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MATERIALS AND METHODS
DNA-origami Design and Assembly

The DNA structures were designed in caDNAno' (Figure S1-S3, S24, S27, S31, S37, S42, S48). Staple
strands without chemical modifications were purchased from Integrated DNA Technologies, Inc. within
96-well plates and with concentrations normalized to 100 uM. Staple strands with fluorescent modifications
were purchased in dry powder form from Integrated DNA Technologies, Inc. with HPLC purification.
Scaffold strands p7308 and p8064 are variants of M13mp18 single-stranded DNA and produced using
phages and E.coli strains as described before’*. p3024, the pBlueScript-derived scaffold was prepared with
IM109 cells and VCSM13 helper phages (Agilent Technologies) using a single-stranded phagemid rescue
protocol recommended by the manufacturer.

The force clamps (Figure 1a—c and S1-S3) were assembled from p7308 scaffold strand (40 nM), a pool of
core staple strands (200 nM each) and a pool of spring subset staple strands (tunes force clamp to specific
tension’, 400 nM each) in 1x TE buffer (5 mM TriseHCI, 1 mM EDTA, pH 8.0) containing 20 mM MgCl,,
using a nonlinear thermal annealing ramp as described’. Force clamps with self-cleaving deoxyribozymes
(Figure 1d) were assembled from a modified p7308 scaffold with two deoxyribozyme inserts (Table S3)
under the same conditions as the other force clamp structures.

The semicircles with excess scaffold loops (Figure 2a and S24) were assembled from p3024 scaffold strand
(50 nM), a pool of core staple strands (300 nM each) and a pool of handle staple strands (600 nM each;
highlighted in red in caDNAno blueprint) in 1x TE buffer containing 12 mM MgCl,, using a 36-hour
annealing program (80—65 °C, -1 °C/5 min; 64—24 °C, -1 °C/50 min; 15 °C hold).

The circle structures with outer handle extensions for Cy5 anti-handle probes (Figure 2b and S27) were
assembled from p8064 scaffold strand (50 nM) and a pool of staple strands (300 nM each) in 1x TE buffer
containing 10 mM MgCl,, using a 36-hour annealing program (80—65 °C, -1 °C/5 min; 64—24 °C, -1 °C/50
min; 15 °C hold).

The structures featuring a rod and three circles (three-circles-on-a-rod, Figure 2¢ and S31) were assembled
from p7308 scaffold strand (40 nM) and a pool of staple strands (240 nM each) in 1x TE buffer containing
12 mM MgCl,, using a 36-hour annealing program (80—65 °C, -1 °C/5 min; 64—24 °C, -1 °C/50 min; 15 °C
hold).

The rotaxane structures (Figure 3 and S37) were assembled from p8064 scaffold strand (40 nM) and a pool
of staple strands (240 nM each) in 1x TE buffer containing 12 mM MgCl, using a 36-hour annealing
program (80—65 °C, -1 °C/5 min; 64—24 °C, -1 °C/50 min; 15 °C hold).

The elastic beam structures (Figure 4 and S42) were assembled from p8064 scaffold strand (40 nM) and a
pool of staple strands (320 nM each) in 1x TE buffer containing 8 mM MgCl,, using a 36-hour annealing
program (80—65 °C, -1 °C/5 min; 64—24 °C, -1 °C/50 min; 15 °C hold).

The rod-through-square structure® used for Casl2a cleavage in Octyl B-D-glucopyranoside (OG, Figure
S54) were assembled from p7308 scaffold strand (50 nM) and a pool of staple strands (400 nM each) in 1x
TE buffer containing 12.5 mM MgCl,, using a 36-hour annealing program (80—65 °C, -1 °C/5 min;
64—24 °C, -1 °C/50 min; 15 °C hold).

The folded structures were purified by rate-zonal centrifugation.” Typically, 1 mL of assembly product were
concentrated to 200 pl using Amicon Ultra-0.5 mL Centrifugal Filters (EMD Millipore) with 30-kD
nominal molecular weight limit (NMWL), loaded on top of a 15—45% (v/v) quasi-linear glycerol gradient
in a polycarbonate centrifuge tube (13x51 mm, Beckman Coulter Inc.), and spun at 50 krpm on a Beckman
SW-55-Ti rotor for 120 min (semicircle and rod-through-square structures) or 60 min (the rest of structures).
The contents of the tube were fractionated from top to bottom (200 pL per fraction). Generally, 5 pL. of
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each fraction was loaded onto a 1.5% agarose gel containing 0.5 pg/mL ethidium bromide (EtBr) and run
in 0.5x TBE (45 mM Tris-Base, 45 mM boric acid, and 1 mM EDTA), 10 mM MgCl; for 2 hours at 5 V/cm.
After image analysis on a Typhoon FLA 9500 imager (GE Healthcare), the fractions containing well-
formed monomeric DNA origami were combined and concentrated using Amicon Ultra-0.5 mL Centrifugal
Filters with 30-kD NMWL. Origami concentrations were determined using a NanoDrop 2000
(ThermoFisher). The concentrated monomers were stored in 1x TE buffer, 10 mM MgCl, at -20 °C.

For labeling and protecting ssDNA segments of DNA-origami structures, a pre-hybridization step was
added before Casl2a cleavage assays. Cy5-labeled ssDNA probes (probe:scaffold = 10:1) were allowed to
hybridize to force clamp structures at 37 °C for 1 hour. Cy5 anti-handles (anti-handle:circle = 67:1) were
allowed to hybridize to the eight identical handles on the circle structure at room temperature overnight.
Protecting oligonucleotides (oligo:scaffold = 8:1) for single-stranded scaffold segments were allowed to
bind to the tethers between the rod and circle at room temperature overnight.

Calculation of ssDNA Tendon Force

Guided by the examples of prior prestressed DNA origami tensegrity structures™®, we used the following
Python (v 2.7.10) script to estimate the tension on stretched ssDNA segments in our force clamp, three-
circles-on-a-rod, rotaxane, and rod-through-square structures by changing variable “N” to the number of
stretched scaffold ssDNA bases used in our designs and “Length in_ m” to the length of the stretched
scaffold ssDNA in our structures.

from _ future__ import division
import math

Lk = 1.5E-9 # Kuhn length (m)

1 = 0.63E-9 # contour length (m/base)
K = 800E-9 # stretching modulus (N)
k

T

b = 1.38E-23 #Boltzmann constant (3/K)

= 297 # Temperature (K)
N = 276 # ssDNA length (base); change to value used in each design
Lc = 1*N

Length_in m = 43E-9 # length of tensioned ssDNA (meters); change to value used in
each design

# Freely-Jointed Chain Model predicts end-to-end distance of a ssDNA as a function of
its tension force
def x(f):

return Lc*(1/math.tanh(f*Lk/(kb*T))-kb*T/(f*Lk))*(1+f/K)

#Calculate end-to-end distance of a ssDNA with tension force from 0.1 pN to 19.9 pN,
in 0.1 pN increment.
#Save the result to a list called all_length
#Find the force that gives value closest to Length_in_m (ssDNA length in m)
all length = []
for n in range (1,200):
all length.append(x(n*1E-13))

#print all_length
force = min(range(len(all_length)), key=lambda i: abs(all _length[i-1]-

(Length_in_m)))*1E-13
print (force)




Elastic Beam Bending Angle Prediction

The energies stored in the 6-helix bundle elastic beams at different bending angles and that in tensioned
ssDNA scaffold tethers were calculated. The theoretical equilibrium bending angles’ for the elastic beams
before enzymatic cleavage of ssDNA springs were then determined by minimizing the total energy.

Calculations for 6-helix Bundle Arc without ssDNA Tethers

The energy stored in the 6-helix bundle elastic beam (arc) was calculated according to the toy model'”.
Briefly, it was calculated by a sum of bend, and stretch/compression contributions stored in each base pair
in the arc, using the following functions:
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where S, B, and D denote the stretch, bending, and twist-stretch-coupling moduli of DNA, with a set of
values (S = 660 pN, B =230 pN-nm?, D = 0 pN-nm) calculated via Young’s modulus.

The following Python (v 3.7.3 with SciPy'") script calculates the energy stored in the arc (without ssDNA
tethers) as a function of a range of bending angles, resulting in the equilibrium bending angle at 121°.

from numpy import pi, sqrt
# All constants are listed below

D = 2.25E-9 # Diameter of dsDNA (m)

Lds = ©.335E-9 # length of dsDNA (m/base)

kb = 1.38E-23 #Boltzmann constant (J/K)

T = 297 # Temperature(K)

S = 660E-12 # Stretch moduli of DNA helix (N)

B = 230E-30 # Bending moduli of DNA helix (N*m2)

# All adjustable parameters are listed below

Nds = 6 # number of helices in the arc

Nbp = 168 # number of bp in the arc without insertion or deletion

L_arc = Nbp*Lds # length of the arc

bpl = 14 # bp(n) is the number of bp inserted or deleted from each outer or inner
layer of helices

delta_coefficient = 1.125E-9 # each DNA helix is modeled as a 2.25 nm wide rod

n = [0 for i in range(Nds)] # n is the number of bp installed in helices
n[@] = Nbp + bpl

n[1] = Nbp + bpl

n[2] = Nbp - bpl

n[3] = Nbp - bpl

n[4] = Nbp




n[5] = Nbp

delta = [0 for i in range(Nds)] # distance of a helix from the bending axis (nm)

delta[@] = sqrt(3.0)
delta[l] = sqrt(3.90)
delta[2] = -sqrt(3.0)
delta[3] = -sqrt(3.0)
delta[4] =0
delta[5] =0

for i in range(Nds):
delta[i] *= delta_coefficient

# Calculate the energy stored in the arc to find the bending angle with the energy
minimum

helix_total_energy = []
for angle_in_degrees in range(1,1890):
angle_in_radians = angle_in_degrees/180.0*pi
rref = L_arc/angle_in_radians
helix_stretch_energy = 0
helix_bending _energy = ©
for i in range(Nds):
d = (float(Nbp)/n[i])*float(Lds)*(delta[i]/rref + 1)
helix_stretch_energy += 0.5*S*n[i]*((d-Lds)**2)/Lds
helix_bending_energy += 0.5*B*n[i]*Lds/((rref + delta[i])**2)
helix_total_energy.append(helix_stretch_energy + helix_bending_energy)
bending_angle = (helix_total _energy.index(min(helix_total energy))+1)
print("The bending angle of the arc is", bending_angle)

Calculations for 6-helix Bundle Arc with ssDNA Tethers

Before enzymatic cleavage of the ssDNA tethers, the total energy stored in the prestressed elastic beam
structure with 4 stretched, ssDNA tethers was calculated as the sum of energy stored in the central, curved
168-bp 6-helix bundle elastic beam (arc) and the four ssDNA tethers, three of which are 157-nt long and
one of which is 471-nt long

The internal tension force of the ssDNA scaffold tethers was estimated based on the worm-like-chain (WLC)
model'? as

Flpe 1 1.5 F
kp-T x F\* 4 L K
4'(1—E+?)

where F is the internal tension, Lpss is the persistence length of ssDNA, Ky is the Boltzmann constant, T is
the temperature (298 K), x is the extension of the ssDNA tethers, Lc is the contour length of the ssDNA
tethers, and K is the elastic modulus.

The energy stored in the ssDNA scaffold tethers was calculated by

Esspna(dx) = Z fOAxF(x) dx



where the index i iterates over all the ssDNA tethers.

We calculated the total energy as a function of the bending angle (0) of the arc. Using the geometrical
relationship shown in Box S1, the end-to-end distance (d) of the ssDNA tethers can be calculated as

d=2-(R—\/§-r)-sin§
_Larc
k= 2

where R denotes the radius of the 6-helix-bundle arc, r denotes the radius of dsDNA helix, 8 denotes the
bending angle of the 6-helix-bundle arc, and Larc denotes the length of the 6-helix bundle arc.

Box S1. Calculation of end-to-end distance of the ssDNA tethers against the bending angle of the 6-helix
bundle arc. The ends of the ssSDNA tethers are labeled as red dots. The ssDNA tethers are not shown.

Bending axis

The total energy of the elastic beam with ssDNA tethers can be calculated as

Etotar = Earc + Esspna tether

This calculation was processed using the following Python (v 3.7.3 with SciPy) script.

from numpy import sin, pi, sqrt
from scipy.integrate import quad

# All constants are listed below

D = 2.25E-9 # Diameter of dsDNA (m)

Lss = 0.63E-9 # Contour length of ssDNA (m/base)
Lds = ©.335E-9 # length of dsDNA (m/base)

kb = 1.38E-23 #Boltzmann constant (J/K)

T = 297 # Temperature(K)

Lpss = ©.75E-9 # persistence length of ssDNA (m)
S = 660E-12 # Stretch moduli of DNA helix (N)

B = 230E-30 # Bending moduli of DNA helix (N*m2)
K = 50E-12 # Elastic modulus of ssDNA (N)




# All adjustable parameters are listed below

N1 = 157 # number of nucleotides in ssDNA tether type 1
N1ss = 3 # number of ssDNA tether type 1
N2 = 471 # number of nucleotides in ssDNA tether type 2
N2ss = 1 # number of ssDNA tether type 2

Nds = 6 # number of helices in the arc

Nbp = 168 # number of bp in the arc without insertion or deletion

L_arc = Nbp*Lds # length of the arc

L_tether_max = N1*Lss # maximum length of ssDNA tethers

theta_step = 1 # increasing step of bending angle of the arc (in degree)

bpl = 14 # bp(n) is the number of bp inserted or deleted from each outer or inner
layer of helices

delta_coefficient = 1.125E-9 # each DNA helix is modeled as a 2.25 nm wide rod

n = [0 for i in range(Nds)] # n is the number of bp installed in helices
n[@] = Nbp + bpl
n[1] = Nbp + bpl

n[2] = Nbp - bpl
n[3] = Nbp - bpl
n[4] = Nbp
n[5] = Nbp

delta = [0 for i in range(Nds)] # distance of a helix from the bending axis (nm)
delta[@] = sqrt(3.9)
delta[l] = sqrt(3.9)

delta[2] = -sqrt(3.0)
delta[3] = -sqrt(3.0)
delta[4] =0
delta[5] =0

for i in range(Nds):
delta[i] *= delta_coefficient

# Worm-Like Chain Model predicts the force and energy stored in a ssDNA tether as a
function of its end-to-end distance “x” and number of bases “N”

def delta F(f,x,N):
return(f*Lpss/(kb*T)+f/K+0.25-x/(N*Lss)-(1/(4*((1-x/(N*Lss)+f/K)**2))))

def F(x,N):
all delta F = []
for n in range (1,10000):
all delta_F.append(delta_F(n*1E-15,x,N))
force = (min(range(len(all_delta_F)), key=lambda i: abs(all_delta_F[i]))+1)*1E-15
return(force)

# Stretching energy stored in ssDNA tethers

def Energy tether(x,N):
return(quad(F,0,x,args=(N))[0])




# Calculate the end-to-end distance of ssDNA tethers as a function of bending angle
theta of the arc

def L_tether(theta):
return(2*(L_arc/theta-sqrt(3.0)/2*D)*sin(theta/2))

# Calculate the bending angle of the arc without ssDNA tethers

helix_total_energy = []
for angle_in_degrees in range(1,180):
angle_in_radians = angle_in_degrees/180.0%pi
rref = L_arc/angle_in_radians
helix_stretch_energy = 0
helix_bending_energy = ©
for i in range(Nds):
d = (float(Nbp)/n[i])*float(Lds)*(delta[i]/rref + 1)
helix_stretch_energy += 0.5*S*n[i]*((d-Lds)**2)/Lds
helix_bending_energy += 0.5*B*n[i]*Lds/((rref + delta[i])**2)
helix_total_energy.append(helix_stretch_energy + helix_bending_energy)
bending_angle = (helix_total_energy.index(min(helix_total_energy))+1)
print("The bending angle of the arc without ssDNA tethers is",bending_angle)

# Calculate the total energy stored in the arc and ssDNA tethers to find the bending
angle with the energy minimum

theta_all = []
L_tether_all = []
forcel_all = []
force2_all = []
total_energy all = []
theta = bending_angle # Starting from the bending angle of the arc without ssDNA
tethers
while(theta < 1890):
if(L_tether(theta/180*pi) > N1*Lss):
theta += theta_step
else:
rref = L_arc/(theta/180*pi)
beam_stretch_energy = 0
beam_bending energy = ©
for i in range(Nds):
d = (float(Nbp)/n[i])*float(Lds)*(delta[i]/rref + 1)
beam_stretch_energy += 0.5*S*n[i]*((d-Lds)**2)/Lds
beam_bending_energy += 0.5*B*n[i]*Lds/((rref + delta[i])**2)
total_energy = beam_stretch_energy + beam_bending_energy +
N1ss*Energy tether(L_tether((theta/180*pi)),N1) +
N2ss*Energy_tether(L_tether((theta/180*pi)),N2)
theta_all.append(theta)
L_tether_all.append(L_tether(theta/180*pi))
forcel_all.append(F(L_tether(theta/180*pi),N1))
force2_all.append(F(L_tether(theta/180*pi),N2))
total_energy all.append(total_energy)
theta += theta_step

10




index = total_energy all.index(min(total_energy_all))
print("The minimum energy point has the bending angle of", theta_all[index], "degree,
the ssDNA tether length of",\

L_tether_all[index]*1.0E9, "nm, with", N1, "nt in the ssDNA tethers, the force
in the ssDNA tethers of",\

forcel_all[index]*1.0E12, "pN; with", N2, "nt in the ssDNA tether, the force in
the ssDNA tether of",\

force2_all[index]*1.0E12, "pN, the total energy of", total_energy_all[index],
"J.")

Calculations for 6-helix Bundle Arc with 6-helix Bundle Bar

The total energy stored in an elastic beam with arms held by a pre-folded, 6-helix-bundle, 84-bp-long bar
is calculated as the sum of three terms: (1) the energy stored in the curved 168-bp 6-helix bundle arc, (2)
that stored in the eight, 5-nt-long ssDNA springs at both ends of the tethering 6-helix bundle bar, and (3)
stretching energy stored in the bar. This calculation was processed using the following Python (v 3.7.3 with
SciPy) script.

from numpy import sin, pi, sqrt
from scipy.integrate import quad

# All constants are listed below

D = 2.25E-9 # Diameter of dsDNA (m)

Lss = 0.63E-9 # Contour length of ssDNA (m/base)
Lds = ©.335E-9 # length of dsDNA (m/base)

kb = 1.38E-23 #Boltzmann constant (J/K)

T = 297 # Temperature(K)

Lpss = 0.75E-9 # persistence length of ssDNA (m)
S = 660E-12 # Stretch moduli of DNA helix (N)

B = 230E-30 # Bending moduli of DNA helix (N*m2)
K = 50E-12 # Elastic modulus of ssDNA (N)

# All adjustable parameters are listed below

N = 5 # number of nucleotides in the ssDNA springs

Nss = 8 # number of the ssDNA springs

Nds = 6 # number of helices in the arc

Nbp = 168 # number of bp in the arc without insertion or deletion

Nbp_bar = 84 # number of bp of 6-helix bundle bar in the tether

L_arc = Nbp*Lds # length of the arc

L_bar = Nbp_bar*Lds # length of 6-helix bundle bar in the tether under the
unstretched condition

L_spring max = N*Lss # maximum length of the ssDNA springs

theta_step = 1 # increasing step of bending angle of the arc (in degree)

bpl = 14 # bp(n) is the number of bp inserted or deleted from each outer or inner
layer of helices

delta_coefficient = 1.125E-9 # each DNA helix is modeled as a 2.25 nm wide rod

n = [0 for i in range(Nds)] # n is the number of bp installed in helices
n[@] = Nbp + bpl
n[1] = Nbp + bpl
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n[2] = Nbp - bpl
n[3] = Nbp - bpl
n[4] = Nbp
n[5] = Nbp

delta = [0 for i in range(Nds)] # distance of a helix from the bending axis (nm)
delta[@] = sqrt(3.9)
delta[l] = sqrt(3.9)

delta[2] = -sqrt(3.0)
delta[3] = -sqrt(3.0)
delta[4] =0
delta[5] =0

for i in range(Nds):
delta[i] *= delta_coefficient

# Worm-Like Chain Model predicts the force and energy stored in a ssDNA tether as a
function of its end-to-end distance “x”

def delta F(f,x):
return(f*Lpss/(kb*T)+f/K+0.25-x/(N*Lss)-(1/(4*((1-x/(N*Lss)+f/K)**2))))

def F(x):
all delta F = []
for n in range (1,200):
all delta_F.append(delta_F(n*1E-13,x))
force = (min(range(len(all_delta_F)), key=lambda i: abs(all_delta_F[i]))+1)*1E-13
# print(all_delta F)
return(force)

# Stretching energy stored in ssDNA springs
def Energy_spring(x):
return(quad(F,0,x)[0])
# Calculate the end-to-end distance of the tether as a function of bending angle
theta of the arc
def L_tether(theta):
return(2*(L_arc/theta-sqrt(3.0)/2*D)*sin(theta/2))
# Calculate the stretching energy stored in the 6-helix bundle bar
def Energy bar(d_bp): # d_bp is the average distance of a stretched base pair in

the bar (m/base)
return(0.5*S*Nbp_bar*6*(d_bp-Lds)**2/Lds)

# Find the minimum energy stored in the tether (the bar and ssDNA springs) against a
given end-to-end tether distance. Return the minimum energy and the force in ssDNA
springs
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def Min_energy tether(L): # L is the end-to-end distance of the tether
d_bp = Lds # define the starting average distance of a stretched base pair in
the bar
delta_d bp = Lds/100.0 # define the increasing step distance of the stretched
base pair in the bar
force_spring_all = []
total_energy_tether_all = []
while(d_bp*Nbp bar < L):
if(L-d_bp*Nbp_bar >= 2*L_spring max):
d_bp += delta_d_bp
else:
total_energy_tether = Energy bar(d_bp) + Nss*Energy_spring((L-
d_bp*Nbp_bar)/2.0)
force_spring_all.append(F((L-d_bp*Nbp_bar)/2.0))
total_energy_tether_all.append(total_energy_tether)
d_bp += delta_d_bp
index = total_energy_tether_all.index(min(total_energy_tether_all))
return((total_energy_tether_all[index],force_spring_all[index]))

# Calculate the bending angle of the arc without ssDNA tethers

helix_total_energy = []
for angle_in_degrees in range(1,180):
angle_in_radians = angle_in_degrees/180.0%pi
rref = L_arc/angle_in_radians
helix_stretch_energy = ©
helix_bending_energy = 0
for i in range(Nds):
d = (float(Nbp)/n[i])*float(Lds)*(delta[i]/rref + 1)
helix_stretch_energy += 0.5*S*n[i]*((d-Lds)**2)/Lds
helix_bending_energy += 0.5*B*n[i]*Lds/((rref + delta[i])**2)
helix_total_energy.append(helix_stretch_energy + helix_bending_energy)
bending_angle = (helix_total_energy.index(min(helix_total_energy))+1)
print("The bending angle of the arc without the tether is",bending_angle)

# Calculate the total energy stored in the arc, the bar, and ssDNA springs as a
function of different bending angles of the arc to find the bending angle with the
energy minimum

theta_all = []
L_tether_all = []
force_all = []
total_energy_all = []
theta = bending_angle # Starting from the bending angle of the arc without the tether
while(L_tether(theta/180*pi) > L_bar):
rref = L_arc/(theta/180%pi)
beam_stretch_energy = 0
beam_bending_energy = 0
for i in range(Nds):
d = (float(Nbp)/n[i])*float(Lds)*(delta[i]/rref + 1)
beam_stretch_energy += 0.5*S*n[i]*((d-Lds)**2)/Lds
beam_bending_energy += 0.5*B*n[i]*Lds/((rref + delta[i])**2)
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total_energy = beam_stretch_energy + beam_bending_energy +
Min_energy tether(L_tether(theta/180*pi))[0]
theta_all.append(theta)
L_tether_all.append(L_tether(theta/180*pi))
force_all.append(Min_energy_tether(L_tether(theta/180*pi))[1])
total_energy all.append(total_energy)
theta += theta_step
index = total_energy _all.index(min(total_energy_all))
print("The minimum energy point has the bending angle of", theta_all[index], "degree,
the tether length of", \
L_tether_all[index]*1.0E9, "nm, with", N, "nt in the ssDNA springs, the force
in ssDNA springs of", \
force_all[index]*1.0E12, "pN, and the total energy of",
total_energy all[index], "J.")

According to Boltzmann distribution, probability density P(z) of each bending angle can be calculated as

E(z)
“kpT
_EW)

P(z) =

where | iterates over all bending angles.

The bending angle distribution of the three different versions of elastic beams is shown in Box S2.

Box S2. Predicted bending angle distribution of the three different versions of the elastic beams.
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Transmission Electron Microscopy

For negative-stain TEM, a drop of the sample (5 pL) was deposited on a glow discharged formvar/carbon-
coated copper grid (Electron Microscopy Sciences), incubated for 1 min, and blotted away. The grid was
first rinsed twice with 1x TE buffer containing 10 mM MgCl,, then washed briefly and stained for 1 min
with 2% (w/v) uranyl formate. Images were acquired on a JEOL JEM-1400PIus microscope (acceleration
voltage: 80 kV) with a bottom-mount 4kx3k CCD camera (Advanced Microscopy Technologies).
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Nuclease Preparation and Cleavage

Nuclease P1 was pre-diluted in 1x NEBuffer 1.1; both were purchased from New England Biolabs. S1
(Promega Corporation) and mung bean (New England Biolabs) nucleases were pre-diluted in their
respectively manufacturer-provided 1x reaction buffers.

dsDNA activator and crRNA’s DNA template sequences (Integrated DNA Technologies; sequence
information in Table S1) were annealed into duplexes in nuclease-free water by heating at 95 °C for 10
min, followed by gradual cooling to 85 °C (-2 °C/min) and then to 12 °C (-0.365 °C/min). crRNA for
Casl2a was in vitro transcribed using HiScribe™ T7 High Yield RNA Synthesis Kit (New England
Biolabs). Resulting RNA was extracted using phenol:chloroform:isoamyl alcohol (25:24:1) and
precipitated using ethanol pre-chilled at -20 °C. The pellet was dissolved in RNAse free water, heated to
95 °C for 5 min to denature secondary structures, and then flash-frozen on ice for storage. The crRNA was
characterized by 12% denaturing polyacrylamide gel electrophoresis (PAGE) in 1% TBE buffer (Box S3).

Box S3. PAGE characterization of in vitro transcribed crRNA (41 nt) and an RNA control (35 nt).

crRNA 35 nt RNA control

To generate the trans-activated Cas12a complex, 28 nM Cas12a (New England Biolabs: EnGen Lba Cas12a)
was pre-assembled with 28 nM crRNA and 333 nM dsDNA activator (in excess) in 1x NEBuffer 2.1 (New

England Biolabs) at 37 °C for 10 min. Unless otherwise noted, Cas12a digestions were carried out at 37 °C.

DNA-origami structure (in 1x TE buffer, 10 mM MgCl,) to nuclease volume and concentration ratios in

each nuclease digestion assay can be found in Table S2.

Preparation of Custom Scaffold with Deoxyribozyme Sequences

M13-derived p7308 was replicated via polymerase chain reaction (PCR) using primers containing one
deoxyribozyme split sequence (Integrated DNA Technologies, Inc., Table S3). 70 ng of linear PCR
products were circularized with KLD Enzyme Mix (New England Biolabs) and transformed into JM109
competent cells. Transformants were spread on Luria-Bertani (LB) plates and incubated at 37 °C overnight.
Six plaques were picked, and each inoculated in 10 ml 2x YT medium. Double-stranded plasmids were
harvested with the Plasmid Miniprep Kit (Qiagen) and verified by sequencing.
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Bsal recognition site sequence (Table S3) was then inserted into the plasmid through PCR. A second
deoxyribozyme sequence and the complementary sequence to the Cy5-labeled ssDNA probe (Integrated
DNA Technologies, Inc., Table S3) were also inserted into the plasmid (plasmid:oligo molar ratio = 1:3)
with the Golden Gate Assembly Kit (New England Biolabs). 5 ul of the product was transformed into
JM109 competent cells, and the resulting culture was inoculated in 2x YT medium overnight growth at
37 °C/220 rpm. Bacteria cells were pelleted by centrifugation for 15 min at 5000 rcf and phage particles in
supernatant were harvested. 40 g PEG-8000 and 30 g NaCl were added to the supernatant with stirring, and
the mixture was centrifuged for 30 min at 5500 rcf. The pellet was resuspended with 10 mL of buffer
containing 10 mM Tris (pH 8), 1 mM EDTA. Residual bacteria cells were pelleted and removed through
centrifugation for 10 min at 16000 rcf. Finally, single-stranded scaffold was rescued from phage supernatant
through alkaline lysis®.

Deoxyribozyme Self-cleavage Assay

After assembly and glycerol gradient purification, the buffer of force clamp structures was exchanged with
50 mM HEPES (pH 7.0), 100 mM NaCl, 10 mM MgCl; using Amicon Ultra-0.5 mL Centrifugal Filters
with 30-kD NMWL. 50 ul of10 nM force clamp was incubated with 3 ul of 1.6 uM Cy5-labeled ssDNA
probes at 37 °C for 60 min and then distributed equally into nine 0.6 mL tubes (5.4 pl per tube). The mixture,
as well as the Zn?* reaction buffer (50 mM HEPES pH 7.0, 100 mM NaCl, 10 mM MgCl,, 4 mM ZnCl,),
was preheated to 37 °C. 5.4 pl of the reaction buffer was then added into eight of the nine origami mixture
tubes (one tube kept as control) and the reaction tubes were kept at 37 °C. The reaction was quenched with
1.08 ul 33 mM EDTA and cleaved products were analyzed with 1.5% AGE.

Before conducting cleavage assays in free DNA strands each containing two deoxyribozyme sequences
(Integrated DNA Technologies, Inc., Table S3), 55 ul of 0.5 uM deoxyribozyme ssDNA was annealed
with Cy5-labeled ssDNA probes (deoxyribozyme strand: probe molar ratio = 1.1: 1). 5 pl solution was
reserved as a control, while the remaining mixture was incubated with an equal volume of the Zn>" reaction
buffer at 37 °C. At each time point, 10 ul solution was quenched with 1 pul 33 mM EDTA. The resulting
cleaved products were analyzed using 12% non-denaturing PAGE in 1x TBE buffer.

Gel Purification

Samples were loaded in a 1.5% agarose gel (0.5% TBE, 10 mM MgCl,) with 0.5 pg/mL EtBr and a 1 kb
DNA ladder (New England Biolabs), then run for 3 hours at 5 V/ecm in 0.5x TBE and 10 mM MgCl, running
buffer. After image analysis on a Typhoon FLA 9500 imager (GE Healthcare), bands of interest were
excised using a razor and spun in Freeze ‘N Squeeze DNA gel extraction columns (Bio-Rad Laboratories).

Image Data Analysis

Gel images were obtained using a Typhoon FLA 9500 imager (GE Healthcare). Densitometry was carried
out using the “Gels” tool in ImageJ'* (version 1.52b). Using the integrated intensity values of DNA-origami
bands, the amount of Cy5-labeled ssDNA probe released from the force clamps in each nuclease digestion
reaction was quantified:

CY5nuclease—treated l CY5undigested control
Percent Cy5-labeled ssDNA release = (1 — R e e 1 X 100%
EtBTnuclease-treated sample EtBr undigested control

For yield estimations, band intensities were normalized by the molecular weight of the corresponding
structure of each gel band.

Macrocycle positions were traced and measured using the “Segmented Line” tool in Image]'* (Figure S40).
Pre-stressed beam angles were measured using the “Angle” tool in ImageJ'’; samples used were not gel-
purified to eliminate the possible effects of purification on bending angles (Figure S44).
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Plots and statistics were generated using GraphPad Prism (v 8.3.0). The Mann—Whitney U test was used
compare populations of rotaxane and elastic beam structures as the distributions of the macrocycle and
bending angles are not normal.
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SUPPLEMENTAL FIGURES

Figure S1. CaDNAnNo design of the 2 pN force clamp. Green: core staples. Red: staples specific to 2 pN version of force clamp.
Mageneta: 5’ Cy5-labelled ssSDNA probe. Staple extensions on termini of helices each consists of four thymines to prevent
stacking interactions.
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Figure S2. CaDNAno design of the 6 pN force clamp. Green: core staples. Red: staples specific to 6 pN version of force clamp.
Mageneta: 5’ Cy5-labelled ssSDNA probe. Staple extensions on termini of helices each consists of four thymines to prevent
stacking interactions.
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Figure S3. CaDNAno design of the 12 pN force clamp. Green: core staples. Red: staples specific to 12 pN version of force clamp.
Mageneta: 5’ Cy5-labelled ssSDNA probe. Staple extensions on termini of helices each consists of four thymines to prevent
stacking interactions.
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Figure S4. More electron micrographs showing gel-purified 2 pN force clamps. Scale bar: 100 nm.
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Figure S5. More electron micrographs showing 2 pN force clamps, gel-purified after 30 min of Casl2a
treatment. Scale bar: 100 nm.
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Figure S6. More electron micrographs showing 2 pN force clamps, gel-purified after 30 min of nuclease
P1 treatment. Scale bar: 100 nm.
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Figure S7. More electron micrographs showing 2 pN force clamps, gel-purified after 30 min of nuclease
S1 treatment. Scale bar: 100 nm.
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Figure S8. More electron micrographs showing 2 pN force clamps, gel-purified after 30 min of mung bean
nuclease treatment. Scale bar: 100 nm.
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Figure S9. The AGE result from trial 1 of Casl2a digested 2 pN force clamps. Prior to the Cas12a cleavage
assay, force clamps were pre-hybridized with Cy5-labeled ssDNA probes (Materials and Methods: DNA-
origami Design and Assembly). Excess free Cy5-labeled ssDNA probes were not removed and present in
the subsequent cleavage reaction mixture. Consequently, the cleavage reaction was measured by a loss of
the Cy5-labeled ssDNA probes from the force clamps instead of a gain of fluorescence signals in solution
from released Cy5-labeled ssDNA probes. The same applies to Figure S10—-S13. M: 1 kb DNA ladder.
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Figure S10. The AGE result from trial 1 of Cas12a digested 6 pN force clamps. M: 1 kb DNA ladder.
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Figure S11. The AGE result from trial 1 of Casl2a digested 12 pN force clamps. M: 1 kb DNA ladder.
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Figure S12. The AGE result from trial 2 of Cas12a digested force clamps. M: 1 kb DNA ladder.

2 2 2 2 2 6 6 6 6 6 6 12 12 12 12 12 12 12 - - Force clamp origami (pN)
+ o+ o+ o+ o+ + o+ + o+ o+ o+ + + + + + + - 4+ - Cy5probe
+ o+ o+ o+ o+ -+ + o+ o+ o+ -+ + + + + - - +  C(Casl2a
15 30 60 120 240 - 15 30 60 120 240 - 15 30 60 120 240 - - - Incubation time (min)
3.0 kb-{
2.0 kb-{
1.5 kb
1.0 kb-{
0.5 kb-{
EtBr Channel
3.0 kb-{
2.0 kb-{
1.5 kb - - e .
1.0 kb-{
0.5 kb-{
L L
Cy5 Channel

29



Figure S13. The AGE result from trial 3 of Casl2a digested force clamps. M: 1 kb DNA ladder.
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Figure S14. Electron micrographs showing 2 pN force clamps after four hours of Cas12a treatment. Sample
was not purified. Scale bar: 100 nm.
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Figure S15. Electron micrographs showing 6 pN force clamps after four hours of Cas12a treatment. The
sample was not purified. Scale bar: 100 nm.
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Figure S16. Electron micrographs showing 12 pN force clamps after four hours of Cas12a treatment. The
sample was not purified. Scale bar: 100 nm.
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Figure S17. AGE characterization of 12 pN force clamps digested by Cas12a and P1 nucleases for 30 min
at 37 °C. M: 1 kb DNA ladder.
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Figure S18. Electron micrographs showing gel-purified 12 pN force clamps. Scale bar: 100 nm.
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Figure S19. Electron micrographs showing 12 pN force clamps, gel-purified after 30 min of Casl2a
treatment. Scale bar: 100 nm.
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Figure S20. Electron micrographs showing 12 pN force clamps, gel-purified after 30 min of nuclease P1
treatment. Scale bar: 100 nm.
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Figure S21. Non-denaturing PAGE data (gel imaged in Cy5 channel) showing the self-cleavage kinetics
of a DNA oligonucleotide containing two deoxyribozyme sequences. The schematics show the Zn?*'-
induced cleavage of both deoxyribozymes, separating the Cy5 (red star)-labeled segment from the 5’- and
3’- segments.

AT T AT T AT T AT
6© 14 6© 4 6© L ¢ 74«7
< & < o) X o by o
[C) —A [C] A © A [C) P
- — [ — = - = —
v S v _:’ Ly Ql g @
9 9 bN
& S 2 25 2y, & 2 % * 2
< Rl < R < R) ¢ D)
< =4 < - S — < —
S-a S-a O a S Q
O = G O - O Zn2+ Q In) O Q
2:-9 2:-4 2 9 2 Q
-a -a —_—
TTCATGTA ¥ GGTACTAGCCATGCGTATACG TTCATGTA” EIGETACTAGCCATGCGTATACG & e
[IRRRRRRARRRRRRRARIRNE!
CCATGATCGGTACGCATATGG CCATGATCGGTACGCATATGE
A . 3 5
3 5
reactiontime 0s | 20s | 40s [ 60s [ 90s [2min |5 min [10 min20 min| 1h
no cleavage

3'- deoxyribozyme cleaved —)-

5’- deoxyribozyme cleaved —)
both deoxyribozymes cleaved —)

38



Figure S22. AGE characterization of deoxyribozyme self-cleavage under different tensions. Top and
middle sets: same gel imaged in Cy5 and EtBr channels respectively. Bottom set: false-color composite of
the Cy5 (red channel) and EtBr (green channel) sets. In each set, three strips from top to bottom contain
2pN, 6pN and 12pN force clamp origami structures, respectively. Each lane shows different cleavage time
points.
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Figure S23. Electron micrographs of force clamp structures containing deoxyribozymes. Top row: before
cleavage. Bottom row: after cleavage. Scale bar: main images 100 nm; insets (red boxes) 50 nm.
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Figure S24. CaDNAno design of the semicircle. Green: core staples. Red: staples with handles (unutilized in this study).
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Figure S25. More electron micrographs showing gel-purified semicircles.
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Figure S26. More electron micrographs showing semicircles, gel-purified after 30 min of Cas12a digestion.
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Figure S27. CaDNAno design of the circle with eight handle extensions. Green: core staples. Red: staples with handles (not
drawn) extending out from Helix 0.

Corresponding anti-handle sequence to the handle extensions: 5'-TAGATGGAGTGTGGTGTGAAG/Cy5/-3'
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Figure S28. Electron micrographs showing gel-purified circles with ssDNA handles hybridized with Cy5-
labeled anti-handles.
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Figure S29. More electron micrographs showing circles with handles that were first hybridized with Cy5-
labeled anti-handles and then treated with Cas12a for 30 min. The sample was then gel-purified before
viewing under TEM.
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Figure S30. More electron micrographs showing circles. Circles were first treated with Cas12a for 30 min
and then gel-purified. Subsequently, the processed circles were incubated with Cy5-labeled anti-handles
and gel-purified again before viewing under TEM.
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Figure S31. CaDNAno design of the rod thread through three circles. Red: core staples of the rod. Yellow: terminal rod staples
with TTTT ends. Orange, green, magenta: core staples of the different circles. Maroon: complementary ssDNA strands to the
scaffold tethers between the macrocycle and the shaft. Staple extensions on termini of rod each consists of four thymines to
prevent stacking interactions.
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Figure S32. More electron micrographs of gel-purified three-circles-on-a-rod structures.

100 NN ———

49



Figure S33. More electron micrographs showing three-circles-on-a-rod structures, gel-purified after 4
hours of Cas12a treatment. Scaffold tethers were not protected via pre-hybridization.
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Figure S34. More electron micrographs showing three-circles-on-a-rod structures, gel-purified after 4
hours of Cas12a treatment. All scaffolds tethers were protected via pre-hybridization with complementary
ssDNA.
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Figure S35. More electron micrographs showing three-circles-on-a-rod structures, gel-purified after 4
hours of treatment by Cas12a. All scaffolds tethers, except those joining the right terminal circle (see Figure
2¢) to the rod, were protected via pre-hybridization with complementary ssDNA, resulting in a rod threading
through only two circles after digestion.
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Figure S36. More electron micrographs showing three-circles-on-a-rod structures, gel-purified after 4
hours of Casl2a treatment. All scaffolds tethers, except those joining the middle circle to the rod, were
protected via pre-hybridization with complementary ssDNA, resulting in a rotaxane after digestion.
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Figure S37. CaDNAno design of the rotaxane. Yellow: core staples of the dumbbell. Green: core staples of the macrocycle.
Maroon: complementary sSDNA strands to the scaffold tethers between the macrocycle and the shaft. Staple extensions on

termini of dumbbell each consists of four thymines to prevent stacking interactions.

1 3
o a
5
7
8 12 16 20 24 28 32 36 40 a4 a8
u 15 19 23 27 29 31 35 39 a3 a7 51
6 10 14 18 22 2 30 3 38 a2 6 50
9 13 17 21 2 33 37 a a5 49 53
L R I I T T I i R I R R

7 == ==

= - —
| | |

e B B T m S N E L | == T |

54

£ 5 B 2 5 2 8 8 84 £ 8 BB 8 2 KEBENRRREBRESSIEE BB S I e N s N o



Figure S38. AGE characterizations of the pseudo-rotaxane origami structure after Casl2a treatment. a):
trial 1, b): trial 2, and c): trial 3. Average band intensities across trials were used to estimate the yield of
stopper-bearing shafts (dumbbells) retaining macrocycles. After normalizing for the different molecular
weights of the structures, about 19.89+1.26% of the dumbbells retained macrocycles post Cas12a treatment
(upper band in the right lane).

d Cas12a b Cas12a
M - o M _ +

o

e b4

e s
3.0 kb e 30 kb .-
2.0 kb | - 20kb|
1.5 kb [FE— . 1.5 kb -
10kb| 1.0 kb

0.5 kb —
0.5 kb -
C
Cas12a
M - +
3.0 kb
2.0 kb
-

1.5 kb - -
1.0 kb
0.5 kb

55



Figure S39. More electron micrographs showing the gel-purified asymmetric pseudo-rotaxane origami
structure. Scale bar: 50 nm.
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Figure S40. Demonstration of how the position of the macrocycle, p, is determined in ImagelJ. Distances
are measured using the “Segmented Line” tool and p, is given by distance (AB + AC)/2.
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Figure S41. More electron micrographs showing the asymmetric rotaxane origami structures, gel-purified
after 4 hours of Casl12a treatment. Scale bar: 50 nm.

58



Figure S42. CaDNAno design of the elastic beam. The shorter ssDNA tethers joining the two arms are each stretched at
3.2 pN (Materials and Methods: Elastic Beam Bending Angle Prediction). Red and purple: core staples of the elastic beam.
Green: additional staples used to fold the scaffold tethers between the two arms into a 6-helix bundle.
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Figure S43. More electron micrographs showing the elastic beam structure. Samples shown were gel-
purified. Scale bar: 100 nm.
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Figure S44. More electron micrographs showing the elastic beam structure. Samples shown were not gel-
purified to eliminate the possible effects of purification on bending angles and used for angle quantification.
Scale bar: 200 nm.
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Figure S45. Demonstration of how the bending angles of the elastic beam, @, is determined in ImageJ. The
shapes of the elastic beams are traced using the “Angle” tool and added to the “ROI Manager”. Angles of
the traces, which should equal to 180°-8, were then measured.
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Figure S46. More electron micrographs showing the elastic beam structure after 4 hours of Casl2a
digestion. Samples shown were gel-purified. Scale bar: 100 nm.
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Figure S47. More electron micrographs showing the elastic beam structure after 4 hours of Casl2a
digestion. Samples shown were not gel-purified to eliminate the possible effects of purification on bending
angles and used for angle quantification. Scale bar: 200 nm.
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Figure S48. CaDNAno design of the elastic beam without middle scaffold tethers. Red and purple: core staples of the elastic beam.
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Figure S49. A version of the elastic beam structure lacking scaffold tethers between the arms was
constructed and digested by Cas12a. No change in bending angle distribution of the structure was observed
after 4 hours of Casl2a treatment. Note that the measured bending angles are in general agreement with
ssDNA-tethered elastic beam after Cas12a digestion, both smaller than the predicted angle (~121°). This is
likely a result of the untethered arms splaying on TEM surface. (a) Left: AGE characterization of the
structures with and without Cas12a treatment. Structures after Cas12a digestion exhibited a faster migration
rate because of the removal of an unfolded scaffold loop (Figure S48, top left corner). Right: electron
micrographs of the gel-purified structures. Scale bar: 100 nm. (b) Quantification of bending angle
distributions with (n = 339) and without (n = 358) Cas12a treatment showed no significant difference, p =
0.51.
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Figure S50. More electron micrographs showing a version of the elastic beam structure without scaffold
tethers between the bent arms. Samples shown were gel-purified. Scale bar: 100 nm.
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Figure S51. More electron micrographs showing a version of the elastic beam structure without scaffold
tethers between the bent arms. Samples shown were not gel-purified to eliminate the possible effects of
purification on bending angles and used for angle quantification. Scale bar: 200 nm.
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Figure S52. More electron micrographs showing a version of the elastic beam structure without scaffold
tethers between the bent arms after 4 hours of Cas12a digestion. Samples shown were gel-purified. Scale
bar: 100 nm.
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Figure S53. More electron micrographs showing a version of the elastic beam structure without scaffold
tethers between the bent arms after 4 hours of Casl2a digestion. Samples shown were not gel-purified to
eliminate the possible effects of purification on bending angles and used for angle quantification. Scale bar:
200 nm.
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Figure S54. Cas12a digestion of rod-through-square structure® under detergent conditions. (a) Schematics
of the Casl2a digestion process. The square was initially tethered to the rod via four pairs of ssDNA
scaffolds. Upon 8 hours of Cas12a digestion, the structure separated into a free square and a naked rod. (b)
Left: AGE of Casl12a digested rod-through-square structures under various concentrations of OG (1-5 %).
M: 1 kb DNA ladder. Right: electron micrographs showing the untreated rod-through-square structure (top),
as well as a free square (middle) and a free rod (bottom) after Casl2a digestion in a reaction buffer
containing 5 % OG. Scale bars: 50 nm.
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Figure S55. Cas12a digestion of the rod-through-square structure for up to 16 hours. Electron micrographs
of the released squares after 16 hours of Casl2a digestion suggest dsSDNA damages in the main origami
structure. M: 1 kb DNA ladder. Scale bar: 50 nm.
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Figure S56. Cas12a digestion of pseudo-rotaxane structure (20 nM) with up to 67 nM of Cas12a for 4 hours.
Digestion with 67 nM of Casl2a generated a higher mobility band after AGE, which contains damaged
structures. Scale bar: 100 nm.
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Figure S57. Electron micrographs showing an ‘A’-shaped version of the elastic beam structure with
scaffold tethers folded into a 6-helix bundle bar (Figure S42). This bar is tethered to the arms of the elastic
beam via 4 ssDNA segments on each end, each 5 nt long. Samples shown were gel-purified. Scale bar: 100
nm.
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Figure S58. Electron micrographs showing the ‘A’-shaped elastic beam (Figure S42 and S57) after 4 hours
of Casl2a treatment. Treatment with Casl2a for 4 hours did not release the beam from the elastic beam.
Samples shown were gel-purified. Scale bar: 100 nm.
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SUPPLEMENTAL TABLES

Table S1. CRISPR-Cas12a Sequences

Sequence Sequence

Name

crRNA UAAUUUCUACUAAGUGUAGAUCGUCGCCGUCCAGCUCGACC

(adapted'®)

DNA for in TAATACGACTCACTATAGGGTAATTTCTACTAAGTGTAGATCGTCGCCGT

vitro
transcription of
crRNA (coding
strand)

CCAGCTCGACC

DNA for in
vitro
transcription of
crRNA
(template
strand)

GGTCGAGCTGGACGGCGACGATCTACACTTAGTAGAAATTACCCTATAGT
GAGTCGTATTA

dsActivator
(target strand)

GCCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCC
ACAAGC

dsActivator
(non-target
strand)

GCTTGTGGCCGTTTACGTCGCCGTCCAGCTCGACCAGGATGGGCACCACC
CCGGC

76




Table S2. Nuclease volumes and concentrations in nuclease digestion assays.

Structure type Structure Nuclease Total Final structure | Final nuclease

volume (ul) | volume (ul) | volume (ul) | concentration | concentration
(nM) (nM)

Force clamp 6 9 15 12 15

Semicircle 5 10 15 15 15

Circle with handles 10 9 19 1.58 1.58

Rod with three circles | 6 9 15 8 15

Rotaxane with 6 9 15 20 17

asymmetric stoppers

Prestressed beams 7.5 7.5 15 16 16

Rod through square 5 10 15 2.5 12.5
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Table S3. Deoxyribozyme assay sequences

Sequence Name

Sequence

Deoxyribozyme sequence 1, forward primer

TAAGTTGAAGTGGCTGTACATGGATCCTT
ATACGGGTACTAG

Deoxyribozyme sequence 1, reverse primer

ATGCTCAACTATGGCTGTACATGAATTCGT
AATCATGGTCATAG

Bsal recognition site, forward primer

TAAGTAGGTCTCTGCTGGTCTAGAGTCGA
CCTG

Bsal recognition site, reverse primer

ATTGTAGGTCTCTGTACCCAGCCACTTCAA
CTTAATG

Deoxyribozyme sequence 2 with Cy5-probe
binding site, forward primer

TAAGTAGGTCTCTGTACTAGCCATGCGTAT
ACGCAGCCATAGTTGAGCATTAAGTTGAA
GTGGCTGAGAGACCTACAAT

Deoxyribozyme sequence 2 with Cy5-probe
binding site, reverse primer

ATTGTAGGTCTCTCAGCCACTTCAACTTAA
TGCTCAACTATGGCTGCGTATACGCATGG
CTAGTACAGAGACCTACTTA

Free two-deoxyribozymes sequence

TTCATGTACAGCCATAGTTGAGCATTAAG
TTGAAGTGGCTGGGTACTAGCCATGCGTA
TACGCAGCCATAGTTGAGCATTAAGTTGA
AGTGGCTG

Cy5-labeled ssDNA probe

/5Cy5/CGTATACGCATGGCTAGTACC
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