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We describe in detail the analysis of the semiclassical Boltzmann transport theory for the cal-

culation of second-order response in noncentrosymmetric materials. We deal with spatially

homogeneous systems and hence the electron distribution function f (k, ε) does not depend on

the spatial position, but on the wavevector k and the energy ε . We assume that the frequency

of the external field ω is lower than the interband spacing, so that interband transitions are

suppressed and negligible.

We calculate the distribution function in the presence of the external field by the semiclas-

sical Boltzmann equation (~ = 1) ( )

∂ f
∂t
+ Ûk ·

∂ f
∂k
= −C[ f ] (S1)

The time derivative of the momentum is equal to the force felt by an electron wave packet:

Ûk = F. We have an external electric field E(ω), so that the force is F = −eE(ω). The collision

integral C[ f ] is given by ( )

C[ f ] =
∫
k ′
[wk ′k f (k, ε) − wkk ′ f (k′, ε + δεk ′k)] (S2)

where wk ′k is the scattering rate from a state with momentum k to one with k′. In the following,

we consider elastic scattering. Then, the scattering rate becomes

wk ′k = 2π |Tk ′k |δ(εk ′ − εk) (S3)

with the scattering T matrix Tk ′k . It is given by Tk ′k = 〈k
′|V |ψk〉, where |k〉 is the eigenstate

of H0, the Hamiltonian in the clean limit, and |ψk〉 is the eigenstate of H0 + V , including the

scattering V . |ψk〉 can be obtained as the solution to the Lippman–Schwinger equation |ψk〉 =

|k〉 + (εk − H0 + iδ)−1V |ψk〉. The energy shift is obtained as δεk ′k = −F · δrk ′k with the

coordinate shift δrk ′k ≈ (k′ − k) ×Ω(k) for a weak scattering process with a small momentum

change ( ).
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1.1 Scattering rate in noncentrosymmetric media

In noncentrosymmetric media, the probability of a scattering process k → k′ and the inverted

process −k → −k′ can be different. For time-reversal systems, this imbalance is captured by

wkk ′ = w
(S)
kk ′
+ w

(A)
kk ′

(S4)

where the symmetric and antisymmetric parts w(S) and w(A), respectively, is defined by

w
(S)
kk ′
=

1
2
(wkk ′ + wk ′k), w

(A)
kk ′
=

1
2
(wkk ′ − wk ′k) (S5)

When time reversal is preserved, the scattering rate satisfies the reversibility wkk ′ = w−k ′,−k ,

which leads to the relations

w
(S)
k ′k
= w

(S)
−k,−k ′

= w
(S)
kk ′

(S6)

w
(A)
k ′k
= −w

(A)
−k,−k ′

= −w
(A)
kk ′

(S7)

Those equalities do not hold in general when time reversal is broken since states at k and −k

usually have different energies. The optical theorem for elastic scattering guarantees the relation∫
k ′
w
(A)
kk ′
= 0 (S8)

When the elastic scattering is due to impurities, w(S) and w(A) are obtained to the lowest order

in the impurity scattering potential by

w
(S)
k ′k
= 2π〈|Vk ′k |

2〉δ(εk ′ − εk) (S9)

w
(A)
k ′k
= −(2π)2

∫
q

Im〈Vk ′qVqkVkk ′〉δ(εk − εk ′)δ(εk ′ − εq) (S10)

where 〈 〉 denotes the average over the impurity distribution and Vk ′k is the matrix element

for the single impurity scattering. We can see that the symmetric part of the scattering rate is

decomposing the scattering rate into two parts



obtained at the lowest order of the Born approximation, whereas the antisymmetric part is found

at the next leading order. The detailed balance is broken when the antisymmetric part is finite.

Reference ( ) reviews the photogalvanic effect in noncentrosymmetric materials, consider-

ing the asymmetry of scattering. The photovoltaic effect is studied with the Boltzmann equation

and the antisymmetric component of the scattering rate w
(A)
k ′k

, similarly to our analysis. A dif-

ference can be found in the origin of finite wk ′k . In Ref. ( ), the asymmetry is imposed on

scattering potentials for impurity scattering, ionization, photoexcitation, and recombination.

We note that the asymmetry of the scattering rate can be finite due to an asymmetric scatter-

ing potential and also a wavefunction of a noncentrosymmetric medium. For the latter case, a

scattering potential does not need to be inversion asymmetric to have finite w
(A)
k ′k

, but even an

isotropic scattering potential can generate w
(A)
k ′k

through a wavefunction.

1.2 Formal solutions

The semiclassical Boltzmann equation S1 should be solved self-consistently to obtain the

distribution function f (k). A fully self-consistent solution is generally difficult to obtain; here

we decompose the distribution function f as

f = f0 + f scatt + f adist (S11)

The first term f0 is the distribution function in equilibrium, i.e., the Fermi–Dirac distribution.

The second term f scatt describes the scattering contribution without the Berry curvature and

the last term f adist is the anomalous distribution due to the Berry curvature and the energy

shift δεk ′k . We further expand f scatt and f adist with respect to the electric field E(ω) and the

asymmetric part of the scattering rate w(A):

f scatt(k) =
∑
n≥1

f scatt
n (k), f scatt

n (k) =
∑
m≥0

f (m)n (k) (S12)

f adist(k) =
∑
n≥1

f adist
n (k), f adist

n (k) =
∑
m≥0

g
(m)
n (k) (S13)
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The subscript n and the superscript m correspond to the orders of the electric field E and the

antisymmetric scattering rate w(A), respectively. As we have seen in Eqs. S9 and S10, w (A)

is smaller than w(S), so that we treat the former as a perturbation. Then, the Boltzmann equation

is decomposed for each f (m)n or g(m)n to become

∂ f (0)1
∂t
− eE ·

∂ f0
∂k
= −

∫
k ′
w
(S)
kk ′
[ f (0)1 (k) − f (0)1 (k

′)] (S14)

∂ f (1)1
∂t
= −

∫
k ′
w
(S)
kk ′
[ f (1)1 (k) − f (1)1 (k

′)] +

∫
k ′
w
(A)
kk ′

f (0)1 (k
′) (S15)

∂ f (0)2
∂t
− eE ·

∂ f (0)1
∂k

= −

∫
k ′
w
(S)
kk ′
[ f (0)2 (k) − f (0)2 (k

′)] (S16)

∂ f (1)2
∂t
− eE ·

∂ f (1)1
∂k

= −

∫
k ′
w
(S)
kk ′
[ f (1)2 (k) − f (1)2 (k

′)] +

∫
k ′
w
(A)
kk ′

f (0)2 (k
′) (S17)

∂g
(0)
1
∂t
= −

∫
k ′
w
(S)
kk ′
[g
(0)
1 (k) − g

(0)
1 (k

′)] +

∫
k ′
w
(S)
kk ′

f ′0(k
′)(eE · δrk ′k) (S18)

∂g
(1)
1
∂t
= −

∫
k ′
w
(S)
kk ′
[g
(1)
1 (k) − g

(1)
1 (k

′)] +

∫
k ′
w
(A)
kk ′

g
(0)
1 (k

′) +

∫
k ′
w
(A)
kk ′

f ′0(k
′)(eE · δrk ′k) (S19)

∂g
(0)
2
∂t
− eE ·

∂g
(0)
1

∂k

= −

∫
k ′
w
(S)
kk ′
[g
(0)
2 (k) − g

(0)
2 (k

′)] +

∫
k ′
w
(S)
kk ′
[ f ′(0)1 (k

′) + g
′(1)
1 (k

′)](eE · δrk ′k)

+
1
2

∫
k ′
w
(S)
kk ′

f ′′0 (k
′)(eE · δrk ′k)2

(S20)

∂g
(1)
2
∂t
− eE ·

∂g
(1)
1

∂k

= −

∫
k ′
w
(S)
kk ′
[g
(1)
2 (k) − g

(1)
2 (k

′)] +

∫
k ′
w
(S)
kk ′
[ f ′(1)1 (k

′) + g
′(1)
1 ](eE · δrk ′k)

+

∫
k ′
w
(A)
kk ′

g
(0)
2 (k

′) +

∫
k ′
w
(A)
kk ′
[ f ′(0)1 (k

′) + g
′(0)
1 ](eE · δrk ′k) +

1
2

∫
k ′
w
(A)
kk ′

f ′′0 (k
′)(eE · δrk ′k)2

(S21)

A prime symbol ′ added to the distribution functions stands for the derivative with respect to the

energy: f ′(k, ε) = ∂ε f (k, ε).

Each equation has to be solved self-consistently; however it is usually not easy. Here, we



solve a part of the collision integral involving w(S) self-consistently, while the other part with

w(A) is treated as a perturbation. The collision integrals with w(S) define the scattering times

τ
(m)
n and τ(m)n as follows ∫

k ′
w
(S)
kk ′
[ f (m)n (k) − f (m)n (k

′)] =
1
τ
(m)
n

f (m)n (k) (S22)∫
k ′
w
(S)
kk ′
[g
(m)
n (k) − g

(m)
n (k

′)] =
1

τ
′(m)
n

g
(m)
n (k) (S23)

If τ(m)n and τ′(m)n do not satisfy the self-consistency, one may regard the equations above as the

definitions for the relaxation time approximation. We also note the notation of the scattering

times τn and τ′n used in the main text; they correspond to τn ≡ τ
(0)
n and τ′n ≡ τ

(1)
n .

We assume τ and τ′ are independent of momentum k in solving the equations. Then, we

obtain the formal solutions for the distribution functions f (m)n and g
(m)
n . The second-order re-

sponse contains different frequencies, 0 and ±2ω. Since now we focus on rectification, i.e.,

zero-frequency response, we only write down the second-order solutions with ω = 0. Now, we

list below the formal solutions up to the second order in the electric field (n ≤ 2) and to the first

order in w(A) (m ≤ 1)

f (0)1 (k,ω) = τ
(0)
1ωeEa∂ka f0(k) (S24)

f (1)1 (k,ω) = τ
(1)
1ω

∫
k ′
w
(A)
kk ′
τ
(0)
1ωeEa∂k ′a f0(k′) (S25)

f (0)2 (k,0) = τ
(0)
2 eE∗a∂ka f (0)1 (k,ω) + c.c. = τ(0)2 eE∗a∂kaτ

(0)
1ωeEb∂kb f0(k) + c.c. (S26)

f (1)2 (k,0)

= τ
(1)
2 eE∗a∂ka f (1)1 (k,ω) + c.c. +

∫
k ′
w
(A)
kk ′ f (0)2 (k

′,0)

= τ
(1)
2 eE∗a∂kaτ

(1)
1ω

∫
k ′
w
(A)
kk ′
τ
(0)
1ωeEb∂k ′

b
f0(k′) + τ

(1)
2

∫
k ′
w
(A)
kk ′
τ
(0)
2 eE∗a∂k ′aτ

(0)
1ωeEb∂k ′

b
f0(k′) + c.c.

(S27)

g
(0)
1 (k,ω) = τ

′(0)
1ω

∫
k ′
w
(S)
kk ′

f ′0(k
′)eEaδra;k ′k (S28)



g
(1)
1 (k,ω) = τ

′(1)
1ω

[∫
k ′
w
(A)
kk ′
τ
′(0)
1ω

∫
k ′′

w
(S)
k ′k ′′

f ′0(k
′′)eEaδra;k ′′k ′ +

∫
k ′
w
(A)
kk ′

f ′0(k
′)eEaδra;k ′k

]
(S29)

g
(0)
2 (k,0)

= τ
′(0)
2

[
eE∗a∂kag

(0)
1 (k,ω) +

∫
k ′
w
(S)
kk ′
[ f ′(0)1 (k

′,ω) + g
′(0)
1 (k

′,ω)]eE∗aδra;k ′k

+
1
2

∫
k ′
w
(S)
kk ′

f ′′0 (k
′)eE∗aδra;k ′keEbδrb;k ′k

]
+ c.c.

= τ
′(0)
2

[
eE∗a∂kaτ

′(0)
1ω

∫
k ′
w
(S)
kk ′

f ′0(k
′)eEbδrb;k ′k +

∫
k ′
w
(S)
kk ′

eE∗aδra;k ′k∂εk ′τ
(0)
1ωeEb∂k ′

b
f0(k′)

+

∫
k ′
w
(S)
kk ′

eE∗aδra;k ′k∂εk ′τ
′(0)
1ω

∫
k ′′

w
(S)
k ′k ′′

f ′0(k
′′)eEbδrb;k ′′k ′

+
1
2

∫
k ′
w
(S)
kk ′

f ′′0 (k
′)eE∗aδra;k ′keEbδrb;k ′k

]
+ c.c.

(S30)



g
(1)
2 (k,0)

= τ
′(1)
2

[
eE∗a∂kag

(1)
1 (k,ω) +

∫
k ′
w
(S)
kk ′
[ f ′(1)1 (k

′,ω) + g
′(1)
1 (k

′,ω)]eE∗aδra;k ′k +

∫
k ′
w
(A)
kk ′

g
(0)
2 (k

′,0)

+

∫
k ′
w
(A)
kk ′
[ f ′(0)1 (k

′,ω) + g
′(0)
1 (k

′,ω)]eE∗aδra;k ′k +
1
2

∫
k ′
w
(A)
kk ′

f ′′0 (k
′)eE∗aδra;k ′keEbδrb;k ′k

]
+ c.c.

= τ
′(1)
2

{
eE∗a∂kaτ

′(1)
1ω

[∫
k ′
w
(A)
kk ′
τ
′(0)
1ω

∫
k ′′

w
(S)
k ′k ′′

f ′0(k
′′)eEbδrb;k ′′k ′ +

∫
k ′
w
(A)
kk ′

f ′0(k
′)eEbδrb;k ′k

]
+

∫
k ′
w
(S)
kk ′

eE∗aδra;k ′k∂εk ′

[
τ
(1)
1ω

∫
k ′′

w
(A)
k ′k ′′

τ
(0)
1ωeEb∂k ′′

b
f0(k′′)

+ τ
′(1)
1ω

∫
k ′′

w
(A)
k ′k ′′

τ
′(0)
1ω

∫
k ′′′

w
(S)
k ′′k ′′′

f ′0(k
′′′)eEbδrb;k ′′′k ′′ + τ

′(1)
1ω

∫
k ′′

w
(A)
k ′k ′′

f ′0(k
′′)eEbδrb;k ′′k ′

]
+

∫
k ′
w
(A)
kk ′
τ
′(0)
2

[
eE∗a∂k ′aτ

′(0)
1ω

∫
k ′′

w
(S)
k ′k ′′

f ′0(k
′′)eEbδrb;k ′′k ′

+

∫
k ′′

w
(S)
k ′k ′′

eE∗aδra;k ′′k ′∂εk ′′τ
(0)
1ωeEb∂k ′′

b
f0(k′′)

+

∫
k ′′

w
(S)
k ′k ′′

eE∗aδra;k ′′k ′∂εk ′′τ
′(0)
1ω

∫
k ′′′

w
(S)
k ′′k ′′′

f ′0(k
′′′)eEbδrb;k ′′′k ′′

+
1
2

∫
k ′′

w
(S)
k ′k ′′

f ′′0 (k
′′)eE∗aδra;k ′′k ′eEbδrb;k ′′k ′

]
+

∫
k ′
w
(A)
kk ′

eE∗aδra;k ′k

[
τ
(0)
1ωeEb∂ka f ′0(k) + ∂εk ′τ

′(0)
1ω

∫
k ′′

w
(S)
k ′k ′′

f ′0(k
′′)eEbδrb;k ′′k ′

]
+

1
2

∫
k ′
w
(A)
kk ′

f ′′0 (k
′)eE∗aδrb;k ′keEbδrb;k ′k

}
+ c.c.

(S31)

τ
(m)
nω and τ′(m)nω are the shorthand notations for

τ
(m)
nω =

τ
(m)
n

1 − iωτ(m)n

, τ
′(m)
nω =

τ
′(m)
n

1 − iωτ′(m)n

(S32)

Those formal solutions find the scattering time dependence of the distribution functions for low

frequencies (ωτ � 1)

f scatt
n ∝ τnEn,

f adist
n ∝ (τ0En, τ1En, . . . , τn−1En) (S33)



Higher-order corrections for the anomalous distribution (n ≥ 2) has a nested structure of f scatt
n−1

and f adist
n−1 . In the weak disorder limit of τ →∞, we obtain

f adist
n ∝ τn−1En (S34)

We can define another scattering time τ̃ from the antisymmetric part w(A). It is roughly speaking

given by ∫
k ′
w
(A)
kk ′

f (k′) ∼
1
τ̃

f (k) (S35)

We note that the definition of τ̃ is accompanied with the distribution function because the optical

theorem for elastic scattering concludes Eq. S8.

From the distribution function, the electric current response is obtained by

j = −e
∫
k
v(k) f (k) (S36)

v(k) is the electron’s group velocity, given by

v =
∂εk
∂k
− Ûk ×Ω +

∫
k ′
wk ′kδrk ′k

≡ v0 + vav + vsj (S37)

The group velocity from the energy band dispersion v0 is independent of the Berry curvature,

while the Berry curvature induces the anomalous velocity vav ( ) and the side-jump veloc-

ity vsj (60)

vav = − Ûk ×Ω = eE ×Ω (S38)

vsj =

∫
k ′
wk ′kδrk ′k (S39)

Section S2. Current response
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In terms of the electric field E , vav is linear in E whereas v0 and vsj do not depend on E . Lastly,

only the side-jump velocity depends on the scattering time: vsj ∝ τ
−1. Since there is no current

in equilibrium, the electric current is described by ( )

j = −e
∫
k
(v0 + vav + vsj)( f scatt + f adist) (S40)

which allows us to decompose the current into contributions of different origins. We note that

the contribution from the anomalous distribution f adist could be recognized as a part of the

side-jump effect since it is originated both from the Berry curvature and scattering.

Before calculating the second-order conductivity, we note the problem about the energy

dissipation or Joule heating because of j · E , 0; see also e.g., Ref. ( ) for discussions. This

concludes that a stationary state solution cannot be obtained for a closed system with energy

conservation. To circumvent this issue, we neglect parts of the distribution function which are

isotropically coupled to the electric field. To be more explicit, the distribution function at the

second order in the electric field involves a term proportional to |E |2 f ′′0 . Technically, such

an excess term arises when we substitute a distribution function fn (n ≥ 1) into the collision

integral C[ f ], which involves only elastic scattering. Since this term is isotropic, it cannot

be relaxed by elastic scattering, which conserves energy, so that a stationary state solution

does not exist. Inelastic scattering resolves the problem as it does not conserve energy and

excess energy is dissipated as heat. Note that an inelastic scattering time is typically much

longer than an elastic scattering time. In calculating the second-order conductivity, we simply

subtract and neglect such isotropic terms although they potentially change the temperature for

a closed system. Importantly, they do not contribute to current from the band velocity since∫
k
v0 f ′′0 =

∫
k
∇k f ′0 = 0.

We can see the six possible combinations in Eq. S40. For the second-order current re-
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sponse, the scattering time dependence of each contribution for low frequencies ωτ � 1 is

v0 f scatt
2 ∝ τ2, vav f scatt

1 ∝ τ1, vsj f scatt
2 ∝ τ1 (S41)

v0 f adist
2 ∝ (τ1, τ0), vav f adist

1 ∝ τ0, vsj f adist
2 ∝ (τ0, τ−1) (S42)

In the weak disorder limit of τ → ∞, the first term, the skew scattering contribution, v0 f scatt

predominates, which we focus on in this work. This is equivalent to neglect all Berry curvature

related effects. The second-order current response arising from this term is

j2 = −e
∫
k
v0(k) f scatt

2 (k) = −e
∫
k
v0(k)[ f

(0)
2 (k) + f (1)2 (k)] (S43)

We define the second-order conductivity by the relation

j2,a = χabcE∗b Ec (S44)

and we obtain from Eqs. S26 and S27

χabc = χ
(0)
abc + χ

(1)
abc (S45)

χ
(0)
abc = −e3τ

(0)
2 τ

(0)
1ω

∫
k
v0,a∂kb∂kc f0(k) + (b↔ c)∗ (S46)

χ
(1)
abc = − e3

[
τ
(1)
2 τ

(1)
1ωτ

(0)
1ω

∫
k
v0,a∂kb

∫
k ′
w
(A)
s,kk ′∂k ′c f0(k′)

+ τ
(1)
2 τ

(0)
2 τ

(0)
1ω

∫
k
v0,a

∫
k ′
w
(A)
s,kk ′∂k ′

b
∂k ′c f0(k′)

]
+ (b↔ c)∗

(S47)

χ
(0)
abc vanishes identically in time-reversal-invariant systems because of εk = ε−k ; it follows from

v0(k) = −v0(−k), and we see that the integrand is odd in k for χ(0)abc. Therefore, the second-order

contribution from the skew-scattering contribution arises from χ
(1)
abc, i.e., χabc = χ

(1)
abc.

To calculate the second-order response, it is useful to express Eqs. S46 and S47 in the

 



following forms

χ
(0)
abc = −e3τ

(0)
2 τ

(0)
1ω

∫
k
[− f ′0(k)]v0,a(∂kb∂kcεk) + (b↔ c)∗

= −2e3 Re
[
τ
(0)
2 τ

(0)
1ω

] ∫
k
[− f ′0(k)]v0,a(∂kb∂kcεk)

(S48)

χ
(1)
abc = − e3

[
τ
(1)
2 τ

(1)
1ωτ

(0)
1ω

∫
k
[− f ′0(k)](∂ka∂kbεk)

∫
k ′
w
(A)
kk ′

v0,c

− τ
(1)
2 τ

(0)
2 τ

(0)
1ω

∫
k
[− f ′0(k)]v0,a

∫
k ′
w
(A)
kk ′
(∂kb∂kcεk)

+ τ
(1)
2 τ

(0)
2 τ

(0)
1ω

∫
k
[− f ′0(k)]∂ka

∫
k ′
w
(A)
kk ′

v0,bv0,c

]
+ (b↔ c)∗

(S49)

We also show the expression for χ(0)abc for reference although it vanishes. These expressions

show that results at finite temperature can be obtained by considering the thermal broadening of

the Fermi–Dirac distribution, where the Fermi energy εF is replaced by the chemical potential

µchem with the carrier density fixed. More explicitly, from the following relation

− f ′0(k) =
∫

dε[− f ′0(ε ; µchem)]δ(εk − εF) (S50)

the second-order conductivity at finite temperature is obtained by

χabc(µchem,T) =
∫

dε[− f ′0(ε ; µchem)]χabc(ε,T = 0) (S51)

2.1 Linear response

We also calculate the linear response to obtain responsivities (defined below). From the Boltz-

mann equation, the linear current response is given by

j1,a(ω) = σabEb(ω) = −e
∫
k
v0,a f scatt

1 (S52)



leading to the linear conductivity

σab = σ
(0)
ab + σ

(1)
ab (S53)

σ
(0)
ab = −e2τ

(0)
1ω

∫
k
v0,a∂kb f0(k) = e2τ

(0)
1ω

∫
k
v0,av0,b[− f ′0(k)] (S54)

σ
(1)
ab = −e2τ

(1)
1ωτ

(0)
1ω

∫
k
v0,a

∫
k ′
w
(A)
kk ′
∂k ′

b
f0(k′) (S55)

Graphene-based models with trigonal
lattice structures

Now we evaluate the current response for explicit models. We consider two graphene-based

models, utilizing monolayer and bilayer graphene. The crystalline lattices belong to a crystal-

lographic point group D3h and C3v, respectively. We note that inversion is equivalent to the

in-plane two-fold rotation in 2D models, which is absent in the present models. Around K and

K′ points, K =
(

4π
3
√

3
,0

)
and K ′ =

(
− 4π

3
√

3
,0

)
, the k · p Hamiltonian to second order is

Hs(k) =

(
∆ svk−s − λk2

s
svks − λk2

−s −∆

)
=

[
svkx − λ(k2

x − k2
y)

]
σx +

(
vky + 2sλkx ky

)
σy + ∆σz (S56)

where kx and ky are measured from K or K′ point, labeled by s = ±1, and ks is defined by

ks = kx + isky. The energy dispersion of the positive branch is given by

εk =
√
v2k2 + λ2k4 + ∆2 − 2svλk3 cos (S57)

and the corresponding normalized wavefunction is

|k, s〉 =
1

2
√

εk(εk + ∆)

(
εk + ∆[

svkx − λ(k2
x − k2

y)
]
+ i

(
vky + 2sλkx ky

) ) (S58)

The Berry curvature is also calculated as

Ωz = −
s∆(v2 − 4λ2k4)

2ε3
k

(S59)
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The Hamiltonian Eq. S56 is available to both monolayer and bilayer models (Fig. S1).

The Pauli matrix σa describes the two sublattices for monolayer graphene and two layers for AB

(Bernal) stacked bilayer graphene. Another difference is found in which of v and λ is dominant,

which is explained later. ∆ describes the potential energy difference at the two sublattice sites or

layers, which opens a gap to the energy spectrum. In the following, we consider the two cases

separately.

3.1 Monolayer graphene

For monolayer graphene, the terms with v dominate those with λ (vkF � λk2
F), where λ char-

acterizes the trigonal warping of the Fermi surface. s = +1 corresponds to K valley and s = −1

to K′ valley. The Dirac mass can be induced for example by placing a graphene sheet on a

hexagonal boron nitride (hBN) substrate. For a tight-binding model on a honeycomb lattice

with the nearest-neighbor hopping amplitude t and the distance between sites a, the velocity v

and the trigonal warping λ are given by v = 3ta/2 and λ = 3ta2/8, respectively (40, 41).

We assume that the trigonal warping is small and obtain the energy dispersion εk to first

order in λ as

εk =
√
v2k2 + ∆2 − svλ

k3
√
v2k2 + ∆2

cos 3θk +O(λ2) (S60)

where the Fermi wavevector kF is given by

kF =

√
ε2

F − ∆
2

v
(S61)

The density of states (DOS) at the Fermi energy is

D0 =
εF

2πv2 (S62)

and θk denotes the polar angle of k. The Fermi surface can be parameterized by θk as

k(θk) = kF + sλ
k2

F

v
cos 3θk (S63)



To evaluate the scattering rate, we need the wavefunction on the Fermi surface. The normalized

wavefunction on the Fermi surface is given by

|k, s〉 =

(√
εF + ∆

2εF
,
(s cos θk + i sin θk)(vkF + iλk2

F sin 3θk)√
2εF(εF + ∆)

)T

(S64)

Also, it is useful to see the Berry curvature on the Fermi surface, which is given by

Ωz = −
sv2∆

2ε3
F

+O(λ2) (S65)

The second-order conductivity is considered in the presence of an elastic impurity scattering.

Here, we assume short-ranged random scalar impurities

V(r) = Vi

∑
j

δ(r − r j) (S66)

but restrict scattering within each valley. Vi is the impurity potential strength, ni is the impurity

density, and r j denotes an impurity position, where the summation is taken over all impurity

sites. Then, we obtain the scattering rates for the valley s to first order in λ as

w
(S)
s,kk ′ =

πniV2
i

2ε2
F(εF + ∆)2

[
|(εF + ∆)

2 + v2k2
Fei(θ−θ ′) |2

− 2sλvk3
F(εF + ∆)

2 sin(θ − θ′)(sin 3θ − sin 3θ′)
]
δ(εk − εk ′)

(S67)

w
(A)
s,kk ′ = −

πniV3
i ∆k2

F

2ε2
F

{
s sin(θ − θ′)

+ λ
kF

v
[sin(θ − 4θ′) + sin(4θ − θ′) − sin(θ + 2θ′) + sin(2θ + θ′)]

}
δ(εk − εk ′)

(S68)

with θ = θk and θ′ = θk ′ parametrizing the Fermi surface.

In order to obtain the distribution function, we need to determine the scattering times that

satisfy the relation Eq. S22. For the present Hamiltonian, the scattering times are obtained as

τ
(0)
1 = τ

(1)
1 = τ

(1)
2 =

(
niV2

i
ε2

F + 3∆2

4v2εF

)−1

(S69)

τ
(1)
1 =

(
niV2

i
ε2

F + ∆
2

2v2εF

)−1

(S70)



These solutions are obtained to O(λ0), which are enough to evaluate conductivities to order

O(λ1) (see the next paragraph). Also, there is no directional dependence in the scattering times

at order λ0. For clarity, we define

τ =

(
niV2

i
ε2

F + 3∆2

4v2εF

)−1

(S71)

and the dimensionless quantity

γ =
ε2

F + 3∆2

2(ε2
F + ∆

2)
(≤ 1) (S72)

which are defined to satisfy τ(0)1 = τ
(1)
1 = τ

(1)
2 = τ and τ(1)1 = γτ

We calculate the second-order contribution from each valley separately, namely χabc =

χ
(0)
abc + χ

(1)
abc with

χ
(0)
abc =

∑
s

χ
(0)
s,abc, χ

(1)
abc =

∑
s

χ
(1)
s,abc (S73)

The contributions from each valley s are obtained from Eqs. S46 and S47 at zero temperature as

χ
(0)
s,xxx = −χ

(0)
s,xyy = −χ

(0)
s,yxy = −χ

(0)
s,yyx = se3τ2v

3λk2
F(ε

2
F + ∆

2)γ

πε3
F

Re
[

1
1 − iωτ

]
(S74)

χ
(1)
s,xxy = χ

(1)
s,xyx = χ

(1)
s,yxx = −χ

(1)
s,yyy = 4e3τ2v

τ

τ̃
Re

[
vkF(2ε2

F + ∆
2)

(1 − iωτ)2πε3
F

− γ
vkF(ε

2
F + 2∆2)

(1 − iωτ)πε3
F

]
(S75)

where the factor of two from spin is multiplied. We note that D3h symmetry concludes that the

imaginary part of the second-order DC conductivity vanishes ( ) and that the system does not

have second-order response to a circularly-polarized field. We define another scattering time τ̃,

related to w(A)

τ̃ =

(
∆λ

niV3
i k3

F

8v3εF

)−1

(S76)

This quantity measures the amounts of inversion breaking (m) and the Fermi surface warping

(λ). The ratio τ/τ̃ becomes

τ

τ̃
= ∆λ

Vi k3
F

2v(ε2
F + 3∆2)

=
1
2
∆ · Vi k2

F

ε2
F + 3∆2

λk2
F

vkF
(S77)
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Roughly speaking, the ratio is determined by the product of the following dimensionless quanti-

ties: inversion breaking ∆/εF , the Fermi surface warping λk2
F/(vkF), and the impurity strength

Vi k2
F/εF . We can see from Eq. S68 that the antisymmetric scattering becomes finite when

inversion is broken by ∆ , 0 but it does not require finite Fermi surface warping λ. However,

the second-order response vanishes when the Fermi surface warping is absent. The ratio τ/τ̃

measures the amount of the contribution to the second-order response from skew scattering, but

not the magnitude of skew scattering itself.

χ(0) is originated from the absence of time-reversal or inversion symmetry within each val-

ley, resulting from the Fermi surface anisotropy. However, time reversal is preserved with the

two valleys, and thus contributions from different valleys cancel. This effect of χ(0) can be

seen in Fig. 2C, where the two valleys generates the opposite static velocity V . In contrast,

χ(1) adds up with the two valleys, since this contribution captures the opposite chirality of the

wavefunctions around each valley, which is not visible from the Fermi surface shape. Finally,

we obtain the nonvanishing elements of the second-order conductivity

χxxy = χxyx = χyxx = −χyyy = −4e3vF
τ3

τ̃
ζ(ω) ≡ −χ(ω) (S78)

with the average Fermi velocity on the Fermi surface

vF =
v2kF

εF
(S79)

and the dimensionless function

ζ(ω) =
2
π

Re

[
γ

ε2
F + 2∆2

(1 − iωτ)ε2
F

−
2ε2

F + ∆
2

(1 − iωτ)2ε2
F

]
(S80)

Here the factor of four in Eq. S78 corresponds to spin and valley degrees of freedom. The

finite elements of χabc are consistent with D3h symmetry of the lattice.



3.1.1 Linear conductivity and responsivity

To estimate the magnitude of the second-order response and to calculate responsivities, we also

calculate the linear conductivity, particularly σ(0)s,ab. From Eq. S54, we obtain

σ
(0)
s,ab = 2e2τ

(0)
1ω

v2k2
F

4πεF
δab (S81)

for each valley with the spin degrees of freedom included. The linear conductivity is diagonal,

and hence we write

σ(ω) =
∑

s

Reσ(0)s,aa = e2τ
v2k2

F

πεF

1
1 + (ωτ)2

(S82)

Since the linear conductivity can be written as σ = neµ with the electron density n and the

mobility µ, in low frequencies we find the relation

µ = eτ
v2

εF
(S83)

We note that the electron density is obtained by n = k2
F/π.

The short-circuit current responsivity RI is defined as the ratio of the generated DC current

j2 to the power of the incident electric field absorbed by the sample. When a sample has a

dimension of L2 and the incident field is uniform on the sample, the current responsivity is

given by

RI ≡
j2L

j1E L2 =
1
L
χ(ω)

σ(ω)
(S84)

We note that the dimension L corresponds to either width or length of a sample, depending

on whether the second-order response of interest is longitudinal or transverse to the incident

electric field. We also define the voltage responsivity RV as the ratio of the voltage generated

by the second-order response to the incident power:

RV =
j2L/σ(0)

j1E L2 =
1
L

χ(ω)

σ(ω)σ(0)
(S85)



Both current responsivity RI and voltage responsivity RV depend on the sample dimension L

and the ratio τ/τ̃. To remove those factors, we define the reduced current responsivity ηI and

the reduced voltage responsivity ηV as follows

RV = ηI
1
L
τ

τ̃
(S86)

RI = ηV
1
L
τ

τ̃
(S87)

For the present model, ηI and ηV are obtained as

ηI =
4πeτ

kF
[1 + (ωτ)2]ζ(ω) (S88)

ηV =
4π

envF

[
1 + (ωτ)2

]
ζ(ω) (S89)

3.2 Bilayer graphene

Bernal stacked bilayer graphene has C3v symmetry when the two layer have different potential

energies. Because of the symmetry, we can use the same Hamiltonian Eq. S56; however,

v is treated as a perturbation instead of λ for the bilayer case (λk2
F � vkF), as we can see

from a tight-binging Hamiltonian (40, 41). Treating v as a perturbation, we obtain the energy

dispersion εk to first order in v as

εk =
√
λ2k4 + ∆2 −

2svλk3√
λ2k4 + ∆2 cos 3θk

(S90)

The DOS at the Fermi energy D0 is given by

D0 =
εF∆

2

πk2
F

(S91)

The normalized wavefunction on the Fermi surface to order v is

|k, s〉 =

(√
εF + ∆

2εF
,−
(cos 2θk − is sin 2θk)(λk2

F − ivkF sin 3θk)√
2εF(εF + ∆)

)T

(S92)



where kF is defined by

kF =

(
ε2

F − ∆
2

λ2

)1/4

(S93)

The Berry curvature on the Fermi surface is

Ωz =
2s∆λ2k2

F

ε3
F

+
2∆vλkF cos 3θ

ε3
F

+O(v2) (S94)

Using the wavefunction, we obtain the symmetric and antisymmetric scattering rates w(S) and

w(A), respectively

w
(S)
s,kk ′ =

πniV2
i

2ε2
F(εF + ∆)2

[��(εF + ∆)
2

+ λ2k4
Fe2i(θ−θ ′)

��2 − 2svλ(εF + ∆)
2k3

F sin(2θ − 2θ′)(sin 3θ − sin 3θ′)
]
δ(εk − εk ′)

(S95)

w
(A)
s,kk ′ =

πnV3
i k2

F∆

4ε2
F

{
s sin(2θ − 2θ′)

+
v

2λkF
[sin(θ + 2θ′) − sin(2θ + θ′) + sin(2θ − 5θ′) + sin(5θ − 2θ′)]

}
δ(εk − εk ′)

(S96)

For the bilayer case, the scattering times become

τ
(0)
1 =

(
niV2

i (ε
2
F + ∆

2)

4λ2k2
FεF

)−1

(S97)

τ
(1)
1 = τ

(0)
2 = τ

(1)
2 =

(
niV2

i (ε
2
F + 3∆2)

8λ2k2
FεF

)−1

(S98)

τ̃ =

(
∆v

niV3
i

32λ3kFεF

)−1

(S99)

We define τ as

τ =

(
niV2

i (ε
2
F + ∆

2)

4λ2k2
FεF

)−1

(S100)

resulting in τ(0)1 = τ and τ(1)1 = τ
(0)
2 = τ

(1)
2 = γ

−1τ, with the same γ for the monolayer case.



The contributions to the second-order conductivity from valley s are obtained from Eqs. S46

and S47 at zero temperature as

χ
(0)
s,xxx = −χ

(0)
s,xyy = −χ

(0)
s,yxy = −χ

(0)
s,yyx = se3τ2 2λk2

F(ε
2
F + 2∆2)

πε3
Fγ

Re
[

1
1 − iωτ

]
(S101)

χ
(1)
s,xxy = χ

(1)
s,xyx = χ

(1)
s,yxx = −χ

(1)
s,yyy

= e3τ2(2λkF)
τ

τ̃

λk2
F∆

2

4πε3
Fγ

2
Re

[
5

(1 − iωτ)(1 − iωγ−1τ)
−

6
1 − iωτ

] (S102)

For the bilayer model, the ratio τ/τ̃ is given by

τ

τ̃
= ∆v

kFVi

8λ(ε2
F + ∆

2)
(S103)

Similarly to the monolayer case, χ(0)s,abc from each valley cancels but χ(1)s,abc adds up, leading to

the second-order conductivity

χxxy = χxyx = χyxx = −χyyy = −4e3vF
τ3

τ̃
ζ(ω) ≡ −χ(ω) (S104)

where for the bilayer model the average velocity on the Fermi surface vF is

vF =
2λ2k3

F

εF
(S105)

and the dimensionless function ζ(ω) becomes

ζ(ω) =
∆2

8πε2
Fγ

2
Re

[
6

1 − iωτ
−

5
(1 − iωτ)(1 − iωγ−1τ)

]
(S106)

3.2.1 Linear conductivity and responsivity

We also evaluate the linear conductivity σ(0)s,ab for each valley s with the spin degrees of freedom

included (Eq. S54)

σ
(0)
s,ab = e2τ

(0)
1ω
λ2k4

F

πεF
δab (S107)

Similarly to the monolayer case, we define

σ(ω) =
∑

s

Reσ(0)s,aa = e2τ
λ2k4

F

πεF

1
1 + (ωτ)2

(S108)



For low frequencies, the mobility is calculated from the relation σ = neµ by

µ = eτ
2λ2k2

F

εF
(S109)

where the electron density is n = k2
F/π.

For the bilayer case, the reduced current responsivity becomes

ηI =
χ(ω)

σ(ω)
=

8πeτ
kF
[1 + (ωτ)2]ζ(ω) (S110)

and the reduced voltage responsivity is

ηV =
χ(ω)

σ(ω)σ(0)
=

16π
envF

[
1 + (ωτ)2

]
ζ(ω) (S111)

Parameters for a realistic evaluation are taken and estimated from experiments on monolayer

and bilayer graphene. For monolayer graphene on an hBN substrate, the imbalance of the

potential energy within a sublattice is induced by the substrate and the lattice mismatch of

graphene and hBN creates a superlattice with a periodicity of about 13 nm. In addition to the

original (primary) Dirac points, the moiré superlattice produces new (secondary) superlattice

Dirac points, located at a different energy ( ). Those two have different velocities and energy

gaps: at ambient pressure, v = 0.94 × 106 m/s and 2∆ = 30 meV for the original Dirac point,

and v = 0.5 × 106 m/s and 2∆ = 20 meV for the superlattice Dirac points ( ). The size

of the gap depends on the superlattice periodicity and it could be enhanced by interaction (61).

We note that even at the original Dirac point, the velocity is slightly modified. We consider

the original Dirac points instead of the superlattice Dirac points. The latter have the valley

degeneracy of six and anisotropic Dirac cones whereas the valley degeneracy of the former is

two.

Section S4. Estimate of parameters
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The scattering time is estimated from a transport measurement with a high-quality sample

( ). At 300 K, they observed the mobility µ ≈ 90,000 cm2/(V s) with the carrier density

n = 1 × 1012 cm−2, which amounts to the scattering time τ ≈ 1.13 ps. The corresponding

frequency is (2πτ)−1 ≈ 141 GHz and the mean free path is ` ∼ vFτ ≈ 1.6 µm. We note that

the Fermi wavelength at n = 0.5 × 1012 cm−2 is λF ≈ 0.05 µm, which is still shorter than the

mean free path: λF � `. To estimate the impurity strength, we need to know the impurity

concentration. From transport and scanning tunneling microscopy/spectroscopy ( ), we

approximate the impurity density as ni ≈ 1×109 cm−2, which results in Vi ≈ 2.77×10−13 eV cm2

(nVi ≈ 277 meV at n = 1 × 1012 cm−2). Since the velocity is only slightly modified from the

value without a superlattice structure, we employ the value λ/v = a/4 obtained from a tight-

binding model, where a is the carbon atom spacing, given by a = 1.42 Å (40, 41). Those values

yields the ratio τ/τ̃ ≈ 0.003 at n = 1×1012 cm−2. In the present calculations, we do not consider

the temperature dependence of the parameters or the origin of scattering and inhomogeneity of

samples for simplicity, although the scattering time becomes longer in lower temperatures.

For bilayer graphene, high-quality bilayer graphene grown by chemical vapor deposition

(CVD) and detached on hBN realizes the mobility µ = 30,000 cm2/(V s) at 300 K (51). An

out-of-plane electric field (displacement field) D opens a band gap of about 2∆ = 100 meV

with D ≈ 1.1 V/nm (50). The coefficient λ = (2m)−1 is determined by the effective mass m ≈

0.033me (me: electron mass) and v ≈ 1 × 105 m/s (52, 53). Evaluating at n = 1× 1012 cm−2, we

find the scattering time τ ≈ 0.96 ps, corresponding to the frequency (2πτ)−1 ≈ 166 GHz, and the

mean free path ` ∼ vFτ ≈ 0.35 µm. We assume the impurity concentration ni ≈ 1 × 109 cm−2,

considering its high mobility, to obtain the impurity strength Vi ≈ 1.06 × 10−13 eV cm2 (nVi ≈

106 meV at n = 1 × 1012 cm−2). At the carrier density n = 1 × 1012 cm−2, we have the ratio

τ/τ̃ ≈ 0.018.

The carrier density dependence of εF , vF , and σ(0) is shown in Fig. S2, and the frequency

48
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dependence of σ, χ, ηI , and ηI is depicted in Fig. S3. The frequency and temperature depen-

dence of the response are given in Figs. S4 and S5. We note that the scattering times used for

the calculations are those at 300 K. The scattering time becomes longer in lower temperature,

which makes the linear conductivity σ, the second-order conductivity χ, and the reduced cur-

rent responsivity ηI larger, whereas the low- and high-frequency values of the reduced voltage

responsivity ηV barely change.

5 Surface state of a topological insulator

A surface state of a topological insulator also lacks inversion and thus hosts the rectification

effect (18). Here we take an example of the surface state of the topological insulator Bi2Te3

(18, 62), where the Hamiltonian is

H(k) = v(kxσy − kyσx) +
λ

2
(k3
+ + k3

−)σz (S112)

leading to the energy spectrum

εk =
√
v2k2 + λ2k6 cos2 3θ (S113)

The origin k = 0 is located at Γ point and the kx axis is parallel to ΓK line. Unlike the previous

two cases based on graphene, it has a single Dirac spectrum centered at Γ point. Furthermore,

the topology of the wavefunction in the bulk prohibits a mass gap of the surface states. In this

case, a surface breaks inversion by itself and the symmetry is C3v.

For the present Hamiltonian, short-ranged impurities without momentum dependence do not

produce finite w(A), nor does the second-order response. This issue can be circumvented instead

by considering Coulomb impurities, where the impurity potential is inversely proportional to

the distance from the impurity position: V(r) ∝
∑

j |r − r j |
−1. Assuming that the hexagonal

warping of the Fermi surface is small, we have the matrix element of the Coulomb impurity

Section S .



potential on the Fermi surface as

Vkk ′ =
Vc����sin (
θ − θ′

2

)���� (S114)

Then, we obtain the scattering rates

w
(S)
kk ′
=

2πniV2
c

tan2
(
θ − θ′

2

) δ(εk − εk ′) (S115)

w
(A)
kk ′
≈

8πniV3
c ε

3
F

v5 λc1 sgn
[
sin

(
θ − θ′

2

)]
cos

(
θ − θ′

2

)
(cos 3θ − cos 3θ′)δ(εk − εk ′) (S116)

with the numerical factor c1 ≈ 0.93 obtained from the numerical integration over momenta.

Since there is a single Fermi surface and time-reversal symmetry relates the Fermi surface

with itself, χ(0) vanishes with the single Fermi surface. A finite second-order conductivity can

be found in χ(1) as follows

χ
(1)
xxy = χ

(1)
xyx = χ

(1)
yxx = −χ

(1)
yyy ≈ e3v

τ3

τ̃
Re

[
c1

1 − iωτ
+

c2

(1 − iωτ)2

]
(S117)

Here, we assume for simplicity the constant scattering time τ ≈ (2πD0niV2
c )
−1 obtained from

w(S), and the scattering time originated from w(A) is defined by

τ̃−1 = λ
2niV3

c ε
4
F

πv7 (S118)

The two numerical factors c1 ≈ 0.87 and c2 ≈ 0.14 are evaluated by numerical integrations.
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Monolayer and bilayer graphene models. (A) Lattice structures of monolayer
graphene and (B) bilayer graphene along with the crystal axes. The red and blue circles depict
distinct sublattice sites with different potential energies, and the filled and empty circles corre-
spond to atoms on different layers. Both lattices have reflection planes parallel to the y axis and
its symmetry partners under the three-fold rotation. (C) Brillouin zone and energy contours for
the monolayer model. With small doping, there are trigonally-warped Fermi surfaces around
K and K′ points, facing the opposite directions. The bilayer model exhibits the similar Fermi
surfaces as the monolayer ones.
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Frequency dependence of the response. (A and D) Linear conductivity σ, (B
and F) second-order conductivity χ, (C and G) reduced current responsivity ηI , and (D and
H) reduced voltage responsivity ηV . Panels (A) to (D) correspond to the monolayer model, and
(E) to (H) correspond to the bilayer model. The carrier density is changed from0.5 × 1012 cm−2 (red) to
5 × 1012 cm−2 (purple), and the temperature is set to be zero. Refer to Sec. 4 for the values of
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Fig. S .  Frequency and temperature dependence of the response with a logarithmic
scale for the frequency axis. (A and E) Linear conductivity σ, (B and F) second-order conduc-
tivity χ, (C and G) reduced current responsivity ηI , and (D and H) reduced voltage responsivity
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