
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

 

The authors describe a new method for gene set enrichment analysis, that considers both the 

effect size in form of log2 fold changes (LFC) as well as the significance of gene expression change 

i.e. the standard error of the LFC. This achieved by implementing an EM-MCMC method with the 

LFCs and their s.e.estimated using any DE-method and a gene-set annotation as input. The 

method then computes the posterior probability of a gene being DE, given the previous evidence 

as well as the DE-status of other genes within the same set, while simultaneously optimizing an 

enrichment parameter for the set. This then results in both a test statistic for the enrichment of 

DE-genes within a set as well as and updated DE statistic for each gene. 

 

This method should be applicable to both single cell and bulk RNA-seq data (probably also for 

microarrays). The method is then evaluated using simulations and is also applied to three scRNA-

seq data sets. Generally, I like the idea to use both effect size and significance in GSEA and I 

believe that this method has great potential. 

 

Major points: 

It is commendable that the authors also developed simulations to benchmark their method. I don’t 

understand why the authors then only report the TPR comparison and do not consider FPR or FDR. 

Instead of the barplot in Figure 3 I would prefer to see something like a ROC-curve. 

The method is advertised in particular for use with single cell RNA-seq data, however, the method 

is only compared to older GSEA methods originally developed for bulk or microarray data. I would 

appreciate some mentioning of more specific single cell methods such as PAGODA or slalom. 

Alternatively, the authors could also include a bulk RNA-seq data set and illustrate the potential 

utility of iDEA to evaluate the effects of GC-content and gene length biases. 

The authors mention that they use ‘pruned’ GO or Reactome date as groups, however, I was not 

able to find out how the data were pruned and how pruning affects the estimation of the 

enrichment parameters? This is of particular interest, since the package only provides annotation 

for GRCh37. 

In GO, one gene can be a member of multiple groups, which complicates the testing due to non-

independence. How does iDEA deal with this problem? Some examples of tests for nested groups 

would be interesting to see. 

In the same vein, it is unclear how the authors construct gene sets based on 10xGenomics 

signatures. To my knowledge these signatures are mainly used for the classification of cells and it 

is unclear to me how these signatures would be used to infer the biological function of genes. 

 

Minor comments: 

 

In several figures where axes are labelled as p-value, but it is -log10(p-value)? 

 

Supplementary Figure 13: Because iDEA increases the numbers the total number of detected 

genes, I find it difficult to compare the numbers in the Venn Diagrams. Could the authors provide 

some percentages or use upsetR plots? 

 

 

 

Reviewer #2: 

Remarks to the Author: 

In this manuscript, the authors describe a new computational method for gene set enrichment 

analysis. The proposed iDEA algorithm uses a hierarchical Bayesian model with EM-MCMC 

estimation of the parameters to obtain p-values for enrichment of DE genes within each gene set. 

The authors go on to demonstrate improved performance compared to several other DE and GSEA 



methods on real and simulated data. I found the hybrid of frequentist and Bayesian concepts 

rather bizarre, but that notwithstanding, I found many other causes for concern with the statistical 

aspects of this work. These issues are described in more detail below. 

 

MAJOR: 

 

1. It seems that the authors are using their proposed method to detect differences between cell 

types. However, the effect sizes are often overestimated and the standard errors understated for 

such comparisons, as the "cell types" are not known _a priori_ but are instead defined from the 

expression values. (A more detailed description of this effect is available at 

http://bioconductor.org/packages/3.9/workflows/vignettes/simpleSingleCell/inst/doc/de.html#5_c

aveats_with_interpreting_de_(p)-values.) Thus, the authors' focus on error control in simulations 

is largely irrelevant to practical analyses, as the underlying effect sizes and their standard errors 

cannot be considered as unbiased estimates. 

 

2. The authors use the standard error of $\hat\beta$ in the variance term for their distribution of 

$\beta$ in Equation 1. This makes little sense. The assumed distribution of the true effect size 

should not depend on the properties of its estimate; this is akin to saying that the truth changes 

depending on how we estimate it, which is generally absurd (quantum physics aside). From a 

practical perspective, the assumed distribution shrinks as the number of cells increases due to 

improved precision of the effect size. This seems as if it would reduce the power to identify DE 

genes, as the likelihood of a large effect size being generated from the normal component goes to 

zero. One would have instead hoped that more cells would provide greater power to detect DE. 

 

3. The prior distribution for $\sigma_{\beta}$ is poorly justified, and I could not find an analysis of 

the sensitivity of the method to changes in prior parameters. This is important as 

$\sigma_{\beta}$ effectively determines the likelihood by which a gene is considered to be DE, 

which in turn serves as the basis of the gene set enrichment aspect of the method. In addition, the 

prior distribution for the indicator variables $\gamma$ are not described, despite the fact that the 

authors are computing posterior distributions for $\gamma \in {0, 1}$ via MCMC. 

 

4. It is not clear to me how the proposed method considers a gene to be DE if the calculations are 

always performed in the context of gene sets. Are the authors calling genes to be DE if they are 

called as DE in any calculation with any gene set? This seems to run into major problems with 

multiple testing. 

 

5. The authors criticize existing methods as treating DE and GSEA analyses as two separate steps. 

However, it seems that the same thing is done here! The proposed method relies on the effect size 

and the standard error, which can be trivially transformed into a per-gene p-value. At this point, 

the DE analysis has effectively been performed already, so iDEA is really just doing the second-

stage gene set enrichment analysis. 

 

6. In the proposed EM-MCMC step, I do not understand how the posterior probabilities can be used 

as the outcome of a logistic regression. Surely the response must be categorical - is the logistic 

model's likelihood even valid for continuous values? If it is valid, that leads to the next question - 

are the standard errors of the posterior probabilities taken into consideration by the subsequent 

inference steps, or are users expected to run the MCMC for sufficient iterations that the standard 

errors are assumed to be close to zero? 

 

7. The authors focus heavily on the number of significant gene sets in their analyses of real 

datasets, which serves as evidence for iDEA's improved power over existing methods. However, as 

per point 1, this is largely irrelevant. The main focus is instead on the ranking of the top gene sets, 

as only these are used for biological interpretation. Even if we detect >1000 significant gene sets, 

no analyst will look at the 1000th gene set if the first ~100 sets are not useful for determining cell 

type or state. 



 

8. The authors criticize methods like FGSEA and CAMERA on the basis of their inability to detect 

differences between genes inside and outside the test set. However, it seems that related 

criticisms would apply to iDEA. For example, iDEA would not detect a gene set where the 

enrichment of DE genes is the same in terms of the number of genes, but the effect sizes of the 

genes in the set are systematically higher than those outside of the set. One might say that 

detecting such differences is not the purpose of iDEA, but in that case, it would be more 

appropriate to compare iDEA to conceptually similar tests like the hypergeometric test and its 

derivatives (e.g., goseq). 

 

9. I could not obtain p-values from the software when testing on a small simulated example. 

Running code adapted from https://xzhoulab.github.io/iDEA/ just gave me an empty output 

data.frame in idea@gsea. 

 

> library(iDEA) 

> 

> set.seed(100) 

> ngenes <- 10000 

> summary_data <- cbind( 

> log2FoldChange=rnorm(ngenes), 

> lfcSE2=rchisq(ngenes, 1)/100 

> ) 

> rownames(summary_data) <- sprintf("GENE_%i", seq_len(ngenes)) 

> 

> annotation_data <- matrix(0, ngenes, 2) 

> annotation_data[head(order(summary_data[,1]), 100),1] <- 1 

> annotation_data[sample(ngenes, 100), 2] <- 2 

> 

> colnames(annotation_data) <- LETTERS[1:ncol(annotation_data)] 

> rownames(annotation_data) <- sprintf("GENE_%i", seq_len(ngenes)) 

> 

> idea <- CreateiDEAObject(summary_data, annotation_data, num_core=2) 

> idea <- iDEA.fit(idea) 

> idea <- iDEA.louis(idea) 

 

MINOR: 

 

- The use of the expit() transformation in the simulation design is not explained. Why not use a 

simpler approach where a given proportion of genes are set as DE? 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Sun et al. propose iDEA, a unified statistical framework that jointly performs differential expression 

(DE) and gene set enrichment (GSE) analysis. The method is certainly welcome in the field of 

transcriptomic studies. Analysis is carried out to evaluate performance via both simulations and 

empirical studies. The paper is overall well written. My comments are below. 

 

1) The summary statistics from DE analysis are used as input for iDEA. I wonder why the authors 

restrict their analysis/method to the single-cell setting. Of course, the model for scRNA-seq would 

be much different than that for bulk RNA-seq, as the authors have pointed out. However, the noise 

modeling etc specific to scRNA-seq is handled by the respective existing methods adopted (e.g., 

MAST, zingeR). The distinguishing features of iDEA that specific to scRNA-seq need to be clearly 

stated and emphasized. 



 

2) Across all simulation runs and real data analyses, iDEA returns more significant genes/gene 

sets. The authors only looked at type I error control via QQ plots of p-values and showed that the 

p-values by iDEA were well calibrated. (BTW, Lambda_gc, the genomic control factor, needs to be 

explicitly defined.) What are the actual type I error rates, since this is from simulation run? Also, it 

has been well acknowledged that model-based simulated sc data do not reflect the true observed 

sc data. The authors need to demonstrate iDEA controls for type I error by performing test under 

the true null using two data sets of the same cell types/tissues/model organisms. 

 

3) The two human empirical studies adopted drastically different number of gene sets (12,033 vs 

144). Based on this, I have a few comments/concerns. 

a. Do the users need to prune the gene sets themselves? Guidelines and discussions on this will be 

helpful. 

b. The 12,033 gene sets were compiled from seven different databases. This number is on the 

same order of magnitude as the number of genes. Are there overlaps between the gene sets? Will 

this bias the FDR control procedures, i.e., will the testing across different gene sets be non-

independent? 

c. For the 10X Genomics dataset, if using all 12,033 gene sets, will it be underpowered? 

d. For the 144 gene sets, the authors mentioned “we focused on examining a small set of 144 

gene sets that contain important gene signatures of immune and stroma cell types...” Is there a 

cyclic problem? Usually, the gene sets are defined specific to both the tissue of interest and the 

study design (what are the treatment etc), and the gene set enrichments can be identified through 

the DE results. Here, the authors implicitly imposed a “prior” (by focusing on a small number of 

related gene sets based on, e.g., previous DE results), performed the analysis using this “prior”, 

and then tested the DE based on results. Will the results be simply passed down from the strong 

“prior”? 

 

4) The GitHub page contains only functions with very limited and sketchy descriptions. For this 

method to be suited for publication at Nature Communications, a package needs to be compiled 

with detailed documentation and user manual, preferably with toy datasets. 

 

5) On line 80, the authors discussed the limitations of existing univariate DE methods. It sounded 

as if iDEA would adopt a multivariate model, which is not true – iDEA still takes as input testing 

results based on univariate models. 

 

6) Are the hyperparameters for the inverse Gamma fixed? Can they be empirically estimated and 

thus method/dataset specific? 



Response to Reviewer #1 
The authors describe a new method for gene set enrichment analysis, that 
considers both the effect size in form of log2 fold changes (LFC) as well as the 
significance of gene expression change i.e. the standard error of the LFC. This 
achieved by implementing an EM-MCMC method with the LFCs and their 
s.e.estimated using any DE-method and a gene-set annotation as input. The 
method then computes the posterior probability of a gene being DE, given the 
previous evidence as well as the DE-status of other genes within the same set, 
while simultaneously optimizing an enrichment parameter for the set. This then 
results in both a test statistic for the enrichment of DE-genes within a set as well 
as and updated DE statistic for each gene. 

This method should be applicable to both single cell and bulk RNA-seq data 
(probably also for microarrays). The method is then evaluated using simulations 
and is also applied to three scRNA-seq data sets. Generally, I like the idea to use 
both effect size and significance in GSEA and I believe that this method has great 
potential.  

Responses: Thank you for your positive review and constructive comments. Our detailed 
responses are listed below.  

Major points: 

1. It is commendable that the authors also developed simulations to benchmark 
their method. I don’t understand why the authors then only report the TPR 
comparison and do not consider FPR or FDR. Instead of the bar plot in Figure 3 I 
would prefer to see something like a ROC-curve. 

Response: Thank you for the comment. We apologize for a potential miscommunication 
here. The power/TPR of all simulations (e.g. that in Figure 3 and S3) are indeed calculated 
based on a fixed false discovery rate (FDR). These details were previously provided in 
the Simulation Results section (currently lines 221-222 on page 8, lines 247–249 on page 
9, lines 855-860 on page 27-28). Following your comments, we have modified the Figures 
3, S3, S5 and S6 tittle to make this information more explicit. Certainly, we previously only 
focused on plotting power/TPR at relatively small FDR cutoff values (0.05), since these 
values were most relevant to practical analysis. Following your comments, we further 
added additional results using ROC-curves. The ROC based results are largely consistent 
with previous FDR based results: iDEA achieved a higher Area Under the Curve (AUC) 
in both GSE analysis and DE analysis. For example, in the baseline parameter setting of 



𝜏" = 0.5 and CR = 10%, we found that iDEA achieved an AUC of 0.99. In contrast, fGSEA, 
CAMERA, PAGE and GSEA achieved an AUC of 0.83, 0.62, 0.55 and 0.82, respectively 
(Figure S4A). In the DE analysis, for example, with 𝜏" = 5 and CR = 10%, iDEA achieves 
an AUC of 0.96 when using summary statistics from zingeR while zingeR achieves 0.9 
(Figure S4D). These ROC results are shown in the new Supplementary Figure S4, with 
details explained in the Results section (lines 234-237 on page 9, lines 265-266 on pages 
9-10).  

2. The method is advertised in particular for use with single cell RNA-seq data, 
however, the method is only compared to older GSEA methods originally 
developed for bulk or microarray data. I would appreciate some mentioning of more 
specific single cell methods such as PAGODA or slalom. Alternatively, the authors 
could also include a bulk RNA-seq data set and illustrate the potential utility of 
iDEA to evaluate the effects of GC-content and gene length biases. 

Response: Thank you for your comment. We previously only compared our method with 
traditional GSE methods because all these methods are focused on standard GSE 
analysis – identifying gene sets whose genes are differentially expressed between cell 
types or treatment conditions. In contrast, both the pathway and gene set overdispersion 
analysis (PAGODA) [1] and f-scLVM [2] (implemented in the package “slalom”) are 
completely different enrichment methods that aim to identify genes sets whose genes 
show coordinated transcriptional heterogeneity. Specifically, PAGODA examines one 
gene set at a time, extracts the first eigen value from the gene expression matrix defined 
by the gene set, and tests whether the first eigen value is larger than expected under the 
null where the gene expression matrix defined by the gene set is a random matrix. f-
scLVM further jointly analyze multiple gene sets together to identify gene sets that can 
explain variance in the gene expression matrix. Note that f-scLVM can only be used to 
analyze tens to hundreds of gene sets/pathways, and both of PAGODA and f-scLVM do 
not require differential expression analysis. Therefore, both PAGADA and f-scLVM are 
targeted for detecting coordinated expression heterogeneity (i.e. gene-gene correlation 
within a gene set) rather than the usual GSE analysis. Because these methods are for a 
completely different task, we are not able to compare our method and other GSE methods 
to PAGODA or slalom (note that the PAGODA and slalom papers also did not compare 
their method with the traditional GSE methods). Instead, following your suggestion, we 
have added description on these two important methods and explanation on why we did 
not compare to them in the Materials and Methods section (lines 767-778 on page 25).  

In addition, following your suggestion, we have also included a bulk RNA-seq dataset for 
illustration. We illustrate how iDEA can be useful for analyzing bulk data, with a side 



analysis on the effects of GC-content and gene length biases. New results are shown in 
Supplementary Figures S30 and are briefly mentioned in the Discussion section (lines 
521-526 on page 17) with details provided in the Supplementary Text (section 3, from 
page 41 to page 43). 

3. The authors mention that they use ‘pruned’ GO or Reactome date as groups, 
however, I was not able to find out how the data were pruned and how pruning 
affects the estimation of the enrichment parameters? This is of particular interest, 
since the package only provides annotation for GRCh37.  

Response: Thank you for your comment. We apologize for not making these details 
explicit. We have added more details on how these gene sets were collected and pruned 
in the Materials and Methods (currently lines 698-728 on page 23-24). Briefly, we 
collected genes sets from seven existing gene set databases. We then pruned the gene 
sets by filtering gene sets with small gene set size (³ 20 genes for human gene sets, and 
³ 10 genes for gene signatures due to its small size). The pruning step of removing small 
sized gene sets is for computational reasons: many GSE algorithms including ours 
become unstable on gene sets with a small number of genes. Following your comment, 
we also mentioned this important reason for pruning in the Materials and Methods section 
(lines 728-731 on page 24), which was previously described with simulations in the 
Results section (currently lines 213-218 on page 8) and the Discussion section (currently 
lines 598-615 on page 19). 

4. In GO, one gene can be a member of multiple groups, which complicates the 
testing due to non-independence. How does iDEA deal with this problem? Some 
examples of tests for nested groups would be interesting to see. 

Response: Thank you for your comment. Previously we followed most existing GSE 
approaches and accounted for test non-independence due to gene set overlap through 
permutation. Specifically, we construct an empirical null distribution by permuting gene 
labels. Such permutation retains gene set overlap under the empirical null: if the gene set 
A contains genes that are overlapped with genes in the gene set B in the real data, then 
gene set A would also contain the same number of overlapped genes with the gene set 
B in the permuted data. Consequently, the test statistics on gene set A will be correlated 
with that on the gene set B in a similar fashion in the permuted data as in the real data. 
By estimating false discovery rate (FDR) based on such permuted null, we can account 
for test non-independence due to gene set overlaps. Certainly, other approaches to deal 
with GSE test when non-independence exist, and some of them are more ad hoc than 
others. For example, PADOG [3] introduces the idea of down-weighting genes that occur 
in a high frequency across the gene sets. However, simply down-weighting genes that 



occur in many gene sets may not be ideal, as this approach may down-weight important 
genes that are key factors in the analyzed data set. Another method proposed by Jiang 
and Gentleman [4] examines pairs of gene sets one at a time. For each pair of gene set, 
Jiang’s method divides genes into three categories: one category of genes that are only 
in the first gene set, one category of genes that are only in the second gene set, and one 
category of genes that are common in both gene sets. Afterwards, Jiang’s method 
calculates three p-values, one for each category of genes. By computing p-values in each 
set, Jiang’s method can explicitly deconvolute the results in the presence of gene set 
overlap. Therefore, Jiang’s method can be potentially applied to the gene sets identified 
by iDEA to further dissect particular set of genes drive the enrichment signal. We have 
added discussion on the important issue of gene set overlap in line of above in the 
Discussion section (lines 578-579 on page 18, lines 587-597 on page 19).  

In addition, we also performed new analysis to further examine the issue of gene set 
overlap in the real data applications. First, we found that gene set overlap appears to be 
moderate in the real data sets. For example, in the Human Embryonic scRNA-seq data, 
the pairwise overlapping between all gene sets we tested and the median overlapping 
genes between pairwise significant gene sets is 1, which is relatively small comparing to 
the median gene set size of 143. In the mouse sensory neuron scRNA-seq data, the 
median overlapping genes between pairwise significant gene sets is 5, which is also 
relatively small comparing to the median gene set size of 131. Second, we applied Jiang’s 
method to analyze the top 50 gene sets identified by iDEA in order to further dissect 
particular set of genes that drive the enrichment signal. (Note that we did not apply to all 
significant gene sets due to the heavy computational burden of Jiang’s method). In the 
human embryonic data, 692 of the 1,225 gene set pairs have higher than 20 genes in 
overlap. For each of these 692 gene set pairs in turn, we calculated the three p-values as 
mentioned in the previous paragraph. Among the total 2,076 adjusted p-values 
(Bonferroni correction) we calculated, 1,397 of them are less than 0.05. We first look at 
the intersection part, 35 out of 692 intersection sets have adjusted p-value is less than 
0.05. For the disjoint parts, 1,362 out of 1,384 are significant. This observation suggests 
that among the top 50 significant gene sets we identified, gene set specific genes are 
significantly enriched, suggesting that it is not the overlapped genes that drive the 
enrichment signal and that gene set overlap does not appear to introduce excessive false 
signals. We further looked at the combination of the top first gene set GO:0001944 
(vasculature development) (Table S10). From the table, we observed that the significance 
of this gene set is induced by both the overlapping parts and non-overlapping parts. 
Following the same procedure, we also applied Jiang’s method to analyze the top 50 
gene sets identified by iDEA in the mouse sensory neuron scRNA-seq data. 1,025 out of 



1,225 gene set pairs have higher than 20 genes in overlap. For each of these 1,025 gene 
set pairs in turn, we calculated the three p-values as mentioned in the previous paragraph. 
Among the total 3,075 adjusted p-values (Bonferroni correction) we calculated, 2,603 of 
them are less than 0.05. We first look at the intersection part, 889 out of 1,025 intersection 
sets have adjusted p-value is less than 0.05. For the disjoint parts, 1,714 out of 2,050 are 
significant. We further looked at the combination of the top first gene set GO:0044425 
(obsolete membrane part) (Table S11). From the table, we observed that the significance 
of this gene set is induced by both the overlapping parts and non-overlapping parts. These 
new results are briefly mentioned in the Discussion section (lines 579-587 on page 18-
19), with details provided in section 6 in the Supplementary Text.  

5. In the same vein, it is unclear how the authors construct gene sets based on 
10xGenomics signatures. To my knowledge these signatures are mainly used for 
the classification of cells and it is unclear to me how these signatures would be 
used to infer the biological function of genes.  

Response: Thanks for your comment. We apologize for not explaining these details in 
the previous version. For the 10xGenomics dataset analysis, we intentionality focused 
only on gene sets that were mainly used for cell type classification. These cell type 
specific gene sets genes were obtained from six other projects using the xCell package 
[5]. We chose to use this type of gene sets in the 10xGenomics data because these gene 
sets contain CD4+ and CD8+ cell type signatures and thus can be treated as true 
positives/golden standard for method comparison in real data sets, where we typically do 
not know the underlying truth. Therefore, these cell type specific gene sets, when further 
paired with the differential expression analysis between CD4+ and CD8+ cell types in the 
10xGenomics data, provides us with a unique opportunity to validate the performance of 
our method and demonstrate its high power in the real data application. Certainly, while 
this approach has the benefits of knowing the true positive gene sets, it also has the 
drawback of not being able to infer the biological function of identified differentially 
expressed genes. Therefore, we demonstrated the biological function of identified 
differentially expressed genes in the other three data sets. We have now explicitly 
mentioned the rationale of using cell type specific gene sets in the 10xGenomics data 
(lines 401-403 on page 13, lines 441-446 on page 14).  

In addition, we have also performed new analysis by using the large set of human gene 
sets. Briefly, we found that iDEA produces calibrated p-values under the permuted null 
and remains reasonably powerful in detecting enriched gene sets. While the percentage 
of significantly enriched gene sets (= 5.9%) in the large human gene sets base is smaller 
than that (= 17.4%) in the 10x Genomics signatures, the top enriched gene sets from the 



former do contain important biological functions including metabolism of proteins [6] which 
is the pathway related to metabolic programs which support the differentiation of CD4 T 
helper cells and  GO:0006605 (protein targeting) which is related to the biological 
mechanisms in the immune response and the protein targets of human CD4+ and CD8+ 
T cell distinct [7]. These new results are shown in Figure S27 and Table S8, with details 
provided in the Results section (lines 446-456 on page 14-15).  

Minor comments: 

1. In several figures where axes are labelled as p-value, but it is -log10(p-value)? 

Response: Thank you for spotting the error. The p-value in the qqplot is indeed under -
log10 scale. We have modified the legends in the corresponding plots (Figure 2, Figure 
4B, Figure 5B, Figure 6B, Figure S2, Figure S10 and Figure S16). 

2. Supplementary Figure 13: Because iDEA increases the numbers the total number 
of detected genes, I find it difficult to compare the numbers in the Venn Diagrams. 
Could the authors provide some percentages or use upsetR plots? 

Response: Thank you for your comment. Follow your suggestions, we have added new 
plots using upsetR [8] along with the previous Venn Diagrams. Please refer to the new 
supplementary Figure S14, Figure S20 and Figure S24.  

 



Response to Reviewer #2 
In this manuscript, the authors describe a new computational method for gene set 
enrichment analysis. The proposed iDEA algorithm uses a hierarchical Bayesian 
model with EM-MCMC estimation of the parameters to obtain p-values for 
enrichment of DE genes within each gene set. The authors go on to demonstrate 
improved performance compared to several other DE and GSEA methods on real 
and simulated data. I found the hybrid of frequentist and Bayesian concepts rather 
bizarre, but that notwithstanding, I found many other causes for concern with the 
statistical aspects of this work. These issues are described in more detail below. 

Response: Thank you for your constructive comments. Our detailed responses are listed 
below.  

 
MAJOR: 
 
1. It seems that the authors are using their proposed method to detect differences 
between cell types. However, the effect sizes are often overestimated and the 
standard errors understated for such comparisons, as the "cell types" are not 
known _a priori_ but are instead defined from the expression values. (A more 
detailed description of this effect is available 
at http://bioconductor.org/packages/3.9/workflows/vignettes/simpleSingleCell/inst
/doc/de.html#5_caveats_with_interpreting_de_(p)-values.) Thus, the authors' 
focus on error control in simulations is largely irrelevant to practical analyses, as 
the underlying effect sizes and their standard errors cannot be considered as 
unbiased estimates. 

Response: Thank you for your comment. Indeed, in the case when the “cell types” are 
not known a priori and inferred from the whole gene expression matrix, then the DE 
analysis results might contain false signals with an enrichment of small DE p-values under 
the null. This is a common problem for all DE methods in scRNA-seq studies [9]. As far 
as we are aware of, no good solution is currently available to address this important issue 
for DE methods. Therefore, we followed the mainstream scRNA-seq DE papers and did 
not focus on the error control in DE analysis of these existing DE methods. Instead, we 
only focused on the error control of GSE analysis.  

In addition, one of our real data contains cell types that are known a priori and not inferred 
from the whole expression matrix, while the other two data contain cell types that are 
extensively validated through approaches other than inferring based on the whole 



expression matrix. Specifically, for the human embryonic stem cell scRNA-seq dataset, 
the cell types are obtained from fluorescence-activated cell sorting (FACS) analysis 
before mixing for scRNA-seq. FACS relies on known cell type markers and represents a 
somewhat unbiased strategy for cell type clustering [10]. For the mouse neuronal scRNA-
seq dataset, the cell types are initially inferred through an iterative PCA-based procedure 
and are further validated by comparing the hierarchical relationship of the neuronal types 
with the known developmental origin of sensory neuron types, as well as by comparing 
neurons with distinct and characteristic soma sizes in their identified neuronal class. In 
addition, the inferred neuronal cell types are further confirmed by double and triple 
immunohistochemical staining (e.g. NP1 cell type by staining of PLXNC1). For the 10x 
Genomics PBMC scRNA-seq dataset, the identity of cell types was inferred by aligning 
cluster-specific genes to known markers of distinct PBMC populations as well as 
comparing against the transcriptomes of the purified populations in PBMC subsets. Their 
approach has been found to be largely consistent with conventional marker-based 
methods and the major cell types reach to the expected ratios in PBMCs. We have also 
displayed t-SNE plot in Figure S22, which clearly shows distinct cell clusters. Because 
the cell types in these data are either truly known or extensively validated through various 
other approaches, the DE analysis results are less likely influenced by the cell type 
inference step, at least as compared to other data that are fully relying on the whole gene 
expression matrix for cell type inference.  Following your comments, we have added this 
important caveat for all DE methods in scRNA-seq studies when DE comparison is 
performed between cell types and when these cell types are also inferred based on the 
whole gene expression matrix in the Discussion section (lines 615-625 on pages 19-20).  

2. The authors use the standard error of $\hat\beta$ in the variance term for their 
distribution of $\beta$ in Equation 1. This makes little sense. The assumed 
distribution of the true effect size should not depend on the properties of its 
estimate; this is akin to saying that the truth changes depending on how we 
estimate it, which is generally absurd (quantum physics aside). From a practical 
perspective, the assumed distribution shrinks as the number of cells increases due 
to improved precision of the effect size. This seems as if it would reduce the power 
to identify DE genes, as the likelihood of a large effect size being generated from 
the normal component goes to zero. One would have instead hoped that more cells 
would provide greater power to detect DE. 

Response: Thank you for your comment. We apologize for not explaining the model 
clearly which may have caused a potential miscommunication. The use of 𝑠𝑒(𝛽+,) on 
modeling 𝛽, in iDEA is equivalent to the following model based on the marginal z scores: 



𝑧,	~	𝜋,	𝑁(0, 𝜎56 + 1) +	91 − 𝜋,;𝑁(0,1) 

logit9𝜋,; = log A BC
"DBC

E = 𝜏F + 𝑎,𝜏". 

where 𝑧, is the marginal z-score on the DE evidence for the j-th gene. The above model 
practically assumes that, with proportion 1 − 𝜋,, j-th gene is not a DE gene and its z-score 
follows the null 𝑁(0,1) distribution; with proportion 𝜋,	, j-th gene is a DE gene and its z-
score follows an alternative 𝑁(0, 𝜎56 + 1) with a variance greater than one. Our modeling 
of z-scores follows that of Efron et al [11] and Efron and Tibshirani [12] (and many others), 
where a mixed model was used for modeling these marginal z-scores. Certainly, as the 
reviewer correctly pointed out, modeling z-scores in all these models does have the 
caveat that the prior distribution of true effect sizes are dependent on the standard errors, 
and subsequently the sample size. Such caveat appears to be mild, as these z-score 
based models have been widely adopted and applied to a range of data sets with a variety 
of sample sizes. In our particular study, we also found that iDEA provided well controlled 
type I error with high power across all three real datasets, with sample sizes ranging from 
243 to 1,458. In addition, such “caveat” of the prior dependence on sample size has been 
recently shown to have attractive theoretical properties (e.g. [13] and many follow up 
studies) – therefore, it is far from clear at the moment whether such prior dependence on 
sample size should be considered as a caveat or a desirable feature. Nevertheless, we 
have added a few sentences to point out the relationship to z-score modeling in the 
Materials and Methods section (lines 641-644 on page 21). We have also added a few 
sentences to point out this general caveat/feature of these z-score based models in the 
Discussion section (lines 539-552 on pages 17-18).  

In addition, follow your suggestion, we have also developed a new model that does not 
have the aforementioned caveat/feature. The new model assumes that  

𝛽+, = 	𝛽,	 + 𝜖,, 	𝜖,	~	N(0, se9𝛽+,;
6
) 

𝛽,	~	𝜋,	𝑁(0, 𝜎56) +	91 − 𝜋,;𝛿F 

logit9𝜋,; = log A BC
"DBC

E = 𝜏F + 𝑎,𝜏". 

where the prior of the true effect size 𝛽, is no longer depend on the standard error 𝑠𝑒(𝛽+,). 
We have implemented this iDEA variant into the IDEA software package. We have 
applied the new model to analyze the scRNA-seq data, where the new results largely 
consistent with that obtained from the z-score based model. The detailed model is 
provided in the Supplementary Text (section 4.1, pages 43-46). The new results using 



this model are provided in the Supplementary Figures S31-34, with details available in 
the Discussion section (lines 553-567 on page 18).   

3. The prior distribution for $\sigma_{\beta}$ is poorly justified, and I could not find 
an analysis of the sensitivity of the method to changes in prior parameters. This is 
important as $\sigma_{\beta}$ effectively determines the likelihood by which a 
gene is considered to be DE, which in turn serves as the basis of the gene set 
enrichment aspect of the method. In addition, the prior distribution for the indicator 
variables $\gamma$ are not described, despite the fact that the authors are 
computing posterior distributions for $\gamma \in {0, 1}$ via MCMC. 

Response: Thank you for your comments. For your first comment, we are a bit puzzled 
on why the reviewer believed the prior distribution for $\sigma_{\beta}$ was poorly 
justified, given that an inverse gamma distribution is the conjugate distribution for a 
variance parameter and is thus commonly used in the literature. However, we do fully 
agree with the reviewer that the particular choices of the hyper-parameters (i.e. 𝑎5, 𝑏5) in 
the inverse gamma distribution worth more careful exploration. We did not explore 
different choices of hyper-parameters before, because it seems to us intuitively that the 
hyper-parameters would not matter much as long as there are a sufficient number of DE 
genes. Specifically, the inverse Gamma distribution serves as the prior for the variance 
parameter. The effect sizes across many DE genes likely contain majority of the 
information for estimating the variance variant and such information likely overwhelm the 
prior information contained in the inverse gamma distribution. To validate such intuition 
and examine the sensitivity of results with respect to the hyperparameters, we varied the 
hyperparameters and test across a range of gene sets with different coverages in our 
three real datasets. Specifically, we varied the hyperparameters from prior mean of 
gamma to be 0.001, 0.1, 1, 10, 100 and varied the coverage rate to be the 10th, 
30th,50th,70th, 90th percentile of the gene set size of the gene sets we used for 
corresponding real data analysis in our manuscript. For example, for the human 
embryonic scRNA-seq dataset, we pick the gene set with coverage rate to be the 10th, 
30th,50th,70th, 90th percentile of the gene set size of the human gene sets we analyzed 
and set the hyper parameter in the prior distribution of 𝜎56, 9𝑎5, 𝑏5; to be (3, 0.02), (3, 0.2), 
(3, 2), (3, 20), (3, 200) respectively. Thus, creating a different set of prior distributions with 
a wide range of mean. For all the three real datasets, the estimate of both gene set 
enrichment coefficient and its variance do not vary too much across a wide range of prior 
distributions of 𝜎56. Therefore, it does seem that results are all reasonably insensitive to 
the choice of these hyperparameters. The new results are shown in the Supplementary 
Figure S28, with details explained in the Materials and Methods section (lines 929-950 



on pages 29-30) and the Results section (lines 457-462 on page 15). We also added a 
short sentence to explain that we chose an inverse gamma distribution due to conjugacy 
(lines 648-649 on page 21).  

For your second comment, we apologize for not making the prior distribution for the 
indicator variables 𝛾,  clearer. We previously only mentioned that the vector of binary 

indicators 𝜸 = 9𝛾",⋯ , 𝛾Q;
R indicate whether each gene is a DE gene (𝛾, = 1) or not (𝛾, =

0) (currently lines 659-660 on page 22) and that the gene-specific probability of being a 
DE gene as 𝜋,; we previously thought these information were sufficient for describing the 
prior distribution 𝛾,, given that such indicator variables are commonly used for variable 
selection models in the literature. Following your comment, we now explicitly mention that 
𝛾, follows a Bernoulli distribution (e.g. as in [14])  

                                                        γT	~	𝐵𝑒𝑟𝑛9𝜋,; 

We have added a sentence on this important information in the Materials and Methods 
section (lines 661-662 on page 22). 

4. It is not clear to me how the proposed method considers a gene to be DE if the 
calculations are always performed in the context of gene sets. Are the authors 
calling genes to be DE if they are called as DE in any calculation with any gene set? 
This seems to run into major problems with multiple testing.  

Response: Thank you for your comment. We apologize for not explaining this clearly in 
the previous manuscript. As we explained in the previous manuscript, DE analysis in the 
real data is performed based on a pre-selected gene set. The pre-selected gene set is 
based on biological knowledge, and such prior knowledge would provide valuable prior 
information for DE analysis and potentially improve the reliability, consistency and power 
of DE analysis. Thus, for DE analysis in the real data sets, we mainly examined the results 
using a pre-selected gene set with known relevance to the data. Specifically, for the 
human embryonic stem cell scRNA-seq dataset, we included the gene set vasculature 
development which is known to be important for vasculature progression and endothelial 
cell development.  For the mouse sensory neuron scRNA-Seq dataset, we included the 
gene set GO:0097458 (neuron part) which is known to be relevant to the nervous system. 
For the 10x Genomics PBMC scRNA-seq dataset, we included the gene set CD8+ T-
effector memory, which known to be relevant to CD8 T cells functions. These information 
were available in the Results section (currently lines 317-318 on page 11, lines 378-379 
on page 13, lines 418-419 on page 14) and Methods and Materials section (currently lines 
876-878 on page 28, lines 899-900 on page 29, lines 913-915 on page 29). 



Certainly, the above strategy has the benefits of allowing the biologists to select important 
gene sets that are known to be important in the experiment, thus taking advantage of the 
decades of prior molecular biology research. However, it is challenging to carry out the 
above strategy if the biologists do not have prior information on which gene set is 
important. For the latter case, we have now developed a new strategy to aggregate DE 
evidence on a particular gene across all gene sets through Bayesian model averaging. 
Specifically, for the given gene, we denote its posterior inclusion probability (PIP) 
obtained using the gene set k as  𝑃𝐼𝑃Z. The corresponding Bayes factor quantifying its 
DE evidence based on the gene set k is 𝐵𝐹Z = 𝑃𝐼𝑃Z/(1 − 𝑃𝐼𝑃Z). With equal prior weights 
on different gene sets, the average Bayes factor quantifying its DE evidence based on all 
K gene sets is thus 𝐴𝐵𝐹 = "

^
∑ 𝐵𝐹Z^
Z`" , which can be converted back to a posterior 

inclusion probability as 𝑃𝐼𝑃 = 𝐴𝐵𝐹/(1 + 𝐴𝐵𝐹). We found that PIPs computed this way is 
highly correlated with the PIPs computed based on the pre-selected gene set for majority 
of genes (Figure S35). We now provide both options for computing PIPs for quantifying 
DE evidence: biologists can choose to use pre-selected gene sets that are known to be 
relevant to the particular experiments, as is the case for all the real data applications; 
alternatively, biologists also have the option of using the Bayesian model averaging when 
such prior knowledge is not available. The new results are shown in the Supplementary 
Figure S35, with details explained in the Supplementary Text (section 5 on page 46) and 
the Discussion section (lines 568 – 577 on page 18).  

5. The authors criticize existing methods as treating DE and GSEA analyses as two 
separate steps. However, it seems that the same thing is done here! The proposed 
method relies on the effect size and the standard error, which can be trivially 
transformed into a per-gene p-value. At this point, the DE analysis has effectively 
been performed already, so iDEA is really just doing the second-stage gene set 
enrichment analysis. 

Response: Thank you for your comment. We apologize for not explaining our method 
well, which caused this unfortunate miscommunication. Unlike what the reviewer 
perceived, the DE analysis of iDEA is not performed based on the per-gene p-value 
calculated using the effect size estimate and its standard error. Instead, iDEA effectively 
performs an interactive procedure that iterates between the GSE analysis (based on 
testing 𝜏") and the DE analysis (based on 𝑃(γT = 1|𝑑𝑎𝑡𝑎)). Different from traditional GSE 
methods which treat GSE analysis as a separate analytic step after DE analysis, iDEA 
integrates these two analyses together since GSE analysis and DE analysis are 
interconnected with each other statistically. iDEA is not just doing the second-stage gene 
set enrichment analysis here. Instead, whether the gene set is enriched or not in the GSE 



analysis can provide valuable information for DE analysis in iDEA, and the more accurate 
DE information could serve as a better feedback in the GSE analysis to improve the power 
and ensure results reliability. Therefore, different from previous methods, iDEA updates 
DE results in addition to doing GSE analysis. We previously explained these important 
technical details in the method overview section in the Materials and Methods, with further 
details provided in the Supplementary Text. Following your comment, we have re-read 
the text but couldn’t figure out which part might have led to reviewer’s misunderstanding. 
This comment also somewhat contradicts with your valuable comment #4, which seems 
to understand that the DE analysis in iDEA is based on information from the GSE analysis. 
We would really appreciate if you could please let us know which parts of our manuscript 
lead to this important miscommunication, so that we can modify the text accordingly.  

6. In the proposed EM-MCMC step, I do not understand how the posterior 
probabilities can be used as the outcome of a logistic regression. Surely the 
response must be categorical - is the logistic model's likelihood even valid for 
continuous values? If it is valid, that leads to the next question - are the standard 
errors of the posterior probabilities taken into consideration by the subsequent 
inference steps, or are users expected to run the MCMC for sufficient iterations that 
the standard errors are assumed to be close to zero? 

Response: Thank you for your comment. We apologize for not explaining these technical 
details clearly in the previous manuscript. The logistic model's likelihood is indeed valid 
for continuous values (please refer to the log likelihood function in equation S1 in section 
EM-MCMC Inference Algorithm in the Supplementary Text; the logistic model is part of 
this log likelihood function). In addition, there is no need to take into account the standard 
errors of the posterior probabilities, since the expectation step in the EM algorithm only 
requires the expected values but not the standard errors (equation S2 in section EM-
MCMC Inference Algorithm in the Supplementary Text). Following your comment, we 
have modified the corresponding sentences in the Materials and Methods section to make 
these points clear (lines 671-680 on page 22).  

7. The authors focus heavily on the number of significant gene sets in their 
analyses of real datasets, which serves as evidence for iDEA's improved power 
over existing methods. However, as per point 1, this is largely irrelevant. The main 
focus is instead on the ranking of the top gene sets, as only these are used for 
biological interpretation. Even if we detect >1000 significant gene sets, no analyst 
will look at the 1000th gene set if the first ~100 sets are not useful for determining 
cell type or state. 



Response: Thank you for your comment. We apologize for not explaining well the rational 
for examining statistical power in the previous manuscript, which caused this unfortunate 
miscommunication. The number of significant gene sets at the given false discovery rate 
is perhaps the most objective criterion for evaluating and comparing statistical power of 
different methods in real data. This criterion is commonly used in almost all existing 
statistical literature and serves as the golden standard for unbiased and subjective 
evaluation of different methods in terms of statistical power. Therefore, we follow the 
mainstream of statistical literature and focus heavily on the number of significant gene 
sets for power comparison in the real datasets. In addition, your point #1 is related to 
marginal DE analysis and it is unclear how this point is relevant to the discussion of GSE 
analysis here. Certainly, we agree with the reviewer that there are currently only 
resources available to evaluate the first ~100 sets in the case when there are >1000 
significant gene sets. Therefore, we previously examined the top ~100 gene sets and 
illustrated many of them in the main text. For example, for each real dataset, we checked 
the biological significance of identified gene sets by searching the related literatures. We 
have shown that our top ~100 identified gene sets are highly correlated with the compared 
cell type functions and characteristics (currently lines 302-314 on pages 10-11, lines 362- 
377 on pages 12-13 and 410-415 on pages 13-14). 

In addition, we hope the reviewer would also agree with us that the statistical power of 
different methods effectively determines how much true positives and false positives one 
would get in this ~100 set. More importantly, statistical power would determine how many 
significant gene sets we would get, if any, in the challenging cases where it is extremely 
hard to identify enriched gene sets (e.g. comparing similar cell types CD4+ and CD8+ in 
10x Genomics PBMC scRNA-seq dataset). Therefore, we focus on statistical power in 
the real datasets by examining the number of significant gene sets. Following your 
comment, we have explained the rational and importance of examining statistical power 
in the real data in the Results section (lines 294-295 on page 10).  

8. The authors criticize methods like FGSEA and CAMERA on the basis of their 
inability to detect differences between genes inside and outside the test set. 
However, it seems that related criticisms would apply to iDEA. For example, iDEA 
would not detect a gene set where the enrichment of DE genes is the same in terms 
of the number of genes, but the effect sizes of the genes in the set are 
systematically higher than those outside of the set. One might say that detecting 
such differences is not the purpose of iDEA, but in that case, it would be more 
appropriate to compare iDEA to conceptually similar tests like the hypergeometric 
test and its derivatives (e.g., goseq).  



Response: Thank you for your comment. Follow your suggestion, we have performed 
new analysis and compared iDEA with the hypergeometric test in GSE analysis for all 
three real scRNA-seq datasets. Since goseq package only provide gene sets from Gene 
Ontology Terms and KEGG pathway and does not provide user defined pathways to test, 
we constructed hypergeometric test directly on the same gene sets we analyzed for fair 
comparison. The new results are shown in the Supplementary Figure S13, Figure S19 
and Figure S23 and are largely consistent with the main results. Specifically, across all 
three real datasets, iDEA performs better in terms of type I error control and is more 
powerful in identifying enriched gene sets compared with hypergeometric test. For 
example, hypergeometric test can identify only 1 gene set in the 10x Genomics PBMC 
dataset while iDEA identified 25 gene sets at a fixed FDR of 5%. The new results are 
shown in the Supplementary Figure S13, Figure S19 and Figure S23 with details provided 
in the Materials and Methods section (lines 762-766 on page 25) and the Results section 
(lines 300-302 on page 10, lines 361-362 on page 12, and lines 415-417 on page 14).  

9. I could not obtain p-values from the software when testing on a small simulated 
example. Running code adapted from https://xzhoulab.github.io/iDEA/ just gave 
me an empty output data.frame in idea@gsea. 

> library(iDEA) 

> 
> set.seed(100) 

> ngenes <- 10000 

> summary_data <- cbind( 

> log2FoldChange=rnorm(ngenes), 

> lfcSE2=rchisq(ngenes, 1)/100 

> ) 

> rownames(summary_data) <- sprintf("GENE_%i", seq_len(ngenes)) 

> 
> annotation_data <- matrix(0, ngenes, 2) 

> annotation_data[head(order(summary_data[,1]), 100),1] <- 1 

> annotation_data[sample(ngenes, 100), 2] <- 2 

> 
> colnames(annotation_data) <- LETTERS[1:ncol(annotation_data)] 



> rownames(annotation_data) <- sprintf("GENE_%i", seq_len(ngenes)) 

> 
> idea <- CreateiDEAObject(summary_data, annotation_data, num_core=2) 

> idea <- iDEA.fit(idea) 

> idea <- iDEA.louis(idea) 

Response: Thank you and sorry for the error. We have corrected the error and updated 
both the package and tutorial which should work and generate the outputs of idea@gsea. 

 
MINOR: 
- The use of the expit() transformation in the simulation design is not explained. 
Why not use a simpler approach where a given proportion of genes are set as DE? 

Response: Thank you. Following your first comment, we have now added more detailed 
explanation on the expit() function in the methods overview and simulation design 
subsection (lines 155-157 on pages 6-7). For your second comment, we did not set a 
given proportion of genes to be DE because such proportion will likely change across 
data sets [15]. Therefore, we rely on the iDEA modeling framework to infer such 
proportion based on the data at hand.  

 

 

  



Response to Reviewer #3 
Sun et al. propose iDEA, a unified statistical framework that jointly performs 
differential expression (DE) and gene set enrichment (GSE) analysis. The method 
is certainly welcome in the field of transcriptomic studies. Analysis is carried out 
to evaluate performance via both simulations and empirical studies. The paper is 
overall well written. My comments are below. 

Response: Thanks for your positive review and constructive comments. Our detailed 
responses are provided below.  

1. The summary statistics from DE analysis are used as input for iDEA. I wonder 
why the authors restrict their analysis/method to the single-cell setting. Of course, 
the model for scRNA-seq would be much different than that for bulk RNA-seq, as 
the authors have pointed out. However, the noise modeling etc specific to scRNA-
seq is handled by the respective existing methods adopted (e.g., MAST, zingeR). 
The distinguishing features of iDEA that specific to scRNA-seq need to be clearly 
stated and emphasized. 

Response: Thank you for your comment. Indeed, the modeling framework of iDEA is 
flexible and is not restricted to scRNA-seq studies. We focused mainly on scRNA-seq 
studies, because, in addition to developing a new method, we also aim to perform the first 
comprehensive comparative study on GSE methods for scRNA-seq studies. Our study 
revealed some important features of GSE analysis on scRNA-seq. For example, we found 
that gene correlation does not appear to influence GSE results much in the scRNA-seq 
data as compared to bulk RNA-seq data, presumably because the technical difficulties 
such as dropout events made scRNA-seq data sparser and nosier, rendering gene-gene 
correlation harder to estimate well. As another example, the large scale of scRNA-seq 
datasets made some of the GSE methods (e.g. the standard GSEA) suffer from heavy 
computational burden. In addition, use of summary statistics makes iDEA especially 
suitable for scRNA-seq studies where different statistical models are needed for modeling 
data obtained from different scRNA-seq techniques. It is well known that different 
individual-level data modeling assumptions work preferentially well for different types of 
scRNA-seq data sets collected from various sequencing techniques and diverse 
experimental designs. As a result, using summary statistics allows iDEA to be applicable 
to a wide range of scRNA-seq data types currently modellable with existing DE methods. 
Following your comment, we have re-organized and merged several relevant paragraphs 
in the previous Discussion section into a comprehensive paragraph there to make it more 
clear the rationale behind the focus on scRNA-seq studies (lines 484-521 on pages 16-
17). 



We also fully agree with the reviewer that the method iDEA itself indeed can be equally 
applied to bulk RNA-seq studies. Following your comment, we have performed additional 
analysis and added an application example on bulk RNA-seq. The results from bulk RNA-
seq are largely consistent with scRNA-seq applications, demonstrating the calibrated type 
I error control and higher power of iDEA. The bulk RNA-seq results are shown in the new 
Supplementary Figure S30, with detailed provided in the Discussion section (lines 521-
526 on page 17).  

2. Across all simulation runs and real data analyses, iDEA returns more significant 
genes/gene sets. The authors only looked at type I error control via QQ plots of p-
values and showed that the p-values by iDEA were well calibrated. (BTW, 
Lambda_gc, the genomic control factor, needs to be explicitly defined.) What are 
the actual type I error rates, since this is from simulation run? Also, it has been 
well acknowledged that model-based simulated sc data do not reflect the true 
observed sc data. The authors need to demonstrate iDEA controls for type I error 
by performing test under the true null using two data sets of the same cell 
types/tissues/model organisms. 

Response: Thank you for your comments. Following your first suggestion, we have 
added the detailed definition of lambda_gc (lines 191-194 on pages 7-8 in the Results 
section; lines 848-854 on page 27 in the Materials and Methods section). We are a bit 
puzzled by your second question “What are the actual type I error rates, since this is from 
simulation run?”. In the simulations, since we know the truth, we plotted the p-values (on 
-log10 scale) against the actual type I error rates (on -log10 scale) in all QQ plots under 
the null. These QQ plots were used to explore a wide range of type I error rates (from 1e-
4 to 1.0) instead of focusing on a particular type I error rate. The actual type I error rates 
for all p-values are displayed on the x-axis in these QQ plots. We felt using QQ plots are 
much easier to visualize type I error control across a range of type I error rates and contain 
much more information than a type I error table, but we would be more than happy to also 
include standard type I tables if you felt that could be useful.  

Finally, we previously only examined type I error control of different GSE methods in the 
real datasets through permutations. Following your third suggestion, we have performed 
new analyses to further examine type I error control of different GSE methods in the real 
data through comparing tests on the same cell types. To do so, in each of the three real 
data sets, we split the cells within the same cell type into two sets with an equation number 
of cells. The cell types we examined include the DEC cell type in the human embryonic 
stem cell data; the NP1 cell type in the mouse sensory neuron data; and the CD8+ cell 
type in the 10x Genomics data. Note that this approach leads to a null distribution of DE 



p-values, which is a stronger condition that our previous permutations which only aimed 
to create a null distribution of GSE p-values.  We then examined type I error rates of 
different GSE methods in these at different p-value cutoffs. Consistent with null 
permutations in the real data, iDEA controls type I error well in the first data and become 
conservative in the second and third datasets. PAGE generally displays inflation in type I 
error control across all three real datasets while GSEA and fGSEA display inflation 
especially when the p-value cutoff is larger. In contrast, CAMERA shows severe deflation 
in the first and second real dataset while inflation in the third dataset. These new results 
are shown in the new Supplementary Figure S29, with details provided in the Results 
section (lines 462-473 on page 15).  

3. The two human empirical studies adopted drastically different number of gene 
sets (12,033 vs 144). Based on this, I have a few comments/concerns. 
a. Do the users need to prune the gene sets themselves? Guidelines and 
discussions on this will be helpful. 

Response: Thank you for your comment. We apologize not making the rational of using 
different gene sets in the two data sets explicit. For the human embryonic stem cell data, 
we performed standard GSE analysis using traditional gene sets (hence the large 
number). Our goal was to use this data to illustrate how iDEA and other GSE methods 
perform in standard GSE analysis for scRNA-seq data and illustrate how the standard 
GSE analysis may provide us with new biological insights. The identified top enriched 
gene sets all make biological sense. However, we unfortunately cannot be sure whether 
these identified enriched gene sets are all true positives, since we do not know the truth 
in this real data set. Therefore, we resorted to use a small set of specific gene sets in the 
10xGenomics data in order to directly examine the power of different GSE in that real 
data. Specifically, the small set of gene sets we used in 10x Genomics data contain CD4+ 
and CD8+ cell type signatures, and these signatures can be treated as true 
positives/golden standard in this real data. These cell type specific gene sets, when 
further paired with the differential expression analysis between CD4+ and CD8+ cell types 
in the 10xGenomics data, provides us with a unique opportunity to validate the 
performance of our method and demonstrate its high power in the real data application 
that otherwise would be challenging to do. Therefore, we used two different sets of gene 
sets (12,033 vs 144) in these two real data applications to serve as two different purposes. 
We have now provided these rational in the updated Results section (lines 401-403 on 
page 13, lines 441-443 on page 14). For your specific question, users do not need to 
collect gene sets or filter them by themselves for standard GSE analysis. The standard 
set of human gene sets from seven databases are provided in our software package. 



Certainly, users are always welcome to provide their own gene sets to answer specific 
biological questions.  

b. The 12,033 gene sets were compiled from seven different databases. This 
number is on the same order of magnitude as the number of genes. Are there 
overlaps between the gene sets? Will this bias the FDR control procedures, i.e., 
will the testing across different gene sets be non-independent? 

Response: Thank you for your comment. Indeed, there are overlaps between gene sets, 
but the overlap appears to be generally small: the median number of overlapped genes 
among pairs of gene sets in the set of 12,033 gene sets is only 1, as compared to the 
median gene set size of 143. In addition, we have added new analysis to carefully 
examine the top identified enriched gene sets in the real data applications. The new 
results suggest that gene set overlap does not appear to introduce excessive false signals 
(Table S10-S11; details in section 6 in Supplementary Text). Nevertheless, we followed 
most existing GSE approaches and accounted for GSE test non-independence due to 
gene set overlap through permutation of gene labels. Such permutation retains the gene 
set overlap proportion under the empirical null: if one gene set contains genes that are 
overlapped with genes in another gene set in the real data, then the first gene set would 
also contain the same number of overlapped genes with the second gene set in the 
permuted data. Consequently, the test statistics on the two gene sets would be correlated 
in a similar fashion in the permuted data as in the real data. By estimating FDR based on 
such permuted null, we can account for test non-independence due to gene set overlaps. 
Certainly, other approaches to account for gene set overlap also exist [3] [4]. Following 
your comment, we have added these new results in Table S10-S11, with details provided 
in the Supplementary Text (section 6) and the Discussion section (lines 578-597 on pages 
18-19).   

c. For the 10X Genomics dataset, if using all 12,033 gene sets, will it be 
underpowered? 

Response: Thank you for your comment. Following your comment, we have performed 
new analysis using the large set of 12,033 gene sets. As expected, iDEA produces 
calibrated p-values under permuted null and remains reasonably powerful in detecting 
enriched gene sets. Specifically, iDEA identified 421 significantly enriched gene sets 
among 12,033 at an FDR of 0.05. The top enriched gene sets identified by iDEA is also 
biologically meaningful. For example, metabolism of proteins [6] is the pathway related to 
metabolic programs which support the differentiation of CD4 T helper cells. GO:0006605 
(protein targeting) is related to the biological mechanisms in the immune response and 
the protein targets of human CD4+ and CD8+ T cell distinct [7]. However, as expected 



and as the reviewer also pointed out, the percentage of the significantly enriched gene 
sets (=5.9%) in the large gene sets is smaller than that (=17.4%) in the small gene sets 
– indeed, the 144 gene sets were selected specifically to validate the power of iDEA in 
this particular data. We have now added these new results in the Figure S27, with details 
provided in the Results section (lines 446-456 on pages 14-15).  

d. For the 144 gene sets, the authors mentioned “we focused on examining a small 
set of 144 gene sets that contain important gene signatures of immune and stroma 
cell types...” Is there a cyclic problem? Usually, the gene sets are defined specific 
to both the tissue of interest and the study design (what are the treatment etc), and 
the gene set enrichments can be identified through the DE results. Here, the 
authors implicitly imposed a “prior” (by focusing on a small number of related gene 
sets based on, e.g., previous DE results), performed the analysis using this “prior”, 
and then tested the DE based on results. Will the results be simply passed down 
from the strong “prior”? 

Response: Thank you for your comment. Indeed, while using 144 gene sets provide a 
unique opportunity to examine the GSE power of iDEA in the real data application, using 
these gene sets does run into cyclic problem and may cause the issue of an artificially 
higher DE power of iDEA in this real data. Following your comment, we have added a 
new DE analysis with iDEA but without adding any gene set information. We found that 
the number of DE genes identified by iDEA without the gene annotation (=252, at an FDR 
of 1%) is similar to the results obtained by adding the important gene set from these cell 
type defined gene sets (=255), both are larger than that identified by zingeR (=221). The 
new results are shown in Figure S26, with details provided in the Results section (lines 
436-440 on page 14).  

4. The GitHub page contains only functions with very limited and sketchy 
descriptions. For this method to be suited for publication at Nature 
Communications, a package needs to be compiled with detailed documentation 
and user manual, preferably with toy datasets. 

Response: Thank you for your comment. We have updated the software GitHub page, 
with detailed documentation and user manual, together with a toy data set. Please refer 
to the details on https://xzhoulab.github.io/iDEA/. 

5. On line 80, the authors discussed the limitations of existing univariate DE 
methods. It sounded as if iDEA would adopt a multivariate model, which is not true 
– iDEA still takes as input testing results based on univariate models. 



Response: Thank you for your comment and we apologize for not making our points 
clear. We only intended to use that introduction section to say that iDEA can jointly model 
all genes together by borrowing information across genes in terms of DE effect size 
distribution properties. This is to contrast with the previous univariate approaches that 
analyze one gene at a time. We did not intend to say that iDEA would adopt multivariate 
regression type models that could also take into account the gene-gene correlations. We 
have modified that Introduction paragraph to make our points more clear (lines 71-74 on 
page 3). 

6. Are the hyperparameters for the inverse Gamma fixed? Can they be empirically 
estimated and thus method/dataset specific? 

Response: Thank you for your comment. Indeed, we fixed the hyperparameters for the 
inverse Gamma distribution because there is not enough information to estimate these 
parameters. Specifically, the inverse Gamma distribution serves as the prior for the 
variance parameter. While the effect sizes across many DE genes can be used to 
estimate the variance parameter, there is only one variance parameter, so it becomes 
impossible to estimate the hyperparameters for the inverse Gamma distribution. However, 
your comment does raise an important issue that we previously ignored; that is, whether 
the results from iDEA might be sensitive to the hyperparameters. To examine sensitivity 
of results with respect to the hyperparameters, we varied the hyperparameters and test 
across a range of gene sets with different coverages in our three real datasets. 
Specifically, we varied the hyperparameters from prior mean of gamma to be 0.001, 0.1, 
1, 10, 100 and varied the coverage rate to be the 10th, 30th,50th,70th, 90th percentile of the 
gene set size of the gene sets we used for corresponding real data analysis in our 
manuscript. For example, for the human embryonic scRNA-seq dataset, we pick the gene 
set with coverage rate to be the 10th, 30th,50th,70th, 90th percentile of the gene set size of 
the human gene sets we analyzed and set the hyper parameter in the prior distribution of 
𝜎56, 9𝑎5, 𝑏5; to be (3, 0.02), (3, 0.2), (3, 2), (3, 20), (3, 200) respectively. Thus, creating a 
different set of prior distributions with a wide range of mean. For all the three real datasets, 
the estimate of both gene set enrichment coefficient and its variance do not vary too much 
across a wide range of prior distributions of 𝜎56. Therefore, it seems that results are all 
reasonably insensitive to the choice of these hyperparameters. This is perhaps not 
surprising given that the effect sizes across many DE genes likely contain majority of the 
information for estimating the variance variant and such information likely overwhelm the 
information contained in the inverse Gamma distribution. The new results are shown in 
the Supplementary Figure S28, with details explained in the Results section (lines 457 – 
462 on page 15).   
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Reviewer #1: 

Remarks to the Author: 

All of my concerns have been addressed. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors have addressed all of my concerns. I am still a bit bemused about my points 2 and 6, 

but they are not a big deal. Some misgivings remain about the practical utility of increased power 

for gene set testing, but I will give the software some benefit of the doubt in this regard. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors have addressed my previous concerns. 
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Reviewer #1  
All of my concerns have been addressed. 
 
Response: Thank you very much.  
 
 
Reviewer #2 
The authors have addressed all of my concerns. I am still a bit bemused about my 
points 2 and 6, but they are not a big deal. Some misgivings remain about the 
practical utility of increased power for gene set testing, but I will give the software 
some benefit of the doubt in this regard. 
Response: Thank you very much.  
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