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Supplementary Figure 2 | Scaling probe count with diversity of viral 
genomes. Number of probes required to fully capture increasing numbers 
of HIV-1, EBOV, and ZIKV genomes. Approaches shown are simple tiling 
(gray), a clustering-based approach at two levels of stringency (red; 
see Supplementary Note 2 for details), and CATCH at three choices of 
parameters (blue). Shaded regions are 95% pointwise confidence bands 
calculated across randomly sampled input genomes.
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Supplementary Figure 1 

Parameters used by CATCH in default model of hybridization. 

CATCH models hybridization between each candidate probe and the target sequences. Doing so allows CATCH to decide whether a 
candidate probe captures (or ‘covers’) a region of the target sequence, and thus find a probe set that achieves a desired coverage of 
the target sequences under this model. For whole genome enrichment, the desired coverage would typically be 100% of each target 
sequence. (a) Relatively conserved regions (for example, a particular gene) in the input sequences can be captured with few probes 
because it is likely that any given probe, under a model of hybridization, will capture observed variation across many or all of the input 
sequences. Highly variable regions may require many probes to be captured because each given probe may capture the observed 
variation across only a small fraction of the input sequences. (b) By default, CATCH decides whether a probe hybridizes to a region of a 
target sequence according to the following parameters: a number m of mismatches to tolerate and a length lcf of a longest common 
substring. CATCH computes the longest common substring with at most m mismatches between the probe and target subsequence, 
and decides that the probe hybridizes to the target if and only if the length of this is at least lcf. If the parameter i is provided, CATCH 
additionally requires that the probe and target subsequence share an exact (0-mismatch) match of length at least i. If CATCH decides 
that the probe hybridizes to the subsequence of the target with which it shares a substring, then it determines that the probe captures 
the region equal to the length of the probe as well as e nt on each side of this region. e, termed a cover extension, is a parameter 
whose value can be specified to CATCH, along with m, lcf, and i. Lower values of m, higher values of lcf, higher values of i, and lower 
values of e are more conservative and lead to more probe sequences. (For details, see the description of fmap in Online Methods.) (c) 
Number of probes required to fully capture 300 genomes of HCV, HIV-1, EBOV, and ZIKV, for varying values of the mismatches and 
cover extension parameters, with other parameters fixed. Shaded regions are 95% pointwise confidence bands calculated across 
randomly sampled input genomes. 



 
 

 

Supplementary Figure 2 

Scaling probe count with diversity of viral genomes. 

Number of probes required to fully capture increasing numbers of HIV-1, EBOV, and ZIKV genomes. Approaches shown are simple 
tiling (gray), a clustering-based approach at two levels of stringency (red; see Supplementary Note 2 for details), and CATCH at three 
choices of parameters (blue). Shaded regions are 95% pointwise confidence bands calculated across randomly sampled input 
genomes. 
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Supplementary Figure 3 

Design of the VWAFR probe set. 

(a) Number of probes designed by CATCH for each dataset among all 89,990 probes in the VWAFR probe set. The total includes reverse 
complement probes, which were added to the design of VWAFR for synthesis. (b) Values of two parameters selected by CATCH for each 
dataset in the design of VWAFR: number of mismatches to tolerate in hybridization and length of the target fragment (in nt) on each side 
of the hybridized region assumed to be captured along with the hybridized region (cover extension). The label within each bubble is the 
number of datasets that were assigned a particular combination of values. Species included in our sample testing are labeled; for full 
list of parameter values, see Supplementary Table 1. 
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Supplementary Figure 4 

Depth of coverage observed across viral genomes from samples with known viral infections. 

Depth of coverage across 31 viral genomes from the analysis of 30 patient and environmental samples with known viral infections (one 
sample contained two known viruses). Shown on (a) linear and (b) logarithmic scales. The logarithmic scale helps compare variance in 
depth across each genome between pre- and post-captured data. 



 
 

 
 

Supplementary Figure 5 

Relation between enrichment of viral content and viral titer. 

Fraction of all downsampled pre-capture reads that mapped to the reference genome (shown on the horizontal axis) for 24 viral 
genomes reflects a wide range of initial viral concentrations in these samples. Enrichment (shown on the vertical axis) was calculated 
by dividing the total number of post-capture reads mapping to a reference genome by the number of mapped pre-capture reads. Those 
with the highest viral content showed lower enrichment following capture with VALL. Seven of the 31 viral genomes included in the 
analysis are excluded from this plot because they yielded fewer than 200,000 total reads (Supplementary Table 3). Two IAV samples 
with a high fraction of viral reads pre-capture (bottom right) overlap on the plot. One sample (ZIKV-SM3, top left) showed no viral reads 
pre-capture, so its fold-change is undefined. 
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Supplementary Figure 6 

Metagenomic sequencing results for pre- and post-capture samples. 

(a) Number of species detected (with at least 1 assigned read) in samples with known viral infections. Counts are shown before capture 
(orange), after capture with VWAFR (light blue), and after capture with VALL (dark blue). (b) Left: Number of reads detected for each 
species across samples with known viral infections, before and after capture with VWAFR. Right: Abundance of each species before 
capture and fold-change upon capture with VWAFR. For each sample, the virus known to be present in the sample is colored, and Homo 
sapiens matches in samples from humans are shown in black. (c) Number of reads detected for each species across uncharacterized 
sample pools, before and after capture with VALL. Viral species present in each sample (Fig. 4b) are colored, and Homo sapiens 
matches in human plasma samples are shown in black. Asterisks on species indicate ones that are not targeted by VALL. (d) Same as 
(b) but for VWAFR in the uncharacterized sample pools. Asterisks on species indicate ones that are not targeted by VWAFR. In all panels, 
abundance was calculated by dividing species counts pre-capture by counts in pooled water controls. 



 
  

0

2

4

6

8

0 500,000 1,000,000 1,500,000 2,000,000
Sequencing depth (reads)

30 ng30 ng

300 ng

300 ng

300 ng

300 ng30 ng
30 ng

log
2 (

1 
+ 

co
un

t)

VALLNo capture

0

4

8

12

0 500,000 1,000,000 1,500,000 2,000,000
Sequencing depth (reads)

log
2 (

1 
+ 

co
un

t)

30 ng
30 ng

30 ng
300 ng300 ng

300 ng300 ng

30 ng

VALLNo capture

0

25

50

75

100

Ge
no

m
e 

as
se

m
bl

ed
 (%

)

0 1 10 102 103 104 105 106

Viral copies

VALL

No capture

30 ng 30 ng300 ng

300 ng

a

b

c



 
 

Supplementary Figure 7 

Genome assembly in EBOV dilution series and effect of sequencing depth on amount of viral material sequenced. 

(a) Percent of viral genome assembled in a dilution series of viral input in two amounts of human RNA background. There are n=2 
technical replicates for each choice of input copies, background amount, and use of capture (n=1 replicate for the negative control with 
0 copies). Each dot indicates percent of genome assembled, from 200,000 reads, in a replicate; line is through the mean of the 
replicates. Label to the right of each line indicates amount of background material. Assemblies are from read data presented in Fig. 3a. 
(b) Number of unique viral reads sequenced at increasing sequencing depth, from an input of 103 viral copies in different amounts of 
background. Horizontal axis gives the number of total reads to which a sample was subsampled. Each line is a technical replicate (n=2) 
and shaded regions are 95% pointwise confidence bands calculated across random subsamplings. Dashed vertical line at 200,000 
reads denotes the amount of total reads used in (a) and in Fig. 3a. Viral sequencing data generated after capture with VALL saturates 
more quickly than without capture. (c) Same as (b), but from an input of 104 viral copies. 



 
 

 

Supplementary Figure 8 

Enrichment in read depth with focused probe sets. 

(a) Distribution of the enrichment in read depth, across viral genomes, provided by capture with VWAFR. Each curve represents a viral 
genome. At each position across a genome, the post-capture read depth is divided by the pre-capture depth, and the plotted curve is 
the empirical cumulative distribution of the log of these fold-change values. (b) Distribution of the enrichment in read depth, across viral 
genomes, provided by VWAFR over VALL. At each position across a genome, the read depth following capture with VWAFR is divided by 
the depth following capture with VALL, and the plotted curve is the empirical cumulative distribution of the log of these fold-change 
values. (c) Same as (a), but for the two-virus probe sets VMM and VZC. The mumps curves (green) show enrichment provided by VMM 
against pre-capture, and the Zika curves (purple) show enrichment provided by VZC against pre-capture. (d) Same as (b), but for the 
two-virus probe sets VMM and VZC. The mumps curves (green) show enrichment provided by VMM against VALL, and the Zika curves 
(purple) show enrichment provided by VZC against VALL. 
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Supplementary Figure 9 

Enrichment across segments of influenza A virus (H4N4). 

Variable enrichment across segments of an influenza A virus sample of subtype H4N4 (IAV-SM5). Segments 4 and 6 contain the most 
genetic diversity and divergence from probe sequences. No sequences of the N4 subtypes were included in the design of VALL or 
VWAFR. (a) Depth of coverage across the sample’s genome. Each of the eight segments in IAV are labeled. (b, c) Distribution of the 
enrichment in read depth provided by capture with VALL (b) and VWAFR (c). Each curve represents one of the eight segments. At each 
position across a genome, the post-capture read depth is divided by the pre-capture depth, and the plotted curve is the empirical 
cumulative distribution of the log of these fold-change values. 
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Supplementary Figure 10 

Sequencing results of Lassa virus from the 2018 Lassa fever outbreak in Nigeria. 

(a) Number of unique LASV reads, among 200,000 reads in total, sequenced following capture with VALL compared to pre-capture in 23 
samples from the 2018 Lassa fever outbreak. Points are colored by the state in Nigeria that the sample is from (black is NTC). (b) 
Percent of LASV genome assembled, after use of VALL, against the fraction of pre-capture reads that are LASV. Points to the left of the 
horizontal break correspond to samples with no LASV reads pre-capture. As in Fig. 4a, reads were downsampled to 200,000 before 
assembly. Points are colored as in (a). (c) Percent of LASV genome assembled, after use of VALL. Here, reads were not downsampled 
before assembly. Bars are ordered as in Fig. 4a and colored by the state in Nigeria that the sample is from. 
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Supplementary Figure 11 

Depth of coverage observed for viral species detected in uncharacterized samples. 

Depth of coverage plots for 25 viral genomes detected by metagenomic analysis of uncharacterized samples following capture with 
VALL (see Fig. 4b). Read depths are shown on a linear scale. 

	



Supplementary Note 1

CATCH’s framework for designing probes o↵ers considerable flexibility. This note describes
extensions to probe design and methods behind them.

Probe-target hybridization

CATCH reduces much of the design to a problem of determining probe-target hybridization.
The function fmap, which determines whether a probe hybridizes to a range in a target
sequence (and, if it does, precisely the range), can be customized by a user in CATCH’s
source code or can be provided in a command-line argument to be dynamically loaded. For
example, although by default CATCH does not use a thermodynamic model of hybridization,
a user could choose to incorporate a calculation of free energy to evaluate the likelihood of
hybridization. Here, when computing s(d, ✓d) (defined in Online Methods), CATCH’s default
fmap is based on three parameters in ✓d: a number m of mismatches to tolerate, a length lcf

of a longest common substring, and a length i of an island of an exact match. fmap computes
the longest common substring with at most m mismatches between the probe sequence and
target subsequence, and returns that the probe covers the target range if and only if the
length of this is at least lcf. Optionally (if i > 0), fmap additionally requires that the probe
and target subsequence share an exact (0-mismatch) match of length at least i to return
that the probe covers the range. (See Supplementary Fig. 1b for a visual representation and
‘Exploring the parameter space across taxa’ in Online Methods for example values.)

Di↵erential identification, blacklisting sequence, and partial cover-
age

There are many problems related to probe design that map well to generalizations of the set
cover problem. Relevant generalizations are the weighted and partial cover problems1–3.

Using the weighted cover problem, CATCH allows a user to perform di↵erential identification
of taxa and also to blacklist sequences from the probe design. For these purposes, we
introduce the concept of a “rank” to our implementation of the set cover solution. A rank
of a set is analogous to a weight and makes it straightforward to assign levels of penalties on
sets. For two sets S and T , if rank(S) < rank(T ) then S is always considered before T — i.e.,
if coverage is needed and S provides that coverage, then the greedy algorithm always chooses
S before T even if T provides more. These can be emulated using weights (i.e., costs), by
assigning su�ciently high weights to each set. To perform di↵erential identification, CATCH
accepts groupings of sequences as input (for example, each grouping might encompass the
available genomes of a species). Then, CATCH finds the number of groupings that each
candidate probe p “hits”. (p hits a grouping if it covers a part of at least one sequence in
that grouping.) A probe that hits only one grouping is suitable for di↵erential identification,
whereas ones that hit more are poor choices. Thus, CATCH assigns a rank to each p equal to
the number of groupings hit by p. CATCH can also accept a collection of sequences to blacklist



from the probe design. It determines the number of nucleotides in blacklisted sequence that
each p covers and assigns to p a rank equal to this value; therefore, candidate probes that
cover blacklisted sequence are highly penalized in the design. (When a user opts to perform
di↵erential identification while also blacklisting sequences, the ranks are assigned such that
a candidate probe that covers a part of a blacklisted sequence always receives a higher rank
than one that does not.) For the purposes of determining whether p hits an identification
grouping or blacklisted sequence, CATCH accepts three additional parameters, holding more
tolerant values for m, lcf, and i as defined above, that fmap uses to evaluate probe-target
hybridization. We note as well that weights can have other applications in probe design, e.g.,
if there is a reason to prefer some candidate probes over others due to base composition.
Finally, CATCH solves an instance of the weighted cover problem by assigning the rank of
each set to be the rank of the candidate probe it represents.

Based on the partial cover problem, CATCH o↵ers the ability to design probes such that
they only cover a portion of each target sequence. The user specifies this portion as either
a fraction of the length of each sequence or as a fixed number of nucleotides. Reducing the
problem directly to an instance of the set cover problem with a single universe would not
allow partially covering each target sequence. Thus, as a heuristic, we introduce “multiple
universes” to the instance, in which each universe corresponds to a target sequence and
consists of all the bases in that sequence. Each set (representing candidate probes) speci-
fies which elements in which universes it covers. The greedy algorithm continues selecting
among the candidate probes until it obtains the desired partial coverage of each universe
(target sequence). We do not make claims about the approximation factor this achieves.
As one application, note that when performing di↵erential identification the required partial
coverage should be set to be relatively low.

Adapters for amplification

If desired, CATCH adds adapters to probe sequences in s(d, ✓d) for PCR amplification. Be-
cause probe sequences may overlap, it is possible that, during PCR, they could chain together
to form concatemers. Thus, we would like to use k unique adapters and divide the probes in
s(d, ✓d) into k groups such that the probes in each group are unlikely to chain together; then,
we can perform PCR separately on each group. CATCH uses a heuristic to solve this problem
for k = 2, i.e., two adapters A and B. Consider one target sequence t. It maps each of the
probes in s(d, ✓d) to t using fmap, as described above. It treats the ranges that each probe
covers as an “interval,” and finds the largest set of non-overlapping intervals (probes) Tno by
solving an instance of the interval scheduling problem. Then, we could assign adapter A to
each probe in Tno, and adapter B to each of the others. CATCH performs this for each target
sequence t, and each t “votes” once (either A or B) for each probe. We seek to maximize
the sum, across all probes, of the majority vote for the probe (to ensure a clear decision on
the adapter for each probe). Let V p

A be the number of A votes for a probe, and likewise for
V p
B . Then, we wish to maximize the quantity

X

p2s(d,✓d)

max(V p
A ,V

p
B).



Since the distinction between A and B is arbitrary, at each t CATCH chooses whether to
assign A or B votes to the probes in Tno depending on which assignment yields a higher
sum. This process yields the maximum sum, and CATCH then assigns adapter A or B to
each probe based on which has more votes.

Supplementary Note 2

In all evaluations of how probe counts grow with respect to an independent variable (Sup-
plementary Fig. 1c, Fig. 1b, and Supplementary Fig. 2), we used genome neighbors from
NCBI’s accession list of viral genomes4 (downloaded in September, 2017) as input. We
trimmed long terminal repeats from HIV-1 sequences. The specific sequences are available
at https://github.com/broadinstitute/catch/tree/323b639/hybseldesign/datasets/data. In
all of these evaluations, we designed 75 nt probes.

In the plots showing probe counts as a function of parameter values (Supplementary Fig.
1c), we varied only the mismatches (m) and cover extension (e) parameters using the values
shown. We set parameters on the longest common substring (lcf ) and island of exact match
(i) to their default values: lcf equal to the probe length (75) and i = 0. For each pair of
parameter values shown, we calculated probe counts across 5 replicates, with the input to
each replicate being 300 genomes that were randomly selected with replacement. Shaded
regions are 95% pointwise confidence bands.

In the plots showing how probe counts scale with the number of input genomes (Fig. 1b
and Supplementary Fig. 2), the “Baseline” approach generates probes by tiling each in-
put genome with a stride of 25 nt and removing exact duplicates. The “Clustering-based”
approach generates candidate probes using a stride of 25 nt and deems two probes to be re-
dundant if their longest common substring up to m mismatches (shown at m = 0 and m = 4)
is at least 65 nt. It then constructs a graph in which vertices represent candidate probes and
edges represent redundancy, and finds a probe set by approximating the smallest dominating
set of this graph. For running this clustering-based approach, see the design naively.py ex-
ecutable in our implementation of CATCH. The CATCH approach generates candidate probes
using a stride of 25 nt and is shown with parameter values (m = 0, e = 0), (m = 4, e = 0),
and (m = 4, e = 50), and all other parameters set to default values. Probe counts for hepati-
tis C virus and HIV-1 were calculated and plotted with n = {1, 50, 100, 200, 300, . . . , 1000}
input genomes; for Zaire ebolavirus, n = {1, 50, 100, 150, . . . , 850} input genomes; and for
Zika virus, n = {1, 25, 50, 75, . . . , 375} input genomes. For each n, we calculated probe counts
across 5 replicates, with the input to each replicate being n genomes that were randomly
selected with replacement. Again, shaded regions are 95% pointwise confidence bands.

https://github.com/broadinstitute/catch/tree/323b639/hybseldesign/datasets/data


Supplementary Note 3

Members of the Viral Hemorrhagic Fever Consortium:

Kristian Andersen (Scripps Research, San Diego, CA, USA)
Christopher Bishop (Tulane University, New Orleans, LA, USA)
Matthew Boisen (Zalgen Labs, Germantown, MD, USA)
Luis Branco (Zalgen Labs, Germantown, MD, USA)
Robert Cross (University of Texas Medical Branch, Galveston, TX, USA)
Philomena Eromon (Redeemer’s University, Ede, Nigeria)
Mbalu Fonnie (Kenema Government Hospital, Kenema, Sierra Leone; deceased)
Mohammed Fullah (Kenema Government Hospital, Kenema, Sierra Leone; deceased)
Robert Garry (Tulane University, New Orleans, LA, USA)
Thomas Geisbert (University of Texas Medical Branch, Galveston, TX, USA)
Augustine Goba (Kenema Government Hospital, Kenema, Sierra Leone)
Donald Grant (Kenema Government Hospital, Kenema, Sierra Leone)
Christian Happi (Redeemer’s University, Ede, Nigeria)
Simbirie Jalloh (Kenema Government Hospital, Kenema, Sierra Leone)
Lansana Kanneh (Kenema Government Hospital, Kenema, Sierra Leone)
Sheik Humarr Khan (Kenema Government Hospital, Kenema, Sierra Leone; deceased)
Mambu Momoh (Kenema Government Hospital, Kenema, Sierra Leone)
Michael Oldstone (Scripps Research, San Diego, CA, USA)
Daniel Park (Broad Institute of MIT and Harvard, Cambridge, MA, USA)
James Robinson (Tulane University, New Orleans, LA, USA)
Pardis Sabeti (Broad Institute of MIT and Harvard, Cambridge, MA, USA)
John Demby Sandi (Kenema Government Hospital, Kenema, Sierra Leone)
Erica Ollman Saphire (Scripps Research, San Diego, CA, USA)
John Schie↵elin (Tulane University, New Orleans, LA, USA)
Brian Sullivan (Scripps Research, San Diego, CA, USA)
Nathan Yozwiak (Broad Institute of MIT and Harvard, Cambridge, MA, USA)
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