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Datasets13

We use MODIS/Terra atmospherically corrected surface reflectance 8-day Level 3 Global 500 m14

SIN Grid V006 imagery (MOD09A1) for detecting and monitoring monthly variation of surface15

water extent of Lake Chad at 500 m spatial resolution, for the 2001-2018 period. Although MODIS16

has moderate spatial resolution compared to other satellite products (for example, Landsat at 3017

m and Sentinel-2 at 10-20 m). However, MODIS presents a strong advantage with its tempo-18

ral resolution since it offers 2 images per day compared to 16 days for Landsat or 10 days with19

Sentinel-2. Moreover, it offers longer time series than Sentinel-2 which observations started in20

mid-2015. MOD09A1 imagery used in this study are freely distributed from the NASA’s Earth-21

Data Hub (https://search.earthdata.nasa.gov/search). For validation purposes22

with MODIS surface water maps, we use atmospherically corrected surface reflectance Lansat-823

and Sentinel-2 imagery at 30 m and 10 m spatial resolution, respectively. Landsat-8 imagery are or-24

dered from the USGS EarthExplorer website (https://earthexplorer.usgs.gov/), and25

Sentinel-2 Level-1C Top-of-Atmosphere (TOA) imagery are downloaded from the Sentinel Data26

Hub (https://scihub.copernicus.eu/dhus/#/home). To limit the effects of clouds,27

only Landsat and Sentinel-2 imagery with <= 5% of cloud contamination are used. Temporal28

distribution of all 51 Landsat-8 and 43 Sentinel-2 imagery used in this study is shown in Figure29

S1.30

Radar satellite altimetry data from two 35-day repeat period missions (ENVISAT, and SARAL)31

are used to estimate monthly variation of surface water levels at different parts of Lake Chad for32
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Figure S1: Temporal distribution of 51 Landsat-8 and 43 Sentinel-2 imagery used in this study.

the 2003-2015 period. All altimetry data used in this study were processed, validated, and dis-33

tributed by the Center of Topography of the Oceans and the Hydrosphere (CTOH) in the Labora-34

toire d’Études en Géophysique et Océanographie Spatiales (LEGOS), France (http://ctoh.35

legos.obs-mop.fr/). Note that altimetry data from missions with a 10-day repeat period36

(for instance, Jason-1,2,3) are available but only used to construct the water height of the south-37

ern pool as there is no intersection between the satellite ground-tracks and other parts of Lake38

Chad. For the southern pool, we use directly water height data collected from the Hydroweb1
39

(http://hydroweb.theia-land.fr/).40

GRACE Land Mass Grids - Global mascons products (Release 06) (https://grace.41

jpl.nasa.gov/data/get-data/) are also used to estimate monthly variation of total land42

surface water storage for the 2003-2016 period, with an accuracy of ∼1.5 cm of equivalent water43

thickness2, 3. Monthly GRACE data are provided by three different processing centers: the Geo-44
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forschungsZentrum Potsdam (GFZ), the Center for Space Research at University of Texas, Austin45

(CSR), and the Jet Propulsion Laboratory (JPL). The three products are averaged to reduce noise in46

the gravity field solutions4, then the output is multiplied with the provided GRACE scaling factor47

to increase the accuracy of the GRACE total water storage estimates5. Although GRACE spatial48

resolution is ∼300 km, the product we use is distributed on a 0.25°×0.25° pixel-size grid.49

We use GLEAM 3.3 version dataset6, 7 to estimate monthly variation of root-zone soil mois-50

ture over Lake Chad at 0.25°×0.25° pixel-size grid, for the 2003-2016 period. The dataset is51

distributed at https://www.gleam.eu/ where several details can be found.52

Figure S2 shows all satellite datasets used in this study, and some available satellite datasets53

could be used in future studies.54

Figure S2: List of satellite datasets used in this study.
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Land Surface Water Extent Mapping with MODIS Imagegy55

Examples of monthly surface water extent maps derived from MODIS imagery over Lake Chad56

for January, April, July and October 2003 is shown in Figure S3. Vegetation cover over the Lake is57

also presented. It is clear that vegetation cover is limited at the beginning of the year (in January),58

then it increases gradually in April and July until it reaches the maximum when the wet season59

comes in October.60
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Figure S3: Examples of surface water extent maps derived from MODIS (at 500 m spatial resolu-

tion) over Lake Chad for January, April, July and October 2003
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Land Surface Water Extent Mapping with Landsat-8 and Sentinel-2 Imagery.61

The variations of surface water extent at both regional and global scales have been monitored

using higher spatial resolution images from Landsat8–11, and recently Sentinel-212, 13 observations.

The main principle of these studies is to distinguish water and non-water bodies based on the

application of water indices13, such as the Normalized Difference Vegetation Index (NDVI)14,

the Normalized Difference Water Index (NDWI)15, the Modified Normalized Difference Water

Index (MNDWI)16, or the Automated Water Extraction Index (AWEI)17. Some authors compared

the performance of these indices in different regions12, 16, 18–20, and concluded that the MNDWI

normally gives the best result among all the indices. Over Lake Chad basin, the MNDWI was also

reported to work better than other indices in detecting surface water bodies20, 21. In this study, we

apply a threshold on the MNDWI to separate water and non-water bodies within Lake Chad region.

By definition, the MNDWI is the ratio between the green band and the middle infrared band16 (see

Equation (1)).

MNDWI =
Green−MIR

Green+MIR
(1)

Over water bodies, MIR wavelengths (1550-1750 nm) are almost completely absorbed and the62

green wavelengths (520-600 nm) are highly reflected. As a consequence, water surfaces usu-63

ally have high positive MNDWI values. In contrast, vegetation canopy and soil usually have low64

negative MNDWI values because the MIR wavelengths are reflected more than the green wave-65

lengths. A threshold (T = 0) is normally set in order to distinguish water from non-water pixels.66

However, we found that with this threshold, the derived surface water extent maps within Lake67

Chad are overestimated, especially over the north part of the southern pool. Some authors applied68
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Otsu algorithm22 to automatically extract surface water bodies as it is one of the best thresholding69

techniques20. To obtain the best result, the Otsu algorithm requires that the image to be classified70

must have bi-modal or multi-modal histogram distribution. This method does not provide the best71

result if the histogram is uni-modal or close to uni-modal. We tested the Otsu algorithm with both72

Landsat-8 and Sentinel-2 images, but results were not satisfied because the MNDWI histogram73

distributions were not bi-modal as the number of non-water pixels is much larger than the number74

of of water pixel (see Figure S4). After many careful tests on different thresholds between 0 and the75

Otsu threshold (0.3176), the MNDWI threshold for Lake Chad was set to 0.2. This is consistence76

with Zhu et al. (2017)21 which also applied the same threshold value for classifying surface water77

extent over the southern pool of Lake Chad. Table S1 shows the corresponding green and MIR78

bands from Landsat-8 and Sentinel-2 used to calculate the MNDWI. For Sentinel-2 imagery, the79

spatial resolutions of green and MIR bands are 10 m and 20 m, respectively. To produce MNDWI80

at 10 m spatial resolution, the MIR band is resampled to downscale the spatial resolution from81

20 m to 10 m using image fusion technique (e.g., pan-sharpening23). All Landsat-8 and Sentinel-82

2 pre-processing steps are processed using ENVI and ESA’s SNAP software. See the temporal83

distribution of Landsat-8 and Sentinel-2 used in this study in Figure S1.84
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Figure S4: Histogram of a Sentinel-2 MNDWI imagery over Lake Chad (acquired on 6 October

2017) with three different threshold values.

Table S1: Corresponding Landsat-8 and Sentinel-2 Green and MIR bands used to calcu-

late the MNDWI.

Green band MIR band

Landsat-8 Band 3 (530-590 nm; 30 m) Band 6 (1570-1650 nm; 30 m)

Sentinel-2 Band 3 (523-595 nm; 10 m) Band 11 (1520-1700 nm; 20 m)
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Validation of MODIS-derived Surface Water Extent Maps85

To validate our MODIS-derived surface water extent maps, we compared with results derived86

from Landsat and Sentinel-2 imagery. Figure S5 shows inundation frequency of Lake Chad de-87

rived from 18 years (2001-2018) of MODIS data (left), and from 32 years (1984-2015) of Landsat88

data (right)11. The structure of Lake Chad inundation frequency is very similar, with high inun-89

dated ratio in the southern pool, lower inundated ratio in the Archipelagos, and much lower in the90

northern pool, as expected. Between the two pools, there is a non-inundated area as this part is91

always covered by permanent vegetation. At this stage, we are not sure that this area is totally dry,92

or there are water under the vegetation canopy but they are invisible from satellite sensors (both93

optical and radar). Results from Landsat data suggest that the inundated ratio in the northern pool94

and in the Archipelagos is higher than from MODIS. This can be explained by the fact the the time95
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Figure S5: Inundation frequency of Lake Chad derived from 18 years of MODIS (left) and 32

years of Landsat data (right).
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series of Landsat data used in Pekel et al. (2016)11 for the estimation is nearly double compared to96

the time series of MODIS data we used in this study (32 years compared to 18 years). Permanent97

surface water extent (when the surface are inundated >= 80% during the study period) derived from98

MODIS and Landsat are 1595 km2 and 1515 km2, respectively. As Landsat have higher spatial99

resolution than MODIS, Landsat image shows many details of small water bodies than MODIS100

(for example, the tiny river in the southwest of the southern pool).101

Very good agreement are also evidenced when compare MODIS-derived with Sentinel-2-102

derived surface water extent maps of the southern pool in dry and wet seasons 2017 (Figure S6).103

The southern pool appears clearly in both MODIS and Sentinel-2 surface water extent maps, and104

advantages of higher Sentinel-2 spatial resolution (10 m) are obviously seen. Rivers and small105

water bodies in the Archipelagos are totally detected in Sentinel-2 maps, but partly or not detected106

in MODIS maps. 43 free-cloud Sentinel-2 imagery (<= 5% cloud contamination) are processed to107

obtain the time series of surface water extent in the southern pool for the October 2016 - December108

2018 period, for comparison with MODIS results (Figure S7). The two time series show a very109

high linear temporal correlation (96%), but MODIS always underestimates surface water extent110

compared to Sentinel-2. This is expected because the spatial resolution of Sentinel-2 is 250 times111

higher than MODIS, therefore, Sentinel-2 can detect much better small water bodies than MODIS.112

Total surface water area detected by Sentinel-2 is 14%-15% higher than that detected by MODIS.113

The difference in the rainy seasons is lower (9%-10%) than in the dry seasons (18%-20%). The dif-114

ference mostly comes from the river, and especially from the Archipelagos where the environment115

is very complicated by the combination of soil, water and sand.116
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Figure S6: Surface water extent maps over the southern pool of Lake Chad, derived from MODIS

(left) and Sentinel-2 (right) in dry and rainy seasons 2017. Sentinel-2 images were acquired on 29

January and 27 July 2017, respectively.
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Figure S7: Comparison between time series of surface water extent over the southern pool of Lake

Chad derived from MODIS and Sentinel-2 for the October 2016 - December 2018 period. See

Figure S1 for the temporal distribution of Sentinel-2 images.
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Annual variation of surface water and permanent vegetation117
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Figure S8: Annual minimum (red) and maximum (red, light and dark blue) surface water extent,

and permanent vegetation (green) of Lake Chad from 2001 to 2018.

Annual minimum (red) and maximum (red, light and dark blue) of surface water extent of118

Lake Chad over the last 18 years are shown in Figure S8. It clearly shows that the southern pool of119

Lake Chad is very stable during almost the last 20 years, at both minimum and maximum states.120

In the northern pool, surface water extent variation is more dynamic.121
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Figure S9 shows the increase of permanent vegetation cover between the two pools as shown122

in Figure S8. An increase of ∼30% of permanent vegetation is evidenced between 2001 (∼3800123

km2) and 2018 (∼5200 km2).124

Figure S9: Annual permanent vegetation cover over Lake Chad for the 2001-2018 period.

14



Monthly surface water level maps125

Examples of monthly surface water level maps over Lake Chad in January, April, July, and October126

2003 are shown in Figure S10.127
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Figure S10: Surface water level maps (in m) at 500 m spatial resolution for January, April, July,

and October 2003.
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Variation of river discharge128

Monthly in situ discharge data at four gauge stations, for the 1985-2015 period, are collected and129

shown in Figure S11. The longest time series data (back to 1950) are only available in N’Djamena130

station. Figure S11 clearly shows the decreasing trend of discharge from 1950s to the end of 1980s,131

but from the beginning of 1990s until present time, discharge is slowly increasing again.132

Figure S11: Monthly in situ discharge time series at four gauge stations (N’Djamena, Chagoue,

Bongor, and Sarh). Their trends (red) are also plotted.
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