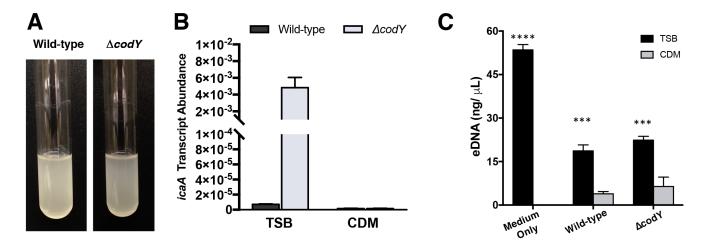
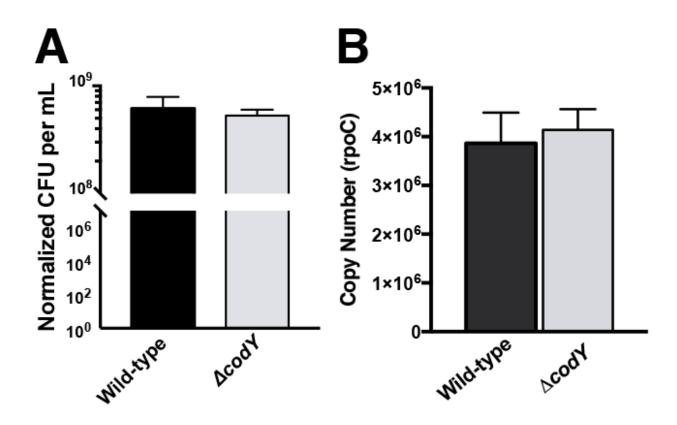
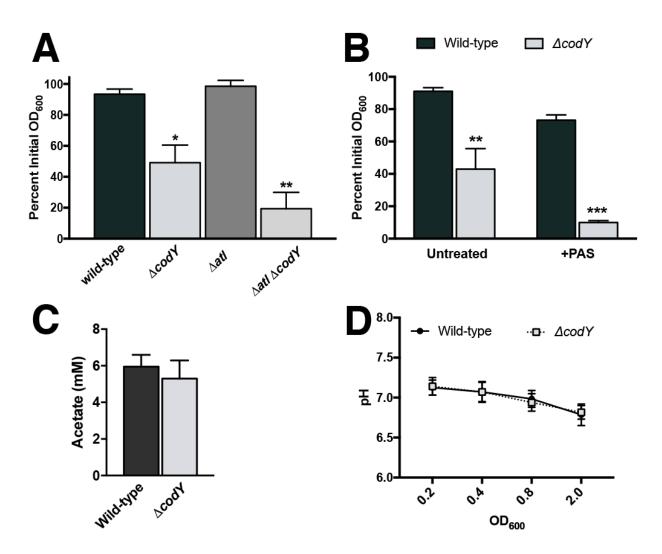

Supplementary Figure 1. Cell aggregation and static biofilm formation are correlated. (A) Representative images from overnight cultures of wild-type and an isogenic $\triangle codY$ grown in TSB. The experiment was performed multiple times. (B) Results from static biofilm assays are shown. Statistics: *p < 0.05, **p < 0.01 compared to the Wild-type parent strain (black bars) using Student's ttest. N.S., not significant.


Supplementary Figure 2. Secreted nuclease does not account for the opposing phenotypes observed in $\Delta codY$ mutants from different isolates. (A) SA564 and LAC cells were grown to exponential phase aerobically in TSB, and *nuc* transcript abundance in wild-type (black) and $\Delta codY$ mutant (grey) cells was determined by qRT-PCR. Data were normalized to *rpoC* transcript (i.e., copies of *rpoC*). (B) Secreted nuclease activity was determined from cultures supernatants during exponential growth in TSB using a FRET assay (see *Materials and Methods*). Nuclease activity was undetectable in Δnuc and $\Delta codY \Delta nuc$ mutants. Data indicate the mean \pm SEM of at least three independent experiments. **p* < 0.05, ***p* <0.01, ***p*<0.001; Students t-test comparing the $\Delta codY$ mutant relative to its wild-type. ND, not detected. No statistical difference is observed when $\Delta codY$ mutants are compared to one another.


Supplementary Figure 3. A SNP in *mraY* does not account for the loss of aggregation in $\Delta codY$ *soa-1*, but co-culturing with a $\Delta codY$ restores eDNA-dependent cell aggregation. (A) Representative images of overnight cultures in TSB of SA564 (wild-type) as well as the isogenic $\Delta codY$ mutant and reconstructed *mraY** $\Delta codY$ mutant. (B) Results of a co-culture experiment performed using the suppressor mutant harboring pKM16 (red) and the SA564 $\Delta codY$ mutant during exponential growth in TSB. All cells are labeled with Syto40 (blue), eDNA and dead cells are labeled with TOTO-1 (green). Images are representative of multiple experiments. Scale bar is 50 µm; all panels are viewed at the same magnification.


Supplementary Figure 4. Overexpression of *ica* results in eDNA-dependent cell aggregation in LAC wild-type cells. Exponentially growing (A) LAC or (B) SA564 wild-type cells cultured in TSB harboring pMRSI (vector) or pKM28 ($P_{sarA-P1}$ -*icaADBC*) cells were imaged using CSLM. All cells were visualized using Syto 40 (blue signal) while eDNA and dead cells were stained by TOTO-1 (green signal). All images are representative of multiple experiments. Scale bar: 10 µm where indicated; all panels are viewed at the same magnification.

Supplementary Figure 5. *AcodY* mutants fail to form cell aggregates in CDM medium. (A) Representative images of the SA564 wild-type and $\Delta codY$ mutant cultured overnight in CDM medium. (B) SA564 was grown to exponential phase aerobically in TSB or CDM, and *icaA* transcript abundance in wild-type (black) and a $\Delta codY$ mutant (grey) cell was determined by qRT-PCR. Data were normalized to *rpoC* transcript. (C) eDNA was extracted from media only or supernatants from exponentially growing cells in TSB or CDM and quantified. ***p < 0.001, ****p < 0.0001; Two-way ANOVA comparing TSB to the CDM for each condition with Sidak's multiple comparison post hoc test.

Supplementary Figure 6. Cell lysis is not increased in a $\triangle codY$ mutant. SA564 (black bars) and $\triangle codY$ mutant cells (grey bars) were grown exponential phase aerobically in TSB. (A) Colony forming units were determined by dilution plating. (B) DNA was extracted from culture supernatants and *rpoC* copy number was determined using quantitative PCR.

Supplementary Figure 7. Atl is not required for cell aggregation in a $\triangle codY$ mutant. (A) Results of a settling assay are shown for cells of the indicated SA564 strains grown in TSB or (B) for the indicated SA564 strains in the presence or absence of polyanthole sulfate (PAS). Statistics: (A) **p* < 0.05, **p* < 0.05, **p* < 0.05, **p* < 0.01, ANOVA with Dunnett's post analysis compared to Wild-type (B) ***p*<0.01, ****p* < 0.001 compared to Wild-type (black bars) using Student's t-test. (C) Acetate concentration and (D) culture pH were determined from culture supernatants during exponential phase, when $\triangle codY$ mutant cells aggregate. No statistical difference was found using a two-tailed t-test.

Raw	Aggregate	Dispersed
Syto 40	25684	1779
dsRed (wt)	3314	642
Normalized	Aggregate	Dispersed
Syto 40	22371	1137
dsRed (wt)	3314	642
Fold- enrichment (∆ <i>codY</i>)	6.8	1.8

Pixel intensities for the regions of interest are shown

<i>S. aureus</i> strains	Relevant genotype or description	Source or Reference ^a
RN4220	restriction deficient, highly transformable	(1)
SRB337	USA200 MSSA UAMS-1	(2)
SRB547	Newman MSSA Isolate	(3)
SRB561	SRB547 ∆ <i>codY::ermC</i>	
SRB687	USA300 LAC CA-MRSA Em ^s	(4)
SRB813	SRB337 <i>codY::</i> φNΣ <i>(erm::tetM)</i> ^B	(5)
SRB892	SRB687 <i>codY::</i> φNΣ <i>(erm::tetM)</i>	
SRB1211	SA546 MSSA Isolate	(6)
SRB1218	SRB1211	
SRB1233	SRB687 <i>nuc</i> ::φNΣ	
SRB1234	SRB687 <i>codY</i> ::φNΣ <i>(erm::tetM) nuc</i> ::φNΣ	
SRB1236	SRB1211 <i>nuc</i> ::φNΣ	
SRB1237	SRB1211 <i>codY</i> ::φNΣ <i>(erm::tetM) nuc</i> ::φNΣ	
SRB1243	SRB1211 <i>codY</i> ::φNΣ <i>(erm::tetM) soa-1</i> (MraY ^{L113M} , <i>icaB</i> Q223*)	
SRB1276	COL MRSA Isolate	(7)
SRB1277	SRB1276 ∆ <i>codY::ermC</i>	
SRB1278	MW2 MRSA Isolate	(8)
SRB1279	SRB1278 ∆ <i>codY::ermC</i>	
SRB1345	SRB1211 / pKM15	
SRB1346	SRB1211 <i>codY</i> ::φNΣ (<i>erm::tetM</i>) / pKM15	
SRB1347	SRB687 <i>codY</i> ::φNΣ (<i>erm::tetM</i>) / pKM15	
SRB1351	SRB1211 / pKM16	
SRB1352	SRB1211 <i>codY</i> ::φNΣ (<i>erm::tetM</i>) / pKM16	
SRB1353	SRB1211 <i>codY</i> ::φNΣ (<i>erm::tetM</i>) <i>soa-1</i> / pKM16	
SRB1378	SRB1276 ∆ <i>codY</i> ::ermC / pKM16	
SRB1379	SRB687 <i>codY</i> ::φNΣ (<i>erm::tetM</i>) / pKM16	
SRB1468	SRB1211 ∆ <i>ica::tetM</i>	
SRB1472	SRB1211 ∆ica::tetM ∆codY::ermC	
SRB1507	SRB1211 <i>mraY*</i> (L113M)	
SRB1517	SRB1211 <i>mraY*</i> (L113M) <i>∆codY::ermC</i>	
SRB1575	SRB1211 <i>codY</i> ::φNΣ (<i>erm::tetM</i>) <i>soa-1</i> / pCN51	
SRB1576	SRB1211 <i>codY</i> ::φNΣ (<i>erm::tetM</i>) <i>soa-1</i> / pKM26	
SRB1580	SRB687 / pKM28	
SRB1581	SRB1211 / pKM28	
SRB1583	SRB687 / pMRSI	
SRB1584	SRB1211 / pMRSI	
SRB1603	SRB1211 / pKK30	
SRB1604	SRB1211 codY::φNΣ (<i>erm::tetM</i>) / pKK30	
SRB1605	SRB1211 <i>codY</i> ::φNΣ (<i>erm::tetM</i>) / pKM25	
SRB1618	SA113 Δ <i>lgt</i> ::ermB	(9)

Table S2. Bacterial strains used in this study.

SRB1624	SRB1211 <i>∆lgt</i> ::ermB			
SRB1625	SRB1211 Δ <i>lgt::ermB codY</i> ::φNΣ (<i>erm::tetM</i>)			
P. aeruginosa				
Strains				
		A. Oglesby-		
SRB1611	PA01	Sherrouse		
a Unless noted otherwise strains were constructed during the course of this study				

^a Unless noted otherwise strains were constructed during the course of this study. ^b Resistance marker was exchanged using the NTML toolbox as described in (10).

Table S3. Oligonucleotides used in this study.^a

Primer	Sequence (5' to 3') ^{b,c}	Purpose			
oDS001	CGAAAGAACAATACGCAAAGAGG	qRT-PCR of			
003001	CGAAAGAACAATACGCAAAGAGG	<i>nuc</i> qRT-PCR of			
oDS002	TGCATTTGCTGAGCTACTTAGA	nuc			
oKM74	CCGC <u>GCATGC</u> TATTTTTGACTAAACCAAATGC	Construction of pKM15			
		Construction			
oKM75	AAG <u>GAATTC</u> TGCTCGATACATTTGCCCGATAA	of pKM15 Construction			
oKM76	AAA <u>GGATCC</u> TGCTCGATACATTTGCCCGAT	of pKM16			
		Construction			
oKM77	GGCG <u>GTCGAC</u> TATTTTTGACTAAACCAAATGC	of pKM16 Construction			
oKM102	GCCC <u>GAATTC</u> AATCATTAGAACCAGTTACTATTGG	of pKM22			
oKM103	TTG <u>GTCGAC</u> TTTACCATTTGTACCCGTTACAGC	Construction of pKM22			
oKM111		Construction			
	TCTCTCGTTTTAGATAATAAGCTCATTACATTTACCCTCCATCAATAAG	of pKM25			
oKM112	ATGAGCTTATTATCTAAAACGAGAGA	Construction of pKM25			
		Construction			
oKM113	TTT <u>GGATCC</u> TTATTTACTTTTTTCTAATTCATC	of pKM25 Construction			
oKM120	AATTAAA <u>GCGGCCGC</u> TAATGACTTTCTAAATGGAAAATAC	of pKM25			
oKM121		Construction			
	GGG <u>GCATGC</u> CTATTTTTGACTAAACAAAATGCTAACC	of pKM26 Construction			
oKM122	CACATGTAATTCCTCCTTTTATAGATTATCTGGATCCTGCTCGATACATTTGCCCGATA	of pKM26			
oKM123		Construction			
	<i>GATAATCTATAAAAGGAGGAATTACATGTG</i> AAGTATAGAAAATTTATAATTTTAG	of pKM26 Construction			
oKM124	CCC <u>GAATTC</u> CTAATCTTTTCATGGAATCCGTCCC	of pKM26			
oKM125	GGCAGATCTAGATAATCTATAAAAGGAGGAATTACATTTGCAATTTTTAACTTTTTGCT	Construction of pKM28			
oKM126		Construction			
	GCC <u>GCATGC</u> TTAATAAGCATTAATGTTCAATTTATATGG	of pKM28			
oNW039	ACCGGCAACTGGGTTTATT	qRT-PCR of <i>icaB</i>			
		qRT-PCR of			
oNW040	TGCATATCGTGGGTATGTGTT	<i>icaB</i> qRT-PCR of			
oNW043	TGAACAAGAAGCCTGACATAAA	icaA			
		qRT-PCR of			
oNW044	CGTATTTGAGTGCAAGAACATTAG	icaA			
oSDB000		qRT-PCR of			
oSRB239	GGATTGGCTTCACCTGAAAA	<i>rpoC</i> qRT-PCR of			
oSRB240	CTTTCACGACGTACTTTAGA	rpoC			
FRET		DNA FRET assay			
substrate	5Cy3-CCCGGATCCACCCC-3BHQ_2	substrate			
	^a oKM primers were designed using SA564 as a reference genome (GenBank: CP010890.1). All others were designed				
from MRSA252. ^b Underline denotes the presence of a restriction site for cloning.					

^b Underline denotes the presence of a restriction site for cloning.

^c Italics denotes sequence homology for use in overlapping PCR.

Table S4. Plasmids used in this study.

Plasmid	Relevant Genotype	Reference ^a
pCN51	Shuttle vector for use in Gram positives (Ap ^R , Em ^R)	(11)
pJB38	Temperature sensitive plasmid for alleleic exchange (Ap ^R , Cm ^R)	(10)
pKK30	Stably mainted shuttle vector for <i>S. aureus</i> (Ap ^R , Tm ^R)	(12)
pKM15	pMRSI with SarA-P1 promoter for constituative sGFP expression (Ap ^R , Cm ^R)	
pKM16	pMRSI with SarA-P1 promoter for constituative sDsRed expression (Ap ^R , Cm ^R)	
pKM22	pJB38 with <i>mraY</i> * allele (MraY ^{L113M}) (Ap ^R , Cm ^R)	
pKM25	pKK30 with native promoter fused to CodY for complementation (Ap ^R , Tm ^R)	
pKM26	pCN51 with SarA-P1 promoter fused to <i>icaB</i> with TIR ribosome binding site (Ap ^R , Em ^R)	
pKM28	pMRSI with SarA-P1 promoter fused to the <i>icaADBC</i> locus (Ap ^R , Cm ^R)	
pMRSI	sGFP-sDsRed double reporter shuttle vector (Ap ^R , Cm ^R)	(5)
^a Unless oth	nerwise noted all plasmids were engineered during this study.	

References

- 1. Schenk S, Laddaga RA. 1992. Improved method for electroporation of *Staphylococcus aureus*. FEMS Microbiol Lett 73:133-8.
- 2. Gillaspy A, Hickmon S, Skinner R, Thomas J, Nelson C, Smeltzer M. 1995. Role of the accessory gene regulator (*agr*) in pathogenesis of staphylococcal osteomyelitis. Infect Immun 63:3373-3380.
- 3. Duthie ES, Lorenz LL. 1952. Staphylococcal coagulase; mode of action and antigenicity. J Gen Microbiol 6:95-107.
- 4. Boles BR, Thoendel M, Roth AJ, Horswill AR. 2010. Identification of genes involved in polysaccharide-independent *Staphylococcus aureus* biofilm formation. PLoS One 5:e10146.
- 5. Waters NR, Samuels DJ, Behera RK, Livny J, Rhee KY, Sadykov MR, Brinsmade SR. 2016. A spectrum of CodY activities drives metabolic reorganization and virulence gene expression in *Staphylococcus aureus*. Mol Microbiol 101:495-514.
- 6. J.M. M, R.K. S. 1990. Genetic analysis of natural populations of *Staphylococcus aureus*, p 59-67. *In* Novick RP (ed), Molecular Biology of the staphylococci. VCH Publishers, New York, NY.
- 7. Dyke K, Jevons M, Parker M. 1966. Penicillinase production and intrinsic resistance to penicillins in *Staphylococcus aureus*. Lancet 1:835-838.
- 8. Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K, Oguchi A, Nagai Y, Iwama N, Asano K, Naimi T, Kuroda H, Cui L, Yamamoto K, Hiramatsu K. 2002. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:1819-1827.
- 9. Stoll H, Dengjel J, Nerz C, Götz F. 2005. *Staphylococcus aureus* deficient in lipidation of prelipoproteins is attenuated in growth and immune activation. Infect Immun 73:2411-2423.
- 10. Bose JL, Fey PD, Bayles KW. 2013. Genetic tools to enhance the study of gene function and regulation in Staphylococcus aureus. Appl Environ Microbiol 79:2218-24.
- 11. Charpentier E, Anton AI, Barry P, Alfonso B, Fang Y, Novick RP. 2004. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl Environ Microbiol 70:6076-6085.
- 12. Krute CN, Krausz KL, Markiewicz MA, Joyner JA, Pokhrel S, Hall PR, Bose JL. 2016. Generation of a stable plasmid for in vitro and in vivo studies of Staphylococcus. Appl Environ Microbiol doi:10.1128/AEM.02370-16.