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Supplementary Figures 

 

Supplementary Figure 1. Simulated data has very similar characteristics as compared to the 

real scRNA-seq dataset. The data was simulated under the following parameters setting: 𝜏0 =

−2, 𝜏1 = 0.5 and CR =  10%. Proportion of zero versus mean under log10 scale for both simulated 

data (blue) and real data (pink) (A); Mean-variance plot under log10 scale for both simulated data 

(blue) and real data (pink) (B); 
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Supplementary Figure 2. iDEA produces well-calibrated p-values for gene set enrichment 

analysis under null simulation. Quantile-quantile plots of -log10(p-values) from iDEA (orange), 

fGSEA (green), CAMERA (navyblue), PAGE (skyblue) and GSEA (yellow) are shown under 

different null scenarios with varying number of DE genes (denoted by the odd parameter 𝜏0; −0.5, 

-1.0, -2.0, or -3.0) and gene set coverage rates (CR; 1%, 2%, 5% or 10%). CR represents the 

percentage of genes inside the gene set. 𝜆gc is genomic control factor.
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Supplementary Figure 3. iDEA is more powerful than GSE methods for identifying enriched 

gene sets under alternative simulations. The power plots from iDEA (orange), fGSEA (green), 

CAMERA (navyblue), PAGE (skyblue) and GSEA (yellow) are shown under different scenarios with 

varying gene set enrichment coefficient (denoted by the odd parameter 𝜏1; 0.25, 0.5, 1.0 or 5.0) 

and gene set coverage rates (CR; 1%, 2%, 5% or 10%). CR represents the percentage of genes 

inside the gene set. Here, power was calculated based on an FDR of 5%.
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Supplementary Figure 4. iDEA is more powerful for both GSE and DE analyses than existing 

approaches in power simulations. The AUC of iDEA in identifying enriched pathways (A and C) 

and in identifying differentially expressed genes (B and D) are higher than that of the other methods. 

The compared GSE methods (A and C) include iDEA (orange), fGSEA (green), CAMERA 

(navyblue), PAGE (skyblue) and GSEA (yellow). The compared DE methods (B and D) include 

iDEA (orange) and zingeR (skyblue). Simulations are performed under two parameter settings: 

 𝜏0 = −2, 𝜏1 = 0.5, and CR = 10% (A and B);  𝜏0 = −2, 𝜏1 = 5, and CR = 10% (C and D). 
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Supplementary Figure 5. iDEA is more powerful than DE methods for identifying DE genes 

under alternative simulations when gene set enrichment parameter is larger. Simulations 

were performed on one fixed scRNA-seq data set with 𝜏0 = −2, varying  𝜏1 and CR.  𝜏1 is set to be 

0.25, 0.5,1.0 or 5.0 and CR is set to be 1%, 2%, 5%, 10% respectively. In each simulation setting, 

power of DE results between common DE method (zingeR (blue), MAST (green), edgeR (purple)) 

and iDEA (orange) with summary statistics obtained from that corresponding DE method when 

adding simulated gene set (filling color) or not (not filling color) is plotted. Here, power was 

calculated based on an FDR of 5%.
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Supplementary Figure 6. iDEA provides the powerful performance on DE analysis when 

varying gene set enrichment coefficient 𝝉𝟏 and coverage rate CR than zingeR especially 

when gene set enrichment parameter is higher. The data were simulated based on the 

parameter setting 𝜏0 = −2, 𝜏1 = 0,  0.25, 0.5, 1.0 or 5.0 and CR = 1%, 2%, 5% or 10%. iDEA 

identifies more significant gene sets on simulation studies when varying parameters. CR represents 

the percentage of genes inside the gene set. Here, power was calculated based on an FDR of 5%. 
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Supplementary Figure 7. Distribution of marginal DE p-values from common DE methods. 

The data were simulated based on the parameter setting 𝜏0 = −2, 𝜏1 = 0.5 and CR = 10%. P-

values from zingeR (blue) and MAST (green) follow approximately a uniform distribution under the 

null while P-values from edgeR (purple) does not.  
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Supplementary Figure 8. iDEA produces calibrated (or slightly conservative) FDR estimates. 

Simulations were performed on one fixed scRNA-seq data set with 𝜏0 = −2, varying  𝜏1 and CR.  𝜏1 

is set to be 0, 0.25, 0.5,1.0 or 5.0 and CR is set to be 1%, 2%, 5%, 10% respectively. In each 

simulation setting, the scatterplot plot showed the number of detected signals based on true FDR 

(y-axis) versus the number of detected signals based on estimated FDR (x-axis). The yellow line is 

the reference line which represents y = x.  
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Supplementary Figure 9. iDEA displays high consistency in detecting DE genes in 

simulations. The data were simulated based on the parameter setting 𝜏0 = −2, 𝜏1 = 5, and CR = 

10%. The plot shows the Jaccard index for top DE genes between zingeR, edgeR and MAST (blue) 

and the Jaccard index for top DE genes between iDEA when using summary statistics from zingeR, 

edgeR and MAST respectively(orange). CR represents the percentage of genes inside the gene 

set,  𝜏0 represents number of DE genes and  𝜏1 represents the gene set enrichment coefficient.
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Supplementary Figure 10. iDEA produces well-calibrated p-values in pairwise cell type 

comparison on human embryonic stem cell scRNA-seq data. Quantile-quantile plots of -

log10(p-values) from iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE (skyblue) and 

GSEA (yellow) are shown under the null that permuted each gene set 10 times correspondingly. 

𝜆gc is genomic control factor.
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Supplementary Figure 11. iDEA is more powerful than GSE methods for identifying enriched 

gene sets in pairwise cell-type comparison on human embryonic stem cell scRNA-seq 

dataset. The power plots from iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE 

(skyblue) and GSEA (yellow) are shown under different cell type comparisons. 
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Supplementary Figure 12. iDEA provides the powerful performance on DE analysis when 

adding one biologically meaningful gene set in pairwise cell type comparison on human 

embryonic stem cell scRNA-seq dataset than zingeR. Number of identified DE genes by iDEA 

(orange) and zingeR (blue) are plotted against different empirical FDR values.
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Supplementary Figure 13. GSE Analysis including hypergeometric test results in human 

embryonic stem cell scRNA-seq dataset. Results are shown for comparing definitive endoderm 

derivatives cell (DEC, 138 cells) and endothelial cell (EC, mesoderm derivatives, 105 cells).  

Quantile-quantile plots of -log10(p-values) from GSE methods including iDEA (orange), fGSEA 

(green), CAMERA (navyblue), PAGE (skyblue), GSEA (yellow) and Hypergeometric test (purple) 

are shown under permuted null (A); Number of identified enriched gene sets by iDEA (orange), 

fGSEA (green), CAMERA (navyblue), PAGE (skyblue) GSEA (yellow) and Hypergeometric test 

(purple) are plotted against different empirical false discovery rates (FDR) (B). Here 𝜆gc  is the 

genomic control factor. 
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Supplementary Figure 14. iDEA displays high consistency in detecting DE genes in human 

embryonic stem cell scRNA-seq data. iDEA displays higher Jaccard index in the common DE 

genes. Jaccard index for top DE genes at an FDR of 1% between zingeR, MAST and edgeR, 

Jaccard index for top DE genes at an FDR of 1% between iDEA when using summary statistics 

from zingeR, MAST and edgeR, respectively. (B); Overlap in top DE genes at an FDR of 1% 

between zingeR, MAST and edgeR (A); Overlap in top DE genes at an FDR of 1% between iDEA 

when using summary statistics from zingeR, MAST and edgeR (C); (D) and (E) are just another 

visualization of the overlap corresponding to (A) and (C) by UpSetR1.  
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Supplementary Figure 15. iDEA displays high consistency in detecting DE genes in human 

embryonic stem cell scRNA-seq data. Overlap in top DE genes at an FDR of 0.1% between 

zingeR, MAST and edgeR (A); Overlap in top DE genes at an FDR of 0.1% between iDEA when 

using summary statistics from zingeR, MAST and edgeR respectively (B); Overlap in top DE genes 

at an FDR of 5% between zingeR, MAST and edgeR (C); Overlap in top DE genes at an FDR of 

5% between iDEA when using summary statistics from zingeR, MAST and edgeR, respectively (D); 
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Supplementary Figure 16. iDEA produces well-calibrated p-values in pairwise cell type 

comparison on mouse neuronal cell scRNA-seq datasets. Quantile-quantile plots of -log10(p-

values) from iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE (skyblue) and GSEA 

(yellow) are shown under the null that permuted each gene set 10 times correspondingly. 𝜆gc is 

genomic control factor. 
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Supplementary Figure 17. iDEA is more powerful than GSE methods for identifying enriched 

gene sets in pairwise cell-type comparison on mouse neuronal cell scRNA-seq dataset. The 

power plots from iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE (skyblue) and GSEA 

(yellow) are shown under different cell type comparisons.
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Supplementary Figure 18. iDEA provides the powerful performance on DE analysis when 

adding one biologically meaningful gene set in pairwise cell type comparison on mouse 

neuronal cell scRNA-seq dataset than zingeR. Number of identified DE genes by iDEA (orange) 

and zingeR (blue) are plotted against different empirical FDR values.
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Supplementary Figure 19. GSE Analysis including hypergeometric test results in mouse 

neuronal cell scRNA-seq dataset. Results are shown for comparing nonpeptidergic nociceptors 

1 (NP1) versus all the other cell types. Quantile-quantile plots of -log10(p-values) from GSE 

methods including iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE (skyblue), GSEA 

(yellow) and Hypergeometric test (purple) are shown under permuted null (A). Number of identified 

enriched gene sets by iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE (skyblue) GSEA 

(yellow) and Hypergeometric test (purple) are plotted against different empirical false discovery 

rates (FDR) (B). Here 𝜆gc is the genomic control factor. 
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Supplementary Figure 20. iDEA displays high consistency in detecting DE genes in mouse 

neuronal cell scRNA-seq data. iDEA displays higher Jaccard index in the common DE genes. 

Jaccard index for top DE genes at an FDR of 1% between zingeR, MAST and edgeR, Jaccard 

index for top DE genes at an FDR of 1% between iDEA when using summary statistics from zingeR, 

MAST and edgeR respectively(red) (B); Overlap in top DE genes at an FDR of 1% between zingeR, 

MAST and edgeR (A); Overlap top DE genes at an FDR of 1% between iDEA when using summary 

statistics from zingeR, MAST and edgeR (C); (D) and (E) are just another visualization of the 

overlap corresponding to (A) and (C) by UpSetR1. 
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Supplementary Figure 21. iDEA displays high consistency in detecting DE genes in mouse 

neuronal cell scRNA-seq data. Overlap in top DE genes at an FDR of 0.1% between zingeR, 

MAST and edgeR (A); Overlap in top DE genes at an FDR of 0.1% between iDEA when using 

summary statistics from zingeR, MAST and edgeR respectively (B); Overlap in top DE genes at an 

FDR of 5% between zingeR, MAST and edgeR (C); Overlap in top DE genes at an FDR of 5% 

between iDEA when using summary statistics from zingeR, MAST and edgeR respectively (D); 
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Supplementary Figure 22. The scatterplot of first two t-SNE principal components for 10x 

Genomics data set. There are total 8 cell types. CD4+ T cell type and CD8+ T cell type are 

highlighted in red circles. The cells are colored by Seurat clustering method. 
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Supplementary Figure 23. GSE Analysis including hypergeometric test results in 10x 

Genomics data set. Results are shown for comparing CD4+ T cells versus CD8+ T cells. Quantile-

quantile plots of -log10(p-values) from GSE methods including iDEA (orange), fGSEA (green), 

CAMERA (navyblue), PAGE (skyblue), GSEA (yellow) and Hypergeometric test (purple) are shown 

under permuted null (A). Number of identified enriched gene sets by iDEA (orange), fGSEA (green), 

CAMERA (navyblue), PAGE (skyblue) GSEA (yellow) and Hypergeometric test (purple) are plotted 

against different empirical false discovery rates (FDR) (B). Here 𝜆gc is the genomic control factor. 
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Supplementary Figure 24. iDEA displays high consistency in detecting DE genes in 10x 

Genomics scRNA-seq data. iDEA displays higher Jaccard index in the common DE genes. 

Jaccard index for top DE genes at an FDR of 1% between zingeR, MAST and edgeR, Jaccard 

index for top DE genes at an FDR of 1% between iDEA when using summary statistics from zingeR, 

MAST and edgeR respectively(red) (B); Overlap in top DE genes at an FDR of 1% between zingeR, 

MAST and edgeR (A); Overlap top DE genes at an FDR of 1% between iDEA when using summary 

statistics from zingeR, MAST and edgeR (C); (D) and (E) are just another visualization of the 

overlap corresponding to (A) and (C) by UpSetR1. 
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Supplementary Figure 25. iDEA displays high consistency in detecting DE genes in 10x 

Genomics scRNA-seq data. Overlap in top DE genes at an FDR of 0.1% between zingeR, MAST 

and edgeR (A); Overlap in top DE genes at an FDR of 0.1% between iDEA when using summary 

statistics from zingeR, MAST and edgeR respectively (B); Overlap in top DE genes at an FDR of 

5% between zingeR, MAST and edgeR (C); Overlap in top DE genes at an FDR of 5% between 

iDEA when using summary statistics from zingeR, MAST and edgeR respectively (D); 
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Supplementary Figure 26. DE analysis results in the 10X Genomics scRNA-seq data when 

no interested gene set information provided. Results are shown for comparing CD4+ T cells 

versus CD8+ T cells. Number of identified DE genes by iDEA (orange) and zingeR (blue) are plotted 

against different empirical FDR values. iDEA is more powerful than zingeR for DE analysis when 

there is no interested gene set information provided. 

 

 

 

 

 

 



 28 

 
Supplementary Figure 27. iDEA analysis results in the 10X Genomics scRNA-seq data by 

using larger human gene sets. Results are shown for comparing CD4+ T cells versus CD8+ T 

cells. Quantile-quantile plots of -log10(p-values) from GSE methods including iDEA (orange) (A); 

Number of identified enriched gene sets by iDEA (orange) at a wide range of FDR (B); Here 𝜆gc is 

the genomic control factor. 
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Supplementary Figure 28. Sensitivity analysis of hyperparameters in prior distribution of  𝝈𝛃
𝟐. 

Boxplot of the estimates of gene set coefficient and variance of gene set coefficient are displayed 

for three scRNA-seq dataset: human embryonic stem cell (Chu et al), mouse neuronal cell (Usoskin 

et al) and 10x Genomics PBMC scRNA-seq dataset. For each dataset, we tested the parameter 

estimates on gene sets with different coverage rate percentile among all gene sets we analyzed in 

that corresponding dataset. For each gene set with different coverage rate, estimates of gene set 

coefficient and variance were obtained under different prior distribution of 𝜎β
2. Parameter estimates 

are stable for gene sets across a wide range of prior distribution of 𝜎β
2. For each box plot, the bottom 

and the top of the box are the 25th and 75th quantiles, while the whiskers represent 1.5 * 

interquartile range from the lower and upper bounds of the box. 
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Supplementary Figure 29. Type I error rate in real datasets. We splited the dataset within the 

same cell type (n = 10 replicates) to construct the true null distribution. Box plot of Type I error rate 

of iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE (skyblue) and GSEA (yellow) are 

shown in human embryonic stem cell scRNA-seq dataset (Chu et al), mouse neuronal cell scRNA-

seq dataset (Usoskin et al) and 10x Genomics PBMC scRNA-seq dataset. iDEA controlled type I 

error well in all three data sets. For each box plot, the bottom and the top of the box are the 25th 

and 75th quantiles, while the whiskers represent 1.5 * interquartile range from the lower and upper 

bounds of the box.  
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Supplementary Figure 30. Analysis results in the bulk RNAseq data. Results are shown for 

comparing matched normal oral tissue versus oral squamous cell carcinoma. (A) p-values from 

iDEA for GSE analysis display expected enrichment of small p-values (for true signals) and a long 

flat tail towards large p-values. (B) Quantile-quantile plots of -log10(p-values) from GSE methods 

including iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE (skyblue) and GSEA (yellow) 

are shown under permuted null. The p-values from iDEA, fGSEA, PAGE and GSEA are reasonably 

well calibrated. The p-values from CAMERA are overly conservative. Here 𝜆gc  is the genomic 

control factor. (C) Number of identified enriched gene sets by iDEA (orange), fGSEA (green), 

CAMERA (navyblue), PAGE (skyblue) and GSEA (yellow) are plotted against different empirical 

false discovery rates (FDR). iDEA is as the same powerful as PAGE than other methods for GSE 

analysis. (D) Number of identified DE genes by iDEA (orange) and DESeq2 (blue) are plotted 

against different empirical FDR values. iDEA is more powerful than DESeq for DE analysis. (E) 

Heatmap shows the normalized expression level (log10-transformation with pseudo-count 0.1) for 

selected 50 DE genes (rows) identified by iDEA for cells in the two tissue types (columns). Genes 

are sorted by Hierarchical clustering; cells are ordered by tissue types (Normal: blue; Tumor: red). 

These DE genes clearly distinguish two compared tissues. (F) Bubble plot shows –log10 p-values 

for GSE analysis from iDEA (y-axis) for different gene sets. Gene sets are colored by ten categories: 

immunologic signatures (red), chemical and genetic perturbations (yellow), GO biological process 

(blue), GO molecular function (green), GO cellular component (orange), oncogenic signatures 

(deep blue), Reactome (grass-green), KEGG (purple), PID (rose), and Biocarta (grey). The size of 

the dot represents the number of genes contained in the gene set. Names for ten of the gene sets 

that are closely related to oral squamous cell carcinoma are highlighted in the panel. 
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Supplementary Figure 31. iDEA produces well-calibrated p-values for gene set enrichment 

analysis under null simulations in iDEA variant when modeling beta effect size directly. 

Quantile-quantile plots of -log10(p-values) from iDEA (orange), fGSEA (green), CAMERA 

(navyblue), PAGE (skyblue) and GSEA (yellow) are shown under different null scenarios with 

varying number of DE genes (denoted by the odd parameter 𝜏0; −0.5, -1.0, -2.0, or -3.0) and gene 

set coverage rates (CR; 1%, 2%, 5% or 10%). CR represents the percentage of genes inside the 

gene set. 𝜆gc is genomic control factor. 
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Supplementary Figure 32. iDEA is more powerful than GSE methods for identifying enriched 

gene sets under alternative simulations in iDEA variant when modeling beta effect size 

directly. The power plots from iDEA (orange), fGSEA (green), CAMERA (navyblue), PAGE 

(skyblue) and GSEA (yellow) are shown under different scenarios with varying gene set enrichment 

coefficient (denoted by the odd parameter 𝜏1; 0.25, 0.5, 1.0 or 5.0) and gene set coverage rates 

(CR; 1%, 2%, 5% or 10%). CR represents the percentage of genes inside the gene set. Here, 

power was calculated based on an FDR of 5%. 

 

 

 



 34 

 
Supplementary Figure 33. iDEA is more powerful than DE methods for identifying DE genes 

under alternative simulations in iDEA variant when gene set enrichment parameter is larger. 

Simulations were performed on one fixed scRNA-seq data set with 𝜏0 = −2, varying  𝜏1 and CR.  𝜏1 

is set to be 0.25, 0.5,1.0 or 5.0 and CR is set to be 1%, 2%, 5%, 10% respectively. In each 

simulation setting, power of DE results between common DE method (zingeR (blue), MAST (green), 

edgeR (purple)) and iDEA (orange) with summary statistics obtained from that corresponding DE 

method when adding simulated gene set (filling color) or not (not filling color) is plotted. The power 

was calculated as the percentage of truly DE genes detected in each method. Here, power was 

calculated based on an FDR of 5%. 
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Supplementary Figure 34. Analysis results of iDEA variant when modeling on beta effect 

size directly in the mouse neuronal cell scRNA-seq data. Results are shown for comparing 

nonpeptidergic nociceptors 1 (NP1) versus all the other cell types. (A) Quantile-quantile plots of -

log10(p-values) from GSE methods including iDEA (orange), fGSEA (green), CAMERA (navyblue), 

PAGE (skyblue) and GSEA (yellow) are shown under permuted null. The p-values from iDEA and 

fGSEA are reasonably well calibrated. The p-values from CAMERA are overly conservative. Here 

𝜆gc is the genomic control factor. (B) Number of identified enriched gene sets by iDEA (orange), 

fGSEA (green), CAMERA (navyblue), PAGE (skyblue) and GSEA (yellow) are plotted against 

different empirical false discovery rates (FDR). iDEA is more powerful than other methods for GSE 

analysis. (C) Number of identified DE genes by iDEA (orange) and zingeR (blue) are plotted against 

different empirical FDR values. iDEA is more powerful than zingeR for DE analysis. 
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Supplementary Figure 35. Posterior inclusion probabilities (PIPs) calculated by iDEA when 

adding specific gene set is highly correlated with averaging PIPs across all gene sets in all 

three scRNA-seq datasets. Here, each dot represents each gene with x-axis represents the 

averaged pip and y-axis represents gene set specific pip. Genes in that selected gene set are 

highlighted by grey color. In Human embryonic stem cell scRNA-seq dataset (Chu et al), we added 

the gene set GO:0001944 (vasculature development). In Mouse Sensory neuron scRNA-seq 

dataset, we added the gene set GO:0097458 (neuron part). In 10x Genomics PBMC dataset, we 

added the gene set CD8+ T-effector memory Term. 
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Supplementary Figure 36. iDEA produces calibrated p-values in scRNA-seq based null 

simulations when using Louis Method to correct the observed information matrix. Quantile-

quantile plots of -log10(p-values) are shown for: iDEA without Louis Method (A); iDEA with Louis 

method (B); respectively under the null that simulated one fixed scRNA-seq data set and permute 

the gene set 10,000 times. Here, the other parameters are set to be 𝜏0 = −2, 𝜏1 = 0 and CR =  10%. 

CR represents the percentage of genes inside the gene set. 𝜆gc is genomic control factor. 



 38 

Supplementary Notes 

Supplementary Note 1. EM-MCMC Inference Algorithm 

The iDEA model is described in detail in the Methods. Here, we describe the 

detailed algorithm for inference. As explained in the main text, our goal is to infer 

the posterior probability of 𝛾𝑗 = 1 as evidence for j-th gene being DE and test the 

null hypothesis 𝐻0: 𝜏1 = 0 that DE genes are not enriched in the gene set. To 

achieve both goals, we develop an efficient expectation maximization (EM)-

Markov chain Monte Carlo (MCMC) algorithm. To simplify notation, we denote 𝛃 

as the p-vector of the underlying true effect sizes, or 𝛃 = (𝛽1, 𝛽2, ⋯ , 𝛽𝑝)
𝑇

. We 

denote 𝛄  as the p-vector of the indicator variables, or 𝛄 = (𝛾1, 𝛾2, ⋯ , 𝛾𝑝)
𝑇

. We 

denote 𝜎𝑒𝑗

2  as the variance of the marginal DE effect size estimate for j-th gene, or 

𝜎𝑒𝑗

2 = se2(�̂�𝑗). We treat both 𝛃 and 𝛄 as missing data and write out the complete 

likelihood as 

logPr(�̂�, 𝛃, 𝛄|𝜏0, 𝜏1, 𝜎𝛽
2) = log{Pr(�̂�|𝛃, 𝛄) Pr(𝛃|𝛄, 𝜎β

2) Pr(𝛄|𝜏0, 𝜏1) Pr(𝜎β
2|𝑎β,𝑏β)} 

                                         = −
1

2
∑ 𝛾𝑗

𝑝
𝑗=1 (log (𝜎𝑒𝑗

2 ) +
(�̂�𝑗−𝛽𝑗)

2

𝜎𝑒𝑗
2 ) 

                                             −
1

2
∑ 𝛾𝑗 (log (𝜎𝑒𝑗

2 𝜎β
2) +

𝛽𝑗
2

𝜎𝑒𝑗
2 𝜎β

2)𝑝
𝑗=1  

                                               + ∑ 𝛾𝑗 log(𝜋𝑗) + (1 − 𝛾𝑗) log(1 − 𝜋𝑗)𝑝
𝑗=1  

                                  − (𝑎β + 1) log(𝜎β
2) − 𝑏β𝜎β

−2 ,                                                 (1) 

where we have also ignored the constant terms in the above equation and 𝜋𝑗 =

exp(𝜏0+𝑎𝑗𝜏1)

1+exp(𝜏0+𝑎𝑗𝜏1)
. With the above complete likelihood, we can derive the expectation 

step (E-Step) and maximization step (M-Step) as follows.  

Expectation Step (E-Step) 

In the E-Step, we obtain the expectation of equation (1) 

                                               𝑄 = 𝐸[logPr(�̂�, 𝛃, 𝚪|𝛕, 𝜎β
2)],                                      (2) 

which involves evaluating the expectations 𝐸(𝛾𝑗), 𝐸(𝛾𝑗𝛽𝑗)  and 𝐸(𝛾𝑗𝛽𝑗
2) . These 

expectations are obtained under the conditional distributions 

P(𝛽𝑗, 𝛾𝑗|�̂�, 𝜏0
(𝑡)

, 𝜏1
(𝑡)

, (𝜎(𝑡))
β

2
), with 𝜏0

(𝑡)
, 𝜏1

(𝑡)
 and (𝜎(𝑡))

β

2
 being the estimates from the 
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previous iteration t. These conditional distributions are unfortunately not available 

in analytic forms. Therefore, we use Markov Chain Monte Carlo (MCMC) to obtain 

these expectations. Specifically, we develop a Gibbs sampling to sample the 

posterior distributions for 𝛽𝑗  and 𝛾𝑗  in an alternate fashion. Afterwards, we use 

these posterior samples to evaluate the above expectations. To do so, we first 

integrate out 𝛽𝑗  from the complete likelihood and obtain the conditional distribution 

for 𝛾𝑗 as 

   Pr (𝛾𝑗 = 1|�̂�, 𝜏0
(𝑡)

, 𝜏1
(𝑡)

, (𝜎(𝑡))
β

2
) ∝ exp { 

𝑚𝑗
2

2𝑠𝑗
2 + log(𝑠𝑗) − log (𝜎β

(𝑡)
) + log(𝜋𝑗

(𝑡)
)},       (3) 

                                    Pr(𝛾𝑗 = 0|�̂�, 𝜏0
(𝑡)

, 𝜏1
(𝑡)

) ∝  1 − 𝜋𝑗
(𝑡)

.                                                     (4) 

Then posterior distribution of 𝛾𝑗 is,  

𝛾𝑗 ~ Bernoulli(
Pr(𝛾𝑗 = 1|�̂�, 𝜏0

(𝑡)
, 𝜏1

(𝑡)
, (𝜎(𝑡))

β

2
)

Pr(𝛾𝑗 = 1|�̂�, 𝜏0
(𝑡)

, 𝜏1
(𝑡)

, (𝜎(𝑡))
β

2
)+ Pr(𝛾𝑗 = 0|�̂�, 𝜏0

(𝑡)
, 𝜏1

(𝑡)
, (𝜎(𝑡))

β

2
)

)              (5) 

where 𝑚𝑗 =
�̂�𝑗

1+(𝜎
β
(𝑡)

)
−2

  
 and 𝑠𝑗

2 =
𝜎𝑒𝑗

2

1+(𝜎β
(𝑡)

)
−2

 
. Next, we recognize from the complete 

likelihood that the conditional distribution of 𝛽𝑗 given 𝛾𝑗 = 1 is normal: 

                                              𝛽𝑗|𝛾𝑗 = 1 ∼ 𝑁(𝑚𝑗 , 𝑠𝑗
2).                                              (6) 

Certainly, 𝛽𝑗 = 0 if 𝛾𝑗 = 0.  

Maximization Step (M-Step) 

In the M-Step, we obtain the parameter estimates for 𝜏0, 𝜏1 and 𝜎β
2 that maximize 

the Q function obtained in the E-Step. For 𝜏0 and 𝜏1, we obtain the first derivatives 

of the Q function with respect to each parameter as 

𝜕𝑄

𝜕𝜏0
= ∑ (𝐸(𝛾𝑗) − 𝜋𝑗)

𝑝

𝑗=1
, 

                                            
𝜕𝑄

𝜕𝜏1
= ∑ 𝑎𝑗(𝐸(𝛾𝑗) − 𝜋𝑗)𝑝

𝑗=1 .                                         (7) 

We also obtain the second derivatives as  

𝜕2𝑄

𝜕𝜏0
2 = ∑ 𝜋𝑗(1 − 𝜋𝑗)

𝑝

𝑗=1
, 
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𝜕2𝑄

𝜕𝜏0𝜕𝜏1
= ∑ 𝑎𝑗𝜋𝑗(1 − 𝜋𝑗)

𝑝

𝑗=1
, 

                                          
𝜕2𝑄

𝜕𝜏1
2 = ∑ 𝑎𝑗

2𝜋𝑗(1 − 𝜋𝑗)𝑝
𝑗=1 .                                             (8) 

where 𝜋𝑗  is calculated as the expectation of the indicator variable 

𝛾𝑗  E (𝛾𝑗|�̂�, 𝜏0
(𝑡)

, 𝜏1
(𝑡)

, (𝜎(𝑡))
β

2
)  . And 𝜋𝑗  is used in the following Newton-Raphson 

algorithm to obtain the parameter estimate of the intercept 𝜏0  and gene set 

coefficient  𝜏1. Afterwards, we use the Newton-Raphson algorithm for optimization 

and obtain estimates of 𝜏0
(𝑡+1)

 and 𝜏1
(𝑡+1)

. 

For 𝜎β
2, we obtain the first derivatives of the Q function with respect to 𝜎β

2 as 

𝜕𝑄 

𝜕𝜎β
2 = 𝜎β

−4 (∑
𝐸(𝛾𝑗𝛽𝑗

2)

2𝜎𝑒𝑗
2

𝑝
𝑗=1 + 𝑏β) − 𝜎β

−2 (
∑ 𝐸(𝛾𝑗)

𝑝
𝑗=1

2
+ 𝑎β + 1), 

which leads to an analytical update for 𝜎β
2 as 

                                        (𝜎β
(𝑡+1)

)
2

=

∑
𝐸(𝛾𝑗𝛽𝑗

2) 

2𝜎𝑒𝑗
2

𝑝
𝑗=1 +𝑏β

∑ 𝐸(𝛾𝑗)
𝑝
𝑗=1

2
+𝑎β+1

.                                             (9) 

The EM-MCMC algorithm thus iterates between the E-step and the M-step until 

converge. The EM-MCMC algorithm allows us to directly obtain the parameter 

estimate 𝐸(𝛾𝑗), which is the posterior probability of j-th gene being a DE gene. This 

posterior probability is also commonly referred to as the posterior inclusion 

probability (PIP) in other settings. We use these posterior probabilities to serve as 

DE evidence. In addition, the EM-MCMC algorithm also provides an estimate for 

𝜏1, which, when paired with its standard error computed in the following section, 

allows us to construct a Wald test to test the null hypothesis of no gene set 

enrichment 𝐻0: 𝜏1 = 0. 

Supplementary Note 2. Louis Method for p-value Computation 

Here, we describe the details of the Louis method for computing the standard error 

of �̂�1. In the EM-MCMC algorithm described in the previous section, we can obtain 

the information matrix for (𝜏0, 𝜏1)  based on the log complete likelihood 

logPr(�̂�, 𝛃, 𝛄|𝜏0, 𝜏1, 𝜎β
2) as described in equation (1). For completeness, we re-write 

the information matrix in the complete likelihood as a 2 by 2 matrix 
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                                          𝐼𝑐 = ∑ �̂�𝑗(1 − �̂�𝑗) (
1 𝑎𝑗

𝑎𝑗 𝑎𝑗
2)𝑝

𝑗=1 ,                                         (10) 

where �̂�𝑗 =
exp(𝐴𝑗�̂�)

1+exp(𝐴𝑗�̂�)
  is computed based on the �̂� estimates from the last EM step 

and 𝑎𝑗  is the annotation for j-th gene. Our goal, however, is to obtain the 

information matrix for (𝜏0, 𝜏1)  based on the marginal log likelihood 

logPr(�̂�|𝜏0, 𝜏1, 𝜎β
2) , also known as the observed likelihood. Such marginal 

information matrix can be obtained based on the complete information matrix 

through an adjustment using the Louis method2,3. Specifically, with the posterior 

inclusion probably PIP𝑗  for j-th gene obtained from EM steps, we compute the 

information matrix in the incomplete likelihood as a 2 by 2 matrix 

                                   𝐼𝑖𝑐 = ∑ PIP𝑗(1 − PIP𝑗) (
1 𝑎𝑗

𝑎𝑗 𝑎𝑗
2)𝑝

𝑗=1 .                                 (11) 

Finally, the observed information matrix 𝐼𝑜 is adjusted by  

𝐼𝑜 =  𝐼𝑐 − 𝐼𝑖𝑐 

Once we compute the marginal information matrix, we can obtain the standard 

error se2(�̂�1) as the corresponding element in the inverse of the information matrix 

𝐼𝑜.  

Supplementary Note 3. Application to an oral carcinoma bulk RNAseq 

dataset 

To illustrate the flexibility of the modeling framework in iDEA, we applied iDEA to 

analyze a publicly available bulk RNASeq dataset from Tuch et al4. The bulk 

RNAseq dataset consists of gene expression measurements for 10,540 genes on 

tumors and matched normal tissue from three patients with oral squamous cell 

carcinomas. We carried out both GSE analyses and DE analyses on comparing 

the matched tumor and normal pairs.  

We first applied iDEA and other GSE methods to detect significantly enriched gene 

sets across our compiled database of 12,033 human gene sets. The p-values of 

the enriched gene sets from iDEA are shown in Supplementary Figure 30A. We 

also constructed an empirical null p-value distribution by permuting the gene labels 

for each gene set 10 times. Consistent with both simulations and scRNA-seq data 

applications, we found that the p-values in the permuted data from iDEA (𝜆gc =

1.07), fGSEA (𝜆gc = 0.99), PAGE (𝜆gc = 0.98), and GSEA (𝜆gc = 0.99) are well 

behaved, while that from CAMERA show severe deflation ( 𝜆gc =



 42 

0.12)( Supplementary Figure 30B). For each method, we relied on the empirical 

null distribution of p-values to compute power in detecting enriched gene sets 

based on a fixed empirical FDR. Consistent with both simulations and scRNA-seq 

data applications, iDEA displays higher power compared to the other GSE 

methods (Supplementary Figure 30C). For example, at an empirical FDR of 5%, 

iDEA identified 2075 significantly enriched gene sets, which is 17%, 80%, 20% 

higher than fGSEA (1777), CAMERA (1154), and GSEA (1733) respectively. While 

PAGE (2079) also displays higher power in number of detecting the significant 

gene sets, the top gene sets identified by iDEA are most closely related to oral 

squamous cell carcinomas or tumor related pathways. For example, among the 

top 10 gene sets identified by iDEA, 7 are related to tumor pathways. As a 

comparison, 5 among the top 10 gene sets identified by PAGE are related to tumor 

pathways. Specifically, enriched gene sets identified by iDEA include the 

SMID_BREAST_CANCER_NORMAL_LIKE_UP5,SWEET_LUNG_CANER_KRA

S_DN6 and relevant GO items such as GO:0031012 (extracellular matrix7), 

GO:0043292 (contractile fiber8). In order to quantify the biological significance of 

gene sets identified by different GSE methods, we quantified the relevance 

between gene sets and oral squamous cell carcinomas in an unbiased way by 

searching the related literatures in PubMed (details in Materials and Methods). 

Indeed, in the top 50 enriched gene sets identified by different methods, iDEA 

identified more gene sets relevant to oral squamous cell carcinomas (30) than 

fGSEA (23), CAMERA (30), PAGE (23), and GSEA (25). The higher number of 

detected enriched gene sets relevant to oral squamous cell carcinomas and cancer 

growth by iDEA provides convergent support for the higher power of iDEA for GSE 

analysis. 

Next, we applied iDEA for DE analysis to identify DE genes. We obtained the 

summary statistics from DESeq2. Consistent with both simulations and scRNA-

seq data applications, iDEA identified more DE genes than zingeR. For example, 

at an empirical FDR of 1%, iDEA identified 409 DE genes, while DESeq2 only 

identified 1 (Supplementary Figure 30D). The 50 selected important DE genes 

identified by iDEA clearly distinguishes the normal tissue and cancer tissue 

(Supplementary Figure 30F). Importantly, using the key markers provided by the 

original study9, iDEA identified 262 genes directly related to oral squamous cell 

carcinomas or important genes involved in common tumors; while DESeq2 only 

identified 1. The higher number of DE genes relevant to oral squamous cell 

carcinomas or common tumors detected by iDEA provides convergent support for 

its higher power for DE analysis. Important DE genes involved in Oral squamous 
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cell carcinoma development that are detected by iDEA but missed by DESeq2 

include CRNN10, WNT10A11, PTHLH12, KRT613, IGF114, PTGFR15, TGFBR316. 

Among them, CRNN has been studied to be the potential prognostic marker of 

OSCC due to its downregulation in oral squamous cell carcinoma samples, 

WNT10A plays an important role in accelerating of the progression of carcinomas 

via activating EMTs and local invasiveness11, PTHLH is indispensable for the 

pathogenesis of oral squamous cell carcinoma by affecting cell proliferation and 

cell cycle12. TGFBR3 is an important activator of GDF10, which is downregulated 

during oral carcinogenesis and involved in the suppression of cell survival16. 

Further, we also evaluated the GC content and gene length effect. For all the genes 

in the dataset, we first calculated the GC content and gene length and then we 

create two gene sets corresponding to the levels of GC content and gene length. 

Specifically, for the GC content, we use the continuous value of GC content for 

each gene as the gene set. For the gene length, we created a binary gene set if 

gene length is higher than the average of the gene length, than this gene is in this 

gene set and annotated as 1 otherwise 0. Finally, by adding these two gene sets 

into iDEA, we calculated the p-values for these two gene set to represent the 

significance of GC content effect and gene length effect correspondingly. In the 

analyses, we did not observe obvious GC content effect (p-value = 0.31) and gene 

length effect (p-value = 0.08) in this dataset.  

Supplementary Note 4. iDEA variant 

Model and statistical inference 

As explained in the Discussion, the iDEA model makes an implicit assumption that 

the prior depends on the sample size. Here, we provide an iDEA variant with 

alternative modeling assumption that does not have the prior dependence on the 

sample size. Here, the input summary statistics are again in the form of marginal 

DE effect size estimate �̂�𝑗 and its standard error se(�̂�𝑗),   𝑗 = 1,2, ⋯ 𝑝, where p is 

the number of genes. We assume that the true effect size 𝛽𝑗 follows a mixture of 

two distributions depending on whether j-th gene is a DE gene or not: 

                                     �̂�𝑗 =  𝛽𝑗  + 𝜖𝑗,  𝜖𝑗 ~ 𝑁(0, se(�̂�𝑗)
2

)                                        (12) 

                                     𝛽𝑗  ~ 𝜋𝑗  𝑁(0, 𝜎β
2) +  (1 − 𝜋𝑗)𝛿0                                            (13) 

where 𝜋𝑗  is the prior probability of being a DE gene; 𝜎β
2 is a scaling factor that 

determines the DE effect size strength; and 𝛿0 is the Dirac function that represents 

a point mass at zero. Therefore, with proportion 𝜋𝑗, j-th gene is a DE gene and its 
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DE effect size 𝛽𝑗  follows a normal distribution with a large variance 𝜎β
2 . With 

proportion 1 − 𝜋𝑗, j-th gene is a non-DE gene and its DE effect size is exactly zero 

Note that, compared to the original iDEA model, we have removed se(�̂�𝑗)
2
 and 

only maintain the 𝜎β
2 as the variance in the prior distribution of true effect size. In 

this way, the effect size 𝛽𝑗 is no longer depend on the standard error se(�̂�𝑗) and 

thus the sample size. For the rest of the algorithm and methodology, we just 

followed the same procedure as the original model. Here, we mainly report the 

modified parts in the EM algorithm when using this model. The complete likelihood 

changed to be the following 

logPr(�̂�, 𝛃, 𝛄|𝜏0, 𝜏1, 𝜎β
2) = log{Pr(�̂�|𝛃, 𝛄) Pr(𝛃|𝛄, 𝜎β

2) Pr(𝛄|𝜏0, 𝜏1) Pr(𝜎β
2|𝑎β,𝑏β)} 

                                         = −
1

2
∑ 𝛾𝑗

𝑝
𝑗=1 (log (𝜎𝑒𝑗

2 ) +
(�̂�𝑗−𝛽𝑗)

2

𝜎𝑒𝑗
2 ) 

                                             −
1

2
∑ 𝛾𝑗 (log(𝜎β

2) +
𝛽𝑗

2

𝜎β
2)𝑝

𝑗=1  

                                               + ∑ 𝛾𝑗 log(𝜋𝑗) + (1 − 𝛾𝑗) log(1 − 𝜋𝑗)𝑝
𝑗=1  

                                             − (𝑎β + 1) log(𝜎β
2) − 𝑏β𝜎β

−2                                   (14) 

In the E-step: 

We obtained the expectation of log likelihood, 𝑄 = 𝐸[logPr(�̂�, 𝛃, 𝚪|𝛕, 𝜎β
2)].                               

The posterior distribution of 𝛃 and 𝛄 changes to be: 

Pr (𝛾𝑗 = 1|�̂�, 𝜏0
(𝑡)

, 𝜏1
(𝑡)

, (𝜎(𝑡))
β

2
) ∝ exp { 

𝑚𝑗
2

2𝑠𝑗
2 + log(𝑠𝑗) − log (𝜎β

(𝑡)
) + log(𝜋𝑗

(𝑡)
)},      

(15) 

                                    Pr(𝛾𝑗 = 0|�̂�, 𝜏0
(𝑡)

, 𝜏1
(𝑡)

) ∝  1 − 𝜋𝑗
(𝑡)

.                                                  (16) 

Then posterior distribution of 𝛾𝑗 is,  

𝛾𝑗 ~ Bernoulli(
Pr(𝛾𝑗 = 1|�̂�, 𝜏0

(𝑡)
, 𝜏1

(𝑡)
, (𝜎(𝑡))

β

2
)

Pr(𝛾𝑗 = 1|�̂�, 𝜏0
(𝑡)

, 𝜏1
(𝑡)

, (𝜎(𝑡))
β

2
)+ Pr(𝛾𝑗 = 0|�̂�, 𝜏0

(𝑡)
, 𝜏1

(𝑡)
, (𝜎(𝑡))

β

2
)

)           (17) 

where 𝑚𝑗 =
�̂�𝑗(𝜎(𝑡))

β

2

𝜎𝑒𝑗
2 +(𝜎(𝑡))

β

2
  
 and 𝑠𝑗

2 =
𝜎𝑒𝑗

2 ∗(𝜎(𝑡))
β

2

𝜎𝑒𝑗
2 +(𝜎(𝑡))

β

2
 
. Next, we recognize from the complete 

likelihood that the conditional distribution of 𝛽𝑗 given 𝛾𝑗 = 1 is normal: 
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                                              𝛽𝑗|𝛾𝑗 = 1 ∼ 𝑁(𝑚𝑗 , 𝑠𝑗
2) 

Certainly, 𝛽𝑗 = 0 if 𝛾𝑗 = 0.  

In the M-step, estimation of intercept 𝜏0 and gene set enrichment parameter 𝜏1 is 

just following the same Newton-Raphson algorithm. For the estimation of 𝜎β
2, we 

obtain the first derivatives of the Q function with respect to 𝜎β
2 as 

𝜕𝑄 

𝜕𝜎β
2 = 𝜎β

−4 (∑
𝐸(𝛾𝑗𝛽𝑗

2)

2

𝑝
𝑗=1 + 𝑏β) − 𝜎β

−2 (
∑ 𝐸(𝛾𝑗)

𝑝
𝑗=1

2
+ 𝑎β + 1), 

which leads to an analytical update for 𝜎β
2 as   

                                              (𝜎β
(𝑡+1)

)
2

=
∑

𝐸(𝛾𝑗𝛽𝑗
2) 

2

𝑝
𝑗=1 +𝑏β

∑ 𝐸(𝛾𝑗)
𝑝
𝑗=1

2
+𝑎β+1

.                                      (18) 

Simulations and real data applications in iDEA variant  

Following the same procedures of simulations in manuscript, we compared the 

performance of iDEA modeling on beta effect size with the commonly used GSE 

analysis methods fGSEA, CAMERA, PAGE and GSEA. We found that consistent 

with the results generated from modeling the z score, iDEA produces well-

calibrated p-values under the null in different simulation scenarios (Supplementary 

Figure 31) despite slight inflation when the number of DE genes is small. Besides 

type I error control, we found that iDEA is more powerful than the other GSE 

methods across a range of alternative scenarios at a fixed false discovery rate 

(FDR) of 5% (Supplementary Figure 32). For DE analysis, we found that iDEA can 

improve DE analysis power regardless of whether the summary statistics are from 

MAST, edgeR or zingeR (Supplementary Figure 33). For example, with 𝜏1 = 5 and 

CR = 10%, iDEA achieves a power of 84%, 61% and 84% at a true FDR of 5%, 

when it uses the input summary statistics obtained from zingeR, MAST and edgeR, 

respectively. In contrast, the power of these three different DE methods are 66%, 

53%, and 67%, respectively (Supplementary Figure 33). 

We also compared the performance of iDEA modeling on beta effect size in DE 

analysis and GSE analysis in the mouse neuronal scRNAseq dataset 

(Supplementary Figure 34). Consistent with simulations, the GSE p-values in the 

permuted data from iDEA (𝜆gc = 1.19), fGSEA (𝜆gc = 1.08), PAGE (𝜆gc = 0.99), 

and GSEA (𝜆gc = 0.94) are all well-behaved, while the p-values from CAMERA 

show severe deflation (𝜆gc = 011) (Supplementary Figure 34A). Also consistent 

with simulations, iDEA identified more significantly enriched gene sets compared 
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to the other methods (Supplementary Figure 34B). For example, at an FDR of 5%, 

iDEA identified 1205 enriched gene sets, which is four times higher than the 

second-best method (GSEA, 246). In contrast, fGSEA, CAMERA and PAGE 

identified 236, 134, and 205 enriched gene sets, respectively. Many of the top 1% 

enriched gene sets are associated with neuron structures and functions such as 

neuron projection (GO:0043005)17, neuron part (GO:0097458)18 axon 

(GO:0030424)19, synapse (GO:0045202)20 and ion transport (GO:0006811)20. In 

addition, use of iDEA recovered 98 out of the 237 gene sets known to be involved 

in inflammatory itch as provided by the original paper9. In contrast, fGSEA, 

CAMERA, PAGE, and fGSEA identified 31, 20, 19, and 29 gene sets among them, 

respectively. The recovery of more enriched gene sets relevant to inflammation 

and itch by iDEA compared to the other GSE methods provides convergent 

support for the greater power of iDEA when modeling on beta effect size directly 

compared to the other methods for GSE analysis. 

We next applied iDEA for DE analysis to identify DE genes with adding the gene 

set neuron part (GO:0097458). Again, iDEA identified more DE genes than zingeR 

(Supplementary Figure 34C). At an FDR of 1%, iDEA detected 1,222 DE genes, 

which is 23.0% higher than zingeR (993). Importantly, consistent with the power 

gain brought by iDEA, it detected 77 DE genes out of top 100 previously known 

NP1 DE genes listed in the original study, while zingeR detected 75 DE genes. 

Supplementary Note 5. Bayesian model averaging (BMA) approach 

Besides performing DE analysis in iDEA in the real data based on a pre-selected 

gene set, we also developed a new strategy to aggregate DE evidence on a 

particular gene across all gene sets through Bayesian model averaging (BMA). 

Specifically, for the given gene, we denote its posterior inclusion probability (PIP) 

obtained using the gene set k as  PIP𝑘. The corresponding Bayes factor quantifying 

its DE evidence based on the gene set k is BF𝑘 = PIP𝑘/(1 − PIP𝑘). With equal prior 

weights on different gene sets, the average Bayes factor quantifying its DE 

evidence based on all K gene sets is thus ABF =
1

𝐾
∑ BF𝑘

𝐾
𝑘=1 , which can be 

converted back to a posterior inclusion probability as PIP = ABF/(1 + ABF). We 

found that PIPs computed this way is highly correlated with the PIPs computed 

based on the pre-selected gene set (Supplementary Figure 35). We now provide 

both options for computing PIPs for quantifying DE evidence: biologists can 

choose to use pre-selected gene sets that are known to be relevant to the particular 

experiments, as is the case for all the real data applications; alternatively, 
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biologists also have the option of using the Bayesian model averaging when such 

prior knowledge is not available.  

Supplementary Note 6. Gene set overlap  

Previously we followed most existing GSE approaches and accounted for test non-

independence due to gene set overlap through permutation. In addition, we also 

performed new analysis to further examine the issue of gene set overlap in the real 

data applications. We adopted the method proposed by Jiang and Gentleman21 to 

examines pairs of gene sets one at a time. For each pair of gene set, Jiang’s 

method divides genes into three categories: one category of genes that are only in 

the first gene set, one category of genes that are only in the second gene set, and 

one category of genes that are common in both gene sets. Afterwards, Jiang’s 

method calculates three p-values, one for each category of genes. By computing 

p-values in each set, we can explicitly deconvolute the results in the presence of 

gene set overlap. Here, we mainly applied Jiang’s method to analyze the top 50 

gene sets identified by iDEA in human embryonic data and mouse neuron cell data 

in order to further dissect particular set of genes that drive the enrichment signal. 

(Note that we did not apply to all significant gene sets due to the heavy 

computational burden of Jiang’s method and the gene set overlap is moderate 

compare to the gene set size). Specifically, there are 1,225 pairwise combinations 

among top 50 gene sets. For each real data we checked, we first construct the 

pairwise combinations of gene sets among top 50 significant gene sets identified 

by iDEA and for each pair, and then we filtered out gene set pairs which has less 

than 20 genes overlap (due to computational stability). For each pair which has 

larger than 20 genes in overlap, we calculated above mentioned three categories 

of p-values. Then we checked the p-values of the category of genes that are 

common in both gene sets and the p-values of the category of genes that are 

unique in gene sets respectively. For example, in the human embryonic data, 692 

of the 1,225 gene set pairs have higher than 20 genes in overlap. For each of these 

692 gene set pairs in turn, we calculated the three p-values as mentioned in the 

previous paragraph. Among the total 2,076 adjusted p-values (Bonferroni 

correction) we calculated, 1,397 of them are less than 0.05. We first look at the 

intersection part, 35 out of 692 intersection sets have adjusted p-value is less than 

0.05. For the disjoint parts, 1,362 out of 1,384 are significant. This observation 

suggests that among the top 50 significant gene sets we identified, gene set 

specific genes are significantly enriched, suggesting that it is not the overlapped 

genes that drive the enrichment signal and that gene set overlap does not appear 

to introduce excessive false signals. We further looked at the combination of the 
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top first gene set GO:0001944 (vasculature development) (Supplementary Table 

10). From the table, we observed that the significance of this gene set is induced 

by both the overlapping parts and non-overlapping parts. Following the same 

procedure, we also applied Jiang’s method to analyze the top 50 gene sets 

identified by iDEA in the mouse sensory neuron scRNA-seq data. 1,025 out of 

1,225 gene set pairs have higher than 20 genes in overlap. For each of these 1,025 

gene set pairs in turn, we calculated the three p-values as mentioned in the 

previous paragraph. Among the total 3,075 adjusted p-values (Bonferroni 

correction) we calculated, 2,603 of them are less than 0.05. We first look at the 

intersection part, 889 out of 1,025 intersection sets have adjusted p-value is less 

than 0.05. For the disjoint parts, 1,714 out of 2,050 are significant. We further 

looked at the combination of the top first gene set GO:0044425 (obsolete 

membrane part) (Supplementary Table 11). From the table, we observed that the 

significance of this gene set is induced by both the overlapping parts and non-

overlapping parts.  

Supplementary Note 7. Cell types identification in the three scRNA-seq 

datasets  

For all the real datasets we analyzed, one of our real data contains cell types that 

are known a priori and not inferred from the whole expression matrix, while the 

other two data contain cell types that are extensively validated through approaches 

other than inferring based on the whole expression matrix. Specifically, for the 

human embryonic stem cell scRNAseq dataset, the cell types are obtained from 

fluorescence-activated cell sorting (FACS) analysis before mixing for scRNA-seq. 

FACS relies on known cell type markers and represents a somewhat unbiased 

strategy for cell type clustering22. For the mouse neuronal scRNAseq dataset, the 

cell types are initially inferred through an iterative PCA-based procedure and are 

further validated by comparing the hierarchical relationship of the neuronal types 

with the known developmental origin of sensory neuron types, as well as by 

comparing neurons with distinct and characteristic soma sizes in their identified 

neuronal class. In addition, the inferred neuronal cell types are further confirmed 

by double and triple immunohistochemical staining (e.g. NP1 cell type by staining 

of PLXNC1). For the 10x Genomics PBMC scRNASeq dataset, the identity of cell 

types was inferred by aligning cluster-specific genes to known markers of distinct 

PBMC populations as well as comparing against the transcriptomes of the purified 

populations in PBMC subsets. Their approach has been found to be largely 

consistent with conventional marker-based methods and the major cell types reach 

to the expected ratios in PBMCs. We have also displayed t-SNE plot in 
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Supplementary Figure 22, which clearly shows distinct cell clusters. Because the 

cell types in these data are validated through various approaches, the DE analysis 

results are less likely influenced by the cell type inference step as compared to 

other data that are fully relying on the whole gene expression matrix for cell type 

inference.  
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Supplementary Tables 

Supplementary Table 1. The results from iDEA to detect top 50 enriched gene 

sets on human embryonic stem cell scRNA-seq data 

Rank Gene Set Count Coefficient Variance P-value 

1 GO_VASCULATURE_DEVELOPMENT 429 0.000 0.016 7.340E-18 

2 GO_BLOOD_VESSEL_MORPHOGENESIS 332 1.203 0.021 1.070E-16 

3 SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_UP 310 1.267 0.024 3.650E-16 

4 GO_ANGIOGENESIS 268 1.344 0.028 1.310E-15 

5 LIU_PROSTATE_CANCER_DN 424 0.992 0.016 1.930E-15 

6 SWEET_LUNG_CANCER_KRAS_DN 377 1.048 0.018 4.590E-15 

7 ONDER_CDH1_TARGETS_2_DN 384 1.020 0.017 8.180E-15 

8 SMID_BREAST_CANCER_NORMAL_LIKE_UP 361 1.110 0.021 9.870E-15 

9 GO_SINGLE_ORGANISM_CELL_ADHESION 370 1.024 0.018 3.300E-14 

10 GO_ANCHORING_JUNCTION 468 0.848 0.013 5.390E-14 

11 LIM_MAMMARY_STEM_CELL_UP 443 0.906 0.015 8.270E-14 

12 PASINI_SUZ12_TARGETS_DN 305 1.076 0.021 1.410E-13 

13 BOQUEST_STEM_CELL_DN 201 1.543 0.044 2.220E-13 

14 CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHYMAL_DN 442 0.853 0.014 4.830E-13 

15 BENPORATH_ES_1 372 0.902 0.016 4.910E-13 

16 GO_REGULATION_OF_SYSTEM_PROCESS 390 0.935 0.017 1.140E-12 

17 GO_APICAL_PART_OF_CELL 281 1.108 0.024 1.210E-12 

18 GO_EXTRACELLULAR_MATRIX 326 1.011 0.020 1.440E-12 

19 GO_CELL_CELL_JUNCTION 335 0.976 0.019 1.610E-12 

20 DELYS_THYROID_CANCER_UP 379 0.933 0.017 1.770E-12 

21 GO_WOUND_HEALING 393 0.893 0.016 2.510E-12 

22 RODWELL_AGING_KIDNEY_UP 418 0.863 0.016 4.190E-12 

23 CHARAFE_BREAST_CANCER_LUMINAL_VS_BASAL_DN 402 0.863 0.016 4.500E-12 

24 GO_REGULATION_OF_VASCULATURE_DEVELOPMENT 200 1.387 0.040 5.160E-12 

25 SMID_BREAST_CANCER_LUMINAL_B_DN 428 0.853 0.015 6.110E-12 

26 SABATES_COLORECTAL_ADENOMA_DN 198 1.342 0.039 9.900E-12 

27 GO_LEUKOCYTE_MIGRATION 191 1.399 0.043 1.550E-11 

28 LINDGREN_BLADDER_CANCER_CLUSTER_2B 353 0.909 0.018 2.180E-11 

29 GO_TAXIS 366 0.892 0.018 2.540E-11 
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30 GO_POSITIVE_REGULATION_OF_MAPK_CASCADE 393 0.845 0.016 2.560E-11 

31 CREIGHTON_ENDOCRINE_THERAPY_RESISTANCE_5 431 0.793 0.014 2.880E-11 

32 GO_REGULATION_OF_BODY_FLUID_LEVELS 410 0.825 0.016 3.680E-11 

33 GO_REGULATION_OF_NEURON_PROJECTION_DEVELOPMENT 364 0.857 0.017 4.570E-11 

34 DUTERTRE_ESTRADIOL_RESPONSE_24HR_DN 487 0.732 0.012 5.480E-11 

35 GO_MEMBRANE_MICRODOMAIN 259 1.038 0.025 6.770E-11 

36 GSE2405_0H_VS_3H_A_PHAGOCYTOPHILUM_STIM_NEUTROPHIL_

UP 

178 1.335 0.043 1.400E-10 

37 WANG_RESPONSE_TO_GSK3_INHIBITOR_SB216763_DN 340 0.831 0.017 1.500E-10 

38 GO_CELL_SUBSTRATE_JUNCTION 385 0.791 0.015 1.520E-10 

39 GO_CELL_LEADING_EDGE 323 0.879 0.019 1.640E-10 

40 REACTOME_HEMOSTASIS 386 0.815 0.016 1.660E-10 

41 GO_NEGATIVE_REGULATION_OF_LOCOMOTION 227 1.075 0.028 1.710E-10 

42 GO_ACTIN_FILAMENT_BASED_PROCESS 408 0.777 0.015 1.890E-10 

43 SCHAEFFER_PROSTATE_DEVELOPMENT_48HR_UP 425 0.757 0.014 2.070E-10 

44 GO_POSITIVE_REGULATION_OF_CELL_DEVELOPMENT 407 0.779 0.015 2.120E-10 

45 GO_CELL_MORPHOGENESIS_INVOLVED_IN_DIFFERENTIATION 456 0.734 0.013 2.600E-10 

46 GO_POSITIVE_REGULATION_OF_NERVOUS_SYSTEM_DEVELOPME

NT 

374 0.801 0.016 3.540E-10 

47 CHYLA_CBFA2T3_TARGETS_UP 324 0.893 0.020 4.210E-10 

48 VERHAAK_AML_WITH_NPM1_MUTATED_DN 205 1.165 0.035 4.230E-10 

49 GO_REGULATION_OF_CELL_MORPHOGENESIS_INVOLVED_IN_DI

FFERENTIATION 

304 0.870 0.020 5.390E-10 

50 WALLACE_PROSTATE_CANCER_RACE_UP 232 1.038 0.029 8.030E-10 

P-values were determined by two-sided Wald test.  
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Supplementary Table 2. The results from iDEA to detect top 50 enriched gene 

sets on mouse neuronal cell scRNA-seq data 

Rank Gene Ontology Gene Ontology Term Count Coefficient Variance P-value 

1 GO:0044425 membrane part 3688 1.040 0.004 2.260E-72 

2 GO:0043005 neuron projection 1121 1.240 0.007 8.680E-63 

3 GO:0071944 cell periphery 2840 0.996 0.005 4.630E-63 

4 GO:0016020 membrane 5081 0.995 0.005 3.970E-63 

5 GO:0097458 neuron part 1472 1.140 0.006 4.200E-62 

6 GO:0005886 plasma membrane 2762 0.994 0.005 2.510E-62 

7 GO:0031224 intrinsic component of membrane 2845 0.934 0.005 6.740E-56 

8 GO:0044459 plasma membrane part 1498 1.040 0.006 3.880E-51 

9 GO:0045202 synapse 1108 1.130 0.007 2.210E-50 

10 GO:0006811 ion transport 978 1.180 0.008 3.850E-51 

11 GO:0044456 synapse part 867 1.190 0.009 1.420E-47 

12 GO:0016021 integral component of membrane 2758 0.877 0.005 2.020E-48 

13 GO:0006812 cation transport 699 1.280 0.010 6.760E-48 

14 GO:0030424 axon 451 1.460 0.014 1.420E-44 

15 GO:0120025 plasma membrane bounded cell projection 1588 0.948 0.006 3.180E-43 

16 GO:0036477 somatodendritic compartment 783 1.180 0.010 8.090E-43 

17 GO:0015672 monovalent inorganic cation transport 306 1.650 0.019 1.430E-42 

18 GO:0098800 inner mitochondrial membrane protein complex 101 2.700 0.054 1.410E-37 

19 GO:0042995 cell projection 1726 0.891 0.006 1.080E-39 

20 GO:0043269 regulation of ion transport 466 1.360 0.014 3.400E-39 

21 GO:0098798 mitochondrial protein complex 126 2.230 0.040 9.350E-35 

22 GO:0043209 myelin sheath 179 1.910 0.029 1.270E-35 

23 GO:0032879 regulation of localization 1923 0.828 0.006 3.380E-36 

24 GO:0051049 regulation of transport 1307 0.920 0.007 1.220E-35 

25 GO:0044455 mitochondrial membrane part 181 1.860 0.029 3.370E-34 

26 GO:0034220 ion transmembrane transport 560 1.210 0.013 5.690E-35 

27 GO:0031226 intrinsic component of plasma membrane 785 1.060 0.010 6.070E-34 

28 GO:0030425 dendrite 557 1.180 0.013 9.280E-33 

29 GO:0098793 presynapse 444 1.280 0.015 8.470E-33 

30 GO:0099536 synaptic signaling 526 1.200 0.013 1.460E-32 
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31 GO:0098590 plasma membrane region 785 1.040 0.010 1.990E-32 

32 GO:0042391 regulation of membrane potential 316 1.440 0.019 7.980E-32 

33 GO:0005887 integral component of plasma membrane 742 1.050 0.011 9.240E-32 

34 GO:0098660 inorganic ion transmembrane transport 430 1.280 0.016 1.290E-31 

35 GO:0099537 trans-synaptic signaling 518 1.190 0.014 2.100E-31 

36 GO:0008324 cation transmembrane transporter activity 404 1.310 0.017 5.890E-32 

37 GO:0098916 anterograde trans-synaptic signaling 510 1.190 0.014 6.310E-31 

38 GO:0007268 chemical synaptic transmission 510 1.190 0.014 6.310E-31 

39 GO:0090304 nucleic acid metabolic process 3107 -0.965 0.009 5.220E-31 

40 GO:0055085 transmembrane transport 785 1.020 0.010 5.800E-31 

41 GO:0098662 inorganic cation transmembrane transport 400 1.300 0.017 8.720E-31 

42 GO:0015077 monovalent inorganic cation transmembrane 

transporter activity 

222 1.620 0.026 1.630E-30 

43 GO:0098655 cation transmembrane transport 451 1.230 0.015 1.820E-30 

44 GO:0070469 respiratory chain 63 3.060 0.095 8.120E-27 

45 GO:0097060 synaptic membrane 395 1.280 0.017 1.110E-29 

46 GO:0003008 system process 975 0.929 0.009 1.050E-29 

47 GO:0023052 signaling 3404 0.662 0.005 2.460E-29 

48 GO:0005746 mitochondrial respiratory chain 60 3.030 0.097 1.720E-25 

49 GO:0003676 nucleic acid binding 2219 -1.240 0.016 6.300E-30 

50 GO:0007186 G-protein coupled receptor signaling pathway 393 1.270 0.017 8.620E-29 

P-values were determined by two-sided Wald test.  
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Supplementary Table 3. The results from iDEA to detect enriched gene 

signature on 10x Genomics PBMC scRNA-seq data 

Rank Signature Project Coefficient Variance P-value 

1 CD8+ Tem BLUEPRINT 1.780 0.121 2.960E-07 

2 CD8+ Tem NOVERSHTERN 2.240 0.359 1.860E-04 

3 CD4+ memory T-cells FANTOM 0.915 0.062 2.270E-04 

4 CD8+ Tem NOVERSHTERN 2.064 0.325 2.980E-04 

5 CD4+ memory T-cells FANTOM 0.798 0.054 5.770E-04 

6 CD8+ Tcm NOVERSHTERN 2.220 0.432 7.310E-04 

7 CD8+ Tem NOVERSHTERN 1.766 0.280 8.450E-04 

8 CD8+ T-cells HPCA 1.618 0.236 8.710E-04 

9 CD8+ Tem HPCA 1.039 0.107 1.468E-03 

10 CD8+ Tem BLUEPRINT 0.934 0.087 1.574E-03 

11 NK cells HPCA 1.558 0.250 1.827E-03 

12 CD4+ naive T-cells FANTOM 1.322 0.180 1.829E-03 

13 CD8+ T-cells BLUEPRINT 1.962 0.407 2.090E-03 

14 CD8+ Tcm NOVERSHTERN 1.727 0.330 2.637E-03 

15 Basophils NOVERSHTERN 1.765 0.356 3.082E-03 

16 CD4+ naive T-cells FANTOM 1.950 0.438 3.197E-03 

17 CD8+ Tcm HPCA 1.316 0.201 3.381E-03 

18 Tgd cells HPCA 0.983 0.113 3.493E-03 

19 CD8+ T-cells FANTOM 1.805 0.385 3.620E-03 

20 CD8+ T-cells NOVERSHTERN 1.800 0.385 3.734E-03 

21 CD4+ naive T-cells NOVERSHTERN 1.965 0.460 3.771E-03 

22 CD8+ Tem HPCA 0.924 0.118 7.164E-03 

23 CD4+ naive T-cells IRIS 1.141 0.182 7.521E-03 

24 CD8+ T-cells FANTOM 1.483 0.313 7.986E-03 

25 CD8+ T-cells BLUEPRINT 1.470 0.310 8.225E-03 

26 GMP BLUEPRINT 0.994 0.192 2.322E-02 

27 CLP BLUEPRINT 1.191 0.279 2.414E-02 

28 NK cells BLUEPRINT 1.367 0.371 2.487E-02 

29 CD4+ Tem NOVERSHTERN 0.965 0.214 3.713E-02 

30 Plasma cells BLUEPRINT -0.390 0.036 3.849E-02 

31 CD4+ Tem HPCA 0.962 0.216 3.853E-02 

32 CD4+ Tcm NOVERSHTERN 0.906 0.201 4.318E-02 
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33 CD4+ Tcm HPCA 0.788 0.170 5.575E-02 

34 MPP BLUEPRINT 0.744 0.157 6.007E-02 

35 Tgd cells HPCA 0.594 0.106 6.837E-02 

36 Tgd cells HPCA 0.629 0.121 7.110E-02 

37 B-cells NOVERSHTERN 1.051 0.340 7.134E-02 

38 NK cells HPCA 1.042 0.341 7.441E-02 

39 CD8+ naive T-cells HPCA 1.218 0.475 7.723E-02 

40 GMP BLUEPRINT 0.794 0.208 8.173E-02 

41 CD8+ naive T-cells HPCA 1.199 0.480 8.360E-02 

42 CD4+ naive T-cells HPCA 1.047 0.390 9.346E-02 

43 Hepatocytes HPCA -0.545 0.111 1.014E-01 

44 CD8+ naive T-cells HPCA 0.944 0.344 1.076E-01 

45 Hepatocytes HPCA -0.679 0.183 1.122E-01 

46 GMP BLUEPRINT 0.645 0.166 1.134E-01 

47 Hepatocytes HPCA -0.670 0.182 1.164E-01 

48 CD4+ Tcm HPCA 0.785 0.266 1.281E-01 

49 CMP HPCA 0.950 0.395 1.309E-01 

50 CD8+ Tcm BLUEPRINT 0.950 0.415 1.406E-01 

P-values were determined by two-sided Wald test.  
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Supplementary Table 4. The results from fGSEA to detect enriched gene 

signature on 10x Genomics PBMC scRNA-seq data 

Rank Signature Project P-value Adjust p-value 

1 CD4+ memory T-cells FANTOM 2.490E-04 3.987E-03 

2 CD8+ Tem NOVERSHTERN 2.740E-04 3.987E-03 

3 CD8+ Tem NOVERSHTERN 2.790E-04 3.987E-03 

4 NK cells HPCA 2.840E-04 3.987E-03 

5 CD8+ Tem NOVERSHTERN 2.870E-04 3.987E-03 

6 NK cells HPCA 2.870E-04 3.987E-03 

7 NK cells HPCA 2.970E-04 3.987E-03 

8 CD8+ Tem BLUEPRINT 3.400E-04 3.987E-03 

9 CD8+ Tem HPCA 3.550E-04 3.987E-03 

10 Tgd cells HPCA 3.580E-04 3.987E-03 

11 CD8+ Tem HPCA 3.600E-04 3.987E-03 

12 Tgd cells HPCA 3.650E-04 3.987E-03 

13 Tgd cells HPCA 3.820E-04 3.987E-03 

14 CD8+ Tem BLUEPRINT 3.880E-04 3.987E-03 

15 CD4+ memory T-cells FANTOM 5.130E-04 4.925E-03 

16 NK cells BLUEPRINT 5.470E-04 4.925E-03 

17 CD8+ Tcm NOVERSHTERN 8.210E-04 6.953E-03 

18 MPP BLUEPRINT 1.002E-03 8.016E-03 

19 CD8+ Tcm HPCA 1.225E-03 9.285E-03 

20 CD8+ Tcm NOVERSHTERN 1.420E-03 9.320E-03 

21 MPP FANTOM 1.472E-03 9.320E-03 

22 NK cells BLUEPRINT 1.472E-03 9.320E-03 

23 MPP FANTOM 1.489E-03 9.320E-03 

24 CD8+ T-cells HPCA 6.771E-03 4.062E-02 

25 Mesangial cells FANTOM 9.177E-03 5.286E-02 

26 Erythrocytes NOVERSHTERN 1.333E-02 7.385E-02 

27 Basophils NOVERSHTERN 1.587E-02 8.463E-02 

28 MPP BLUEPRINT 2.187E-02 1.124E-01 

29 Endothelial cells BLUEPRINT 2.400E-02 1.191E-01 

30 CD4+ Tcm HPCA 2.602E-02 1.249E-01 

31 mv Endothelial cells FANTOM 2.773E-02 1.288E-01 

32 CD4+ naive T-cells NOVERSHTERN 2.870E-02 1.292E-01 
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33 CD4+ T-cells FANTOM 3.786E-02 1.652E-01 

34 CD4+ memory T-cells IRIS 4.213E-02 1.784E-01 

35 CMP HPCA 5.823E-02 2.396E-01 

36 Platelets HPCA 7.049E-02 2.812E-01 

37 CD4+ naive T-cells IRIS 7.615E-02 2.812E-01 

38 CD8+ T-cells BLUEPRINT 7.718E-02 2.812E-01 

39 CD8+ T-cells FANTOM 7.718E-02 2.812E-01 

40 CD4+ Tcm NOVERSHTERN 8.359E-02 2.812E-01 

41 Platelets HPCA 8.469E-02 2.812E-01 

42 Keratinocytes FANTOM 8.705E-02 2.812E-01 

43 Epithelial cells ENCODE 9.415E-02 2.812E-01 

44 CD8+ T-cells BLUEPRINT 9.493E-02 2.812E-01 

45 Epithelial cells HPCA 9.501E-02 2.812E-01 

46 Keratinocytes ENCODE 9.501E-02 2.812E-01 

47 Keratinocytes HPCA 9.501E-02 2.812E-01 

48 Keratinocytes HPCA 9.501E-02 2.812E-01 

49 Epithelial cells HPCA 9.598E-02 2.812E-01 

50 Macrophages BLUEPRINT 9.935E-02 2.812E-01 

P-values were determined by Kolmogorov Smirnov test implemented in fGSEA and 

adjusted by Benjamin & Hochberg method. 



 58 

Supplementary Table 5. The results from CAMERA to detect enriched gene 

signature on 10x Genomics PBMC scRNA-seq data 

Rank Signature Project P-value Adjust p-value 

1 CD8+ Tem BLUEPRINT 5.650E-22 8.140E-20 

2 CD8+ Tem HPCA 2.270E-13 1.640E-11 

3 Tgd cells HPCA 6.660E-13 3.190E-11 

4 CD8+ Tem HPCA 5.270E-12 1.900E-10 

5 NK cells HPCA 9.870E-12 2.840E-10 

6 CD8+ Tem BLUEPRINT 2.570E-11 6.150E-10 

7 NK cells HPCA 2.990E-11 6.150E-10 

8 Tgd cells HPCA 5.960E-10 1.070E-08 

9 CD8+ Tem NOVERSHTERN 1.610E-07 2.500E-06 

10 NK cells HPCA 1.740E-07 2.500E-06 

11 CD8+ Tem NOVERSHTERN 2.140E-07 2.800E-06 

12 Tgd cells HPCA 2.570E-07 2.960E-06 

13 CD8+ Tcm NOVERSHTERN 2.670E-07 2.960E-06 

14 CD8+ Tcm HPCA 4.330E-07 4.450E-06 

15 CD8+ Tem NOVERSHTERN 9.720E-07 9.330E-06 

16 MPP FANTOM 1.280E-06 1.150E-05 

17 Basophils NOVERSHTERN 1.620E-06 1.370E-05 

18 NK cells BLUEPRINT 1.970E-06 1.580E-05 

19 MPP FANTOM 5.800E-06 4.400E-05 

20 CD8+ Tcm NOVERSHTERN 9.700E-06 6.980E-05 

21 CD8+ T-cells HPCA 8.830E-05 6.050E-04 

22 CD4+ memory T-cells FANTOM 5.620E-04 3.581E-03 

23 NK cells BLUEPRINT 5.780E-04 3.581E-03 

24 CD4+ memory T-cells FANTOM 5.970E-04 3.581E-03 

25 Mesangial cells FANTOM 2.573E-03 1.482E-02 

26 CD4+ memory T-cells IRIS 6.846E-03 3.792E-02 

27 Endothelial cells BLUEPRINT 1.110E-02 5.920E-02 

28 CD8+ T-cells BLUEPRINT 1.226E-02 6.302E-02 

29 MPP BLUEPRINT 1.621E-02 8.013E-02 

30 CD4+ Tcm HPCA 1.669E-02 8.013E-02 

31 CD4+ naive T-cells IRIS 2.081E-02 9.274E-02 

32 CD8+ T-cells BLUEPRINT 2.125E-02 9.274E-02 
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33 CD8+ T-cells FANTOM 2.125E-02 9.274E-02 

34 Erythrocytes NOVERSHTERN 2.239E-02 9.481E-02 

35 Platelets HPCA 3.350E-02 1.378E-01 

36 CMP HPCA 3.685E-02 1.474E-01 

37 Platelets HPCA 4.157E-02 1.608E-01 

38 CD4+ T-cells FANTOM 4.245E-02 1.608E-01 

39 mv Endothelial cells FANTOM 4.355E-02 1.608E-01 

40 MPP BLUEPRINT 5.160E-02 1.858E-01 

41 Astrocytes FANTOM 5.475E-02 1.923E-01 

42 Macrophages BLUEPRINT 5.656E-02 1.939E-01 

43 CD4+ Tcm NOVERSHTERN 5.890E-02 1.973E-01 

44 Pericytes ENCODE 7.593E-02 2.485E-01 

45 CD8+ Tcm BLUEPRINT 1.048E-01 3.355E-01 

46 CLP BLUEPRINT 1.229E-01 3.846E-01 

47 Epithelial cells HPCA 5.002E-02 1.596E-01 

48 Keratinocytes ENCODE 5.002E-02 1.563E-01 

49 Keratinocytes HPCA 5.002E-02 1.531E-01 

50 Keratinocytes HPCA 5.002E-02 1.500E-01 

P-values were determined by two-sided t-test implemented in CAMERA and adjusted by 

Benjamin & Hochberg method. 
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Supplementary Table 6. The results from PAGE to detect enriched gene 

signature on 10x Genomics PBMC scRNA-seq data 

Rank Signature Project Coefficient P-value FDR 

1 CD8+ Tem BLUEPRINT 13.915 5.140E-44 0.000 

2 CD8+ Tem HPCA 10.681 1.240E-26 0.000 

3 Tgd cells HPCA 10.443 1.580E-25 0.000 

4 CD8+ Tem BLUEPRINT 9.879 5.150E-23 0.000 

5 CD8+ Tem HPCA 9.571 1.060E-21 0.000 

6 Tgd cells HPCA 9.443 3.610E-21 0.000 

7 NK cells HPCA 9.317 1.200E-20 0.000 

8 CD8+ Tem NOVERSHTERN 9.003 2.190E-19 0.000 

9 CD8+ Tem NOVERSHTERN 8.922 4.580E-19 0.000 

10 CD8+ Tem NOVERSHTERN 8.407 4.210E-17 0.000 

11 NK cells HPCA 8.296 1.080E-16 0.000 

12 Tgd cells HPCA 8.241 1.710E-16 0.000 

13 CD8+ Tcm NOVERSHTERN 7.757 8.690E-15 0.000 

14 CD8+ Tcm HPCA 7.508 6.020E-14 0.000 

15 NK cells BLUEPRINT 6.726 1.750E-11 0.000 

16 Basophils NOVERSHTERN 6.698 2.110E-11 0.000 

17 CD8+ Tcm NOVERSHTERN 6.680 2.380E-11 0.000 

18 NK cells HPCA 6.622 3.530E-11 0.000 

19 CD8+ T-cells HPCA 6.385 1.710E-10 0.000 

20 NK cells BLUEPRINT 5.254 1.490E-07 0.000 

21 MPP FANTOM 4.911 9.070E-07 0.000 

22 MPP FANTOM 4.622 3.800E-06 0.000 

23 CD4+ memory T-cells FANTOM -3.700 2.150E-04 0.017 

24 CD4+ memory T-cells IRIS 3.690 2.240E-04 0.021 

25 CD4+ memory T-cells FANTOM -3.660 2.520E-04 0.020 

26 CD4+ T-cells FANTOM -2.990 2.793E-03 0.050 

27 CD4+ Tcm NOVERSHTERN -2.960 3.077E-03 0.052 

28 CD4+ Tcm HPCA -2.926 3.433E-03 0.050 

29 Erythrocytes NOVERSHTERN 2.849 4.392E-03 0.048 

30 CD8+ Tcm BLUEPRINT 2.748 5.995E-03 0.047 

31 Endothelial cells BLUEPRINT 2.608 9.098E-03 0.048 

32 CD8+ T-cells BLUEPRINT 2.534 1.129E-02 0.069 



 61 

33 Platelets HPCA 2.503 1.233E-02 0.082 

34 CD4+ naive T-cells NOVERSHTERN -2.442 1.461E-02 0.082 

35 MPP BLUEPRINT -2.434 1.492E-02 0.080 

36 CMP HPCA 2.325 2.005E-02 0.100 

37 Mesangial cells FANTOM 2.319 2.038E-02 0.100 

38 CD8+ T-cells BLUEPRINT 2.312 2.078E-02 0.103 

39 CD8+ T-cells FANTOM 2.312 2.078E-02 0.100 

40 Platelets HPCA 2.310 2.090E-02 0.098 

41 CD4+ naive T-cells IRIS -2.242 2.497E-02 0.105 

42 CD4+ Tem HPCA -2.221 2.636E-02 0.107 

43 CD4+ naive T-cells HPCA -2.122 3.385E-02 0.116 

44 Macrophages BLUEPRINT 2.043 4.101E-02 0.139 

45 Keratinocytes FANTOM -1.966 4.935E-02 0.164 

46 mv Endothelial cells FANTOM 1.963 4.966E-02 0.161 

47 Epithelial cells HPCA -1.960 5.002E-02 0.160 

48 Keratinocytes ENCODE -1.960 5.002E-02 0.156 

49 Keratinocytes HPCA -1.960 5.002E-02 0.153 

50 Keratinocytes HPCA -1.960 5.002E-02 0.150 

P-values were determined by two-sided t-test implemented in CAMERA. 
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Supplementary Table 7. The results from GSEA to detect enriched gene 

signature on 10x Genomics PBMC scRNA-seq data 

Rank Signature Project Coefficient P-value FDR 

1 CD4+ MEMORY T-Cells FANTOM -0.614 0.000E+00 0.036 

2 CD4+ MEMORY T-Cells FANTOM -0.622 0.000E+00 0.026 

3 CD8+ T-Cells HPCA 0.752 0.000E+00 0.023 

4 CD8+ TCM HPCA 0.762 0.000E+00 0.006 

5 CD8+ TCM NOVERSHTERN 0.822 0.000E+00 0.007 

6 CD8+ TEM BLUEPRINT 0.766 0.000E+00 0.000 

7 CD8+ TEM BLUEPRINT 0.894 0.000E+00 0.000 

8 CD8+ TEM HPCA 0.803 0.000E+00 0.000 

9 CD8+ TEM HPCA 0.816 0.000E+00 0.000 

10 CD8+ TEM NOVERSHTERN 0.922 0.000E+00 0.000 

11 CD8+ TEM NOVERSHTERN 0.895 0.000E+00 0.001 

12 MPP FANTOM 0.781 0.000E+00 0.002 

13 NK Cells BLUEPRINT 0.892 0.000E+00 0.001 

14 NK Cells HPCA 0.884 0.000E+00 0.000 

15 NK Cells HPCA 0.920 0.000E+00 0.000 

16 NK Cells HPCA 0.863 0.000E+00 0.001 

17 TGD Cells HPCA 0.816 0.000E+00 0.000 

18 TGD Cells HPCA 0.762 0.000E+00 0.000 

19 TGD Cells HPCA 0.770 0.000E+00 0.000 

20 MPP BLUEPRINT -0.698 1.422E-03 0.032 

21 CD8+ TCM NOVERSHTERN 0.870 2.513E-03 0.006 

22 CD8+ TEM NOVERSHTERN 0.876 2.740E-03 0.001 

23 MPP FANTOM 0.799 2.890E-03 0.006 

24 NK Cells BLUEPRINT 0.798 5.814E-03 0.004 

25 MESANGIAL Cells FANTOM 0.756 8.671E-03 0.030 

26 BASOPHILS NOVERSHTERN 0.788 1.405E-02 0.045 

27 ERYTHROCYTES NOVERSHTERN 0.808 2.057E-02 0.034 

28 CD4+ NAIVE T-Cells NOVERSHTERN -0.719 2.473E-02 0.252 

29 CD4+ TCM HPCA -0.621 2.493E-02 0.377 

30 MPP BLUEPRINT -0.653 2.546E-02 0.304 

31 ENDOTHELIAL Cells BLUEPRINT 0.644 2.589E-02 0.089 

32 MV ENDOTHELIAL Cells FANTOM 0.633 3.715E-02 0.077 
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33 CD4+ MEMORY T-Cells IRIS 0.753 4.040E-02 0.073 

34 CMP HPCA 0.687 5.177E-02 0.109 

35 CD4+ T-Cells FANTOM -0.645 5.247E-02 0.450 

36 CD8+ T-Cells FANTOM 0.662 6.128E-02 0.134 

37 PLATELETS HPCA 0.487 6.338E-02 0.234 

38 PLATELETS HPCA 0.517 6.507E-02 0.207 

39 CD4+ NAIVE T-Cells IRIS -0.599 6.947E-02 0.528 

40 KERATINOCYTES FANTOM -0.583 6.987E-02 0.566 

41 CD8+ T-Cells BLUEPRINT 0.662 7.003E-02 0.143 

42 KERATINOCYTES HPCA -0.602 7.133E-02 0.582 

43 EPITHELIAL Cells ENCODE -0.578 8.124E-02 0.422 

44 EPITHELIAL Cells HPCA -0.583 8.272E-02 0.394 

45 EPITHELIAL Cells HPCA -0.602 8.396E-02 0.468 

46 PERICYTES ENCODE 0.604 8.447E-02 0.181 

47 KERATINOCYTES ENCODE -0.602 8.465E-02 0.375 

48 MACROPHAGES BLUEPRINT 0.488 8.834E-02 0.272 

49 KERATINOCYTES HPCA -0.602 8.951E-02 0.508 

50 CD4+ TCM NOVERSHTERN -0.594 9.222E-02 0.353 

P-values were determined by Kolmogorov Smirnov test implemented in GSEA.  
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Supplementary Table 8. The results from iDEA to detect top 50 enriched gene 

sets among human gene sets on 10x Genomics PBMC scRNA-seq data 

Rank Gene Set Count Coefficient Variance P-value 

1 REACTOME_METABOLISM_OF_PROTEINS 144 3.018 0.041 5.864E-46 

2 GO_AMIDE_BIOSYNTHETIC_PROCESS 158 2.603 0.034 5.939E-41 

3 GO_ORGANIC_CYCLIC_COMPOUND_CATABOLIC_PROCESS 128 2.877 0.043 2.905E-39 

4 HSIAO_HOUSEKEEPING_GENES 268 2.120 0.023 3.706E-39 

5 GO_PROTEIN_TARGETING 140 2.675 0.038 4.529E-39 

6 GO_VIRAL_LIFE_CYCLE 115 3.192 0.053 9.420E-39 

7 GO_ESTABLISHMENT_OF_PROTEIN_LOCALIZATION_TO_ORGA

NELLE 

130 2.821 0.042 1.196E-38 

8 GO_RIBOSOME 116 3.045 0.050 1.742E-38 

9 REACTOME_TRANSLATION 112 3.777 0.073 2.300E-38 

10 REACTOME_METABOLISM_OF_MRNA 125 2.845 0.044 2.377E-38 

11 REACTOME_METABOLISM_OF_RNA 132 2.708 0.040 7.892E-38 

12 GO_RNA_CATABOLIC_PROCESS 109 3.343 0.060 9.977E-38 

13 GO_PROTEIN_LOCALIZATION_TO_MEMBRANE 130 2.751 0.041 1.551E-37 

14 GO_RIBONUCLEOPROTEIN_COMPLEX_BIOGENESIS 147 2.512 0.035 2.951E-37 

15 GO_ESTABLISHMENT_OF_PROTEIN_LOCALIZATION_TO_MEMB

RANE 

115 3.070 0.051 3.167E-37 

16 GO_RIBOSOME_BIOGENESIS 111 3.069 0.053 4.482E-37 

17 GO_STRUCTURAL_CONSTITUENT_OF_RIBOSOME 107 3.225 0.058 9.835E-37 

18 GO_NCRNA_PROCESSING 114 2.924 0.049 1.975E-36 

19 GSE2405_0H_VS_24H_A_PHAGOCYTOPHILUM_STIM_NEUTROP

HIL_UP 

142 2.587 0.037 2.119E-36 

20 GO_RIBOSOMAL_SUBUNIT 103 3.479 0.068 5.253E-36 

21 GO_RRNA_METABOLIC_PROCESS 103 3.342 0.064 1.752E-35 

22 GO_NCRNA_METABOLIC_PROCESS 129 2.569 0.040 3.883E-35 

23 GO_CYTOSOLIC_PART 101 3.590 0.074 5.188E-35 

24 GO_TRANSLATIONAL_INITIATION 104 3.933 0.087 9.055E-35 

25 GSE2405_0H_VS_9H_A_PHAGOCYTOPHILUM_STIM_NEUTROPH

IL_DN 

142 2.450 0.036 4.128E-34 

26 GO_PROTEIN_TARGETING_TO_MEMBRANE 97 3.780 0.086 8.355E-33 

27 GO_PROTEIN_LOCALIZATION_TO_ENDOPLASMIC_RETICULUM 97 3.855 0.090 4.666E-32 

28 GSE41978_ID2_KO_VS_ID2_KO_AND_BIM_KO_KLRG1_LOW_EF

FECTOR_CD8_TCELL_DN 

109 2.706 0.048 3.589E-30 

29 REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PROTEIN_

TARGETING_TO_MEMBRANE 

93 4.104 0.111 1.267E-29 

30 GSE42088_UNINF_VS_LEISHMANIA_INF_DC_2H_DN 106 2.613 0.048 5.764E-29 
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31 GSE42088_UNINF_VS_LEISHMANIA_INF_DC_4H_DN 104 2.481 0.048 3.176E-27 

32 GSE41978_KLRG1_HIGH_VS_LOW_EFFECTOR_CD8_TCELL_DN 86 2.750 0.061 1.203E-25 

33 GSE22886_NAIVE_BCELL_VS_NEUTROPHIL_UP 85 2.619 0.059 6.206E-25 

34 GO_CELL_SUBSTRATE_JUNCTION 114 2.229 0.042 6.560E-24 

35 GSE22886_NAIVE_TCELL_VS_DC_UP 103 2.279 0.046 9.367E-24 

36 GO_ANCHORING_JUNCTION 119 2.153 0.040 1.613E-23 

37 PECE_MAMMARY_STEM_CELL_UP 74 2.696 0.069 4.049E-22 

38 GO_ESTABLISHMENT_OF_PROTEIN_LOCALIZATION_TO_ENDO

PLASMIC_RETICULUM 

88 4.633 0.177 5.995E-22 

39 OSMAN_BLADDER_CANCER_DN 125 1.925 0.038 3.596E-21 

40 GO_LARGE_RIBOSOMAL_SUBUNIT 61 3.320 0.111 7.696E-21 

41 JISON_SICKLE_CELL_DISEASE_DN 80 2.351 0.059 3.695E-20 

42 GSE34205_HEALTHY_VS_FLU_INF_INFANT_PBMC_UP 70 2.405 0.067 6.569E-19 

43 TIEN_INTESTINE_PROBIOTICS_24HR_DN 76 2.252 0.061 1.092E-17 

44 GSE3720_UNSTIM_VS_PMA_STIM_VD2_GAMMADELTA_TCELL_

UP 

73 2.226 0.062 1.620E-17 

45 GSE26156_DOUBLE_POSITIVE_VS_CD4_SINGLE_POSITIVE_TH

YMOCYTE_UP 

79 2.099 0.057 7.262E-17 

46 GSE14000_TRANSLATED_RNA_VS_MRNA_DC_DN 80 2.044 0.056 1.214E-16 

47 GSE21927_SPLEEN_C57BL6_VS_4T1_TUMOR_BALBC_MONOCY

TES_UP 

77 2.149 0.059 1.407E-16 

48 GSE3720_UNSTIM_VS_LPS_STIM_VD2_GAMMADELTA_TCELL_

UP 

62 2.320 0.074 4.046E-16 

49 REACTOME_3_UTR_MEDIATED_TRANSLATIONAL_REGULATION 91 5.580 0.381 1.294E-15 

50 GO_NUCLEAR_TRANSCRIBED_MRNA_CATABOLIC_PROCESS_

NONSENSE_MEDIATED_DECAY 

86 5.305 0.319 1.338E-14 

P-values were determined by two-sided Wald test.  
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Supplementary Table 9. Computation time (minutes) for each GSE method 

on three real scRNA-seq datasets 

  Computation Time 

Method Human Mouse 10x Genomics 

  (n=15280,m=12033) (n=13598, m =2851) (n=13713, m =144) 

iDEA 21057  3991  24 

fGSEA 0.38 0.07 0.01 

CAMERA 0.004 0.001  0.0002 

PAGE 1.1  0.25  0.13 

GSEA 47.4 67.1 0.5 

Computation was performed on a single core of an Intel Xeon L5420 2.50 GHz processor. 

n is number of genes analyzed in the dataset; m is number of gene sets. 
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Supplementary Table 10. Results for the top first gene set GO:0001944 

(vasculature development) with the combinations of the top 50 gene sets in 

human embryonic stem cell scRNA-seq dataset 
 

P-value Adjusted 
p-value 

Set Count Set2 

1 5.456E-17 1.970E-13 intersection 332 GO_BLOOD_VESSEL_MORPHOGENESIS 

2 1.132E-02 1.000E+00 set1 97 GO_BLOOD_VESSEL_MORPHOGENESIS 

3 NA NA set2 0 GO_BLOOD_VESSEL_MORPHOGENESIS 

4 3.397E-04 1.000E+00 intersection 49 SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_UP 

5 2.937E-15 1.060E-11 set1 380 SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_UP 

6 8.564E-20 3.092E-16 set2 261 SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_UP 

7 1.327E-15 4.793E-12 intersection 268 GO_ANGIOGENESIS 

8 1.031E-03 1.000E+00 set1 161 GO_ANGIOGENESIS 

9 NA NA set2 0 GO_ANGIOGENESIS 

10 2.819E-04 1.000E+00 intersection 41 LIU_PROSTATE_CANCER_DN 

11 1.816E-14 6.557E-11 set1 388 LIU_PROSTATE_CANCER_DN 

12 9.917E-17 3.581E-13 set2 383 LIU_PROSTATE_CANCER_DN 

13 4.875E-06 1.760E-02 intersection 57 SWEET_LUNG_CANCER_KRAS_DN 

14 1.097E-12 3.960E-09 set1 372 SWEET_LUNG_CANCER_KRAS_DN 

15 4.693E-14 1.695E-10 set2 320 SWEET_LUNG_CANCER_KRAS_DN 

16 8.046E-03 1.000E+00 intersection 26 ONDER_CDH1_TARGETS_2_DN 

17 1.916E-16 6.920E-13 set1 403 ONDER_CDH1_TARGETS_2_DN 

18 5.558E-19 2.007E-15 set2 358 ONDER_CDH1_TARGETS_2_DN 

19 8.242E-03 1.000E+00 intersection 23 SMID_BREAST_CANCER_NORMAL_LIKE_UP 

20 3.566E-16 1.288E-12 set1 406 SMID_BREAST_CANCER_NORMAL_LIKE_UP 

21 5.281E-19 1.907E-15 set2 338 SMID_BREAST_CANCER_NORMAL_LIKE_UP 

22 1.746E-05 6.305E-02 intersection 64 GO_SINGLE_ORGANISM_CELL_ADHESION 

23 1.134E-13 4.096E-10 set1 365 GO_SINGLE_ORGANISM_CELL_ADHESION 

24 5.507E-14 1.989E-10 set2 306 GO_SINGLE_ORGANISM_CELL_ADHESION 

25 1.982E-04 7.158E-01 intersection 49 GO_ANCHORING_JUNCTION 

26 2.914E-14 1.052E-10 set1 380 GO_ANCHORING_JUNCTION 

27 1.095E-13 3.953E-10 set2 419 GO_ANCHORING_JUNCTION 

28 2.173E-05 7.847E-02 intersection 63 LIM_MAMMARY_STEM_CELL_UP 

29 1.648E-13 5.950E-10 set1 366 LIM_MAMMARY_STEM_CELL_UP 

30 2.416E-13 8.723E-10 set2 380 LIM_MAMMARY_STEM_CELL_UP 

31 7.076E-04 1.000E+00 intersection 38 PASINI_SUZ12_TARGETS_DN 

32 3.246E-15 1.172E-11 set1 391 PASINI_SUZ12_TARGETS_DN 

33 2.121E-14 7.658E-11 set2 267 PASINI_SUZ12_TARGETS_DN 

34 7.560E-02 1.000E+00 intersection 28 BOQUEST_STEM_CELL_DN 

35 4.837E-14 1.747E-10 set1 401 BOQUEST_STEM_CELL_DN 

36 2.507E-14 9.053E-11 set2 173 BOQUEST_STEM_CELL_DN 

37 3.372E-04 1.000E+00 intersection 39 CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHYMAL_DN 
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38 2.993E-15 1.081E-11 set1 390 CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHYMAL_DN 

39 2.370E-14 8.558E-11 set2 403 CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHYMAL_DN 

40 9.378E-02 1.000E+00 intersection 15 BENPORATH_ES_1 

41 2.749E-16 9.927E-13 set1 414 BENPORATH_ES_1 

42 1.405E-14 5.074E-11 set2 357 BENPORATH_ES_1 

43 7.779E-05 2.809E-01 intersection 45 GO_REGULATION_OF_SYSTEM_PROCESS 

44 1.130E-13 4.081E-10 set1 384 GO_REGULATION_OF_SYSTEM_PROCESS 

45 4.550E-12 1.643E-08 set2 345 GO_REGULATION_OF_SYSTEM_PROCESS 

46 3.187E-03 1.000E+00 intersection 29 GO_APICAL_PART_OF_CELL 

47 9.338E-16 3.372E-12 set1 400 GO_APICAL_PART_OF_CELL 

48 9.476E-15 3.422E-11 set2 252 GO_APICAL_PART_OF_CELL 

49 1.751E-03 1.000E+00 intersection 52 GO_EXTRACELLULAR_MATRIX 

50 9.809E-16 3.542E-12 set1 377 GO_EXTRACELLULAR_MATRIX 

51 6.689E-15 2.415E-11 set2 274 GO_EXTRACELLULAR_MATRIX 

52 4.220E-03 1.000E+00 intersection 32 GO_CELL_CELL_JUNCTION 

53 1.702E-14 6.147E-11 set1 397 GO_CELL_CELL_JUNCTION 

54 3.221E-12 1.163E-08 set2 303 GO_CELL_CELL_JUNCTION 

55 1.898E-03 1.000E+00 intersection 39 DELYS_THYROID_CANCER_UP 

56 6.755E-16 2.439E-12 set1 390 DELYS_THYROID_CANCER_UP 

57 3.937E-15 1.422E-11 set2 340 DELYS_THYROID_CANCER_UP 

58 2.988E-06 1.079E-02 intersection 68 GO_WOUND_HEALING 

59 9.462E-13 3.417E-09 set1 361 GO_WOUND_HEALING 

60 7.381E-10 2.665E-06 set2 325 GO_WOUND_HEALING 

61 3.173E-02 1.000E+00 intersection 28 RODWELL_AGING_KIDNEY_UP 

62 3.612E-17 1.304E-13 set1 401 RODWELL_AGING_KIDNEY_UP 

63 1.729E-15 6.245E-12 set2 390 RODWELL_AGING_KIDNEY_UP 

64 7.056E-03 1.000E+00 intersection 36 CHARAFE_BREAST_CANCER_LUMINAL_VS_BASAL_DN 

65 2.316E-16 8.364E-13 set1 393 CHARAFE_BREAST_CANCER_LUMINAL_VS_BASAL_DN 

66 1.085E-14 3.919E-11 set2 366 CHARAFE_BREAST_CANCER_LUMINAL_VS_BASAL_DN 

67 6.431E-09 2.322E-05 intersection 103 GO_REGULATION_OF_VASCULATURE_DEVELOPMENT 

68 1.376E-10 4.971E-07 set1 326 GO_REGULATION_OF_VASCULATURE_DEVELOPMENT 

69 1.051E-05 3.795E-02 set2 97 GO_REGULATION_OF_VASCULATURE_DEVELOPMENT 

70 2.385E-04 8.613E-01 intersection 39 SMID_BREAST_CANCER_LUMINAL_B_DN 

71 1.214E-14 4.385E-11 set1 390 SMID_BREAST_CANCER_LUMINAL_B_DN 

72 4.096E-12 1.479E-08 set2 389 SMID_BREAST_CANCER_LUMINAL_B_DN 

73 1.321E-01 1.000E+00 intersection 8 SABATES_COLORECTAL_ADENOMA_DN 

74 2.425E-17 8.757E-14 set1 421 SABATES_COLORECTAL_ADENOMA_DN 

75 9.821E-16 3.546E-12 set2 190 SABATES_COLORECTAL_ADENOMA_DN 

76 6.503E-05 2.348E-01 intersection 40 GO_LEUKOCYTE_MIGRATION 

77 9.305E-14 3.360E-10 set1 389 GO_LEUKOCYTE_MIGRATION 

78 8.733E-11 3.153E-07 set2 151 GO_LEUKOCYTE_MIGRATION 

79 7.538E-04 1.000E+00 intersection 36 LINDGREN_BLADDER_CANCER_CLUSTER_2B 
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80 3.720E-15 1.343E-11 set1 393 LINDGREN_BLADDER_CANCER_CLUSTER_2B 

81 1.359E-11 4.907E-08 set2 317 LINDGREN_BLADDER_CANCER_CLUSTER_2B 

82 2.772E-05 1.001E-01 intersection 68 GO_TAXIS 

83 7.298E-14 2.635E-10 set1 361 GO_TAXIS 

84 3.585E-10 1.294E-06 set2 298 GO_TAXIS 

85 7.764E-07 2.804E-03 intersection 73 GO_POSITIVE_REGULATION_OF_MAPK_CASCADE 

86 3.479E-12 1.256E-08 set1 356 GO_POSITIVE_REGULATION_OF_MAPK_CASCADE 

87 3.825E-08 1.381E-04 set2 320 GO_POSITIVE_REGULATION_OF_MAPK_CASCADE 

88 1.614E-02 1.000E+00 intersection 18 CREIGHTON_ENDOCRINE_THERAPY_RESISTANCE_5 

89 1.110E-15 4.007E-12 set1 411 CREIGHTON_ENDOCRINE_THERAPY_RESISTANCE_5 

90 2.149E-12 7.758E-09 set2 413 CREIGHTON_ENDOCRINE_THERAPY_RESISTANCE_5 

91 1.277E-04 4.611E-01 intersection 51 GO_REGULATION_OF_BODY_FLUID_LEVELS 

92 1.104E-12 3.986E-09 set1 378 GO_REGULATION_OF_BODY_FLUID_LEVELS 

93 7.002E-09 2.528E-05 set2 359 GO_REGULATION_OF_BODY_FLUID_LEVELS 

94 1.332E-03 1.000E+00 intersection 49 GO_REGULATION_OF_NEURON_PROJECTION_DEVELOPMENT 

95 1.639E-15 5.917E-12 set1 380 GO_REGULATION_OF_NEURON_PROJECTION_DEVELOPMENT 

96 1.633E-11 5.896E-08 set2 315 GO_REGULATION_OF_NEURON_PROJECTION_DEVELOPMENT 

97 3.274E-03 1.000E+00 intersection 37 DUTERTRE_ESTRADIOL_RESPONSE_24HR_DN 

98 7.166E-16 2.588E-12 set1 392 DUTERTRE_ESTRADIOL_RESPONSE_24HR_DN 

99 1.579E-12 5.703E-09 set2 450 DUTERTRE_ESTRADIOL_RESPONSE_24HR_DN 

100 1.335E-03 1.000E+00 intersection 30 GO_MEMBRANE_MICRODOMAIN 

101 1.734E-14 6.261E-11 set1 399 GO_MEMBRANE_MICRODOMAIN 

102 5.558E-10 2.007E-06 set2 229 GO_MEMBRANE_MICRODOMAIN 

103 6.314E-03 1.000E+00 intersection 17 GSE2405_0H_VS_3H_A_PHAGOCYTOPHILUM_STIM_NEUTROPHI
L_UP 

104 2.400E-16 8.665E-13 set1 412 GSE2405_0H_VS_3H_A_PHAGOCYTOPHILUM_STIM_NEUTROPHI
L_UP 

105 3.248E-13 1.173E-09 set2 161 GSE2405_0H_VS_3H_A_PHAGOCYTOPHILUM_STIM_NEUTROPHI
L_UP 

106 6.100E-02 1.000E+00 intersection 11 WANG_RESPONSE_TO_GSK3_INHIBITOR_SB216763_DN 

107 3.474E-17 1.255E-13 set1 418 WANG_RESPONSE_TO_GSK3_INHIBITOR_SB216763_DN 

108 3.274E-12 1.182E-08 set2 329 WANG_RESPONSE_TO_GSK3_INHIBITOR_SB216763_DN 

109 2.077E-03 1.000E+00 intersection 37 GO_CELL_SUBSTRATE_JUNCTION 

110 8.636E-16 3.118E-12 set1 392 GO_CELL_SUBSTRATE_JUNCTION 

111 4.238E-11 1.530E-07 set2 348 GO_CELL_SUBSTRATE_JUNCTION 

112 6.744E-02 1.000E+00 intersection 30 GO_CELL_LEADING_EDGE 

113 2.993E-17 1.081E-13 set1 399 GO_CELL_LEADING_EDGE 

114 5.629E-13 2.033E-09 set2 293 GO_CELL_LEADING_EDGE 

115 1.849E-04 6.677E-01 intersection 45 REACTOME_HEMOSTASIS 

116 3.583E-13 1.294E-09 set1 384 REACTOME_HEMOSTASIS 

117 3.356E-08 1.212E-04 set2 341 REACTOME_HEMOSTASIS 

118 9.548E-05 3.448E-01 intersection 48 GO_NEGATIVE_REGULATION_OF_LOCOMOTION 

119 6.438E-14 2.325E-10 set1 381 GO_NEGATIVE_REGULATION_OF_LOCOMOTION 
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120 1.304E-07 4.708E-04 set2 179 GO_NEGATIVE_REGULATION_OF_LOCOMOTION 

121 9.589E-03 1.000E+00 intersection 28 GO_ACTIN_FILAMENT_BASED_PROCESS 

122 1.619E-16 5.845E-13 set1 401 GO_ACTIN_FILAMENT_BASED_PROCESS 

123 3.258E-12 1.177E-08 set2 380 GO_ACTIN_FILAMENT_BASED_PROCESS 

124 1.755E-03 1.000E+00 intersection 29 SCHAEFFER_PROSTATE_DEVELOPMENT_48HR_UP 

125 8.673E-16 3.132E-12 set1 400 SCHAEFFER_PROSTATE_DEVELOPMENT_48HR_UP 

126 2.443E-11 8.820E-08 set2 396 SCHAEFFER_PROSTATE_DEVELOPMENT_48HR_UP 

127 1.955E-04 7.059E-01 intersection 57 GO_POSITIVE_REGULATION_OF_CELL_DEVELOPMENT 

128 8.814E-15 3.183E-11 set1 372 GO_POSITIVE_REGULATION_OF_CELL_DEVELOPMENT 

129 8.851E-10 3.196E-06 set2 350 GO_POSITIVE_REGULATION_OF_CELL_DEVELOPMENT 

130 2.947E-07 1.064E-03 intersection 74 GO_CELL_MORPHOGENESIS_INVOLVED_IN_DIFFERENTIATION 

131 5.398E-12 1.949E-08 set1 355 GO_CELL_MORPHOGENESIS_INVOLVED_IN_DIFFERENTIATION 

132 5.068E-07 1.830E-03 set2 382 GO_CELL_MORPHOGENESIS_INVOLVED_IN_DIFFERENTIATION 

133 7.329E-03 1.000E+00 intersection 49 GO_POSITIVE_REGULATION_OF_NERVOUS_SYSTEM_DEVELOP
MENT 

134 2.761E-16 9.968E-13 set1 380 GO_POSITIVE_REGULATION_OF_NERVOUS_SYSTEM_DEVELOP
MENT 

135 3.507E-11 1.266E-07 set2 325 GO_POSITIVE_REGULATION_OF_NERVOUS_SYSTEM_DEVELOP
MENT 

136 4.344E-02 1.000E+00 intersection 13 CHYLA_CBFA2T3_TARGETS_UP 

137 4.305E-17 1.555E-13 set1 416 CHYLA_CBFA2T3_TARGETS_UP 

138 4.758E-13 1.718E-09 set2 311 CHYLA_CBFA2T3_TARGETS_UP 

139 1.896E-02 1.000E+00 intersection 19 VERHAAK_AML_WITH_NPM1_MUTATED_DN 

140 2.985E-16 1.078E-12 set1 410 VERHAAK_AML_WITH_NPM1_MUTATED_DN 

141 3.932E-12 1.420E-08 set2 186 VERHAAK_AML_WITH_NPM1_MUTATED_DN 

142 7.166E-05 2.588E-01 intersection 52 GO_REGULATION_OF_CELL_MORPHOGENESIS_INVOLVED_IN_
DIFFERENTIATION 

143 1.009E-14 3.645E-11 set1 377 GO_REGULATION_OF_CELL_MORPHOGENESIS_INVOLVED_IN_
DIFFERENTIATION 

144 8.985E-09 3.244E-05 set2 252 GO_REGULATION_OF_CELL_MORPHOGENESIS_INVOLVED_IN_
DIFFERENTIATION 

145 5.122E-02 1.000E+00 intersection 12 WALLACE_PROSTATE_CANCER_RACE_UP 

146 3.360E-17 1.213E-13 set1 417 WALLACE_PROSTATE_CANCER_RACE_UP 

147 1.301E-12 4.698E-09 set2 220 WALLACE_PROSTATE_CANCER_RACE_UP 

From the second gene set to the 50th gene set, we calculate the adjusted p-values for their 

intersection with the top first gene set as well as the disjoint parts. P-values were 

determined by two-sided Wald test and adjusted by Bonferroni correction. 
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Supplementary Table 11. Results for the top first gene set GO:0044425 

(obsolete membrane part) with the combinations of the top 50 gene sets in 

mouse neuron cell scRNA-seq dataset 
 

P-value Adjusted p-value Set Count Set2 

1 5.530E-40 1.865E-36 intersection 674 GO:0043005 

2 4.480E-22 1.511E-18 dis1 3014 GO:0043005 

3 4.015E-10 1.354E-06 dis2 447 GO:0043005 

4 1.497E-50 5.047E-47 intersection 2021 GO:0071944 

5 1.346E-06 4.538E-03 dis1 1667 GO:0071944 

6 2.991E-02 1.000E+00 dis2 819 GO:0071944 

7 2.696E-55 9.092E-52 intersection 3688 GO:0016020 

8 NA NA dis1 0 GO:0016020 

9 9.927E-01 1.000E+00 dis2 1393 GO:0016020 

10 1.179E-40 3.975E-37 intersection 878 GO:0097458 

11 3.187E-19 1.075E-15 dis1 2810 GO:0097458 

12 2.933E-09 9.890E-06 dis2 594 GO:0097458 

13 1.920E-51 6.474E-48 intersection 2011 GO:0005886 

14 2.378E-06 8.018E-03 dis1 1677 GO:0005886 

15 6.089E-02 1.000E+00 dis2 751 GO:0005886 

16 3.846E-42 1.297E-38 intersection 2845 GO:0031224 

17 2.248E-09 7.580E-06 dis1 843 GO:0031224 

18 NA NA dis2 0 GO:0031224 

19 5.979E-39 2.016E-35 intersection 1498 GO:0044459 

20 1.320E-14 4.452E-11 dis1 2190 GO:0044459 

21 NA NA dis2 0 GO:0044459 

22 1.269E-36 4.278E-33 intersection 731 GO:0045202 

23 3.134E-23 1.057E-19 dis1 2957 GO:0045202 

24 1.383E-05 4.665E-02 dis2 377 GO:0045202 

25 8.956E-33 3.020E-29 intersection 801 GO:0006811 

26 1.326E-23 4.470E-20 dis1 2887 GO:0006811 

27 6.015E-07 2.028E-03 dis2 177 GO:0006811 

28 1.192E-33 4.018E-30 intersection 630 GO:0044456 

29 7.006E-26 2.363E-22 dis1 3058 GO:0044456 

30 1.153E-05 3.888E-02 dis2 237 GO:0044456 

31 3.137E-37 1.058E-33 intersection 2758 GO:0016021 

32 1.562E-13 5.266E-10 dis1 930 GO:0016021 

33 NA NA dis2 0 GO:0016021 

34 4.903E-30 1.653E-26 intersection 578 GO:0006812 
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35 9.523E-28 3.211E-24 dis1 3110 GO:0006812 

36 5.887E-07 1.985E-03 dis2 121 GO:0006812 

37 9.344E-32 3.151E-28 intersection 293 GO:0030424 

38 3.914E-33 1.320E-29 dis1 3395 GO:0030424 

39 5.490E-06 1.851E-02 dis2 158 GO:0030424 

40 4.050E-38 1.366E-34 intersection 862 GO:0120025 

41 1.999E-20 6.740E-17 dis1 2826 GO:0120025 

42 1.721E-03 1.000E+00 dis2 726 GO:0120025 

43 2.452E-28 8.269E-25 intersection 475 GO:0036477 

44 2.004E-30 6.757E-27 dis1 3213 GO:0036477 

45 4.887E-07 1.648E-03 dis2 308 GO:0036477 

46 2.091E-30 7.052E-27 intersection 256 GO:0015672 

47 4.665E-34 1.573E-30 dis1 3432 GO:0015672 

48 1.107E-03 1.000E+00 dis2 50 GO:0015672 

49 5.395E-31 1.819E-27 intersection 101 GO:0098800 

50 4.154E-39 1.401E-35 dis1 3587 GO:0098800 

51 NA NA dis2 0 GO:0098800 

52 3.955E-37 1.334E-33 intersection 905 GO:0042995 

53 1.176E-20 3.964E-17 dis1 2783 GO:0042995 

54 7.495E-03 1.000E+00 dis2 821 GO:0042995 

55 3.923E-29 1.323E-25 intersection 360 GO:0043269 

56 2.379E-32 8.022E-29 dis1 3328 GO:0043269 

57 1.795E-03 1.000E+00 dis2 106 GO:0043269 

58 3.216E-29 1.085E-25 intersection 117 GO:0098798 

59 6.701E-40 2.259E-36 dis1 3571 GO:0098798 

60 9.999E-01 1.000E+00 dis2 9 GO:0098798 

61 2.585E-17 8.716E-14 intersection 113 GO:0043209 

62 9.816E-44 3.310E-40 dis1 3575 GO:0043209 

63 2.775E-13 9.358E-10 dis2 66 GO:0043209 

64 4.657E-31 1.570E-27 intersection 1012 GO:0032879 

65 1.029E-22 3.471E-19 dis1 2676 GO:0032879 

66 4.442E-03 1.000E+00 dis2 911 GO:0032879 

67 4.250E-29 1.433E-25 intersection 780 GO:0051049 

68 3.641E-26 1.228E-22 dis1 2908 GO:0051049 

69 1.794E-03 1.000E+00 dis2 527 GO:0051049 

70 3.048E-27 1.028E-23 intersection 181 GO:0044455 

71 1.043E-38 3.516E-35 dis1 3507 GO:0044455 

72 NA NA dis2 0 GO:0044455 
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73 1.869E-24 6.304E-21 intersection 480 GO:0034220 

74 1.894E-32 6.386E-29 dis1 3208 GO:0034220 

75 1.537E-03 1.000E+00 dis2 80 GO:0034220 

76 3.455E-26 1.165E-22 intersection 785 GO:0031226 

77 7.877E-28 2.656E-24 dis1 2903 GO:0031226 

78 NA NA dis2 0 GO:0031226 

79 5.315E-23 1.792E-19 intersection 360 GO:0030425 

80 1.155E-35 3.896E-32 dis1 3328 GO:0030425 

81 5.021E-05 1.693E-01 dis2 197 GO:0030425 

82 1.638E-25 5.525E-22 intersection 351 GO:0098793 

83 4.132E-34 1.393E-30 dis1 3337 GO:0098793 

84 2.928E-02 1.000E+00 dis2 93 GO:0098793 

85 1.611E-22 5.432E-19 intersection 373 GO:0099536 

86 1.186E-35 4.001E-32 dis1 3315 GO:0099536 

87 1.159E-04 3.910E-01 dis2 153 GO:0099536 

88 5.901E-25 1.990E-21 intersection 785 GO:0098590 

89 3.558E-28 1.200E-24 dis1 2903 GO:0098590 

90 NA NA dis2 0 GO:0098590 

91 1.415E-20 4.771E-17 intersection 241 GO:0042391 

92 4.186E-39 1.411E-35 dis1 3447 GO:0042391 

93 2.728E-05 9.198E-02 dis2 75 GO:0042391 

94 5.804E-25 1.957E-21 intersection 742 GO:0005887 

95 3.588E-29 1.210E-25 dis1 2946 GO:0005887 

96 NA NA dis2 0 GO:0005887 

97 5.966E-23 2.012E-19 intersection 371 GO:0098660 

98 6.335E-35 2.136E-31 dis1 3317 GO:0098660 

99 8.762E-03 1.000E+00 dis2 59 GO:0098660 

100 1.034E-21 3.488E-18 intersection 367 GO:0099537 

101 6.286E-36 2.120E-32 dis1 3321 GO:0099537 

102 1.136E-04 3.831E-01 dis2 151 GO:0099537 

103 6.685E-23 2.254E-19 intersection 393 GO:0008324 

104 8.238E-35 2.778E-31 dis1 3295 GO:0008324 

105 1.176E-02 1.000E+00 dis2 11 GO:0008324 

106 3.790E-21 1.278E-17 intersection 359 GO:0098916 

107 1.765E-36 5.952E-33 dis1 3329 GO:0098916 

108 1.189E-04 4.008E-01 dis2 151 GO:0098916 

109 7.078E-21 2.387E-17 intersection 359 GO:0007268 

110 2.232E-36 7.526E-33 dis1 3329 GO:0007268 
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111 9.247E-05 3.118E-01 dis2 151 GO:0007268 

112 2.722E-02 1.000E+00 intersection 330 GO:0090304 

113 3.493E-53 1.178E-49 dis1 3358 GO:0090304 

114 1.120E-27 3.776E-24 dis2 2777 GO:0090304 

115 7.064E-22 2.382E-18 intersection 683 GO:0055085 

116 8.823E-32 2.975E-28 dis1 3005 GO:0055085 

117 1.605E-02 1.000E+00 dis2 102 GO:0055085 

118 4.873E-22 1.643E-18 intersection 342 GO:0098662 

119 4.432E-36 1.494E-32 dis1 3346 GO:0098662 

120 6.972E-03 1.000E+00 dis2 58 GO:0098662 

121 1.646E-23 5.549E-20 intersection 218 GO:0015077 

122 8.758E-38 2.953E-34 dis1 3470 GO:0015077 

123 8.318E-01 1.000E+00 dis2 4 GO:0015077 

124 6.827E-21 2.302E-17 intersection 383 GO:0098655 

125 2.886E-36 9.730E-33 dis1 3305 GO:0098655 

126 1.314E-03 1.000E+00 dis2 68 GO:0098655 

127 1.083E-23 3.652E-20 intersection 63 GO:0070469 

128 4.485E-44 1.512E-40 dis1 3625 GO:0070469 

129 NA NA dis2 0 GO:0070469 

130 4.109E-23 1.386E-19 intersection 395 GO:0097060 

131 3.080E-35 1.039E-31 dis1 3293 GO:0097060 

132 NA NA dis2 0 GO:0097060 

133 3.118E-21 1.051E-17 intersection 533 GO:0003008 

134 1.141E-33 3.846E-30 dis1 3155 GO:0003008 

135 1.467E-04 4.948E-01 dis2 442 GO:0003008 

136 4.334E-37 1.462E-33 intersection 1475 GO:0023052 

137 8.699E-16 2.933E-12 dis1 2213 GO:0023052 

138 6.475E-01 1.000E+00 dis2 1929 GO:0023052 

139 1.886E-22 6.361E-19 intersection 60 GO:0005746 

140 1.995E-44 6.726E-41 dis1 3628 GO:0005746 

141 NA NA dis2 0 GO:0005746 

142 9.501E-01 1.000E+00 intersection 97 GO:0003676 

143 1.564E-56 5.274E-53 dis1 3591 GO:0003676 

144 1.962E-22 6.615E-19 dis2 2122 GO:0003676 

145 2.839E-17 9.573E-14 intersection 303 GO:0007186 

146 1.206E-39 4.065E-36 dis1 3385 GO:0007186 

147 6.985E-06 2.355E-02 dis2 90 GO:0007186 



 75 

From the second gene set to the 50th gene set, we calculate the adjusted p-values for their 

intersection with the top first gene set as well as the disjoint parts. P-values were 

determined by two-sided Wald test and adjusted by Bonferroni correction. 
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