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Supplementary Materials

Section S1. Semiclassical Boltzmann theory

We describe in detail the analysis of the semiclassical Boltzmann transport theory for the cal-
culation of second-order response in noncentrosymmetric materials. We deal with spatially
homogeneous systems and hence the electron distribution function f(k,€) does not depend on
the spatial position, but on the wavevector k and the energy e. We assume that the frequency
of the external field w is lower than the interband spacing, so that interband transitions are
suppressed and negligible.

We calculate the distribution function in the presence of the external field by the semiclas-

sical Boltzmann equation (h = 1) (28, 54)

of . of
E+k'a_k_ Clf] (ST)

The time derivative of the momentum is equal to the force felt by an electron wave packet:
k = F. We have an external electric field E (w), so that the force is F = —eE(w). The collision

integral C[ f] is given by (28, 55)

ClLA1 = [ Dvwns ke = waas S (K e + )] (52

where wy i is the scattering rate from a state with momentum k to one with k’. In the following,

we consider elastic scattering. Then, the scattering rate becomes
Wik = 27| Tiok|0(ex — €x) (S3)

with the scattering T matrix Ty-. It is given by Tyx = (k’|V |y ), where |k) is the eigenstate
of Hy, the Hamiltonian in the clean limit, and |/ ) is the eigenstate of Hy + V, including the
scattering V. |y ) can be obtained as the solution to the Lippman—Schwinger equation |/ ) =
\k) + (e — Hy + i6)"'V |yg). The energy shift is obtained as degx = —F - Sryg with the
coordinate shift org., ~ (k' — k) x Q(k) for a weak scattering process with a small momentum

change (56).



1.1 Scattering rate in noncentrosymmetric media

In noncentrosymmetric media, the probability of a scattering process k — k’ and the inverted

process —k — —k’ can be different. For time-reversal systems, this imbalance is captured by

decomposing the scattering rate into two parts

S A
Wik = wh, +wi) (S4)

where the symmetric and antisymmetric parts w(S) and w'4), respectively, is defined by

1 1
ng), = E(Wkk’ + Wik )s WS(), = E(Wkk’ — Wi'k) (S5)

When time reversal is preserved, the scattering rate satisfies the reversibility wigx = w_g’ g,

which leads to the relations

©®) _ _ .
Wik = W_k—kr = Wik (S6)
(A _ (A) _ (A)
Wik = " W_opkkr = Wi (87)

Those equalities do not hold in general when time reversal is broken since states at k and —k

usually have different energies. The optical theorem for elastic scattering guarantees the relation

/ W) =0 (s8)

When the elastic scattering is due to impurities, w'S) and w4) are obtained to the lowest order

in the impurity scattering potential by

WS = 21 (Vi S (er — ) (S9)
wih = —(2n)? / Im(Virg Vak Viek Y5 (€ — €)3(€xr — €g) (S10)
q

where ( ) denotes the average over the impurity distribution and Vj; is the matrix element

for the single impurity scattering. We can see that the symmetric part of the scattering rate is



obtained at the lowest order of the Born approximation, whereas the antisymmetric part is found
at the next leading order. The detailed balance is broken when the antisymmetric part is finite.
Reference (27) reviews the photogalvanic effect in noncentrosymmetric materials, consider-

ing the asymmetry of scattering. The photovoltaic effect is studied with the Boltzmann equation

(A)

and the antisymmetric component of the scattering rate w,. ,

similarly to our analysis. A dif-
ference can be found in the origin of finite wg.,. In Ref. (27), the asymmetry is imposed on
scattering potentials for impurity scattering, ionization, photoexcitation, and recombination.
We note that the asymmetry of the scattering rate can be finite due to an asymmetric scatter-

ing potential and also a wavefunction of a noncentrosymmetric medium. For the latter case, a

scattering potential does not need to be inversion asymmetric to have finite w but even an

k'k’
(4)

isotropic scattering potential can generate Wik

through a wavefunction.

1.2 Formal solutions

The semiclassical Boltzmann equation S1 should be solved self-consistently to obtain the
distribution function f(k). A fully self-consistent solution is generally difficult to obtain; here

we decompose the distribution function f as

f — fO + fscatt + fadist (Sll)
The first term fy is the distribution function in equilibrium, i.e., the Fermi—Dirac distribution.
The second term f5¢" describes the scattering contribution without the Berry curvature and
the last term f24 is the anomalous distribution due to the Berry curvature and the energy
shift ex-x. We further expand £ and 241t with respect to the electric field E(w) and the

asymmetric part of the scattering rate w(4):

fscatt(k) — Z fnscatt(k)’ f:catt(k) — Z fyfm)(k) (SIZ)
nx1 m20
fadist(k) _ Z fnadiSt(k), fnadist(k) — Z gglm)(k) (S13)

n>1 m>0



The subscript n and the superscript m correspond to the orders of the electric field E and the
antisymmetric scattering rate w4, respectively. As we have seen in Eqs. S9 and S10, w®
is smaller than w'®, so that we treat the former as a perturbation. Then, the Boltzmann equation

is decomposed for each £™ or g™ to become

P (0)
%_eE'%:‘/ wO L) - fO) (S14)
K
af(l)
8; = / ;jg)'[fl(l)(k) fl(l)(k )] + '/k ;:;c)'fl(())(k,) (S15)
(9f(0) af(O) (S) 1 £(0) (O)
PR T /k Wi Lfy (k) = f57 (k)] (S16)
af(l) af(l)
o " o T / WLy (k) = 1] + / wd £O® (S17)
8g(0)
“ar /k w18V (k) - ¢V (k)] + /k W (k) E - 5ry) (S18)

dgl) ,
IR /k w [8(k) - gDk + /k W g Ok") + /k Wi FYCE - 6ri) (S19)

95y . og)”
ot ok
:‘/k W 1600k) - Ok + /k WO O + g OUNE - 6rin)  (S20)
1 44
e 5 [ WL UONE - orin
o ogll

ar 7 ok
== [ s 060+ [ w0 + g VIE - orin)
+/k ;:;c)'g(())(k )+ / ;:;()r[f’(())(k )+ gl(O)](eE Srik) + = / W;ﬁc),foﬁ(k/)(eE . 5"k'k)2
(S21)
A prime symbol " added to the distribution functions stands for the derivative with respect to the

energy: f'(k,€) = 0.f(k,€).

Each equation has to be solved self-consistently; however it is usually not easy. Here, we



solve a part of the collision integral involving w'S) self-consistently, while the other part with

w4 is treated as a perturbation. The collision integrals with w(S) define the scattering times
(m) (m)

7, and 7, ~ as follows
/ wep L () = £ 0] = — 1" () ($22)
k’ Tn
/ wiplen (k) - g (k)] = ,(m) 2" (k) (S23)
ke T,

n

If T,S’") and T,',(m) do not satisfy the self-consistency, one may regard the equations above as the
definitions for the relaxation time approximation. We also note the notation of the scattering

( ) (1)

times 7, and 7, used in the main text; they correspond to 7, = and 7, =71, .

We assume 7 and 7’ are independent of momentum k in solving the equations. Then, we

(") and g™ . The second-order re-

obtain the formal solutions for the distribution functions f,,
sponse contains different frequencies, 0 and +2w. Since now we focus on rectification, i.e.,
zero-frequency response, we only write down the second-order solutions with w = 0. Now, we

list below the formal solutions up to the second order in the electric field (n < 2) and to the first

order in wd) (m < 1)

Tk, w) = 7\VeE, by, fok) (S24)
Ok, w) =) /k w1 OB a1, fo(k') (S25)
RO, 0) = 2V Ezon, [0k, w) + c.c. = 7V eEL 0y, 7V e Eydy, fo(k) + c.c. (S26)

£k, 0)
= Té”eEZf?kaﬁU(k,w) +c.c.+ / ka;c)'f 0)(k’, 0)
= Tél)eE;akaTl((lu)/ W;{Ij()’ (O)eEbak’ f()(k ) + T(l)/ W;{Ak)l (O)eE ak,T eEbak;’fO(k/) ‘e,
o k’
(S27)

g k,w) =7V /k W) fr(k"Ye EqSr ok (S28)



k=l | [ i [ i ke + [ KB
(S29)

0

g§ (k,0)

7 [E 0,8y (ks w) + /k WO @) + g1 (K w)eEgdrann

1 *
+ 5 /k’ Wgcsk),fo”(k/)eEa(Sl’a;k/keEb(Sl’b;k/k + C.C.

= T/(O) [eE 0 “T;E‘(’))/k ;Cslg,fo(k YeEpOrp i + /k ;(Slg,eE OT gk kaek,r )eEbak : fo(k")
+ / / W) eE 67k kO T /k WS (K" Epbry i
+c.c.

1 4 %
+3 /k / w§f,3,fo’ (k")eE;6rax ke Epdrpicrk

(S30)



gé”(k, 0)

A [eE .8\ (k. w) + /k WS LHOW, w) + g VU, ) eEsdraprn + /k wi Ok’ 0)

! ’ 4 1 ’ *
+ /k Wi LK ) + g1V w)leEgbrapn + 5 / Wi o )eEaara;kfkeEb(srb;k,k]

+c.c.
=T m{eE %) aT{S) [/k ;:;c), ,(0)/k ;{S)k,/fo(k”)eEbérb vk + /k ;{‘L}{),fo(k')eEbérb;k/k]
+ /, ngg,eE Srak kaek/[ (1) /k' w}(f},)c,, (O)eEbaknfo(k”)
+ T;S) /k" w;:,‘,)c,,T{S))) /k’” (S)k,,,fo(k"')eEb(‘Srb Kk + T (1)/k ;{Al)c,,fo(k”)eEb(Srb Kk ]
+ / ch)' 0 [eE Ok T'(O)/k ;{SL,,fO(k”)eEbérb Kk
+ / WECS,;C,,eE Orakkr (9Ek,,T eEbﬁkufo(k”)
+/” W €Ea Ttk O Ty /k Woo e Jo (K Ve EpStyemcr
! ) gy,
+ 5 /k" W Jo (k )eEa6ra;k~kreEb6rb;k~kr]
+ /, ;{’L;c),eE STuk'k [ © )eEbﬁk folk) + afk,T’(O)/k ;cS;C,,fO(k")eEb(Srb Kk

1 4 k
+ E /k' W;:;c),f()/ (k/)eEafS”b;k'keEb(Srb;k/k} + c.c.

(S31)
T,%) and TnEu m) are the shorthand notations for
(m) #(m)
my _ _ Tn 7(m) T
T = o T =———~ (832)
A za)T,gm) " 1 - ta)T,',(m)

Those formal solutions find the scattering time dependence of the distribution functions for low

frequencies (w7 < 1)

fSCatt oc T}'lEi’l’

n

fift o COE"TET, 2T (S33)



Higher-order corrections for the anomalous distribution (n > 2) has a nested structure of fnsf?“

and f? af“ft. In the weak disorder limit of T — oo, we obtain

fnadist oc Tn—lEn (534)

We can define another scattering time 7 from the antisymmetric part w4). It is roughly speaking
given by
o
[ s~ st (539

We note that the definition of 7 is accompanied with the distribution function because the optical

theorem for elastic scattering concludes Eq. S8.

Section S2. Current response

From the distribution function, the electric current response is obtained by

j=—e /k v(k) (k) (336)

v(k) is the electron’s group velocity, given by

0 .
Vv = a—jf—k)(ﬂ+/,wk/k(5rk/k
= V0 + Vay + Vs (S37)

The group velocity from the energy band dispersion v is independent of the Berry curvature,
while the Berry curvature induces the anomalous velocity vy, (57-59) and the side-jump veloc-

ity v (60)

Vv = —k X Q = ¢eE X Q (S38)

ij:/ Wk/kérkrk (839)



In terms of the electric field E, v,y is linear in E whereas v and vg; do not depend on E. Lastly,
only the side-jump velocity depends on the scattering time: vg; oc 71, Since there is no current

in equilibrium, the electric current is described by (29, 54)

j=—e / (V0 + Vay + wg)(F50 4 ity (S40)
k

which allows us to decompose the current into contributions of different origins. We note that
the contribution from the anomalous distribution f24t could be recognized as a part of the
side-jump effect since it is originated both from the Berry curvature and scattering.

Before calculating the second-order conductivity, we note the problem about the energy
dissipation or Joule heating because of j - E # 0; see also e.g., Ref. (28) for discussions. This
concludes that a stationary state solution cannot be obtained for a closed system with energy
conservation. To circumvent this issue, we neglect parts of the distribution function which are

isotropically coupled to the electric field. To be more explicit, the distribution function at the

4

second order in the electric field involves a term proportional to |E|? o - Technically, such

an excess term arises when we substitute a distribution function f, (n > 1) into the collision
integral C[f], which involves only elastic scattering. Since this term is isotropic, it cannot
be relaxed by elastic scattering, which conserves energy, so that a stationary state solution
does not exist. Inelastic scattering resolves the problem as it does not conserve energy and
excess energy is dissipated as heat. Note that an inelastic scattering time is typically much
longer than an elastic scattering time. In calculating the second-order conductivity, we simply
subtract and neglect such isotropic terms although they potentially change the temperature for
a closed system. Importantly, they do not contribute to current from the band velocity since
Jovofy = [ Vefy =0.

We can see the six possible combinations in Eq. S40. For the second-order current re-



sponse, the scattering time dependence of each contribution for low frequencies wt <« 1 is

vszscatt o T2, vavfscatt Tl, vsjfscatt (S41)

Vo 2adlst o (Tl, TO), vavfadlst TO, vSJfadlst (TO, T—l) (842)

In the weak disorder limit of 7 — oo, the first term, the skew scattering contribution, vq f5"
predominates, which we focus on in this work. This is equivalent to neglect all Berry curvature

related effects. The second-order current response arising from this term is
2= e [0 = —e [ sl ) + £470) (543)
We define the second-order conductivity by the relation
J2a = XavcELE; (S44)

and we obtain from Eqgs. S26 and S27

Xabe = Xom + x4 (S45)
Xi%)c 637(0) (0) / 0,40k, Ok, fo(k) + (b < ¢)" (S46)
Xc(tz)c = (1) (1) (0)/" Ok / kk,(')k ' fo(k')
S47
(1) (0) (0)/\/ a/ kk,ak/ak fO(k ):| ( )
+(b o o)

X((;),) vanishes identically in time-reversal-invariant systems because of € = €_g; it follows from

© ) . Therefore, the second-order

contribution from the skew-scattering contribution arises from )(( b) , 1.8., Xabe = )(L(lz)c.

vo(k) = —vo(—k), and we see that the integrand is odd in k for y,,

To calculate the second-order response, it is useful to express Eqs. S46 and S47 in the



following forms

Xc(t(l)a)c = _637§0)7'1(8J) /[—fo/(k)]vo,a((?kbakcek) +(b o)

(S548)
26 Re [d2] [ 1=£i0000.00,01. )
K=o lrg“ Tl / [~ £ () (B, O, 1) / Wik voe
-0 [, [ wiouo.e) 519)

(I)T(O) (0)/[ fo(k)]ak / ;ﬁc),vo,bVO,c]

+ (b e o)

We also show the expression for )(( ) for reference although it vanishes. These expressions
show that results at finite temperature can be obtained by considering the thermal broadening of
the Fermi—Dirac distribution, where the Fermi energy er is replaced by the chemical potential

Uchem With the carrier density fixed. More explicitly, from the following relation

fk) = / del=F(€: Henem)1O(e — €r) (350)

the second-order conductivity at finite temperature is obtained by

Xabe(Mehem> T) = /de[_f()l(e; Mchem)] Xabe(€,T = 0) (S51)

2.1 Linear response

We also calculate the linear response to obtain responsivities (defined below). From the Boltz-

mann equation, the linear current response is given by

jl,a(w) = oapEp(w) = —e / VOzzfscatt (852)



leading to the linear conductivity

o =0y + o) (S53)
o = 2O / Voudi, folk) = 2 / Voavosl— ()] (S54)
o) == [ [ Wil i 555

Section S3. Graphene-based models with trigonal
lattice structures

Now we evaluate the current response for explicit models. We consider two graphene-based
models, utilizing monolayer and bilayer graphene. The crystalline lattices belong to a crystal-
lographic point group D3, and Cj,, respectively. We note that inversion is equivalent to the
in-plane two-fold rotation in 2D models, which is absent in the present models. Around K and

K’ points, K = ( dr O) and K’ = ( An 0) the k - p Hamiltonian to second order is

V3’ 3V3°
B A svk_s — Ak?
Hi k) = (svks — Ak2, -A )
= [svke = Ak = k)] o + (vky + 25dkyky) 0y + Ao, (S56)

where k, and k, are measured from K or K’ point, labeled by s = %1, and k; is defined by

ks = kx +isk,. The energy dispersion of the positive branch is given by

er = V22 + A2k% + A2 — 25v.1k3 cos 36 (S57)

and the corresponding normalized wavefunction is

1 €r + A
Vartar 7 & \[svke = 2063 = kD] +i (vky + 25k k)

The Berry curvature is also calculated as

|k, s) = (S58)

AV — 422k4
o - A0 ) (S59)
Z 3
26k




The Hamiltonian Eq. S56 is available to both monolayer and bilayer models (Fig. S1).
The Pauli matrix o, describes the two sublattices for monolayer graphene and two layers for AB
(Bernal) stacked bilayer graphene. Another difference is found in which of v and A is dominant,
which is explained later. A describes the potential energy difference at the two sublattice sites or
layers, which opens a gap to the energy spectrum. In the following, we consider the two cases

separately.

3.1 Monolayer graphene

For monolayer graphene, the terms with v dominate those with A (vkp > /lk%), where A char-
acterizes the trigonal warping of the Fermi surface. s = +1 corresponds to K valley and s = —1
to K’ valley. The Dirac mass can be induced for example by placing a graphene sheet on a
hexagonal boron nitride (hBN) substrate. For a tight-binding model on a honeycomb lattice
with the nearest-neighbor hopping amplitude ¢ and the distance between sites a, the velocity v
and the trigonal warping A are given by v = 3ta/2 and A = 3ta’/8, respectively (40, 41).

We assume that the trigonal warping is small and obtain the energy dispersion € to first

order in A as
3

k
ex = Vv2k2 + A2 — syl ———— cos 30 + O(1%) (560)
vk + A2

where the Fermi wavevector kr is given by

kp = —— (Seél)

The density of states (DOS) at the Fermi energy is

€F
27v?

0 (§62)

and 6y denotes the polar angle of k. The Fermi surface can be parameterized by 8y as

kZ
k(%) = kr + sA—L cos 30 (S63)
)%



To evaluate the scattering rate, we need the wavefunction on the Fermi surface. The normalized

wavefunction on the Fermi surface is given by

T
A (scosBy +isin0y)vkp + idkZ sin 30
eos) = [er + ’( k K (vkr 2 k) (S64)
2erp \/261:(61: + A)

Also, it is useful to see the Berry curvature on the Fermi surface, which is given by

2
A
Q. = -2+ 0 (S65)
26F

The second-order conductivity is considered in the presence of an elastic impurity scattering.

Here, we assume short-ranged random scalar impurities
V(r) =V Z s(r—r)) (S66)
J

but restrict scattering within each valley. V; is the impurity potential strength, »; is the impurity
density, and r; denotes an impurity position, where the summation is taken over all impurity

sites. Then, we obtain the scattering rates for the valley s to first order in A as

n;V? a0
wgsk)k, = L > [|(6F +A) + vzk,%e’(g_e |2
’ ZEF(EF + A) (S67)
— 25Avk;(€r + A)* sin(f — 6')(sin 36 — sin 39’)]5(ek — €x’)
(A) V2 Ak

w =—
skk’ 2
2EF

{s sin( — 0")

k
+ JTF[sin(G —40") + sin(40 — 0") — sin(0 + 20”) + sin(26 + 6')]}6(@ — &)
(S568)

with 6 = 6 and 8’ = 0} parametrizing the Fermi surface.
In order to obtain the distribution function, we need to determine the scattering times that

satisfy the relation Eq. S22. For the present Hamiltonian, the scattering times are obtained as

2 2\ 7!

€+ 3A

TfO) _ T;l) _ T;l) _ (”iVizsz) (S69)
F

2 2\ !
€c+ A
7 = (niViZ—F ) (570)



These solutions are obtained to O(1"), which are enough to evaluate conductivities to order
O(A") (see the next paragraph). Also, there is no directional dependence in the scattering times

at order 1°. For clarity, we define

2 2\7!
B ,€p +3A
and the dimensionless quantity
€7 +3A° < 1) s72)
= (<
2(e2 + A?)

()

0 — fl) = Tél) =tand 7 ' =yT

which are defined to satisfy 7,
We calculate the second-order contribution from each valley separately, namely y.». =

0 .
Xc(zb)c + Xc(lb)c with

0 0) 1) (1
L(lb)c Z Xg abe ((lbc Z X, a)bc (S73)

The contributions from each valley s are obtained from Eqs. S46 and S47 at zero temperature as

3Ak2 (€2 + A?)y 1
0 0 0 0
)(Agx)xx - _)(Agx)yy _)(Ey))Q _XE)J)yx = 56372‘} ~ F3 Re [1 . ] (874)
neF — T
krp(2€2 + A%)  vkp(e2 +2A?%)
(1) (1) M __ ) 432 T | VEEEE _ F (S75)
Xs XXy T = Xs XYX T = Xs ,YXX Xs,yyy T (1 _ l'(x)T)27T€I3, Y (1 _ iCUT)7T€I3,—

where the factor of two from spin is multiplied. We note that D3; symmetry concludes that the
imaginary part of the second-order DC conductivity vanishes (29) and that the system does not
have second-order response to a circularly-polarized field. We define another scattering time 7,

related to w® (see Eq. S35), as

nV3\ "
f::(Aﬂ/ ' F) (S76)

This quantity measures the amounts of inversion breaking (m) and the Fermi surface warping

(A). The ratio /7 becomes

vk

1
2v(ez + 3A?) T 2

A-Vik: AkZ
> (S77)
F

+ 3A2 vkp

!



Roughly speaking, the ratio is determined by the product of the following dimensionless quanti-
ties: inversion breaking A/er, the Fermi surface warping /lk% /(vkr), and the impurity strength
V,-k% /€r. We can see from Eq. S68 that the antisymmetric scattering becomes finite when
inversion is broken by A # 0 but it does not require finite Fermi surface warping 4. However,
the second-order response vanishes when the Fermi surface warping is absent. The ratio 7/7
measures the amount of the contribution to the second-order response from skew scattering, but
not the magnitude of skew scattering itself.

x© is originated from the absence of time-reversal or inversion symmetry within each val-
ley, resulting from the Fermi surface anisotropy. However, time reversal is preserved with the
two valleys, and thus contributions from different valleys cancel. This effect of }(® can be
seen in Fig. 2C, where the two valleys generates the opposite static velocity V. In contrast,
¥V adds up with the two valleys, since this contribution captures the opposite chirality of the
wavefunctions around each valley, which is not visible from the Fermi surface shape. Finally,

we obtain the nonvanishing elements of the second-order conductivity

3
-
Xxxy = Xxyx = Xyxx = —Xyyy = _4e3VF?§(U)) = —x(w) (S78)

with the average Fermi velocity on the Fermi surface

2
k
yp = L0F (S79)
€r
and the dimensionless function
2 €2 +2A2 2€2 + A?
(@)= ZRe|ly——F - ——— (S80)
n (1 -iwt)ez (1 -iwt)€s

Here the factor of four in Eq. S78 corresponds to spin and valley degrees of freedom. The

finite elements of y,p. are consistent with D3, symmetry of the lattice.



3.1.1 Linear conductivity and responsivity

To estimate the magnitude of the second-order response and to calculate responsivities, we also

)

calculate the linear conductivity, particularly o ’,. From Eq. S54, we obtain

s,ab’
2k2
© _~2 0V *F
Toap = 2e°1) ) dner Oab (S81)

for each valley with the spin degrees of freedom included. The linear conductivity is diagonal,

and hence we write
212
vk 7 1

ner 1+ (wt)?

o(w) = Z Re 0'52,)“ =T (S82)
N

Since the linear conductivity can be written as oo = neu with the electron density n and the

mobility u, in low frequencies we find the relation
u=er— (S83)

We note that the electron density is obtained by n = k%/ .

The short-circuit current responsivity Ry is defined as the ratio of the generated DC current
J2 to the power of the incident electric field absorbed by the sample. When a sample has a
dimension of L? and the incident field is uniform on the sample, the current responsivity is

given by

oL 1
JIEL?  Lo(w)
We note that the dimension L corresponds to either width or length of a sample, depending
on whether the second-order response of interest is longitudinal or transverse to the incident

electric field. We also define the voltage responsivity Ry as the ratio of the voltage generated

by the second-order response to the incident power:

Lo BLITO) 1 xw)

JWEL? ~ Lo(w)o(0) (585)



Both current responsivity R; and voltage responsivity Ry depend on the sample dimension L
and the ratio 7/7. To remove those factors, we define the reduced current responsivity 7; and

the reduced voltage responsivity ny as follows
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Ry =n—=
V=N (S86)
It
R =ny——= 7
1=V Z (S87)
For the present model, n; and ny are obtained as
4ret 2
m= [1+ (wr) ] (w) (S83)
4r
v = —— [1 + (@)’ {(w) (S89)
envg

3.2 Bilayer graphene

Bernal stacked bilayer graphene has C3, symmetry when the two layer have different potential
energies. Because of the symmetry, we can use the same Hamiltonian Eq. S56; however,
v 1is treated as a perturbation instead of A for the bilayer case (/lk% > vkp), as we can see
from a tight-binging Hamiltonian (40, 41). Treating v as a perturbation, we obtain the energy
dispersion € to first order in v as

2svAk3
& = VA2k4 + A2 — ald (S90)

VA2k* + A2 cos 36y

The DOS at the Fermi energy Dy is given by

A2
Dy =25 (S91)
7rkF

The normalized wavefunction on the Fermi surface to order v is

T
T A (cos20y —issin20;) (k% — ivkp sin 36
eos) = ( €r _( k K )(Aks F k) (892)

2er V2er(er + A)



where kr is defined by

612, _ A2 1/4
kr = (S93)

The Berry curvature on the Fermi surface is

_ 25AXk 2AvAkp cos 36

z 3 3
€ 3

+0(v?) (S94)

Using the wavefunction, we obtain the symmetric and antisymmetric scattering rates w') and
wA)| respectively

) TH; Vl.2

Kk 2€2 (e + A)?

|(er + A)?

+ Azk‘;eﬁ(@—e’)ﬁ — 25vA(ep + A)*k sin(20 — 26’ )(sin 36 — sin 39')] S(ex — &)

(S95)
32,2
) _ TVikpA( - /
Ws,kk’ = ? N sm(29 - 26 )
+ 2/1vk [sin(@ + 26") — sin(20 + 0”) + sin(20 — 50") + sin(56 — 26)] }5(ek — €’)
F
(S96)
For the bilayer case, the scattering times become
-1
n V2 (et + A?

Y i R ( £ ) (S97)

4/12kF6F

-1
n; V(€ + 3A*
Tfl) = Téo) = Tél) = [ (2F 5 ) (598)
81 kFEF
I’l,‘V.3 B

T=|Av—it— (S99)

32/l3kF€F

We define 7 as
1

n; V(€2 + A?

_ [mViter + &) (S100)
40%k2€r

resulting in TI(O) =7 and Tl(l) = TEO) = 7'2(1) = y~!r, with the same y for the monolayer case.



The contributions to the second-order conductivity from valley s are obtained from Eqs. S46

and S47 at zero temperature as

2Ak% (€2 + 2A%) 1

0 0 0 0

X§,)2xx = _X§,)2yy = _Xg,y)xy = _Xag,y)yx = se’1? £ F3 Re [1 ; ] (S101)
ﬂ'EF’y —lwT

1 1 1 1
Xg,x)xy = /\/Ag,x)yx = XAE,y)xx = _/\/Ag,y)yy
2 A2
= 637'2(2/1161:)7—; KA e > - 6 (102
T 471'62’)/2 (1 —iwt)(1 - iwy‘l‘r) I -iwt

For the bilayer model, the ratio 7/7 is given by

krV;
V—
8A(ez + A?)

(S103)

T
f

from each valley cancels but )(gla)bc

Similarly to the monolayer case, )((0) adds up, leading to

s,abc
the second-order conductivity

3
-
Xxxy = Xxyx = Xyxx = —Xyyy = —46’3\/1:?4((1)) = —x(w) (S104)

where for the bilayer model the average velocity on the Fermi surface vr is

2%k
VE = (S105)
€F
and the dimensionless function {(w) becomes
A? 6 5
{(w) = (S106)

Re -
8mely? l—iwt (1 -iwt)(l-iwy17)
3.2.1 Linear conductivity and responsivity

We also evaluate the linear conductivity Ui(l)b for each valley s with the spin degrees of freedom

included (Eq. S54)

(0) oAk
_ 2
O-S,ab =e le Eéab (8107)
Similarly to the monolayer case, we define
2.4
A%k 1

(S108)

— 0 _ 2
o(w) = ZS: Reog,, = et rer 1+ (@r?



For low frequencies, the mobility is calculated from the relation o = neu by

20%k%
u=et (S109)
€r
where the electron density is n = k% /7.
For the bilayer case, the reduced current responsivity becomes
w 8met
m =29 - T rPl) (S110)
o(w) kr
and the reduced voltage responsivity is
w 167
py = X&) _ [1+ ()] () (S111)

~ o(w)o(0)  envg
Section S4. Estimate of parameters

Parameters for a realistic evaluation are taken and estimated from experiments on monolayer
and bilayer graphene. For monolayer graphene on an hBN substrate, the imbalance of the
potential energy within a sublattice is induced by the substrate and the lattice mismatch of
graphene and hBN creates a superlattice with a periodicity of about 13 nm. In addition to the
original (primary) Dirac points, the moiré superlattice produces new (secondary) superlattice
Dirac points, located at a different energy (34). Those two have different velocities and energy
gaps: at ambient pressure, v = 0.94 x 10°m/s and 2A = 30 meV for the original Dirac point,
and v = 0.5 x 10°m/s and 2A = 20 meV for the superlattice Dirac points (35, 37). The size
of the gap depends on the superlattice periodicity and it could be enhanced by interaction (61).
We note that even at the original Dirac point, the velocity is slightly modified. We consider
the original Dirac points instead of the superlattice Dirac points. The latter have the valley
degeneracy of six and anisotropic Dirac cones whereas the valley degeneracy of the former is

two.



The scattering time is estimated from a transport measurement with a high-quality sample
(48). At 300K, they observed the mobility 4 ~ 90,000 cm?/(Vs) with the carrier density
n = 1 x 102 cm™2, which amounts to the scattering time 7 ~ 1.13ps. The corresponding
frequency is (277)~! ~ 141 GHz and the mean free path is £ ~ vpT ~ 1.6 um. We note that
the Fermi wavelength at n = 0.5 X 102 cm=2 is Ap ~ 0.05 um, which is still shorter than the
mean free path: Ar <« €. To estimate the impurity strength, we need to know the impurity
concentration. From transport and scanning tunneling microscopy/spectroscopy (47, 49), we
approximate the impurity density as n; ~ 1x10° cm™2, which results in V; ~ 2.77x10713 eV cm?
(nV; ~ 277meV at n = 1 x 10'2cm™2). Since the velocity is only slightly modified from the
value without a superlattice structure, we employ the value 1/v = a/4 obtained from a tight-
binding model, where « is the carbon atom spacing, given by a = 1.42 A (40, 41). Those values
yields the ratio /7 ~ 0.003 at n = 1x10'> cm™2. In the present calculations, we do not consider
the temperature dependence of the parameters or the origin of scattering and inhomogeneity of
samples for simplicity, although the scattering time becomes longer in lower temperatures.

For bilayer graphene, high-quality bilayer graphene grown by chemical vapor deposition
(CVD) and detached on hBN realizes the mobility ¢ = 30,000 cm?/(Vs) at 300K (57). An
out-of-plane electric field (displacement field) D opens a band gap of about 2A = 100 meV
with D ~ 1.1 V/nm (50). The coefficient 1 = (2m)~! is determined by the effective mass m =
0.033m, (m,: electron mass) and v ~ 1 x 10° m/s (52, 53). Evaluating atn = 1 X 102 cm™2, we
find the scattering time T ~ 0.96 ps, corresponding to the frequency (277)~! ~ 166 GHz, and the
mean free path £ ~ vp7 ~ 0.35 um. We assume the impurity concentration n; ~ 1 x 10° cm=2,
considering its high mobility, to obtain the impurity strength V; ~ 1.06 x 10”3 eV cm? (nV; =
106meV at n = 1 x 102 cm™2). At the carrier density n = 1 x 10'2cm™2, we have the ratio
7/7 ~ 0.018.

The carrier density dependence of €r, v, and o-(0) is shown in Fig. S2, and the frequency



dependence of o, y, n;, and n; is depicted in Fig. S3. The frequency and temperature depen-
dence of the response are given in Figs. S4 and S5. We note that the scattering times used for
the calculations are those at 300 K. The scattering time becomes longer in lower temperature,
which makes the linear conductivity o, the second-order conductivity y, and the reduced cur-
rent responsivity 7y larger, whereas the low- and high-frequency values of the reduced voltage

responsivity iy barely change.

Section S5. Surface state of a topological insulator

A surface state of a topological insulator also lacks inversion and thus hosts the rectification
effect (/18). Here we take an example of the surface state of the topological insulator Bi,Tes

(18, 62), where the Hamiltonian is
A
H(k) = v(kyoy — kyoy) + E(ki + ko, (S112)

leading to the energy spectrum

ex = Vv2k2 + 12k6 cos? 30 (S113)

The origin k = 0 is located at I" point and the k, axis is parallel to I'K line. Unlike the previous
two cases based on graphene, it has a single Dirac spectrum centered at I' point. Furthermore,
the topology of the wavefunction in the bulk prohibits a mass gap of the surface states. In this
case, a surface breaks inversion by itself and the symmetry is Cs,.

For the present Hamiltonian, short-ranged impurities without momentum dependence do not
produce finite w4, nor does the second-order response. This issue can be circumvented instead
by considering Coulomb impurities, where the impurity potential is inversely proportional to
the distance from the impurity position: V(r) o 3 ;|r —r j|‘1. Assuming that the hexagonal

warping of the Fermi surface is small, we have the matrix element of the Coulomb impurity



potential on the Fermi surface as

Ve
Vip = ——————— S114
kk - T ( )
2
Then, we obtain the scattering rates
() ZﬂniVCZ
Wil = ——— (e — ) (S115)
) (6 -0 )
tan 5

8an; Ve 0-6 -0
w(A), R #/101 sgn |sin cos (cos 360 —cos30')5(ex —exr)  (S116)
kk vd 2 2

with the numerical factor ¢; ~ 0.93 obtained from the numerical integration over momenta.
Since there is a single Fermi surface and time-reversal symmetry relates the Fermi surface
with itself, y(©) vanishes with the single Fermi surface. A finite second-order conductivity can

be found in y(! as follows

C1 )

(1) (1) (1) (1) +
l—iwt  (1-iwt)?

_ _ — ~ Byl
Xxxy = Xxyx = Xyxx = “Xyyy © € V? Re

(S117)

Here, we assume for simplicity the constant scattering time 7 =~ (27rDonl-V02)‘l obtained from

w®), and the scattering time originated from w4 is defined by

2n;V3ed
Flop— < F (S118)

v’

The two numerical factors ¢; ~ 0.87 and ¢; ~ 0.14 are evaluated by numerical integrations.



Fig. S1. Monolayer and bilayer graphene models. (A) Lattice structures of monolayer
graphene and (B) bilayer graphene along with the crystal axes. The red and blue circles depict
distinct sublattice sites with different potential energies, and the filled and empty circles corre-
spond to atoms on different layers. Both lattices have reflection planes parallel to the y axis and
its symmetry partners under the three-fold rotation. (C) Brillouin zone and energy contours for
the monolayer model. With small doping, there are trigonally-warped Fermi surfaces around
K and K’ points, facing the opposite directions. The bilayer model exhibits the similar Fermi

surfaces as the monolayer ones.
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Fig. S2. Carrier density dependence of the material properties. (A) Fermi energy e, (B)
Fermi velocity vg, and (C) linear DC conductivity o at zero temperature. Refer to Sec. 4 for
the values of the parameters.
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Fig. S3. Frequency dependence of the response. (A and D) Linear conductivity o, (B
and F) second-order conductivity y, (C and G) reduced current responsivity 77, and (D and
H) reduced voltage responsivity ny. Panels (A) to (D) correspond to the monolayer model, and
(E) to (H) correspond to the bilayer model. The carrier density is changed from 0.5 x 102 cm™2 (red) to
5 x 10'2cm™2 (purple), and the temperature is set to be zero. Refer to Sec. 4 for the values of
the parameters.
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Fig. S4. Frequency and temperature dependence of the response. (A and E) Linear
conductivity o, (B and F) second-order conductivity y, (C and G) reduced current responsivity
nr, and (D and H) reduced voltage responsivity ny. The carrier density is fixed at n = 1 X
102 cm=2. Panels (A) to (D) correspond to the monolayer model, and (E) to (H) correspond to the bilayer
model. We assume that the scattering time 7 is constant independent of temperature; see Sec. 4
for the values of parameters.
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Fig. S5. Frequency and temperature dependence of the response with a logarithmic
scale for the frequency axis. (A and E) Linear conductivity o, (B and F) second-order conduc-
tivity y, (C and G) reduced current responsivity 77;, and (D and H) reduced voltage responsivity
ny. The same results as Fig. S4 are plotted with the frequency in a logarithmic scale.
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