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Supplementary Material

A. Mechanical testing of silicone gels

We characterized the gel’s mechanical properties E and
Γ using indentation and fracture tests, with the results as
given in the Table in the main paper. We measured E by
indenting bulk gel samples (at least 10mm in depth) with
a 1mm-radius, cylindrical indenter on a texture analyser
with a 500g load cell (TA.XTPlus, Stable Microsystems).
The initial slope of the force-indentation curve gives us
E/(1 − ν2), where ν is the Poisson ratio. Then assum-
ing sample incompressibility, so that ν = 1/2 (a good
assumption for soft gels and elastomers), we obtain E.

We measured Γ using the pure-shear test proposed
by Rivlin and Thomas. 100mm wide, 2mm-thick sheets
of silicone gel were clamped between two long, straight
clamps, with a distance of 20mm between the clamps (see
Figure 1f in the main paper). We measured the loading
behavior of un-notched sheets, and sheets with an ap-
proximately 40mm long, seed crack, razor-cut from the
sample edge along its centre-line. By observing the point
at which the crack started to extend, we calculate Γ using
the procedure described in [38].

Unfortunately, it is not easy to measure the stress at
which inelasticity sets in, σi, as bulk test samples will
typically fail (due to the growth of flaws) before the ac-
tual stress at which inelastic damage occurs is reached.
However all the samples could be stretched by at least
50% before breaking, confirming that σi & E.

B. Tensile testing

We looked for evidence of stress softening/a Mullins
effect in our silicone materials by performing multiple se-
quential tensile tests of increasing magnitude on our sil-
icone samples. An example showing the measured stress
versus time for the silicone with E = 333kPa is shown in
Figure S1a. When we plot this data on a stress/strain
plot, all of the data collapses onto a single curve, as shown
in Figure S1b. This is true for each of the different sili-
cones that we use. The collapse shows that the silicone
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F . S1. Cyclical tensile testing of silicone samples. We
created dogbone samples of each different material, and per-
formed tensile tests of increasing amplitude on these until they
failed (by breaking at the grips). A) The measured stress
vs time for a sample with E = 333kPa to demonstrate the
testing procedure. B) When the data from the tensile tests
are plotted vs strain (calculated using the distance between
grips), they collapse onto a single curve for each sample. This
demonstrates that the samples are highly elastic and don’t
display any stress-softening).

samples are highly elastic, and displays no stress soften-
ing/damage up to the point of sample failure.

C. Self-similar droplet growth

Figure S2 shows further examples of how the shapes
of droplets evolve as they grow in stretched silicone gels
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of different stiffnesses. As with the plots in Figure 2a,b
in the main paper, we see that droplets are always self-
similar during growth.

D. CARS Microscopy

Using CARS microscopy, we measured the intensity
of the silicone signal (with a Raman shift of 2912cm−1)
inside of pure fluorinated oil, and in droplets that grew
inside silicone gels with E = 71 and 333kPa. A typical
example of such a droplet with E = 71kPa is given in
the Figure S3, along with an image of a fluorinated oil
droplet inside uncrosslinked silicone for comparison.

The average signal intensity inside 19 droplets with
E = 71kPa was 0.32 ± 0.2, while the average inten-
sity inside 22 droplets with E = 333kPa was 0.4 ± 0.2.
This could not be distinguished from the intensity inside

Uncrosslinked silicone E=71kPa

droplets in the uncrosslinked silicone, which took a value
of 0.26 ± 0.2. For reference, the average intensity of the
silicone signal was approximately 22, and the standard
deviation of the pixel noise in fluorinated oil was 0.35.

E. Videos

The three supplementary videos show different exam-
ples of droplets growing in stretched silicone gels. Video
1 shows growth in a silicone gel with E = 333kPa and
εx = 49%. The scalebar is 100µm long. Video 2 shows a
close up of one of the droplets in Video 1. Video 3 shows
growth and shrinkage of droplets in a silicone gel with
E = 333kPa and εx = 60%. In this video, the edge of the
sample is at the top of the video, so evaporation occurs
here, and droplets disappear first near this edge.

The axisymmetric finite element (FE) model is shown
schematically in Figure S4a, and implemented in a
commercial finite element method (FEM) software,
ABAQUS®. The initial droplet (blue region) is as-
sumed to be a spherical cavity with radius R0, which
is surrounded by the silicone gel. The gel is modeled
as an incompressible neo-Hookean solid with small-strain
Young’s modulus E, with strain-energy density function

W =
E

6
(I1 − 3) (1)

where I1 is the trace of the right Cauchy-Green tensor.
The droplets are assumed to be sufficiently far apart

so the gel outside occupies a region 100 times the radius
R0. A constant internal pressure Pc, is imposed on the
deformed surface of the cavity. As in the experiments,
we apply a strain εx in the axial x direction. Due to
symmetry, only a quarter of the domain is modeled (see
inset, Figure S4). On the axis of symmetry the radial
displacement and shear traction are zero. The boundary
on the top is traction free. The axial displacement and
shear traction on the left are prescribed to be zero, and on

Fig. S2. The evolution of droplet image during growth in  
silicone gel with  E = 71, 333, and 800 kPa and at three 
different applied strains.  Each colour corresponds to one value 
of the applied strain. The different hues (5 for each set of 
conditions) correspond to di erent droplets. The dashed lines 
indicate an aspect ratio of 1. 
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Section S2. Numerical simulations 

Fig. S3. CARS microscopy images of fluorinated oil 
droplets in silicone gels of different stiffnesses.  Droplets of 

fluorinated oil in uncrosslinked silicone  oil (left) and silicone 
gel with E = 71kPa (right).  
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Fig. S4. Results of a numerical model of cavity growth. An
inclusion is embedded inside an incompressible neo-Hookean
solid with small-strain modulus E. The inclusion is then in-
flated to, and held at Pc while the solid is stretched with
strain εx. At fixed Pc/E, α essentially is a linear function
of εx. The green curve shows a fit to the E = 71kPa data
(green circles). The inset images show the shapes of typical
droplets at different stretch conditions, which are in excellent
agreement with the fitted model.

the right boundary an axial displacement is imposed to
give an average strain of εx. To balance the accuracy and
efficiency of the computation, we choose a very fine mesh
near the droplet’s surface, while far away the element size
increases rapidly. Hybrid axisymmetric elements CAX4H
and CAX3H are used to simulate the incompressibility
of the material. Our convergence test shows that further
refinement of mesh does not affect the FE results.

As expected, the applied strain breaks symmetry and
the cavity deforms into an oblate spheroid (e.g. Figure
S5). In Figure S4, we show the aspect ratio of the de-
formed cavity as a function of the applied strain εx for
different growth pressures on the cavity, alongside experi-
mental data for the gel with E = 71kPa. These pressures
Pc are normalized by the small-strain Young’s modulus
of the gel E. Interestingly, for a fixed pressure, we find a
linear relationship between the aspect ratio and applied
strain, consistent with experimental observation. Thus,
it is possible to fit the experimental data – as demon-
strated with the green line in the Figure, which corre-
sponds to an inflation pressure Pc/E = 0.46.

Following Hill [32], we derive the critical pressure
for self-similar growth of a pressurized void in an
elastic/perfectly-plastic solid. We assume the geometry
shown in Figure S6. A void of radius av is surrounded by
a plastic shell of radius ap that is embedded in an infinite

elastic solid.
From Hill, the displacements in the radial direction at

the elastic-plastic boundary are given by

u(ap) =
σyap(1 + ν)

3E
(2)

where σy is the yield stress. Assuming that the void was
originally of negligible size, and that elastic deformations
are small, conservation of volume gives us that

4

3
πa3v = 4πa2pu(ap) (3)

so

ap
av

=

(
E

σy(1 + ν)

)1/3

(4)

and we see that the growth is self-similar, with the plastic
zone growing in proportion to the radius of the void.

To obtain the growth pressure of the void, we use the
result from Hill that

Pc = 2σy

(
log

(
ap
ac

)
+

1

3

)
(5)

so that

Pc =
2σy
3

(
log

(
E

σy(1 + ν)

)
+ 1

)
(6)

The logarithmic term will beO(1) for typical materials,
so we see that Pc ∼ σy.

Section S3. The pressure of a growing void in 
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Fig. S5. The evolution of the shape of a droplet in a neo-
Hookean, incompressible  solid, as the solid is  uniaxially 
stretched.  The droplet is held at a fixed internal pressure, P. The 
different colors correspond to different inating pressures, while 
the black circle represents the initial size of the droplet.  
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F . S6. A schematic showing the geometry used in calcu-
lating the critical pressure for growth in an elastic/perfectly
plastic solid
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