Regnase-1 degradation is crucial for interleukin-33- and interleukin-25-mediated group-2 innate lymphoid cell activation

Authors

Kazufumi Matsushita, Hiroki Tanaka, Koubun Yasuda, Takumi Adachi, Ayumi Fukuoka, Shoko Akasaki, Atsuhide Koida, Etsushi Kuroda, Shizuo Akira, and Tomohiro Yoshimoto.

Supplemental Data

Supplementary Figure 1. The gating strategy for sorting ILC2s from bone-marrow cells.

(A) Lineage-negative cell enriched bone marrow (BM) cells were stained with lineage markers (B220, CD3, CD4, CD8, CD11b, CD11c, CD49b, and FccRI) as well as CD90.2, CD25, and Sca-1. Lin⁻CD90.2⁺CD25⁺Sca-1⁺ cells were sorted as BM ILC2s. (**B**) The expression of c-Kit on sorted BM ILC2s was examined. (**C**) The expression of CD90.2, ST2, CD25, and ICOS on BM ILC2s from *Regnase-1*^{WT/WT} (blue) and *Regnase-1*^{AA/AA} (red) mice were examined.

(A) Bone marrow (BM) ILC2s from *Regnase-1*^{WT/WT} (blue) and *Regnase-1*^{AA/AA} (red) mice were stimulated with combinations of TSLP, IL-2, IL-25, and IL-33, or PMA plus Ionomycin for 3 days. The concentrations of IL-5 and IL-13 in culture supernatants were determined by ELISA. (B) BM ILC2s from WT mice were stimulated with IL-2 plus IL-25 or IL-2 plus IL-33 in the presence or absence of TPCA-1 for 3 days. The concentrations of IL-5 and IL-13 in culture supernatants were determined by ELISA. (C and D) BM ILC2s from *Regnase-1*^{WT/WT} (blue) and *Regnase-1*^{AA/AA} (red) mice were stimulated with combinations of IL-2, IL-9, IL-25, and IL-33 for 3 days. (C) The concentrations of IL-5 and IL-13 in culture supernatants were determined by ELISA. (D) Golgi-Stop was added for the final 4 h of a 3-day culture, and intracellular cytokine levels were determined by FACS. Data are representative of two independent experiments. Mean (n=3) \pm SD (A–C) and representative flow cytometry plots (D) are shown. Significance was determined by one-way ANOVA followed by Tukey's test; *P<0.05, **P<0.01, ****P<0.0001. n.s. not significant.

Supplementary Figure 3. *Ill7ra*, *Ill7rb*, and *Gata3* mRNA levels are not reduced in *Regnase-1*^{AA/AA} ILC2s. Bone marrow ILC2s from *Regnase-1*^{WT/WT} (blue) and *Regnase-1*^{AA/AA} (red) mice were stimulated with IL-2 plus IL-33 (IL-2/33; A) or IL-2 plus IL-25 (IL-2/25; B) for 1 or 2 days. mRNA levels for *Ill17ra*, *Ill17rb*, and *Gata3* were determined by quantitative PCR. Data are representative of two independent experiments. Mean (n=3) \pm SD are shown.

Supplementary Figure 4. Normal mRNA half-lives in 4 h IL-33-stimulated *Regnase-1*^{AA/AA} ILC2s.

Bone marrow ILC2s from *Regnase-1*^{WT/WT} (blue) and *Regnase-1*^{AA/AA} (red) mice were stimulated with IL-2 and IL-33 for 4 h and then treated with actinomycin D for the indicated periods. mRNA levels for *Il5*, *Il9*, *Il13*, *Icos*, *Il2ra*, and *Il1rl1* were determined by quantitative PCR and remaining mRNAs after actinomycin D treatment (relative to 0 h) were calculated. Data are representative of two independent experiments. Mean (n=3) \pm SD are shown.

Regnase-1^{WT/WT} (blue) and *Regnase-1*^{AA/AA} (red) mice were intranasally administered with IL-33 (100 ng/dose) or PBS (control; Cont) for 4 consecutive days. The gating strategy to define lung CD45⁺ singlet cells (**A**), and representative flow cytometry plots of lung CD45⁺ cells (**B**), eosinophils (CD45⁺Autofluorescence⁻CD11b⁺Siglec-F⁺) (**C**), CD11c expression on eosinophils (**D**), ST2⁺ILC2s (CD45⁺Lin⁻ST2⁺CD90.2⁺Sca-1⁺) (**E** and **F**), and IL-5/IL-13 producing ILC2s (CD45⁺Lin⁻ST2⁺IL-5⁺IL13⁺) (**G**) are shown. Data are representative of three independent experiments.

Supplementary Figure 6. Attenuated IL-33-induced pulmonary inflammation in *Regnase-1*^{AA/AA} mice (BALs). *Regnase-1*^{WT/WT} (blue) and *Regnase-1*^{AA/AA} (red) mice were intranasally administered with IL-33 (100 ng/dose) or PBS (control; Cont) for 4 consecutive days. (A) Total numbers of CD45⁺ cells (CD45⁺ singlet cells) and eosinophils (CD45⁺CD11b⁺ CD11c⁻ Siglec-F⁺) in bronchoalveolar lavages (BALs) were quantified by FACS. (B–D) The gating strategy to define BAL CD45⁺ singlet cells (B) and representative flow cytometry plots of BAL CD45⁺ singlet cells (C) and eosinophils (CD45⁺CD11b⁺CD11c⁻Siglec-F⁺) (D) are shown. (E) The concentrations of IL-5 and IL-13 in the BAL fluids (BALFs) were determined by ELISA. Data are representative of two independent experiments. Representative flow cytometry plots (B–D) and mean (n=3 for control and n=6 for IL-33) \pm SEM (A and E) are shown. Significance was determined by one-way ANOVA followed by Tukey's test; *P<0.05, **P<0.01.

Supplementary Figure 7. Attenuated IL-25–induced pulmonary inflammation in *Regnase-1*^{AA/AA} mice (Lungs).

Regnase-1^{WT/WT} (blue) and *Regnase-1*^{AA/AA} (red) mice were intranasally administered with IL-25 (100 ng/dose) or PBS (control; Cont) for 4 consecutive days. (**A**–**E**) Representative flow cytometry plots of lung CD45⁺ cells (**A**), eosinophils (CD45⁺Autofluorescence⁻CD11b⁺Siglec-F⁺) (**B**), CD11c expression on eosinophils (**C**), ST2⁺ILC2s (CD45⁺Lin⁻CD90.2⁺ST2⁺) and ST2⁻KLRG-1⁺ILC2s (CD45⁺Lin⁻CD90.2⁺ST2⁻KLRG-1⁺) (**D**), and IL-5/IL-13 producing ILC2s (CD45⁺Lin⁻CD90.2⁺IL-5⁺IL13⁺) (**E**) are shown. (**F**) Total numbers of lung ST2⁺ILC2s (CD45⁺Lin⁻CD90.2⁺ST2⁺) were quantified from (**D**). (**G**) mRNA levels for *Il33* in the lungs were determined by quantitative PCR. Data are representative of two independent experiments. Representative flow cytometry plots (**A**–**E**) and mean (n=3 for control and n=6 for IL-25) \pm SEM (**F** and **G**) are shown. Significance was determined by one-way ANOVA followed by Tukey's test; ***P<0.001, n.s. not significant.

Supplementary Figure 8. Attenuated IL-25-induced pulmonary inflammation in *Regnase-1*^{AA/AA} mice (BALs). *Regnase-1*^{WT/WT} (blue) and *Regnase-1*^{AA/AA} (red) mice were intranasally administered with IL-25 (100 ng/dose) or PBS (control; Cont) for 4 consecutive days. (A) Total numbers of CD45⁺ cells (CD45⁺ singlet cells) and eosinophils (CD45⁺CD11b⁺ CD11c⁻ Siglec-F⁺) in the bronchoalveolar lavages (BALs) were quantified by FACS. (B and C) The representative flow cytometry plots of BAL CD45⁺ cells (B) and eosinophils (CD45⁺CD11b⁺CD11c⁻Siglec-F⁺) (C) are shown. (D) The concentrations of IL-5 in the BAL fluids (BALFs) were determined by ELISA. Data are representative of two independent experiments. Representative flow cytometry plots (B and C) and mean (n=2 for control and n=6 for IL-25) \pm SEM (A and D) are shown. Significance was determined by one-way ANOVA followed by Tukey's test; *P<0.05, n.s. not significant.

Supplementary Figure 9. Attenuated Papain-induced pulmonary inflammation in *Regnase-1*^{AA/AA} mice (Lungs).

Regnase-1^{WT/WT} (blue) and *Regnase-1*^{AA/AA} (red) mice were intranasally administered with papain (Papa; 10 µg/dose) or PBS (control; Cont) for 4 consecutive days. (**A**–**F**) Representative flow cytometry plots of lung CD45⁺ cells, macrophages (CD45⁺Autofluorescence⁺CD11c^{high}Siglec-F^{high}), and lymphocytes (CD45⁺Autofluorescence⁻CD11b⁺FSC^{low}SSC^{low}) (**A**), eosinophils (CD45⁺Autofluorescence⁻CD11b⁺Siglec-F⁺) and monocytes/neutrophils (CD45⁺Autofluorescence⁻CD100.2⁺Sca-1⁺) (**D** and **E**), and IL-5/IL-13 producing ILC2s (CD45⁺Lin⁻ST2⁺IL-5⁺IL13⁺) (**F**) are shown. (**G**) The total numbers of lung neutrophils, macrophages, and lymphocytes quantified from (**A**) and (**B**). (**H**) mRNA levels for *Il33* in the lungs 6 hours after a single papain administration. Data are representative of two independent experiments. Representative flow cytometry plots (**A**–**F**) and mean (n=3 for control and n=7 for papain (**G**) and n=4 for control and n=5 for papain (**H**)) ± SEM (**G** and **H**) are shown. Significance was determined by one-way ANOVA followed by Tukey's test; *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. n.s. not significant.

Supplementary Figure 10. Attenuated Papain-induced pulmonary inflammation in Regnase-1AA/AA mice (BALs).

Regnase-1^{WT/WT} (blue) and *Regnase-1*^{AA/AA} (red) mice were intranasally administered with papain (Papa; 10 µg/dose) or PBS (control; Cont) for 4 consecutive days. (A) Total numbers of CD45⁺ cells (CD45⁺ singlet cells) and eosinophils (CD45⁺CD11b⁺ CD11c⁻Siglec-F⁺) in the bronchoalveolar lavages (BALs) were quantified by FACS. (**B** and **C**) Representative flow cytometry plots of bronchoalveolar lavage (BAL) CD45⁺ cells, macrophages (CD45⁺CD11c^{high}Siglec-F^{high}), and lymphocytes (CD45⁺CD11b⁻ CD11c⁻FSC^{low}SSC^{low}) (**B**), and eosinophils (CD45⁺CD11b⁺CD11c⁻Siglec-F⁺) and neutrophils (CD45⁺CD11b⁺CD11c⁻Gr-1^{high}Siglec-F⁻) (**C**) are shown. (**D**) The concentrations of IL-5 and IL-13 in the BAL fluids (BALFs) were determined by ELISA. (**E**) The total numbers of BAL neutrophils, macrophages, and lymphocytes quantified from (**B**) and (**C**). Data are representative of two independent experiments. Representative flow cytometry plots (**B** and **C**) and mean (n=3 for control and n=7 for papain) ± SEM (**A**, **D** and **E**) are shown. Significance was determined by one-way ANOVA followed by Tukey's test; *P<0.05, **P<0.01, ***P<0.001, ***P<0.001. n.s. not significant.