Supplementary information file

TGFβ inhibition via CRISPR promotes the long-term efficacy of CAR-T cells against solid tumors

Na Tang¹^{*}, Chen Cheng^{1, 3}^{*}, Xingying Zhang^{1, 2}, Miaomiao Qiao^{1,2}, Na Li¹, Wei Mu^{1, 2}, Xiao-Fei Wei⁴, Weidong Han⁵, Haoyi Wang^{1, 2, 6*}

¹State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China

²University of Chinese Academy of Sciences, Beijing, 100049, China

³School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China

⁴Beijing Cord Blood Bank, Beijing, 100176, China

⁵Department of Bio-therapeutic, Department of Molecular & Immunology, Chinese PLA General Hospital, Beijing, 100853, China

⁶Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China

^{*}These authors contributed equally to this work.

^{*}To whom correspondence should be addressed. Tel: +86 10 82619213; Fax: +86 10 82610049; Email: <u>wanghaoyi@ioz.ac.cn</u>

Present address: Haoyi Wang, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China

The authors declare there is no conflict of interest.

Contents:

Figure S1: Construction of TGFβ1 over-expression CRL5826 cell line.

Figure S2: Selection of sgRNAs targeting TGFBR2.

Figure S3: *TGFBR2* editing did not affect the proliferation, GFP expression and T cell subsets of CAR-T cells.

Figure S4: TGFβ1 affects the expression of exhaustion related genes in CD4 and CD8 CAR-T cells.

Figure S5: TGFβ1 induced iTreg-like cell conversion of CAR-T cells after incubation with tumor cells.

Figure S6: FOXP3 editing on CAR-T cells.

Figure S7: *TGFBR2* KO down-regulated TGFβ1 induced expression of exhaustion related genes.

Figure S8: *TGFBR2* KO could totally rescue the inhibitory effects of mTGFβ1.

Figure S9: Detection of in vivo tumor elimination efficacy of *TGFBR2* KO CAR-T cells in CRL5826 CDX model.

Figure S10: Detection of in vivo tumor elimination efficacy of *TGFBR2* KO CAR-T cells in CRL5826-PDL1 CDX model.

Figure S11: Detection of in vivo tumor elimination efficacy of *TGFBR2* KO CAR-T cells in PDX#1 model.

Figure S11: Detection of in vivo tumor elimination efficacy of *TGFBR2* KO CAR-T cells in PDX#2 model.

Figure S12: *TGFBR2* KO performed better than dn*TGFBR2* OE in anti-TGFβ 1 negative effect on CAR-T cell specific lysis ability

Table S1: Primer sequences used in this study.

Figure S1

Figure S1: Construction of TGF β 1 over-expression CRL5826 cell line. (A) Concentration of TGF β 1 released in the culture medium of CRL5826 and TGF β 1 over-expression CRL5826. (B) Specific lysis of CRL5826 and TGF β 1 over-expression CRL5826 after co-culture with M28z CAR-T cells at different Effector to Target ratio (E:T). The statistical analysis represented mean ± s.d. of two technical replications per assay in A, and three technical replications per assay in B. Two-way ANOVA and Tukey's multiple comparisons test was used in B. The assays in A were repeated two times, and in B were repeated more than three times.

Figure S2: Design of sgRNAs targeting *TGFBR2.* (A) Editing efficiencies of sgRNA1-4 on HepG2 cell line were detected by TIDE and FACS. (B) Editing efficiencies of sgRNA4 on HepG2 cell line after optimizing were detected by TIDE and FACS analysis. (C) sgRNA4 targeting *TGFBR2*. (D-F) *TGFBR2* editing efficiencies in CAR-T cells were detected by Surveyor assay (D), TIDE analysis (E) and TA cloning (F).

Figure S3: *TGFBR2* editing did not affect the proliferation (A), GFP expression (B) and T cell subsets (C) of CAR-T cells. M28z-TKO, *TGFBR2* KO M28z.

Figure S4: TGFβ1 affects the expression of exhaustion related genes in CD4 (A) and CD8 (B) CAR-T cells. 4C, CD4-ctrl; 4C+T, CD4-ctrl+ TGFβ1; 8C, CD8-ctrl; 8C+T, CD8-ctrl+ TGFβ1; 4T, CD4-TKO; 4T+T, CD4-TKO+ TGFβ1; 8T, CD8-TKO; 8T+T, CD8-TKO+ TGFβ1.

Figure S5: TGFβ1 induced iTreg-like cell conversion of CAR T cells after incubation with tumor cells. (A) Schematic of the proliferation suppression assay. FOXP3 expression in M28z CAR-T cells after incubation with CRL5826 (B) or OVCAR3 (D) in the presence of 5 ng/ml TGFβ1. Proliferation suppression capability of M28z CAR-T cells after incubation with CRL5826 (C) or OVCAR3 (E) in the presence or absence of 5 ng/ml TGFβ1.

Figure S6: *FOXP3* **editing on CAR-T cells.** (A) sgRNA3 targeting *FOXP3*. (B-D) *FOXP3* editing efficiencies in CAR-T cells detected by Surveyor assay (B), TIDE analysis (C) and TA clone (D).

----AGGAAGAAGAGGAGGCATGGGCCCCGCCTCGAA TTCAAGGAAGAAGAGGAGGAGGCATGGGCCCCCGCCTCGAA

TCCTGGGCCCAGGGCCTCACCTGCA-

Figure S7: TGFBR2 KO down-regulated TGF^β1 induced expression of

exhaustion related genes. The statistical analysis represented mean \pm s.d. of three technical repetitions in one assay. Ordinary one-way ANOVA and Tukey's multiple comparisons test was used. The assays were repeated two times.

Figure S8: *TGFBR2* **KO** could totally rescue the inhibitory effects of mTGF β 1. (A) Specific lysis of CRL5826 after co-culture with M28z CAR-T cells at different E:T ratio in the presence of 5ng/ml human (h) or mouse (m) TGF β 1. (B) *TGFBR2* KO completely rescues the negative effects of mTGF β 1 on CAR-T cell-mediated tumor lysis. The statistical analysis represented mean ±s.d. of three technical replications per assay in A-B. Two-way ANOVA and Tukey's multiple comparisons test was used in A-B. The assays in A-B were repeated more than three times.

Figure S9

Figure S9: Detection of in vivo tumor elimination efficacy of TGFBR2 KO

CAR-T cells in CRL5826 CDX model. Tumor sizes and tumor weights in the end of experiment in CRL5826 CDX model with i.t. (A) and i.v. (C) CAR-T cell injection. (B) The proportion of hCD3 positive cells in mouse peripheral blood 50 days after CAR-T injection. M28z-TKO, *TGFBR2* KO M28z; i.t., intra-tumor; i.v., intravenous; un, undetectable. The statistical analysis represented mean \pm s.d., n=5. Ordinary one-way ANOVA and Tukey's multiple comparisons test was used.

Figure S10: Detection of in vivo tumor elimination efficacy of *TGFBR2* **KO CAR-T cells in CRL5826-PDL1 CDX model.** (A) Schematic of the *in vivo* experimental design using CRL5826-PDL1 CDX model. (B) Antigen expression on target tumor cells detected by FACS. (C) PDL1 expression in the CDX model.

Figure S11

Figure S11: Detection of in vivo tumor elimination efficacy of *TGFBR2* **KO CAR-T cells in PDX tumor 1 model.** (A) T cell subsets analysis in mouse peripheral blood 42 days after CAR-T cell i.t. or i.v. injection. (B) Tumor weight at the end of PDX tumor 1 re-inoculation experiment. (C-D) Fold change of body weight after

PDX tumor 1 primary inoculation (C) and re-inoculation (D). M28z-TKO, *TGFBR2* KO M28z; i.t., intra-tumor; i.v., intravenous; PB, peripheral blood. The statistical analysis represented mean \pm s.d., n=5. Ordinary one-way ANOVA and Tukey's multiple comparisons test was used in B. Two-way ANOVA and Tukey's multiple comparisons test was used in C-D.

Figure S12: Detection of in vivo tumor elimination efficacy of *TGFBR2* KO CAR-T cells in PDX tumor 2 model. (A) Fold change of body weight after PDX tumor 2 primary inoculation and re-inoculation. (B) The proportion of hCD3 positive cells in peripheral blood 34 days after PDX tumor 2 primary inoculation. (C) The proportion of hCD3 positive cells in peripheral blood 22 days after PDX tumor 2 re-inoculation. M28z-TKO, *TGFBR2* KO M28z; i.t., intra-tumor; PB, peripheral blood. The statistical analysis represented mean \pm s.d., n=5 except n=2 in PBS group and n=4 in New mice group in PDX #2 re-inoculation experiment. Two-way ANOVA and Tukey's multiple comparisons test was used in A. Ordinary one-way ANOVA

Figure S13

Figure S13: *TGFBR2* KO performed better than dn*TGFBR2* OE in anti-TGF β 1 negative effect on CAR-T cell specific lysis ability. The statistical analysis represented mean ±s.d. of three technical replications per assay. Two-way ANOVA and Tukey's multiple comparisons test was used. The assays were repeated more than three times.

17

Table S1: Primer sequences used in this study

Guide sgRNA sequence			
FOXP3 sgRNA	gcagctgcgatggtggcatg		
TGFBR2 sgRNA	cctgagcagcccccgaccca		
PD1 sgRNA	cgactggccagggcgcctgt		
In vitro transcription primers			
Forward	taatacgactcactatagNNNNNNNNNNNNNNNNNNNNNgtttaagagc tatgctggaaac		
Reverse	aaaagcaccgactcggtgcc		
Genotyping primers for PCR			
FOXP3-Forward primer		gtgggtatgtacatgtacctgt	
FOXP3-Reverse primers		ctaataagttgcagagctggcc	
TGFBR2-Forward primer		cacatetggeeegcacatet	
TGFBR2-Reverse primer		gggtggctcagaaagagctg	
PD1-Forward primer		cateteetgteteeetgte	
<i>PD1</i> -Reverse primer		gccagggactgagagtgaaag	
Genotyping primers for TIDE sequence			

<i>FOXP3</i> -Forward primer	ctagagctggggtgcaacta		
FOXP3-Reverse primers	cctcttctcttgtcacatgg		
TGFBR2-Forward primer	cacatetggcccgcacatet		
TGFBR2-Reverse primer	ggaaactttcctcgtttccgc		
PD1-Forward primer	cctgtctctgtctctctccc		
<i>PD1</i> -Reverse primer	tgagagtgaaaggtccctcc		
Primers for Q-PCR			
IL2-Forward primer	agaactcaaacctctggaggaag		
IL2-Reverse primers	gctgtctcatcagcatattcacac		

atgtccaacgcaaagcaatac

IFNG-Reverse primer GZMA-Forward primer GZMA-Reverse primer GZMB-Forward primer *GZMB*-Reverse primers FOXP3-Forward primer FOXP3-Reverse primer PDCD1-Forward primer *PDCD1*-Reverse primer CTLA4-Forward primer CTLA4-Reverse primer *TIM3*-Forward primer *TIM3*-Reverse primer LAG3-Forward primer *LAG3*-Reverse primer LAYN-Forward primer *LAYN*-Reverse primer TIGIT-Forward primer *TIGIT*-Reverse primer RGS1-Forward primer *RGS1*-Reverse primer *TNFRSF1B*-Forward primer *TNFRSF1B*-Reverse primer TNFRSF9-Forward primer *TNFRSF9*-Reverse primer GATA3-Forward primer GATA3-Reverse primer

acctcgaaacagcatctgac ctcactcaataaccagggaagag gctgggtcatagcatggatag acactcacacacactacaagag acgcacaactcaatggtact aggaaggacagcaccctttcg ctggcagtgcttgaggaagt aaggcgcagatcaaagagagcc caaccaccagggtttggaactg acgggactctacatctgcaagg ggaggaagtcagaatctgggca gactctagcagacagtgggatc ggtggtaagcatccttggaaagg gcagtgtacttcacagagctgtc aagccaaaggctccagtcacca acagcctgccaggacctttatg cgatggctgatggtacatgacc tggtggtcatctgcacagcagt tttctcctgaggtcaccttccac ttgtgcattcagatgctgctaaac gaggaacctgggataagagtcc cgttctccaacacgacttcatcc acgtgcagactgcatccatgct tcttcctcacgctccgtttctc tggaaatcggcagctacagcca tgcatgactcactggaggac tcagggaggacatgtgtctg

GAPDH-Forward primer

atgacatcaagaaggtggtg

GAPDH-Reverse primer

cataccaggaaatgagcttg