Supplementary Information

Histone deacetylase 1 and 2 restrain CD4⁺ cytotoxic T lymphocyte differentiation

Authors: Teresa Preglej¹, Patricia Hamminger¹, Maik Luu², Tanja Bulat³, Liisa Andersen¹, Lisa Göschl^{1,4}, Valentina Stolz¹, Ramona Rica¹, Lisa Sandner¹, Darina Waltenberger¹, Roland Tschismarov⁵, Thomas Faux⁶, Thorina Boenke⁷, Asta Laiho⁶, Laura L. Elo⁶, Shinya Sakaguchi¹, Günter Steiner^{4,8}, Thomas Decker⁵, Barbara Bohle⁹, Alexander Visekruna², Christoph Bock^{7,10}, Birgit Strobl⁴, Christian Seiser¹¹, Nicole Boucheron¹ and Wilfried Ellmeier¹

¹Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria.

²Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany.

³Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.

⁴Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria.

⁵Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna

⁶Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland

⁷CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.

⁸Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria

⁹Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.

¹⁰Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria

¹¹Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.

Correspondence should be addressed to:

Wilfried Ellmeier, Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria. Phone: +4314016033293; e.mail: wilfried.ellmeier@meduniwien.ac.at

Figure S1. HDAC1/HDAC2 dosage-dependent upregulation of cytotoxic features in CD4⁺ T cells. (A) Flow cytometry analysis depicting cell divisions of proliferation-dye-labeled WT and HDAC1^{cKO} -HDAC2^{HET} naïve CD4⁺ T cells activated with anti-CD3/anti-CD28 for 3 days in the presence of IL-2. Numbers in gates indicate cell division cycle, whereas upper numbers indicate the percentage of cells in the respective cell division cycle gate. (B) 7AAD/AnnexinV staining of WT and HDAC1^{cKO}-HDAC2^{HET} CD4⁺ T cells activated as described in A. (C) Flow cytometry analysis showing CD4, IFNy, granzyme B (GZMB) and EOMES expression in WT, HDAC1^{cKO}, HDAC2^{cKO}, HDAC1^{HET}-HDAC2^{cKO} and HDAC1^{cKO}-HDAC2^{HET} naïve CD4⁺ T cells activated with anti-CD3/anti-CD28 for 3 days in the presence of IL-2 under Th1 polarizing conditions (IL-12 and anti-IL-4). (D) Histograms depict T-bet expression in WT, HDAC1^{cKO}, HDAC2^{cKO}, HDAC1^{HET} -HDAC2^{cKO} and HDAC1^{cKO}-HDAC2^{HET} naïve CD4⁺ T cells activated as described in C. (E) Summary diagrams showing the percentages (%) of cells of the indicated genotype expressing IFNy, T-bet and EOMES as described in C. Each symbol indicates one mouse. Horizontal bars indicate the mean. *P<0.05, **P<0.01, ***P<0.001 (One-way ANOVA analysis followed by Tukey's multiplecomparison test). (A,B,C) Numbers indicate the mean fluorescence intensity (MFI) (A) or the percentage of cells in the respective quadrants or gates (B,C). (D) The dotted vertical lines indicate the peak of the WT histogram (for MFI). Data are representative (A,B,C,D) or show summary (E) of at least 2 (A,B), 5 (C,D,E) mice that were analyzed in at least 3 (A), 2 (B,C) and 4 (D,E) independent experiments.

Figure S2. IFNy signaling is necessary for the upregulation of cytotoxic features in HDAC1^{cKO}-HDAC2^{HET} mice. (A) Histograms depict IFNy and granzyme B (GZMB) expression in naïve WT, HDAC1^{cKO}-HDAC2^{HET} CD4⁺ and WT CD8⁺ T cells activated with anti-CD3/anti-CD28 for 3 days in the presence or absence (control) of IFN γ blocking antibodies (α -IFN γ) and analyzed by flow cytometry. (B) Summary of experiments described in A. Diagrams depict ether the percentages (%) of CD4⁺ T cells expressing the indicated cytokines/transcription factors; or WT (control) MFI levels were set as 1 and relative MFI levels in WT (α -IFN γ) and HDAC1^{cKO}-HDAC2^{HET} (control/ α -IFN γ) CD4⁺ T cells are shown. Each symbol indicates one independent biological sample. Horizontal bars indicate the mean. *P<0.05, **P<0.01, ***P<0.001 (One-way ANOVA analysis followed by Tukey's multiple-comparison test). (C) Histograms showing IFN_γ, granzyme B (GZMB), T-bet, EOMES, RUNX3 and ThPOK expression in naïve WT, HDAC1^{cKO}-HDAC2^{HET} CD4⁺ and WT CD8⁺ T cells activated with anti-CD3/anti-CD28 for 3 days in the presence or absence of exogenous IFNy and analyzed by flow cytometry. (A,C) Numbers indicate the percentage of cells in the respective quadrants or gates or as indicated mean fluorescence intensity (MFI). (A,C) The dotted vertical lines indicate the peak of the WT histogram (for MFI), while the vertical solid lines indicates the gating region for the percentage of cells. Data are representative of at least 5 (A-C) mice that were analyzed in at least 3 (A,B) and 2 (C) independent experiments.

Figure S3. Upregulation of CD4⁺ CTL features in HDAC1^{cKO}-HDAC2^{HET} CD4⁺ T cells is induced by cell-intrinsic features. (A) Experimental outline for co-culture experiments: sorted naïve CD4⁺ T cells from either WT or HDAC1^{cKO}-HDAC2^{HET} mice (CD45.2⁺) and from congenic (CD45.1⁺) mice were mixed at a 1:1 ratio and activated with anti-CD3/anti-CD28 for 3 days. (B) Flow cytometry analysis showing IFNγ, granzyme B (GZMB), T-bet and EOMES expression in co-cultured HDAC1^{cKO}-HDAC2^{HET} and CD45.1⁺ CD4⁺ T cells, as well as WT and CD45.1⁺ CD4⁺ T cells. (C) Histograms depict RUNX3 and ThPOK expression in co-cultured HDAC1^{cKO}-HDAC2^{HET}/WT and CD45.1⁺ CD4⁺ T cells. (B,C) Numbers indicate the percentage of cells in the respective quadrants and gates or, as indicated mean fluorescence intensity (MFI). (C) The dotted vertical lines indicate the peak of the WT histogram (for MFI). Data are representative of at least 5 (B,C) mice that were analyzed in at least 3 (B,C) independent experiments.

Figure S4. JAK1/JAK2 signaling is required for the upregulation of CD4⁺ CTL features in HDAC1^{cKO}-HDAC2^{HET} CD4⁺ T cells. (A) Histograms depict pSTAT5 levels in naïve WT and HDAC1^{cKO}-HDAC2^{HET} CD4⁺ T cells activated with anti-CD3/anti-CD28 in the presence of IL-2 and analyzed by flow cytometry at the indicated time points. (B,C) Histograms showing IFNγ, granzyme B (GZMB), T-bet, EOMES, RUNX3 and ThPOK expression in naïve WT and HDAC1^{cKO}-HDAC2^{HET} CD4⁺ T cells activated with anti-CD3/anti-CD28 for 3 days in the presence or absence of the JAK1/2 inhibitor Ruxolitinib (B) or the JAK3 inhibitor Tofacitinib (C). (B,C) Dotted lines represent control cells (no inhibitor treatment). The same non-treated WT and HDAC1^{cKO}-HDAC2^{HET} samples are shown in B and C. (A-C) Numbers indicate the percentage of cells in the respective regions or the mean fluorescence intensity (MFI). (A-C) The dotted vertical lines indicate the percentage of cells in the vertical solid lines indicate the gating region for the percentage of cells. Data are representative of at least 4 (A-C) mice that were analyzed in at least 2 (A) and 4 (B,C) independent experiments.

Figure S5. CD4⁺ CTL features are induced in HDAC1^{cKO}-HDAC2^{HET} CD4⁺ T cells upon MCMV infection. (A) Flow cytometry analysis of splenocytes isolated from WT and HDAC1^{cKO}-HDAC2^{HET} mice upon MCMV infection or control PBS injection showing CD4 and CD8 expression on viable TCRβ⁺ splenocytes. Numbers indicate the percentage of cells in the respective quadrants. (B,C) Diagrams show the percentage (B) and the total cell number (C) of TCRβ⁺, CD4⁺, CD8⁺, CD4⁺ CD44⁺CD62L⁻, CD4⁺ CD11a⁺CD49d⁺ viable splenocytes as well as of EOMES⁺, T-bet⁺ and CRTAM⁺ CD4⁺CD44⁺CD62L⁻ viable splenocytes, respectively, isolated from WT and HDAC1^{cKO}-HDAC2^{HET} (MCMV and PBS-control) mice. Each symbol indicates one mouse. Horizontal bars indicate the mean. *P<0.05, **P<0.01, ***P<0.001 (One-way ANOVA analysis followed by Tukey's multiple-comparison test). Data are representative (A) or show a summary (B,C) of at least 16 infected (A-C) and 4-6 PBS injected (A-C) mice that were analyzed in at least 4 (A-C) independent experiments.

Figure S6. Murine CD4⁺ T cells upregulate cytotoxic features upon SCFA treatment. (A) Histogram panels depict IFN γ , granzyme B (GZMB), T-bet and CD8 α expression on anti-CD3/anti-CD28 activated murine CD4⁺ T cells in the absence (control) or presence of acetate, propionate, butyrate and pentanoate, respectively, analyzed by flow cytometry (B) Flow cytometry analysis showing EOMES expression on murine CD4⁺ T cells treated as described in (A). (C) Summary of experiments described in A. Diagrams depict ether the percentages (%) of CD4⁺ T cells expressing the indicated cytokines/transcription factors; or control MFI levels were set as 1 and relative MFI levels in acetate-, propionate-, butyrate- or pentanoate-treated CD4⁺ T cells are shown. Each symbol indicates one independent biological sample. Horizontal bars indicate the mean. *P<0.05, **P<0.01, ***P<0.001 (One-way ANOVA analysis followed by Tukey's multiple-comparison test). Data are representative (A,B) or show a summary (C) of 6 (A-C) mice that were analyzed in 2 (A-C) independent experiments.

Figure S7. Model of how HDAC1/2 control CD4⁺ CTL induction

Model depicting the role of HDAC1 and HDAC2 in restraining CD4⁺ CTL differentiation. Adapted from Ref. #15. See discussion section for details.

Supplementary Table S1

List of genes preferentially expressed either in WT Th1 cells ("Th1-selective") or in activated CD8⁺ T cells ("activated CD8⁺ T-selective"). Differential expression was defined as $FC \ge 2$; $FDR \le 0.05$ (Th1 and $CD8^+$ expression data were taken from Ref.#19).

"Th1-selective"	gene set (169)	"activated CD8 ⁺	T-selective" gene	e set (477)		
2210010N04Rik	Olfr672	1110031I02Rik	Cercam	Gzmk	Nt5dc2	Sema7a
2610019F03Rik	Ormd13	1500010J02Rik	Cfdp1	H2-Ab1	Nt5e	Sep11
4933426M11Rik	P2rx7	2010002N04Rik	Chaflb	H2-Oa	Nubnl	Setd8
5830405N20Rik	Pde2a	2310016C08Rik	Chek1	Haao	Nudt5	Sfyn1
A 530021107Rik	Pin5k1h	2310016C08Rik	Chet12	Hat1	Nudto	Sgol2
A630052C17Dil	Pnp1r2f	2610028A01Rik	Clith	Haver?	Nut	Sg012 Shmt?
Abth1	Pp1151 Pros1	2610218N02Dik	Clubl	Halls	Nur ₂	Sillint2
Auto 1	Plosi	2010516IN02KIK	Ciybi Cratra 7		Nup45	Sigiliar I
Actn1	Pigir D.1.27	281041/H13Rik	Cmtm/	HKZ	Nup95	Slami/
Adam23	Rab3/	2810452K22K1K	Chdp2	Hmgcr	Orcol	SICIDAI
Adamtsi4	Rasa3	2900010J23R1K	Cnin4	Hmgcs1	Usopi3	SICI9al
Adhl	Rgs10	2900010M23R1k	Coro2a	Hmmr	P2rx3	SICIA4
Aff3	Rnf138	2900026A02R1k	Cregi	Hookl	Pa2g4	SIc25al
AI747699	Rnf32	2900064A13Rik	Crybg3	Hprtl	Pafah1b3	Slc25a17
Aldh3b2	Rundc3a	3000004C01Rik	Csda	Hpse	Park7	Slc3a2
Amigo2	Rxra	4930572J05Rik	Csell	Hsd17b10	Pdcd1	Slc43a3
Arhgap15	S1pr1	5730469M10Rik	Ctdspl2	Hsd17b7	Pdk3	Slc7a1
Arhgef18	Scml4	Aaas	Cuedc2	Hspa9	Pfkp	Slc7a3
Art2b	Sdcbp2	Aacs	Cyb5r3	Hspb6	Phb	Slc7a5
Asap1	Sell	Aars	Cyp51	Iars	Phf10	Smc2
Atn1	Sema3b	Abcb1b	D5Wsu178e	Idh1	Phf16	Smpd1
Atp10d	Sesn3	Abce1	D930014E17Rik	Ier3	Pik3ap1	Sms
Axin2	Sh3bp5	Acaca	D930046H04Rik	Ifi30	Pik3cg	Smyd2
B3galt2	Si	Aco2	Dad1	Ikzf2	Pitrm1	Snai3
B630019A10Rik	Sidt1	Acot11	Dars	I110	Plcg2	Soat2
Bach2	Slamf6	Actl6a	Dhi	Ill2rb1	Plek	Spag5
Bcln2	Slc14a1	Adam8	Detd	Ilf2	Plekhf1	Spage Spats2
Bmn7	Slc25a45	Adssl1	Ddx1	Impa2	Plk1	Spcs1
Bthd11	Slc28a2	Δ fg312	Dennd4a	Ino5	Plod2	Spire1
Btla	Slfn1	A1847670	Dher24	Irf4	Pmvk	Sale
Cer7	Slfn2	Aim?	Dhfr	Irf8	Pnnt1	Sque
Cd200r1	Smad2	Alr211	Dhrs11	Isoci	Dola1	Sthalpach
Cd20011	Smau Sny22	Alad	Dis11	Iun	Dolo2	Stoganiaco
Cd401~	SIIX55 Saraa2	Aldh 19a1	D185	Jup Vonle5	Pold2	Stra 12
Cd40lg	S01CS2	Aldilloal	DKKII Dravi 1	KCIIKJ V:£15	Pold2	
Cd5	Sp011		Dnm1	KIIID Victor	Pole	Sull201
Cd84	St3gall	Aldn9al	Dnmti	Kiii i 8a	Pole2	Supt3n
Cd9	Stogall	Aldoc	Dti	K1120a	Polr2d	Suv39n1
	St8sial	Alg9	E2f1	Kirci	Polr2e	Syce2
Chd3	St8s1a6	Amical	E2f8	Kirdi	Polr2f	Tanci
Clec2d	Tas2r136	Anln	Echdel	Klrkl	Pop4	Tbc1d7
Crebl2	Tef7	Anxa4	Eeal	Kpna3	Ppllr	Tef19
Crlf3	Tcp1112	Arhgap21	Eet2k	Lag3	Ppal	Tec
Csf2	Timp2	Arhgdig	Ehd1	Lamc1	Ppap2c	Tfb1m
Cyp4f16	Tlr1	Asah1	Ehd4	Lap3	Ppil5	Tfg
Dgkd	Tmem63a	Asf1b	Eif4ebp1	Larp1	Ppp1r3b	Tfre
Dst	Tmem64	Asns	Emilin2	Lars	Prep	Thoc3
Ecm1	Tmem71	Atp5d	Emp3	Lass6	Prdx5	Timm8b
EG218444	Tmprss13	Atpbd4	Eng	Ldlr	Prep	Tipin
EG240327	Tnfaip8l2	Atpif1	Epcam	Litaf	Prf1	Tk1
Ehd3	Tnfrsf25	Aurka	Ergic1	Lman1	Prim1	Tmem48
ENSMUSG0000			-			
0073540	Tnfrsf26	Aurkb	Erlin1	Lonp1	Prim2	Tmem97
Fam134c	Tnfsf8	B4galnt4	Ero11	Lrp8	Prkar2a	Ттро
Fam169b	Trat1	Bag2	Esm1	Lrrk1	Prr11	Tnfrsf8
Fam49a	Trib2	Banf1	Etfb	Lsm12	Prr5	Tnfrsf9
Fam53b	Trim12	Bard1	Exol	Lsm3	Prrg4	Tnfsf10
Fcgr3	Trim34	BC024814	Exosc8	Lsm4	Psat1	Tophp1
Folr/	Tenan32	BC030867	Ezh?	Lee	Ptnri	Tny?
Forn3	Tto30h	Beat1	E6300/3 A 0/D 31-	Loo I ztel	Ptprs	Trim12
Colnt10	Ttyh2	Blm	Fade1	Mad211	Dus7	Trim27
Gaintin	1117113	I DIIII	11 aust	IVIAUZII	rus/	111111.5/

Gata3	Utrn	Bnip3	Fads2	Mad212	Pycr1	Tspan31
Gbp2	Vav3	Brca1	Fah	Mapk6	Qdpr	Ttc35
Gjal	Vipr1	Brca2	Fam54a	Mars	Rab33a	Ttc39c
Gjd3	Yes1	Bri3bp	Fam73a	Mastl	Rad51	Tubb6
Gpm6b	Ypel3	Brip1	Fam96a	Mbnl3	Rad51ap1	Tubg1
Gpnmb	Ypel4	Bsg	Fanci	Mcm10	Rad541	Uhrf1
Gpr6	Zbtb7b	Bst1	Fasn	Mcm2	Rala	Usp10
Gpr83	Zfp281	Bub1	Fbx15	Mcm5	Ran	Usp11
Gprc5b	Zfp3611	C1qbp	Fchsd2	Mcm6	Rars	Vat1
Gramd3	Zhx2	C530044N13Rik	Fdft1	Mcm7	Rbbp7	Vegfa
Hs3st3b1		Cables1	Fh1	Megf9	Rbpj	Vegfb
Ifi27		Cad	Fignl1	Mfsd2	Rcn3	Vps29
Ifit2		Car12	Fkbp3	Mlkl	Rdbp	Wdhd1
Igfbp4		Cars	Fndc3a	Morn2	Rdh11	Wdr67
Inpp4b		Casc4	Foxm1	Mrpl19	Renbp	Wee1
Itga2		Cbx5	Frrs1	Mrpl40	Rfc1	Yars
Itgb3		Ccdc101	Fzd7	Mrrf	Rfc3	Zbtb32
Itih5		Ccl3	G6pc3	Msh2	Rfc4	Zdhhc8
Itm2a		Ccl5	Galc	Mt1	Rfc5	Zwilch
Jub		Ccna2	Galnt3	Mt2	Rhbdf2	
Kat2b		Ccnb2	Gatm	Mthfd1	Ripk3	
Kctd12		Ccne2	Gbe1	Mthfd11	Rmnd5b	
Klf2		Cd160	Gclm	Mthfd2	Rora	
Klf3		Cd24a	Gem	Mvk	Rpl23	
Klk1b9		Cd38	Gen1	Mybl1	Rqcd1	
Lgmn		Cd68	Gins1	Myo5a	Rras	
Ly6i		Cd72	Gins2	Nampt	Rrm1	
Lysmd1		Cd79b	Gm996	Nars	Rrp1b	
Lyst		Cd80	Gmds	Ncaph	Rtcd1	
Map3k5		Cd8a	Gnb5	Ndufs7	Ruvbl2	
Mrfap1		Cd8b1	Gng12	Ndufs8	S100a1	
Ms4a4b		Cd93	Gnptab	Ndufv1	Sap30	
Ms4a4c		Cdc451	Gpd2	Nedd4	Sar1b	
Ms4a6b		Cdc6	Gpr141	Nek1	Sass6	
Ms4a6c		Cdca7	Gpr65	Nkg7	Sc4mol	
Nanos2		Cdca8	Gpr68	Nmt2	Scarb1	
Nipa1		Cdh1	Gpr89	Nop16	Sccpdh	
Nsg2		Cdk4	Gpsn2	Nr4a2	Scd1	
Olfr1036		Cdk6	Gtse1	Nrbp2	Scd2	
Olfr1362		Cdkn1a	Gzma	Nsbp1	Sdf211	
Olfr1396		Cenpn	Gzmb	Nsdhl	Selenbp1	
Olfr609		Cenpv	Gzmc	Nsl1	Selenbp2	

Supplementary Table S2

List of gene sets from the Molecular Signature Database that are up- (negative normalized enrichment score (NES)) or downregulated (positive NES) in activated HDAC1^{cKO}/HDAC2^{HET} CD4⁺ T cells. Gene sets in red fonts have been generated from a comparison of published Th1 and activated CD8⁺ T cell (CTL) microarray datasets (see methods section for details).

PATHWAY - UPREGULATED	NES
"ACTIVATED CD8 ⁺ T-SELECTIVE"	-1,34
APICAL JUNCTION	-1,28
KRAS SIGNALING	-1,19
IL6-JAK-STAT3 SIGNALING	-1,15
UV RESPONSE UP	-1,14
IL2-STAT5 SIGNALING	-1,07
INTERFERON-GAMMA RESPONSE	-1,06
INFLAMMATORY RESPONSE	-1,06
EPITHELIAL MESENCHYMAL TRANSITION	-1,05
ADIPOGENESIS	-1,03
COMPLEMENT	-1,02
ALLOGRAFT REJECTION	-1,00
KRAS SIGNALING UP	-0,97
MYOGENESIS	-0,92
INTERFERON-ALPHA RESPONSE	-0,88
HYPOXIA	-0,86
GLYCOLYSIS	-0,82
APOPTOSIS	-0,80
P53 PATHWAY	-0,76
XENOBIOTIC METABOLISM	-0,74

PATHWAY - DOWNREGULATED	NES
"Th1-SELECTIVE"	1,44
MITOTIC SPINDLE	1,06
EARLY ESTROGEN RESPONSE	0,99
TNFA SIGNALING VIA NFKB	0,97
COAGULATION	0,95
LATE ESTROGEN RESPONSE	0,93
HEME METABOLISM	0,71
UV RESPONSE DOWN	0,66