that at each time step t > d there exists a strictly positive

probability that a negative signal is added to j’s information set. This, in turn, implies that the

set of negative signals obtained by j will grow without bound for t → ∞, which establishes

our result. Since this occurs for each wi, we can conclude also that Â(t)
a.s.−−→ Â, as well as the

block submatrices Q(t)
a.s.−−→ Q and R(t)

a.s.−−→ R. The edges of these fixed matrices are identical

to the structure outlined in the previous section except wi is replaced with q.

Finally it is worth noting that this convergence result depends only on the strong connect-

edness of G and not on the edges from the biased agents to the ghost nodes. This is important

as this means that even as the orientations of the biased agents change (which is reflected in the

rewiring of these ghost node edges), the almost sure convergence is not interrupted.

2 Section S2: Biased agents settle in their orientation

In this section, we show that biased agents cannot continue to switch orientation indefinitely,

and instead settle into a fixed set of orientations given sufficient time. Recall that a biased agent

i ∈ B switches her orientation yi(t) when her information sets switches from a majority of

positive signals (xi(t) > 1/2) to a majority of negative signals (xi(t) < 1/2), or vice versa.

We begin by arguing that in some network topologies there exists some t after which biased

agents cease switching their orientation. For convenience, we define a network as settled at t∗

if for all t > t∗, yi(t∗) = yi(t) for all i ∈ B. To do this, we first consider an “adversarial” toy

example designed to maximise the likelihood of indefinite switching, and show that assuming

perpetual switching leads to a contradiction even in this case. We then go on to show how other,

more complex, network topologies are also guaranteed to settle. We limit to two topologies

for brevity but these results can be extended. Alongside the extensive evidence from numerical

simulations, we argue that the model is likely to settle for any arbitrary graph.
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2.1 Two node network.

Consider a network with two nodes, labeled 1 and 2 respectively, both of which are biased

agents. Each node has a self-weight of y and a weight of (1 − y) on its sole neighbour2.

This schematic is illustrated in Figure S1. As has been established in 1, the signal distortion

dyanmics can be mimicked by introducing two ghost nodes that represent a source of positive

and negative signals respectively. The weights associated with these ghost nodes are random

variables that converge almost surely to q as t→∞.

Figure S1: Left: A schematic of the two node symmetric network. Right: A schematic of the
two node symmetric network where ghost nodes are introduced to mimic the effect of the biased
signals.

In what follows, we show that this simplified model settles (i.e., both biased agents settle at

a finite time on a pair of orientations that they do not thereafter change). For the purposes of

illustration, for the moment let us consider the asymptotic case where the random weights have

converged to a deterministic set of weights (q).

The outline of this proof (and subsequent ones on alternative network structures) is to es-

tablish that in order for a biased agent i to switch orientation, their neighbours must have signal

mixes sufficiently far from i’s that they can cause i to switch orientation despite the fact that

i’s ghost node biases her learning to maintain “inertia” in the current orientation. However,

at the same time, the network structure ensures that nodes tend to converge closely to their

neighbourhood, which eventually prevents switching from occurring.
2This setting generalizes the one introduced in Eqs. (1) and (2), which is recovered for k = 1 and y = 1/2.
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The proof follows by contradiction. Suppose that the model never stabilizes, i.e., that at

least one of the biased agents keeps switching perpetually. Suppose node 1 switches at arbitrary

times {T} = . . . < tn−2 < tn−1 < tn < . . .. We do not assume for now that times in T are over

consecutive time steps, the gap between them can be as large as intended (see Fig. S2).

Figure S2: By assumption, node 1 continues to switch orientation at arbitrary time steps
tn−2, tn−1, tn by crossing the threshold signal mix xi = 1

2
. The threshold is denoted by a dashed

line. If node 1 switches, its neighbour (node 2, white) must cross sufficiently distant thresholds,
denoted by the red dashed lines. Furthermore, the switches must be simultaneous, or else the
switching terminates perpetually. The regions Ou, Iu, Il,Ol are outlined.

Consider some arbitrary tn, where x1 switches from x1(tn − 1) < 1/2 to x1(tn) > 1/2.

Using the model’s update rule (see (2)) we can note:

x1(tn) = yx1(tn − 1) + (1− q)(1− y)x2(tn − 1) >
1

2
, (4)

and using the fact that x1(tn − 1) < 1/2 we get ,

y

2
+ (1− q)(1− y)x2(tn − 1) ≥ 1

2

which in turn implies

x2(tn − 1) ≥ 1

2(1− q)
>

1

2
.

By following the same reasoning one can show that an x1 switch in the opposite direction

would imply

x2(tn − 1) ≤ 1− 2q

2(1− q)
=

1

2
− q

2(1− q)
<

1

2
.
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Therefore, for node 1 to switch endlessly, then node 2 must also do so, and cannot start from

an arbitrary point, but rather has to either be above 1/(2(1 − q)) or below (1 − 2q)/(2(1 − q)

at time tn − 1 for x1 to cross the 1/2 line at time tn from below or above, respectively. For the

sake of convenience we introduce the following regions

Ol =

[
0,

1− 2q

2(1− q)

)
Il =

[
1− 2q

2(1− q)
,
1

2

)
Iu =

[
1

2
,

1

2(1− q)

)
Ou =

(
1

2(1− q)
, 1

]
,

Where the subscripts indicate whether the interval lies in the upper or lower hemisphere

(above and below 1/2, denoted by the subscripts u and l). We also denote the “inner” region

I = Il ∪ Iu and the “outer” region O = [0, 1]/I defined by the above boundaries.

According to the above considerations, for node 1 to switch orientation to negative at tn,

then x2(tn − 1) ∈ Ol, and for node 1 to switch to positive at tn, then x2(tn − 1) ∈ Ou. These

regions are highlighted in S2. Clearly, the size of I grows with q (and O shrinks with q). It

is worth noting that for q > 1/2, the inner region’s boundaries exceed [0, 1], i.e., orientation

switches are impossible. The intuition behind this is that if a node is able to flip more than half

of the incongruent signals coming its way, it will never include enough incogruent signals in

her information set to switch orientation.

We further note that if a node and its neighbour are ever in the same orientation, then any

future switches are impossible. Indeed, if two nodes share the same orientation, they are both

linked to the same ghost node. As such, the set of available signals for each node is only its

neighbour and its ghost node. Regardless of the value of q, there is no way for either node to

accumulate sufficient incongruent signals to switch orientation. All in all, it follows that both

node 1 and node 2 must switch at the same time step whenever a switch occurs. This result is

illustrated in S2.
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We now show that if x2 lies in the outer region O, it will converge to the inner region I.

Furthermore, once it enters the inner region, it cannot leave it. Also, this ceases the switching of

the node 1, since its switching requires x2 to alternate between the upper and lower hemispheres

of the outer region.

As proved above, at any given time step node 1 and its neighbour 2 can either both switch

orientation, or both maintain their current orientation. We will consider both possibilities. As-

sume the former first, in which case we can show the two nodes must grow closer together.

Suppose that at time tn, x1(tn) > 1/2, and x2(tn) < 1/2. At tn + 1, this orientation switches

so x2(tn + 1) > x1(tn + 1). Making use of Eqs. (1) and (2), we can write

x2(tn + 1)− x1(tn + 1) = [(1− y)(1− q)− y] (x1(tn)− x2(tn))− (1− y)q (5)

< δ(x1(t)− x2(t)) ,

where δ = [(1− y)(1− q)− y] < 1. Therefore, when the node switches orientation with their

neighbour, they must converge strictly closer.3

We now consider the logical disjunct. Suppose instead that a switch does not occur, and at

times tn, tn + 1 we have x1(tn), x1(tn + 1) > 1/2, and x2(tn), x2(tn + 1) < 1/2. Therefore, we

can write

x1(tn + 1)− x2(tn + 1) = [y − (1− y)(1− q))] (x1(tn)− x2(tn)) + (1− y)q.

If the two nodes are to move closer in this time step, then we must have x1(tn+1)−x2(tn+1) <

(1 − µ)(x1(tn) − x2(tn)) for some µ ∈ (0, 1). Using this in (2.1) we obtain the following

sufficient condition for convergence:

x1(tn)− x2(tn) >
q

2− q − µ
1−y

. (6)

3We require δ < 1 and not |δ| < 1. While δ < −1 would violate the convergence criterion, it would also imply
x2(t+ 1) < x1(t+ 1), leading to a contradiction.
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Finally, note that if x1(tn) > 1/2 and x2(tn) ∈ Ol, then:

x1(tn)− x2(tn) >
1

2
− 1− 2q

2(1− q)
>

q

2− q − µ
1−y

(7)

for an arbitrarily small µ. Thus, if x2(tn) ∈ Ol, then the two nodes are sufficiently far apart

that the condition in (6) holds, and the two nodes must converge closer together. The parallel

argument can be made for the opposite starting orientations.

Even if a switch does not occur, then the nodes will converge strictly closer. Indeed, We

have established that if x2(t) ∈ O, then at each time step the distance |x1(t) − x2(t)| must

strictly shrink. As such, the nodes will eventually become close enough that x2(t) ∈ I, and

switching of node 1 ceases.

We complete the proof by showing that once node 2’s signal mix has entered the inner region

I, it cannot leave it. We have established already that nodes must have opposing orientations

at all times. Let us consider the case where x2(tn) ∈ Iu and x1(tn) < 1/2. Suppose by

contradiction that in time step tn+1 node 2 is able to “escape” I from below, going from below

1/(2(1− q)) to above such value (i.e., to Ou). This implies

1

2(1− q)
< x2(tn + 1) = yx2(tn) + (1− y)(1− q)x1(tn) + (1− y)q

<
y

2(1− q)
+

1

2
(1− y)(1− q) + (1− y)q ,

which leads to 1 + q < (1− q)−1, i.e. to the impossible result q2 < 0. Therefore, node 2 cannot

go from I to Ou. Finally we also know that it cannot go from I to Ol as this would require

both nodes to switch orientation, which is ruled out because x2(t) ∈ I. A parallel argument can

be made if the orientations are reversed. Thus, the two node symmetric network will always

converge to a region of the signal mix space where the nodes’ signal mixes are too close to

support any switch of orientation, arriving at the desired result.

The above proof can be easily replicated after relaxing the simplifying asymptotic assump-

tion that q is fixed. This can be done by reintroducing the time-dependent random weights wi(t)
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(i = 1, 2), and recalling that, due to their almost sure convergence to q, for any ε > 0 there exists

a time t∗ such that for all t > t∗ and for all i

q − ε < wi(t) < q + ε .

Adjusting the bounds used in the convergence proof to include the above time evolution allows

to obtain the same result.

2.2 Star network.

Let us now consider a k-star network of biased agents, with the central node labeled as 0 and

branch nodes labeled as 1, . . . , k4. As before, allow y to be the self-weight of each node and

q the confirmation bias parameter. Assume for simplicity that the central node has a weight of

(1− y)/k on each branch node.

Firstly, note that if any branch node switches indefinitely, then the central node 0 must

also switch indefinitely (or else there would be no “driving force” causing the branch nodes to

switch). So, let us focus on showing that it is impossible for the central node to do so. The logic

of the two-node network proof can be followed almost exactly by replacing x1(t) and x2(t) with

x0(t) and
∑k

j=1 xj(t)/k, respectively.

The first set of results up to (2.1) follow precisely given the substitution of terms above. We

use this to establish once again that for x0(t) to switch indefinitely
∑k

j=1 xj(t)/k must oscillate

between 1/(2(1− q)) and (1− 2q)/(2(1− q)), i.e., between the upper and lower hemispheres

of the outer region O. Furthermore, whenever the central node switches orientation, the branch

nodes’ average signal mix must also change from above to below 1/2 (or vice versa), even if

none of the branch nodes in particular switch orientation.

4Strictly speaking, the signal diffusion mechanism would need to be modified for non-regular graphs to allow
for signal diffusion to be equivalent to node averaging. More complex regular structures can also be shown to
converge, but a star graph permits us to show how convergence holds even with a strikingly different topology. We
proceed with the star graph for the purpose of illustration.

12



The next steps follow closely those of the two-nodes network. Suppose firstly that the central

node switches orientation (and the branch nodes’ average must also shift accordingly). Suppose

that at time tn, x0(tn) > 1/2, and
∑k

j=1 xj(tn)/k < 1/2. At tn + 1, this orientation switches so

that
∑k

j=1 xj(tn + 1)/k > x0(tn + 1). Adapting Eqs. (1) and (2) to the present case, we have

1

k

k∑
j=1

xj(tn + 1)− x0(tn + 1) =

[
1

k

k∑
j=1

(xj(tn) + (1− y)(1− q)x0(tn) + (1− y)qgj(tn))

]

−

[
yx0(tn) + (1− y)(1− q)1

k

k∑
j=1

xj(tn) + (1− y)q

]
,

where we have introduced a new indicator variable such that gj(t) = 1 is node j is positively ori-

ented at time t, and gj(t) = 0 otherwise. Let g(t) =
∑k

j=1 gj(t)/k be the fraction of positively

oriented branch nodes. We can then simplify the above:

1

k

k∑
j=1

xj(tn + 1)− x0(tn + 1) = [(1− y)(1− q)− y]

(
x0(tn)− 1

k

k∑
j=1

xj(tn)

)
− (1− y)q(1− g(tn))

< [(1− y)(1− q)− y]

(
x0(tn)− 1

k

k∑
j=1

xj(tn)

)
,

where we used the fact that (1− y)q(1− g(tn)) > 0. This can be rewritten as

1

k

k∑
j=1

xj(tn + 1)− x0(t+ 1) < δ

(
x0(tn)− 1

k

k∑
j=1

xj(tn)

)
,

where δ = [(1− y)(1− q)− y] < 1, which re-establishes the result of (5): if the central node

flips, it must converge strictly closer to the branch nodes. Next, we establish that in the time

steps where the central node does not switch orientation, the centre and branches still converge

as long as the branch average is withinO. The reasoning follows the one of the previous section

exactly given the appropriate substitutions, and we can replace the condition in (6) with:

x0(tn)− 1

k

k∑
j=1

xj(t) >
q(1− g(tn))

2− q − µ
1−y

. (8)
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Figure S3: A network structure consisting of a central node 0 and k = 6 branch nodes. All
nodes are biased agents for the purposes of the toy example.

Recall that x0(tn) > 1/2 and
∑k

j=1 xj(t)/k < (1− 2q)(2(1− q)) ∈ Ol, therefore:

x0(tn)− 1

k

k∑
j=1

xj(t) >
1

2
− 1− 2q

2(1− q)
>

q

2− q − µ
1−y
≥ q(1− g(t))

2− q − µ
1−y

for an arbitrarily small µ > 0. Hence, even if a switch does not occur, then the nodes will

converge strictly closer.

The final steps of the proof mirror those that follow (7) of the previous section, except a

factor of g(tn) dampens the ability of the branch nodes to escape the inner region even further.

As such, we establish that even on a star network structure, the biased agents cannot switch

their orientation endlessly, and must eventually converge.

2.3 Simulated dynamics and convergence criteria.

As has been established in the previous sections, settling is guaranteed under some simple

network topologies chosen specifically to hinder convergence. We round out the argument by

noting that settling also occurs in simulations for the k-regular network employed throughout

the paper and in the following proofs.

In what follows, we establish criteria for the case of a fixed q. Analogous criteria can be

easily established for the case of stochastic convergent weights wi(t) instead, although without
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much adding much insight. Furthermore, in practice the stochasticity rapidly settles in numer-

ical simulations, meaning that convergence can be safely studied using the asymptotic fixed q

assumption.

In order to guarantee that a network has in fact settled over the course of a simulation, we

identify a “settling” rule for the signal mix x̂(t). As we demonstrate in the following section,

if one assumes that the biased agents at time t no longer switch orientations, one can calculate

the steady state that would arise from this configuration of biased agents. Call this x̂∗(x̂(t)).

We can show that if the signal mix x̂(t) is sufficiently close to its corresponding steady state

x̂∗(x̂(t)) it will converge uniformly to that steady state without any further changes to any

agent’s orientation.

Define the difference between a signal mix and its steady state:

ε(t) = x̂(t)− x̂∗ .

Recalling that the model’s dynamics is such that

x̂(t) = Âx̂(t− 1)

we then have

x̂∗ + ε(t) = Âx̂∗ + Âε(t− 1) = x̂∗ + Âε(t− 1) ,

and therefore:

ε(t) = Âε(t− 1) .

Finally, define ε∗(t) = maxi(|εi(t)|) = ||ε(t)||∞. Then for any arbitrary biased node:

εi(t+ 1) = âiiεi(t) + (1− q)
∑
j

âijεj(t) ,

where âij is the weight between node i and j in matrix Â, and we use the fact that the ghost

nodes are always at their exact steady state, so their εG = 0. Then taking the absolute distance

and using the triangular inequality:
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|εi(t+ 1)| ≤ âii|εi(t)|+ (1− q)
∑
j

âij|εj(t)|

≤ âii|ε∗(t)|+ (1− q)
∑
j

âij|ε∗(t)| = (1− q(1− âii))|ε∗(t)| < |ε∗(t)| ,

and similarly for an unbiased agent, we can show:

|εi(t+ 1)| ≤ |ε∗(t)| .

In short, for each steady state once the current signal mixes are within some ε-cube of the

steady state, they must remain within that ε-cube. Furthermore, biased agents at each time step

must converge strictly closer to the steady state. A larger q or smaller self-weight (âii) will

cause faster convergence.

Finally, we can also note because the network is strongly connected, there are some r ≥ 1

steps between each unbiased and a biased node, and so it can be shown that in a finite number

of steps all nodes must converge strictly closer to the steady state than the maximum threshold

of the ε-cube.

Given all the above, we can now explicitly outline a “stable” region. Denote:

εs = min
i

(
|x∗i −

1

2
|
)
.

That is, the closest any of the steady states are to the threshold. If the current signal mixes can

get within the εs-ball of the steady state, then there can be no crossing the 0.5 threshold and as

such the steady state cannot move - this is a sufficient condition for settling to be guaranteed.

Using this condition, we are able to demonstrate settling occurs for a wide range of pa-

rameters for k-regular networks. We tested the condition on 1000 iterations each of the fol-

lowing parameter sets: n = 103, p = 0.5, k = {3, 4, 5, 10, 100, 999}, f = {.05, .1, .2, .5, 1},

q = {.05, .1, .25, .5, .75.1}. The settling criteria was successfully reached for every single run

of the model, establishing extremely high confidence that the k-regular biased information ag-

gregation model always settles.
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3 Section S3: Convergence of signal mixes

So far, we have established that the random update matrix A(t) converges almost surely to a

fixed update matrix A. Furthermore, we have demonstrated with extremely high confidence

that biased agents settle in their orientation after some finite time. As such, for biased k-regular

networks, assume that there exists some time t∗ after which biased agents cease switching their

orientation. Define ŷ∗B as the steady state fraction of positively oriented biased agents. Then the

following holds.

(1) The signal mix vector x̂(t) converges to some x̂∗ = Â∗x̂(0) for both biased and unbiased

networks, where Â∗ is a steady-state matrix of influence weights which can be computed

explicitly.

(2) Unbiased networks achieve consensus, and converge to influence weights of a∗ij = 1/n for

all pairs (i, j). This ensures that, for all i ∈ V , x∗i = x∗V = x̄(0), where x̄(0) =
∑n

i=1 si

is the intial average signal mix.

(3) Biased networks where ŷ∗B = 0, 1 achieve consensus, and converge to influence weights

â∗ij = 0 for all pairs (i, j) ∈ V , â∗i+ = ŷ∗B and â∗i− = 1− ŷ∗B for all i ∈ V .

(4) Biased networks where 0 < ŷ∗B < 1 do not achieve consensus, and converge to influence

weights â∗ij = 0 for all (i, j) ∈ V , and â∗i+ + â∗i− = 1 for all i ∈ V .

We note that results regarding unbiased networks (part of (1) and all of (2)) are already

well established results (see, for example, [1]) and are listed purely for comparison with biased

networks. We focus on proving the remainder of the results.

The results follow from the structure of x̂∗ = Â∗x̂(0) = lim
t→∞

∏t
τ=0 Â(τ)x̂(0). We pro-

ceed by demonstrating that despite the stochasticity in the random update mechanism Â(τ), the

steady state converges to a fixed vector x̂∗.
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First note that for τ > t∗ the biased agents will have ceased switching their orientation, and

the random update matrix Â(τ) will have a fixed underlying structure Â = E(Â(τ)). The proof

will follow by demonstrating that lim
t→∞

∏t
τ=0 Â(τ) = lim

t→∞
Ât. That is, the products of random

matrices converges to the products of their expectation.

Firstly recall the block structure of Â(τ):

Â(τ) =

[
Q(τ) R(τ)

0 I

]
,

with dimensions (clockwise from top-left): (n × n), (n × 2), (2 × 2), (2 × 2). Important

properties of the blocks include:

Q(τ) = Q+ εQ(τ)
a.s.−−→ Q

R(τ) = R + εR(τ)
a.s.−−→ R .

The properties above indicate that the blocks converge to their deterministic counterparts almost

surely. This allows us to state that for any ε and matrix norm ||.||, there is guaranteed some

t′ ≥ t∗ such that for all τ > t′, ||Q−Q(τ)|| = ||εQ(τ)|| < ε. Also, the matrix Q is such that

∑
j

Qij < 1 ∀i ∈ B∑
i

Qij < 1 ∀j ∈ ∂B .

The properties respectively indicate that the limit matrixQ is both row and column sub-stochastic.

Row sub-stochasticity follows from the outgoing edges from the set of biased agents (B). For

the k-regular graphs that are the focus of our analysis this can be specifically shown to be

(1−q)k+1
k+1

. Column sub-stochasticity follows from the neighbours of the biased agents (∂B) hav-

ing incoming connections necessarily less than 1.

We now define the product of the random matrices Â(τ) as:
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t∏
τ=0

Â(τ) = Ã(t, 0) =

[
Q̃(t, 0) R̃(t, 0)

0 I

]
,

where Q̃(t, 0 and R̃(t, 0) are placeholder terms for the the random block matrix products which

arise through products of the random matrices Â(τ). Consider also the deterministic analog to

this expression:

t∏
τ=0

Â = Ât = Ȧ(t, 0) =

[
Q̇(t, 0) Ṙ(t, 0)

0 I

]
.

This formulation defines a random and analogous deterministic sequence for each of the blocks,

denoted by Ã(t, 0) and Ȧ(t, 0) respectively.

Firstly, we demonstrate that lim
t→∞

Q̇(t, 0) = lim
t→∞

Qt = 0. Consider the 2-norm ||.||2. We

consider first the deterministic matrix Q. Recall that since Q is doubly sub-stochastic, QTQ is

necessarily sub-stochastic and therefore:

||Q|| = (1− δ) < 1 ,

for some δ ∈ (0, 1). It follows that:

lim
t→∞
||Qt|| ≤ lim

t→∞
||Q||t = lim

t→∞
(1− δ)t = 0 ,

therefore lim
t→∞

Qt = 0 (making use of the fact that ||X|| = 0 ⇐⇒ X = 0). Now consider the

term of interest Q̃(t, 0):

||Q̃(t, 0)|| = ||
t∏
0

Q(τ)|| ≤
t∏
0

||Q(τ)|| .

Note that ||Q(τ)|| ≤ 1 for all τ . However we can show that almost all ||Q(τ)|| < 1:

19



||Q(τ)|| = ||Q+ εQ(τ)|| ≤ ||Q||+ ||εQ(τ)|| = (1− δ) + ||εQ(τ)||

We select some t′ such that for all τ > t′, ||εQ(τ)|| = µ < δ for some µ > 0. Therefore:

||Q(τ)|| ≤ (1− δ + µ) = (1− δ∗) < 1 , (9)

where δ∗ = δ + µ. We can now conclude:

lim
t→∞
||Q̃(t, 0)|| ≤ lim

t→∞

t∏
t∗

(1− δ∗) = lim
t→∞

(1− δ∗)t = 0 .

We now show that lim
t→∞

R̃(t, 0) = lim
t→∞

Ṙ(t, 0) = (I−Q)−1R. Consider firstly the determin-

istic sequence, which can be defined through the following iterative relationship:

Ṙ(t, 0) = QṘ(t− 1, 0) +R . (10)

Note again that Ṙ(t, 0) refers to the t-th term in a deterministic sequence whereas Q and R are

specific block matrices. The expression (10) can be straightforwardly solved in the limit:

lim
t→∞

Ṙ(t, 0) = (I −Q)−1R .

Consider now the random sequence, which can be defined analogously:

R̃(t, 0) = Q(t)R̃(t− 1, 0) +R(t) . (11)

Note here R̃(t, 0) refers to the t-th term in a random sequence and Q(t) and R(t) are random

block matrices that occur at time τ = t. In order to proceed we define:

R̃(t, 0) = Ṙ(t, 0) + E(t) , (12)
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where here E(t) is an error term capturing the difference between the terms of the deterministic

and random sequences at time τ = t. We substitute (12) into (11):

R̃(t, 0) = Q(t)(Ṙ(t− 1, 0) + E(t− 1)) +R(t) . (13)

We now substitute the definition of Q(τ) and R(τ) into (13):

R̃(t, 0) = QṘ(t− 1, 0) +R +QE(t− 1) + εQ(t)(Ṙ(t− 1, 0) + E(t− 1)) + εR(t) .

Note that we can substitute (10) for the two leading terms on the RHS:

R̃(t, 0)−R(t, 0) = QE(t− 1) + εQ(t)(Ṙ(t− 1, 0) + E(t− 1)) + εR(t) .

We can now take the 2-norm ||.||2:

||E(t)|| = ||R̃(t, 0)− Ṙ(t, 0)|| = ||QE(t− 1) + εQ(t)(Ṙ(t− 1, 0) + E(t− 1)) + εR(t)||

≤ ||Q|| ||E(t− 1)||+ ||εQ(t)|| ||R̃(t− 1)||+ ||εR(t)|| .

We can now substitute in (9) and once again make use of the fact that for any 0 < ε we can

define t′ such that ||εQ(t)||, ||εR(t)|| < ε. We also note that ||R̃(t− 1)|| < n (where n is the size

of the network), therefore

||E(t)|| ≤ (1− δ)||E(t− 1)||+ ε(n+ 1) ,

and therefore for a sufficiently small ε, there is a corresponding t′ such that for t > t′:

||E(t)|| ≤ (1− δ∗)||E(t− 1)|| < ||E(t− 1)|| .

Finally we get:
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lim
t→∞
||R̃(t, 0)− Ṙ(t, 0)|| = lim

t→∞
||E(t)|| = 0 ,

which allows us to conclude that lim
t→∞

R̃(t, 0) = lim
t→∞

Ṙ(t, 0) = (I −Q)−1R.

We can combine these results to conclude:

Â∗ = lim
t→∞

t∏
τ=0

Â(τ) = lim
t→∞

Ã(t, 0) =

[
lim
t→∞

Q̃(t, 0) lim
t→∞

R̃(t, 0)

0 I

]
=

[
0 (I −Q)−1R
0 I

]
.

Given that x̂∗ = Â∗x̂(0) we can conclude Result (1) - that the signal mixes do converge. In

particular:

x̂∗ = Â∗x̂(0) =

 0 (I −Q)−1R+ (I −Q)−1R−

0 1 0
0 0 1

 x̂(0)
1
0

 =

 (I −Q)−1R+

1
0

 ,

that is, the steady state signal mixes of the agents not a function of the initial signals x̂(0). The

signal mixes are instead entirely a function of the steady state orientations of the biased agents,

encoded by the vectorR+, the edges from the positive biased agents to the positive ghost nodes.

Our remaining conclusions follow summarily from this. If all biased agents are negative

(ŷ∗B = 0) R+ is 0 and x∗ is 0 for all agents. Inversely if all biased agents are positive (ŷ∗B = 1),

x∗ is 1 for all agents. For any other configuration of biased agents, the steady state is determined

by the closed form (I −Q)−1R+. In this scenario z∗V > 0 trivially as some biased nodes will be

of the minority orientation. However, more crucially z∗R ≥ 0. That is, unbiased agents are no

longer guaranteed to converge despite having no bias mechanism themselves. We investigate

this and other properties of the unbiased agents in more detail in the next section.

4 Section S4: Steady state signal mix distribution

We now seek to approximate the distribution of signal mixes of the agents once the steady state

is reached. We will first approximate the average steady state signal mix of each sub-population
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in the network, followed by the steady state signal mix variance, and finally the full distribution

itself. We will do this for the k-regular network case used in the body of the paper, and show

via numerical simulations that it also captures the model’s dynamics on more heterogeneous

networks. Let us note that the results given in the following are the empirical distribution of the

signal mixes for a given run of the model, as opposed to an ensemble over all possible runs of

the model.

4.1 Steady state expected signal mix.

As detailed in 1, the model converges to a steady state x̂∗ which is entirely contingent on the

settled orientation of the biased agents in the network. In what follows, we will calculate an ap-

proximation for the model’s steady state expected signal mix conditional on a given fraction of

positively oriented biased agents f+(t) = ŷB(t)f . We will then show how under some reason-

able assumptions the “settled” value of f+(t) can be approximated from the initial orientation

f+(0).

Consider an agent i picked uniformly at random at time t from the unbiased, positively

oriented biased, negatively oriented biased sub-populations. Let us denote the signal mixes of

agents belonging to such sub-populations as x̂iU (t), x̂iB+ (t) and x̂iB− (t), respectively. We are

interested in establishing the expected steady state values for each of these quantities, denoted

as

x̂∗U = lim
t→∞

E[x̂iU (t)] = lim
t→∞

x̂U(t) ,

with analogous definitions for x̂∗B+ and x̂∗B− .

We begin by considering the sub-population of unbiased agents at some finite t. We note

the following:

x̂U(t+ 1) = E[x̂iU (t+ 1)] = E
[
x̂iU (t) +

∑
j∈∂i x̂j(t)

k + 1

]
=
x̂U(t) + kE[x̂j(t)]

k + 1
, (14)

where E[x̂j(t)] refers to the expected signal mix of a randomly picked agent j from the entire
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population, which of course consists of the three aforementioned sub-populations. Therefore,

we have

E[x̂j(t)] = (1− f)E[x̂j(t)|j ∈ U ] + f+(t)E[x̂j(t)|j ∈ B+(t)] + f−(t)E[x̂j(t)|j ∈ B−(t)](15)

= (1− f)x̂U(t) + f+(t)x̂B+(t) + f−(t)x̂B−(t) .

Plugging the above in (14) we get

x̂U(t+ 1) =
1

k + 1

[
(1 + k(1− f))x̂U(t) + kf+x̂B+(t) + kf−x̂B−(t)

]
.

Repeating the above steps for positively oriented biased agents we get

x̂B+(t+ 1) = E[x̂iB+ (t+ 1)] = E
[
x̂iB+ (t) +

∑
j∈∂i ((1− wi(t))x̂j(t) + wi(t))

k + 1

]
=

x̂B+(t) + (1− q)kE[x̂j(t)] + kq

k + 1
.

where we have explicitly referenced the random variable wi(t) representing the fraction of suc-

cessfully distorted negative signals (see 1), and made use of the fact that E[wi(t)] = q. We can

use (15) again and write

x̂B+(t+1) =
1

k + 1

[
k(1− f)(1− q)x̂U(t) + ((1− q)kf+(t) + 1)x̂B+(t) + (1− q)kf−(t)x̂B−(t) + kq

]
,

and similarly for negatively oriented biased agents:

x̂B−(t+1) =
1

k + 1

[
k(1− f)(1− q)x̂U(t) + (1− q)kf+(t)x̂B+(t) + ((1− q)kf− + 1)(t)x̂B−(t)

]
.

We have therefore established the update rule for the expected signal mix of the three sub-

populations at any time t. We collate this update rule into a matrix form for convenience:

ξ(t+ 1) =
1

k + 1
(F (t) + I3)ξ(t) + b , (16)

where

ξ(t) = [x̂U(t), x̂B+(t), x̂B−(t)]T , b =

[
0,

kq

k + 1
, 0

]T
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and

F (t) = k

 (1− f) f+(t) f−(t)
(1− q)(1− f) (1− q)f+(t) (1− q)f−(t)
(1− q)(1− f) (1− q)f+(t) (1− q)f−(t)

 .
If we further simplify notation by defining F̂ (t) = (F (t) + I3)/(k + 1), we get to the

following compact expression for (16):

ξ(t+ 1) = F̂ (t)ξ(t+ 1) + b .

The long-run evolution of the signal mixes can be determined from the above equation if

the evolution of f+(t) (and, consequently, of f−(t)) in the matrix F̂ (t) is known. Assume for

the moment we are at some time t∗ at which the system has settled, i.e., biased agents will keep

their orientations intact and therefore will not cause the value of f+(t) to change for t > t∗. In

this case we can write:

lim
t→∞

ξ(t) = lim
t→∞

F̂ (t∗)tξ(t∗) + (F̂ (t∗)− I3)−1b .

It can be shown easily that, due to its double substochasticity, we have limt→∞ F̂ (t∗)t = 0, and

therefore

lim
t→∞

ξ(t) = (F̂ (t∗)− I3)−1b .

The above limit allows to calculate the steady state signal mixes for all sub-populations

explicitly:

lim
t→∞

ξ(t) =

 x̂∗Ux̂∗B+
x̂∗B−

 =

 f+(t∗)/f
(1− q)f+(t∗)/f + q

(1− q)f+(t∗)/f

 =

 ŷB(t∗)
(1− q)ŷB(t∗) + q

(1− q)ŷB(t∗)

 . (17)

In the next Section we will approximate this result to the case where biased agents have not

settled their orientation yet.

4.2 Predicting the trajectory of biased agents’ orientations

Biased agents change their orientation when they receive a stream of incongruent signals that

overcome their ability to distort them using confirmation bias. There are two points in the
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evolution of the model where this is possible. Firstly, this may happen in the early stages of the

evolution, where the information sets held by the agents are relatively small and the stochasticity

of the model can induce changes in orientation. Secondly, this may happen in the long run,

where sustained changes in orientation can be brought along when one of the two camps of

biased agents becomes able to systematically bias the available information. This leads to the

composition of signals experienced by each node to change consistently in one direction, which

can cause large scale switches in orientation, which in turn triggers a domino effect, as newly

switched nodes will accelerate the rate at which signals are distorted.

Let us capture this notion more formally. Consider the expected long term signal mix of

each sub-population assuming the biased agents have settled ((17)). Suppose the positively

oriented biased agents have an expected steady state signal mix x̂∗B+ < 1/2. If such steady state

value is to be reached, then some positively oriented biased agents’ signal mixes must fall below

1/2, thereby switching orientation to negative. If this happens, then ŷB(t) falls and the steady

state signal mix for all agents strictly decreases5. This, in turn, means more positively oriented

biased agents switch orientation to reach their steady state, and so forth until all such agents

switch to a negative orientation, yielding ŷB = 0. A corresponding outcome can be determined

for negatively oriented biased agents all being converted. We can therefore determine, for any

given t∗, the approximate conditions under which we expect all positively oriented biased agents

to switch their orientations to negative in the eventual steady state. Setting x̂∗B+ < 1/2 in (17)

we have

(1− q)ŷB(t∗) + q <
1

2
=⇒ ŷB(t∗) <

1

2− 2q
, (18)

and, correspondingly, for all negatively oriented biased agents to be tipped to positive we have

5This can be proven rigorously with the results from the previous Section: the steady state mix is (I−Q)−1R+.
R+ is a vector with 0 for each negative biased agent, and (I−Q)−1 is element-wise> 0. A biased agent switching
to positive turns a previous zero element of R+ to positive, and adds another strictly positive vector to the steady
state signal mix. The same argument is made in reverse for a positive to negative switch
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the following condition:

ŷB(t∗) >
1− 2q

2− 2q
. (19)

Let us now consider the case t0 = 0, which means we are approximating the expected

trajectory of the entire system given a starting fraction of positively oriented biased agents

f+∗(0)/f = ŷB(0). We then have the following approximate result for the steady state signal

mix of the unbiased sub-population:

x̂∗U = ŷ∗B ≈


ŷB(0) for 1

2(1−q) ≤ ŷB(0) ≤ 1−2q
2(1−q)

1 for ŷB(0) > 1−2q
2(1−q)

0 for ŷB(0) < 1
2(1−q) ,

where the latter two conditions derive from Eqs. (18) and (19), while the first condition is the

same reported in (17) adapted for the case t0 = 0.

4.3 Steady state signal mix variance.

In the previous Section we have provided approximations for the first moment of the steady state

signal mixes of the unbiased agents, as well as those of the two biased agent sub-populations.

We have also approximated the long term “settled” fractions of positively and negatively ori-

ented biased agents. We noted that for ŷB(0) > 1−2q
2(1−q) (ŷB(0) < 1

2(1−q) ), the steady state signal

mix is likely to asymptotically reach 1 (0). Under these conditions, all agents eventually trivially

possess the same signal +1 (−1). Therefore the distribution of signal mixes tends asymptoti-

cally to a Dirac distribution on 1 (0).

We therefore proceed with the assumption that 1
2(1−q) ≤ ŷB(0) ≤ 1−2q

2(1−q) , and as such use

(17) to approximate:

lim
t→∞

ξ(t) =

 ŷB(t∗)
(1− q)ŷB(t∗) + q

(1− q)ŷB(t∗)

 ≈
 ŷB(0)

(1− q)ŷB(0) + q
(1− q)ŷB(0)


Correspondingly, we note f+∗ = ŷB(t∗) = ŷB(0). We would now like to characterise the

distribution of signal mixes for each sub-population at the steady state beyond its first moment.
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We begin with an approximation of the variance, under the asymptotic limit of large populations

n→∞.

For convenience we define the steady state signal mix variance of any sub-population G as

σ2
G. In the following, we will provide approximate expressions for the steady state signal mix

variances σ2
U , σ2

B+ , and σ2
B− , and for the overall variance σ2

V .

Consider an agent i picked uniformly at random from the entire population. The variance

of such an agent’s steady state signal mix Var[x̂∗i ] represents the variance across the entire

population σ2
V . From the law of total variance, this can be broken down as follows

σ2
V = Var[x̂∗i ] = E

[
Var[x̂∗i ] | i ∈ {U ,B+,B−}

]
+ Var

[
E
[
x̂∗i | i ∈ {U,B+,B−}

] ]
, (20)

where

E
[
Var[x̂∗i ] | i ∈ {U ,B+,B−}

]
= (1− f)σ2

U + f+∗σ2
B+ + f−∗σ2

B− , (21)

and

Var
[
E
[
x̂∗i | i ∈ {U ,B+,B−}

] ]
= (1− f)

{
f+∗

f
− E

[
E[x̂∗i | i ∈ {U ,B+,B−}]

]}2

(22)

+ f+∗
{

(1− q)f
+∗

f
+ q − E

[
E[x̂∗i | i ∈ {U ,B+,B−}]

]}2

+ f−∗
{

(1− q)f
+∗

f
− E

[
E[x̂∗i | i ∈ {U ,B+,B−}]

]}2

.

Noting that

E
[
E[x̂∗i | i ∈ {U ,B+,B−}]

]
= (1−f)

f+∗

f
+f+∗

(
(1− q)f

+∗

f
+ q

)
+f−∗

(
(1− q)f

+∗

f

)
=
f+∗

f

we can considerably simplify (22):

Var
[
E
[
x̂∗i | i ∈ {U ,B+,B−}

] ]
=
q2f+∗f−∗

f
= fq2x̂∗U(1− x̂∗U) ,

where in the last step we have used the fact that x̂∗U = f+∗/f , as per (17).

(22) provides a compact expression for the second contribution for the overall variance σ2
V

in (20). We now turn to the first term ((21)). In order to be able to calculate it, we must compute

the variance of each sub-population. Let us begin with the unbiased agent sub-population:
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σ2
U = Var[x̂∗U ] = Var

[
1

k

∑
j∈∂i

x̂∗j

]
=
σ2
V

k
+

2

k2

∑
(j,`)∈∂i

Cov[x̂∗j , x̂
∗
` ] =

σ2
V

k
+O

(
1

k2

)
, (23)

where in the last term we have assumed the covariance term to decay as k−2, which will

be proved in the next Section. In analogy with the above results, for the biased agent sub-

population (either positively or negatively oriented) we have:

σ2
B = Var[x̂∗iB ] =

(1− q)2σ2
V

k
+O

(
1

k2

)
. (24)

Substituting the two expressions above in (21), and combining the result with the one ob-

tained in (22), we finally obtain the following result for the overall variance in (20):

σ2
V =

1− fq(2− q)
k

σ2
V + fq2x̂∗U(1− x̂∗U) +O

(
1

k2

)
.

Solving for σ2
V we get

σ2
V =

kfq2x̂∗U(1− x̂∗U)

k + fq(2− q)− 1
+

k

k + fq(2− q)− 1
O
(

1

k2

)
≈ fq2x̂∗U(1− x̂∗U) ,

where we have used the fact that fq(2 − q) − 1 ∈ [−1, 0], and therefore fq(2 − q) − 1 � k

even for moderate connectivity.

Finally, we can specialize the above result to the three sub-populations via Eqs. (23) and

(24):

σ2
U ≈

fq2x̂∗U(1− x̂∗U)

k
(25)

σ2
B± ≈

f (q(1− q))2 x̂∗U(1− x̂∗U)

k
. (26)

4.4 Explicit neighbourhood covariance expressions.

In this Section we establish that the covariance term appearing in (23) can indeed be assumed

to be of order k−2. The first thing to note is that the term Cov[x̂∗j , x̂
∗
` ] for two generic agents
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can be bounded above by the covariance Cov[x̂∗j , x̂
∗
` |j, ` ∈ U ] between unbiased agents’ steady

state signal mixes. To see this, suppose j, ` ∈ B+:

Cov[x̂∗j , x̂
∗
` |j, ` ∈ B+] = Cov

[
(1− q)

∑
h∈∂j x̂

∗
h + qk

k
,
(1− q)

∑
m∈∂` x̂

∗
m + qk

k

]

=
(1− q)2

k2
Cov

∑
h∈∂j

x̂∗h,
∑
m∈∂`

x̂∗m

 < 1

k2
Cov

∑
h∈∂j

x̂∗h,
∑
m∈∂`

x̂∗m


= Cov[x̂∗j , x̂

∗
` |j, ` ∈ U ] .

Let Cov(x̂∗j , x̂
∗
l |(j, l) ∈ U) = σ2, denote the least upper bound for the covariance between two

Figure S4: The covariance of i’s neighbours, j and k (grey), can be decomposed into the co-
variance between its neighbours (black and white). This consists of the covariance between
neighbours that are two steps apart (black to white) as well as those that have distance four
steps apart (white to white).

nodes of distance 2 apart. Similarly, let σd be the same for nodes of distance d apart. In the

remainder of this section we are seeking to establish a relationship between these upper bounds

and in doing so recursively determine the upper bound at d = 2.

It is worth reiterating that we are approximating the variance of the steady state signal mixes

at the asymptotic limit n → ∞. Given this assumption, a k-regular tree will approximate

a Cayley tree. A useful consequence of this assumption is that the network is globally tree-

like, and loops vanish in the limit. As such, only a single path exists between any two nodes.

Therefore, in (23) we have:

σ2
U =

σ2
V

k
+

2

k2

∑
(j,`)∈∂i

Cov[x̂∗j , x̂
∗
` ] ≤

σ2
V

k
+

2

k2

∑
(j,`)∈∂i

σ2 =
σ2
V

k
+
σ2
k

(k − 1) .
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Therefore we can establish that if σ2 = O(k−2), the whole expression will be of order O(k−2).

To do this note:

Cov[x̂∗j , x̂
∗
` ] =

1

k2
Cov

x̂∗i +
∑

m∈∂j/i

x̂∗m, x̂
∗
i +

∑
n∈∂`/i

x̂∗n

 =
1

k2

Cov[x̂∗i , x̂
∗
i ] +

∑
(m,n)∈[∂j×∂`]/(i,i)

Cov[x̂∗m, x̂
∗
n]


=

1

k2

Cov[x̂∗i , x̂
∗
i ] +

∑
m∈∂j/i

Cov[x̂∗i , x̂
∗
m] +

∑
n∈∂`/i

Cov[x̂∗i , x̂
∗
n] +

∑
(m,n)∈[∂j/i×∂`/i]

Cov[x̂∗m, x̂
∗
n]

 .

In this last step, we explicitly break down the covariance sum into the covariance between the

neighbours of j and l, which exist at various distances to one another. This is illustrated in S4.

We can group these covariance pairs by their distance and bound them using our defined

bounds σd:

Cov[x̂∗j , x̂
∗
` ] ≤

1

k2
(
σ2
U + 2(k − 1)σ2 + (k − 1)2σ4

)
.

This allows us to recursively define

σ2 =
1

k2
(
σ2
U + 2(k − 1)σ2 + (k − 1)2σ4

)
.

Re-arranging this expression we get:

σ2 =
1

(k − 1)2 + 1
σ2
U +

(k − 1)2

(k − 1)2 − 1
σ4 =

1

(k − 1)2 + 1
σ0 +

(k − 1)2

(k − 1)2 − 1
σ4 .

In the final step, we have replaced σ2
U with σ0 - which emphasizes that this term is merely the

covariance of a node with a node at distance 0 (i.e. its own variance), and σ2
U is the largest

possible variance expression amongst the biased and unbiased nodes. We can easily (though

quite tediously) repeat this process for the covariance of nodes at any distance d to establish:

σd =
1

(k − 1)2 + 1
σd−2 +

(k − 1)2

(k − 1)2 − 1
σd+2 .

This linear recurrence relation can be solved with the boundary conditions that σ0 = σ2
U and

limd→∞ σd = 06. This establishes:

σd =
σ2
U

(k − 1)d
,

6In other words, nodes at infinitely long distances have a covariance that decays to zero
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and therefore:

σ2 =
σ2
U

(k − 1)2
= O(k−2) .

Therefore, to finalise (23):

σ2
U =

1

k
σ2
V +O

(
1

k2
(k2 − k)σ2

)
=

1

k
σ2
V +O(k−2) .

4.5 Steady state signal mix normality.

We finally proceed to demonstrate that the distribution of signal mixes is approximately normal

when k and n are large. Assume firstly that n → ∞, which ensures that the model’s k-regular

network becomes a Cayley tree with no loops. Let us also assume that k = εn for some ε > 0,

ensuring k also grows arbitrarily large, but still can be arbitrarily smaller than n.

As we have already established in the previous section, the covariance between the steady

state signal mixes of unbiased agents at distance 2 decays as k−2, which implies that such

signals mixes become asymptotically independent in the aforementioned limits. Therefore, the

steady state signal mix of an unbiased agent x̂∗iU =
∑

j∈∂i x̂
∗
j/k becomes the sum of an infinitely

large set of independent random variables. Furthermore, the variables will follow one of three

distributions, depending on which sub-population the agent’s neighbors belong to:

x̂∗iU =
1

k

∑
j∈∂i

x̂∗j =
1

k

 ∑
j∈∂i∩U

x̂∗j +
∑

j∈∂i∩B+
x̂∗j +

∑
j∈∂i∩B−

x̂∗j

 .

Each of the above contributions is a sum of an infinitely large set of independent and identically

distributed variables, which implies that each of them is normally distributed. This, in turn,

implies that the steady state signal mixes of the unbiased agents (and, by generalisation, of the

biased agents) is asymptotically normal. From the results obtained for the first two moments of

the signal mix distributions in the previous sections (see Eqs. (17) and (25)), we can conclude
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that when n→∞ and k = εn we have

x̂U
d→ N

(
x̂∗U ,

fq2x̂∗U(1− x̂∗U)

k

)
x̂B+

d→ N

(
(1− q)x̂∗U + q,

f (q(1− q))2 x̂∗U(1− x̂∗U)

k

)

x̂B−
d→ N

(
(1− q)x̂∗U ,

f (q(1− q))2 x̂∗U(1− x̂∗U)

k

)
.

The normality of the distribution for the unbiased agents is demonstrated in Figure 3 of the

main text.

5 Section S5: Accuracy

We can now aggregate our results in order to approximate the accuracy of a social network.

As described in the main body of the paper, the accuracy of a network A(G) is the expected

fraction of accurate unbiased agents in the steady state, i.e. accuracy quantifies the probability

Prob(yiU = +1) that a randomly picked unbiased agent in a random realisation of the model

will correctly learn the ground truth7.

This is of course a complex outcome determined by a dynamic series of processes worth

recapping. First, the model will generate initial signals for all agents, both biased and unbi-

ased. All agents will share their signals, but biased agents will selectively sample incoming

signals based on their current orientation. Over time, biased agents are able to influence the

set of signals in the system, and the system converges towards a steady state where each agent

possesses an equilibrium mix of signals. Accurate agents are those whose equilibrium signal

mix is contains more positive than negative signals, i.e. x∗i > 1/2.

In the previous Sections we have calculated the distribution of the initial signals, as well as

the approximate steady state signal mix for a given set of initial signals (see Equation 4.2). We

have also approximated the steady state individual signal mix distributions (see Eq. 27), and
7The definition of accuracy could very easily be extended to all agents instead of just unbiased agents, but we

retain discussion to unbiased agents for simplicity
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as such we can approximate the fraction of accurate unbiased agents for a given steady state,

which reads

A(G) =
1

2

∫ 1

0

dx∗U P (x∗U) erfc

( 1
2
− x∗U√
2 σU

)
, (27)

where P (x∗U) is the distribution of the average signal mix across unbiased agents as determined

by (4.2) (see Eq. (3) of the main paper), while the complementary error function quantifies

the fraction of unbiased agents whose steady state signal mix is above 1/2, and are therefore

accurate, under the normal approximation outlined in the previous section.

Both ingredients employed in (27) have been obtained based on a number of approximations

and asymptotic assumptions. We checked how such approximations hold against numerical

simulations of the model’s dynamics. The results are shown in Fig. S5 both for k-regular

and Erdős-Rényi networks. As can be seen, the average accuracy obtained across independent

numerical simulations of the model closely matches the expected value obtained with (27),

even for relatively low network size and average degree (the results reported were obtained for

n = 104 and k = 8). The wider error bars for lower f reflect the expected outcome that most

runs of the model will result in total consensus on either X = ±1 (and therefore all accurate or

all inaccurate agents), whereas as f grows, the agents are highly polarised and the fraction of

accurate and inaccurate agents will be relatively constant.

6 Section S6: Regression results

6.1 Theory and model interpretation.

Our model is stylized, and therefore largely agnostic as to a particular interpretation of its pa-

rameters. Nevertheless, it is quite well suited to provide an initial exploration on a number of

issue. In this Section, we shall test the model’s ability to shed light on the impact that Internet

access has on shaping popular opinion on specific issues (global warming in this case). In order

to do this, we first specify how we are going to relate our model’s parameters to real-world

measurable quantities.
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Figure S5: Non-monotonic changes in expected accuracy as f increases. The model’s predic-
tion are compared to numerical results obtained with simulations on both k-regular (light blue)
and Erdős-Rényi (purple) networks. The parameters used in the simulations were n = 104,
p = 0.53, k = 8, q = 1.

There are two convenient (and pragmatically equivalent) interpretations of the model in

the context of Internet use. Consider the agent-specific ghost node interpretation, where each

ghost node attached to a biased agent represents an aggregation of the “filter bubble” (pas-

sive algorithmic affects) and “selective exposure” (actively selecting information in a biased

way) effects. An increase in Internet access therefore translates to an increase in access to

these self-confirmatory effects, and corresponds to changing unbiased agents into biased agents

(an increase in f ). Alternatively, one could consider a scenario where the fraction of biased

agents is fixed, in which case an increase in Internet would improve their ability to obtain self-

confirmatory information (an increase in q). For the purposes of this exploration, however,

the two effects are equivalent, and for convenience we only retain the interpretation where f

increases.

As far as the interpretation of the degree variable k is concerned, the important distinction

to make here is that we are not interested in “social networks” as a catch-all term for the number

of family and friends one has. Rather, given the model, we are interested in the degree to which
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individuals actively exchange information with their underlying social network with regards to

the topic of interest. Therefore, for k we wish to measure the volume of active social information

diffusion in a given population.

As per (25), one of our model’s main results is that f and k work in opposite directions when

it comes to polarisation8 - an increase in confirmatory behaviours increases polarisation and is

equivalent to a reduction in social information. Furthermore, if the majority of the population

accurately learns the ground truth (x∗U > 1/2), reductions in polarisation can be translated

to an increase in consensus on the truth, as a smaller fraction of the population will arrive at

inaccurate beliefs.

Translated to current research on the role of the Internet, we attempt to use our model to shed

light on what has been thought of as the dichotomous effects of Internet access on social learning

and polarisation. On one hand it has been argued that Internet access improves exposure to

diverse information via social networks [2, 3, 4], whereas on another it has been argued that

Internet access enables confirmation bias on a previously unprecedented scale [5, 6]. These

contradictory effects may be in part responsible for the range of conflicting results obtained

in recent research, and in our closing remarks we revisit some of these existing results in the

context of our model.

6.2 Data sources and measuring variables

In order to test the model’s predictions in the aforementioned context, we gathered data from the

Yale Programme on Climate Change Communication 2016 Opinion Maps [7], which provides

state and county level survey data on opinions on global warming, as well as behaviours such

as the propensity to discuss climate change with friends and family. We combined this with

FCC 2016 county level data on residential high speed Internet access [8]. Finally, we also

used a supplemental source in the data aggregated by the Joint Economic Council’s Social

8Strictly speaking the result refers to the variance in information sets, but we exploit the monotonic relationship
between information variance σ2

x∗U
and polarization z∗U for the remainder of this section
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Capital Project [9], a government initiative aiming to measure social capital at a county level

by aggregating a combination of state and county level data from sources such as the American

Community Survey, the Current Population Survey, and the IRS.

In this context, we measured accuracy as the estimated fraction of the population believing

that “global warming is happening”. We refer to this as “GW Accuracy”. In other words, we

are attempting to examine the degree to which social information and access to confirmatory

bias mechanisms affect the ability of individuals to accurately learn an objective, measurable

and uncontroversial ground truth (that global temperatures are rising).

Internet access is measured by the FCC’s data on county-level high speed broadband pene-

tration amongst residentials (in [5], the authors utilise another instrumental variable approach to

argue that increased broadband penetration does in fact increase Internet use). In Table S1 we

demonstrate preliminary ordinary least squares regression results by regressing GW Accuracy

on Internet access, accounting for a range of covariates such as median age, median income,

county population size and the fraction of adults with college degrees. The results indicate

that even after controlling for relevant covariates, the net effect of Internet access on accuracy

is positive9 (and by interpretation, the effect of polarisation on this particular ground truth is

negative).

However, this alone is insufficient as research indicates Internet access is likely to improve

the degree to which individuals can communicate information to friends and family, which in

our model is precisely the variable k. The Yale Climate Change data includes a measure estimat-

ing the fraction of the county population that discusses global warming regularly with family

9One may note that the impact of median income on this regression, and all subsequent results. is negative. We
have verified this result through a number of additional checks. It appears that the inclusion of college education
heavily affects this coefficient, implying that the effect of income on global warming beliefs is heavily mediated
by access to education. We also performed some further checks by including dummy variables for political parti-
sanship using county level voting results for the 2016 presidential elections. While political partisanship provides
additional explanatory power over and above the current set of variables, the coefficient for income when including
it is still negative. Unpacking the exact nature of this relationship would require a broader range of economic and
political factors, which is clearly outside the scope this initial analysis, so we exclude partisanship and continue
with the original model, allowing the coefficients to be taken at face value.
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and friends (“Social Discussion”). To sense check this, Table S1 (column 2) demonstrates that

increased Internet access does indeed improve the ability to discuss matters with friends and

family, even after controlling for relevant covariates, which is consistent with a broad set of

empirical research on the topic (see [10] for a review).

Therefore, this allows us to construct our final model in Table 1(3) where we regress GW

Accuracy on both Social Discussion and Internet access (and the covariates). We can now inter-

pret the coefficient on Internet access as the residual effect of Internet access after controlling

for the effect it has on Social Discussion. One way of thinking about this is to consider all

causal pathways from Internet access to belief formation - some fraction of them will be via

improved access to social and discussion networks (communication platforms, online social

networks, and forums), and the remaining fraction will be non-social (algorithmic effects, filter

bubbles, online news media, selective exposure, etc). By accounting for the former effects by

observing the discussion network size in Social Discussion, the residual effect of internet access

will aggregate all these other effects. This lines up with the interpretation of f in our model -

Internet users will have access to these effects (“biased agents”) and non-Internet users will not.

The results confirm our hypothesis - Social Discussion (k) and residual Internet Access (f ) act

in opposite directions when it comes to learning the ground truth, even after conditioning on a

range of covariates.

It is worth unpacking these results in detail. The direct effect of a 1 percentage point increase

in Internet access on global warming accuracy is negative10 (−2.400). The direct effect on

social discussion is extremely positive11 (3.736), which leads to a corresponding improvement

in accuracy12 of 1.057×3.736 ≈ 3.95. The net effect, of course, is positive (3.95−2.40 = 1.55),

as indicated in the original, simple regression13. However, breaking down the causal mechanism

into its constituent elements - direct internet use effects vs socially mediated internet effects -

10Table 1, Column 3, Row 2.
11Table 1, Column 2, Row 2.
12Table 1, Column 3, Row 1.
13Table 1, Column 1, Row 2.
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Table S1: Initial Regression Results
Dependent variable:

GW Accuracy Social Discussion GW Accuracy
(1) (2) (3)

Social Discussion 1.057∗∗∗
(0.019)

Internet Access 1.550∗∗ 3.736∗∗∗ -2.400∗∗∗
(0.664) (0.447) (0.471)

Median Age -0.044∗∗∗ -0.020∗ -0.023∗
(0.017) (0.011) (0.012)

log(Median Household Income) -6.691∗∗∗ -1.659∗∗∗ -4.938∗∗∗
(0.464) (0.313) (0.327)

log(Total Pop) 0.690∗∗∗ -0.399∗∗∗ 1.112∗∗∗
(0.071) (0.048) (0.050)

College Education 0.335∗∗∗ 0.304∗∗∗ 0.013
(0.013) (0.009) (0.011)

Constant 123.417∗∗∗ 43.730∗∗∗ 77.178∗∗∗
(4.846) (3.267) (3.501)

Observations 2,933 2,933 2,933
R2 0.312 0.448 0.662
Adjusted R2 0.311 0.447 0.661
Residual Std. Error 4.395 (df = 2927) 2.963 (df = 2927) 3.082 (df = 2926)
F Statistic 265.316∗∗∗ 474.324∗∗∗ 953.601∗∗∗

(df = 5; 2927) (df = 5; 2927) (df = 6; 2926)
Note: ∗p <0.1; ∗∗p <0.05; ∗∗∗p <0.01

allows us the capture the nuance of what is actually happening.

6.3 Accounting for simultaneous causality.

A clear shortcoming of the above analysis is the fact that the variable “Social Discussion” is

likely to have a reverse causal relationship with the outcome variable of “GW Accuracy”. That

is, the more likely individuals are to believe global warming is happening, the more likely they

are to discuss this topic with friends and family.
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In order to account for this, we will take an instrumental variable approach. That is, we

need some instrument that can account for independent variation in discussion with family and

friends, which is otherwise unlikely to affect the belief in global warming. We note as before

that k can be interpreted as the fraction of the “underlying social network” that is activated to

transmit social information related to the topic of global warming. We are therefore interested

in a variable that can measure the pre-existing strength of these underlying social networks.

To do so, we make use of the Social Capital Project, a government research programme by

the Joint Economic Committee that attempts to measure Social Capital at a state and county

level throughout the US. Social Capital as defined in this study (and numerous others14) refers

broadly to something “related to social relationships, social networks, and civil society”. More

specifically, it is measured with an intention to reflect communities with “an abundance of close,

supportive relationships” [9].

The index itself measures a spectrum of factors, and in particular a “Community Health”

subindex. The subindex is calculated as the leading principal component across a variety of

state and county-level measures of community engagement (where people ostensibly meet and

socialise with friends and family), including religious congregations, non-religious non-profit

activities, public meeting attendance, working with neighbours to fix things, attending a meet-

ing where politics was discussed, etc. This index is then validated by examining bivariate

correlations with a battery of county level benchmarks and measures of social dysfunction.

The strength of this instrument is established in Table S2 (column 1), where a first stage

least squares regression is run to show that improvements in Community Health do translate to

improved discussion with friends and family (controlling for covariates).

The validity is established through a series of additional checks. Factors such as religious

attendance, public meetings, etc. are unlikely to have a causal effect on people’s beliefs about

global warming independent of them being a medium to allow for social discussion of these

14i.e. Putnam [11] (1995, p.19), “...social capital refers to connections among individuals’ social networks and
the norms of reciprocity and trustworthiness that arise from them”.
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topics. The only other reasonable and plausibly significant causal channel is if these factors

are caused by or cause an increase membership in social groups (for instance, political par-

ties) that are strongly associated with reduced belief in global warming. In particular, it is

well-established that members of the Republican Party have a reduced belief in the existence of

Global Warming [12]. To check this, we examined the bivariate correlation between Commu-

nity Health and the percentage of GOP votes cast in the 2016 presidential election. The results

were weak, with a correlation of only 0.14, meaning only 1.8% of the variation in the measures

were explained by the relationship.

Having established the strength and validity of the instrument, we demonstrate the results

from the two stage least squares regression results in Table S2 (column 2). We can see the

qualitative results of the simpler model have been preserved, with the effects predictably atten-

uated. However, the results are still significant, and corroborate our theory. After separating out

the social and confirmatory effects of Internet access, we can see the impact on Accuracy (and

Polarisation) both occur in the direction that we predict.

Once again, let us unpack the results. The direct effect of a 1 percentage point increase

in internet access on global warming accuracy is negative15 (−1.712). The direct effect on

social discussion is extremely positive16 (3.143), which leads to a corresponding improvement

in accuracy17 of 0.872×3.143 ≈ 2.74. The net effect, of course, is positive (2.74−1.71 = 1.03).

Once again, breaking down the causal mechanism into its constituent elements - direct internet

use effects vs socially mediated internet effects - allows us the capture the nuance of what is

actually happening.

It appears, for the topic of global warming, the net impact of Internet access on social

learning is positive. Increase in Internet access has a direct negative impact on learning (via

f , or q). However, it leads to a significant positive impact on social discussion (k), and the

15Table 2, Column 2, Row 3.
16Table 2, Column 1, Row 2.
17Table 2, Column 2, Row 2.
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net result of this is positive. This result remains robust even after controlling for a battery of

relevant covariates.

It should be emphasized that this result is merely an initial exploration of how our model can

provide some testable predictions to empirical data, as opposed to a detailed effort to understand

the effect of Internet access on global warming beliefs. Having said that, the initial results are

encouraging, and we hope the clarity of the analytic results of our model pave the way for testing

variations of the idea of biased information aggregation in a range of outcomes and settings.

6.4 Making sense of broader empirical results.

We have seen so far that our model can help us decompose the effect of internet access on

learning in the specific case of global warming facts. We now see if the model can help us better

understand the seemingly conflicting findings we have found in existing research as indicated

above. It should be said that the following interpretations are meant only to be indicative of how

our model can help shape our theoretical understanding of empirical phenomena, rather than a

detailed exploration of the specific empirical questions these papers explore.

In [13], the authors argue that internet access has not had an effect on political polarisation

because the demographic with the lowest increase in internet use - the elderly - has had the

highest increase in political polarisation. However, it is also well established that older people

have smaller network sizes than younger people [14] and growing evidence of demographic

shifts suggest that older people are increasingly living alone [15]. This translates to a direct

fall in k for such populations, and without a corresponding increase in k provided by internet

access, we would in fact expect to see higher polarisation in such a group.

In [5], the authors argue that an increase in internet access leads to an increase in political

polarisation. Firstly, it is worth noting that the overall effect size is very small - increasing the

number of broadband providers by 10% increases political polarisation by 0.003 points (on a

scale between 0 and 1). This is consistent with notion that social connectivity will dampen the
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Table S2: IV Regression Results
Dependent variable:

Social Discussion GW Accuracy
OLS instrumental

(First Stage LS) variable (2SLS)
(1) (2)

Community Health Index 1.501∗∗∗
(0.081)

Social Discussion 0.872∗∗∗
(0.060)

Internet Access 3.143∗∗∗ -1.712∗∗∗
(0.424) (0.523)

log(Median Household Income) -1.814∗∗∗ -5.281∗∗∗
(0.297) (0.346)

log(Total Pop) 0.300∗∗∗ 1.044∗∗∗
(0.059) (0.056)

Median Age -0.081∗∗∗ -0.028∗∗
(0.011) (0.012)

College Education 0.245∗∗∗ 0.070∗∗∗
(0.009) (0.021)

Constant 42.621∗∗∗ 85.649∗∗∗
(3.095) (4.356)

Observations 2,932 2,932
R2 0.506 0.651
Adjusted R2 0.505 0.651
Residual Std. Error (df = 2925) 2.803 3.129
F Statistic 499.387∗∗∗ (df = 6; 2925)
Note: ∗p <0.1; ∗∗p <0.05; ∗∗∗p <0.01
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direct effect of biased media, and it is possible one could uncouple the effect of the internet on

social connectivity as opposed to enabling confirmation bias with some proxy measure for social

connectivity. What is also noteworthy is that the researchers included the level of “political

interest” per county as a mediating variable in parts of the analysis. So for example, if we allow

f to represent the fraction of respondents in each county with such strong partisan interest, then

q could represent the level of bias these agents can display due to access to partisan media on the

internet. Under this interpretation we can make sense of the interaction terms in the regression

results - the effect of internet access on polarisation was considerably higher for counties where

political interest is higher, which is exactly what we predict from the product (fq2) in (25).

In [16], the author argues that internet access leads to a decrease in political polarisation.

This study looks solely at Twitter networks over time (but shows how they relate to political

polarisation data offline). The author finds that more diverse Twitter networks lead to reduced

polarisation over time. Again, our model predicts the following - since everyone is already

on Twitter in this scenario, the fractions f and q are untouched. However, the author notes

that more diverse networks are directly correlated with larger networks - a larger k. It fol-

lows therefore that these users with reduced polarisation experienced an increased k without a

corresponding change in f or q, and the results follow.

All in all, our biased learning model has proven to provide useful insight into a long-standing

debate about an important empirical topic. We show that it allows us compress a large and

complex set of causal mechanisms in the literature down to the effect of three terms of interest -

the prevalence of biased agents (f ), degree of bias (q), and social connectivity (k). In doing so,

we were able to shed insights on the mechanisms at play when it came to internet access, and

provide the beginnings of a more uniform understanding of what previously conflicting data has

suggested to date.
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