Supplementary Information

Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain

Xu et al.

1 Supplementary Figure 1. Distribution of hPSC-derived microglia in the mouse brain.

- 2 (A) Representative images from sagittal brain sections showing the distribution of xenografted hPSC-
- 3 derived microglia at six months post-transplantation. Anti-human-specific TMEM119 (hTMEM119)
- 4 staining selectively labels xenografted hPSC-derived microglia. Scale bar: 1 mm.
- 5 (B) A schematic diagram and representative images from a sagittal brain section showing the
- 6 distribution of xenografted hPSC-derived microglia at three weeks post-transplantation. Human PSC-
- 7 derived PMPs were transplanted into the lateral ventricles. Anti-human nuclei (hN) staining selectively
- 8 labels xenografted hPSC-derived donor cells. Arrow indicates the injection site. Arrowheads indicate
- 9 hN⁺ cells. Scale bar: 1 mm or 200 μm in the original or enlarged images, respectively.
- 10

Xu et al., Supplementary Fig. 2

1 Supplementary Figure 2. Identification of hPSC-derived microglia in the mouse brain.

- 2 (A) Representative images showing the morphology of hTMEM119⁺ hPSC-derived microglia in the
- 3 cerebral cortex, hippocampus (HIP), olfactory bulb (OB), cerebellum (CB) and white matter (WM) at 6
- 4 months post-transplantation. CC: corpus callosum. Scale bars: 50 μm or 20 μm in the original or
- 5 enlarged images, respectively.
- 6 (B) Representative images of P2RY12- and hN-expressing cells in the cerebral cortex, WM and OB at 6
- 7 months post-transplantation. Scale bars, 20 μm or 10 μm in the original or enlarged images,
- 8 respectively.
- 9 (C) Quantification of the percentage of P2RY12⁺ cells in total hN^+ cells (n = 7 mice). The data are
- pooled from the mice that received transplantation of microglia derived from both hESCs and hiPSCs.
 Data are presented as mean ± s.e.m.
- 11 Data are presented as mean \pm s.e.m.
- 12 (D) Representative images showing no expression of hTMEM119 and P2RY12 in the hPSC-derived
- 13 PMPs. Scale bars, 20 µm.
- 14

1 Supplementary Figure 3. Characterization of donor-derived CNS macrophages in the mouse 2 brain.

- 3 (A) Representative images of hTMEM119⁻/hN⁺/CD163⁺ choroid plexus macrophage (cpMΦ) in
- 4 choroid plexus at 6 months post-transplantation. Scale bars, 20 µm in the original or enlarged images.
- 5 (B) Representative images of hN⁺ and CD163⁺ meningeal macrophage (mMΦ) around the laminin⁺
- 6 meninges at 6 months post-transplantation. Scale bars, 20 µm in the original or enlarged images.
- 7 (C) Representative images of hN⁺ and CD163⁺ perivascular macrophages (pvMΦ) in perivascular
- 8 spaces at 6 months post-transplantation. Scale bars, 20 μm in the original or enlarged images.
- 9 (D) Representative images of CD235- and hN-expressing cells in the lateral walls of lateral ventricle
- 10 (LV) at 6 months post-transplantation. Scale bars, 20 μ m in the original or enlarged images.
- 11 (E) Representative images of Ki67- and hN-expressing cells in the olfactory bulb (OB), lateral walls of
- 12 LV, and white matter (WM) at 6 months post-transplantation. cc, corpus callosum. Scale bars, 50 µm or
- 13 20 µm in the original or enlarged images, respectively.
- 14 (F) Representative images of Ki67- and mTMEM119-expressing cells in the dentate gyrus (DG) at 3
- 15 weeks chimeric mice. Scale bars, 20 µm in the original or enlarged images.

1 Supplementary Figure 4. Characterization of Human PSC-derived microglia in the mouse brain.

- 2 Representative images of Iba1⁺/hN⁺ hPSC-derived microglia in the grey matter (GM), white matter
- (WM) and olfactory bulb (OB) at 3 weeks and 8 weeks post-transplantation. cc: corpus callosum. Scale
- bars, 20 μm in both the original and enlarged images.

Supplementary Figure 5. Characterization of synaptic pruning by hPSC-derived microglia in the

chimeric mouse brain.

- 1 2 3 4 5 6 7 (A) Representative images showing PSD95 staining after incubation with PSD95 peptide (left) or
- without PSD95 peptide (right). Scale bars, 5µm.
- (B and C) Representative 3D reconstruction of super-resolution images showing the colocalization of
- hTMEM119, PSD95, and CD68 staining in grey matter at 3 weeks (B) and 6 months (C) post-
- transplantation. Scale bars, 3 µm in the original and enlarged images.

1 Supplementary Figure 6. Functional comparison between human PSC-derived microglia and

- 2 mouse host microglia in the chimeric mouse brain.
- 3 (A) Representative 3D reconstruction images showing hTMEM119⁺ donor-derived microglia engulf
- 4 PSD95⁺ puncta in grey matter at 8 weeks post-transplantation. Very few mTMEM119⁺ mouse host
- 5 microglia interact with PSD95. Scale bars, 5 μ m or 2 μ m in the original and enlarged images.
- 6 (B) Representative 3D reconstruction images showing that hCD45⁺ hPSC-derived microglia
- 7 phagocytize OLIG2⁺ oligodendroglial cells in the corpus callosum at 3 weeks post-transplantation.
- 8 Scale bars, 5 μm.
- 9 (C) Representative 3D reconstruction of super-resolution images showing that mTMEM119⁺ mouse
- host microglia phagocytize OLIG2⁺ oligodendroglial cells in the corpus callosum in 3 weeks old chimeric mice. Scale bars, 5 µm.
- 12 (D) Representative images showing the interaction between laminin⁺ blood vessel and hCD4⁺ human
- microglia in the olfactory bulb (OB) and white matter at 8 weeks post-transplantation. Scale bars, 50 μ m.
- 15 (E) Representative images showing interaction between laminin⁺ blood vessel and mTMEME119⁺
- 16 mouse host microglia in grey matter (GM), white matter (WM) and OB at 8 weeks post-transplantation.
- 17 Scale bars, 20 µm.
- 18

Xu et al., Supplementary Fig. 7

Δ				Reads		hg19 Reads	mm10 Reads		hg19 Reads Mapped	mm10 Reads
~	Estimated	Mean Reads	Number of	Valid	Mapped to	Mapped to	Mapped to	Reads Mapped	Confidently to	Mapped Confidently
Sample	Number of Cells	per Cell	Reads	Barcodes	Genome	Genome	Genome	Confidently to Genome	Genome	to Genome
s1	6,390	14,469	92,458,639	96.80%	94.00%	7.20%	86.90%	82.00%	6.70%	75.30%
s2	8,811	10,803	95,192,063	96.70%	93.40%	7.40%	86.20%	81.80%	6.90%	74.90%
s3	6,742	15,020	101,270,517	96.50%	93.70%	14.40%	79.50%	87.30%	13.60%	73.80%
s4	8,031	12,957	104,060,861	96.60%	92.20%	4.50%	87.90%	81.80%	4.10%	77.70%
Mean	7,494	13,312	98,245,520	96.65%	93.33%	8.38%	85.13%	83.23%	7.83%	75.43%

	Human Aeno MG	mouse microglia	Astrocyte	Oligodendrocyte	Excitatory neuron	GABAergic Neuron	Neuronai precui
	2-	Corr:	Corr:	Corr:	Corr:	Corr:	Corr:
GABAergic neuron , 214, 2% Vascular, 249, 3%	10.0-	0.776	0.504	0.559	0.532	0.631	0.553
godendrocyte , 468, 5% Choroid, 132, 2%	7.5-		Corr:	Corr:	Corr:	Corr:	Corr:
DPC, 471, 5%	2.6- 0.0- 10.0-	L	0.642	0.677	0.667	0.735	0.68
	7.5	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Corr:	Corr:	Corr:	Corr:
atory iron, 11%	5.0 2.5- 0.0- 10.0-			0.707	0.731	0.704	0.806
Mouse microglia	7.5-	a second a	Sec. 20		Corr:	Corr:	Corr:
Endothelia, 1022, 11% Human Xeno MG,	2.6 - 0.0 - 10.0 -		and and		0.712	0.732	0.732
1533, 17%	7.5	1. Allow	1	Sec. Sec.		Corr:	Corr:
	2.5- 0.0- 10.0-					0.822	0.696
•	7.5- 5.0-1. Jack	and the state of the second	1. No. 1	and the second se	and the second second		Corr:
	2.6 - 0.0 - 10.0 -						0.707
	7.5- 5.0- 2.5-	in the second	Labor -		all and the second	and the second se	
	0.0 25 50 75 100	00 25 50 75 100	0.0 25 5.0 7.5 1	00.00 25 50 75 10	0.0 25 50 75 100	25 50 75 10.0 0	0 25 50 75

Supplementary Figure 7. Single-cell RNA-sequencing of hiPSC microglial chimeric mouse brains.

- 3 (A) A table summarizing the observed numbers of single-cell RNA-sequencing reads and those
- 4 matching human (hg19) or mouse (mm10) genome with high confidence. The numbers (with
- 5 percentages in parentheses) of detected mouse/human microglia, respectively, detected in each
- 6 dissected sample were: Sample 1: 442/395 (21.6%/19.3%); Sample 2: 176/274 (18.0%/28.1%);
- 7 Sample 3: 551/537 (14.6%/14.3%); Sample 4: 383/327 (17.2%/14.7%).
- 8 (B) tSNE plots showing that the 11 cell type clusters are individually reproduced in each of the four
- 9 sampled 6-month-old chimeric mouse brains. For this analysis, results from each replicate animal were
- 10 analyzed and clustered separately.
- 11 (C) tSNE plots showing the expression of representative genes in each of the 11 clusters. Blue color
- 12 saturation indicates relative log normalized counts in each cell (dot, as identified by unique barcode).
- 13 (D) A pie chart summarizing the numbers of cells (barcodes) identified within each clustered cell type.
- 14 (E) Scatter plot array showing the pairwise correlation of average expression for each cell type.
- 15 Notably, the Xeno MG and mouse microglia clusters had the highest correlation coefficient value,
- 16 0.776.

1 Supplementary Figure 8. Transcriptomic profile of Xeno MG developed in the mouse brain.

- 2 (A) Scatter plot showing correlation of human Xeno MG with human adult microglia dataset reported in
- 3 Galatro et. al., 2017. Expression levels are normalized reads per million (RPM). The 10X Genomics
- 4 data from the Human Xeno MG matched only the relatively higher levels of expression ($\log_2 \text{RPM} > 2$)
- 5 of the deeper (more RNAseq reads per sample) dataset from Galatro. However, transcripts above this
- 6 threshold exhibited a strong correlation ($r^2 = 0.3851$, p < 2.2 x 10⁻¹⁶, ANOVA comparing linear model of 7 regression with a null model).
- 8 (B) t-SNE plots for mRNA expression of acute pro-inflammatory cytokines, *IL-1\beta, IL-1\alpha, and <i>TNF-\alpha,* and 9 chronic pro-inflammatory cytokine, *IL-6* and anti-inflammatory cytokine, *IL-10*.
- 10 (C) t-SNE plots for *CST3*, *P2RY13*, *EGR1*, and *MCL1* mRNA expression (log normalized counts) within 11 the selected human Xeno MG cluster.
- 12 (D) A heatmap showing the DEGs in individual samples (n = 4 mice) of human and mouse microglia
- 13 from 6-month old chimeric mouse brains. Expression levels (log normalized counts) were normalized
- 14 to mean expression of all samples, producing a Z-score, with color assignments indicated by the 15 legend.
- 16 (E) Enriched gene ontology (GO) biological process terms for the upregulated DEGs in human Xeno
- 17 MG, plotted as the -log10 (p-value) of enrichment.
- 18 (F-H) Bar plots showing the expression (mean ± SEM, n = 4 mice) of Alzheimer's disease (AD),
- 19 schizophrenia (SCZ), or Parkinson's disease (PD)-associated genes in Xeno MG and mouse microglia.
- 20 All these genes were reported to be differentially expressed between human and mouse microglia in
- 21 Gosselin et al., 2017.
- 22 (I) Venn diagram showing that the majority of genes that were reported to be differentially expressed
- between human and mouse microglia are recapitulated in our chimeric mouse model (10 of 14 for AD, 24 of 42 for SC7, and 18 of 20 for PD)
- 24 $\,$ 34 of 42 for SCZ, and 18 of 20 for PD).

Supplementary Figure 9. Representative 3D reconstruction of super-resolution images showing hTMEM119⁺ donor-derived microglia and MBP⁺ myelin structure in the corpus callosum at after 4 weeks of control diet without cuprizone. Scale bars, 5 µm.

- 4
- 5 6

Supplementary Data 1. The top 10 enriched genes in each cluster. For each cell type cluster
 identified by Seurat analysis, the top ten genes distinguishing that cluster from all other cells are shown,
 as calculated by the FindAllMarkers function. The p-values (p_val) were calculated using a Wilcoxon
 Rank Sum test, two-tailed, and were adjusted for multiple measurements using Benjamini-Hochberg
 (p_val_adj).

11

12 Supplementary Data 2. A list of differentially expressed genes between Xeno MG and mouse

13 **microglia.** Gene expression differences between human and mouse microglial clusters were calculated

14 by the Seurat FindMarkers function. The p-values (p_val) were calculated using a Wilcoxon Rank Sum

- 15 test, two-tailed, and were adjusted for multiple measurements using Benjamini-Hochberg (p_val_adj).
- 16

17 Supplementary Table 1. A list of antibodies used.

Antibodies	Vendor/Catalog #.	Туре	Dilution	
CD163	R&D system / AF1067	Goat IgG	1:200	
CD235	Thermo Fisher Scientific / PA5-27154	Rabbit IgG	1:100	
CD43	Thermo Fisher Scientific / 14-0439-82	Mouse IgG1	1:25	
CD45	Thermo Fisher Scientific / 14-9457-82	Mouse IgG1	1:40	
CD68	Invitrogen / MA5-13324	Mouse IgG1	1:100	
CD74	Invitrogen / JF40-10	Rabbit IgG	1:200	
hTMEM119	Thermo Fisher Scientific / PA-62505	Rabbit IgG	1:400	
mTMEM119	Synaptic Systems/400011	Mouse IgG	1:100	
Human nuclei (hN)	Millipore / MAB4383	Mouse IgG1	1:100	
Iba1	Wako/ 019-19741	Rabbit IgG	1:100	
laminin	Sigma/ L9393	Rabbit IgG	1:30	
MBP	Millipore / MAB386	Rat IgG	1:100	
Ki67	Cell signaling / 9449	Mouse IgG	1:400	
Ki67	Thermo Fisher Scientific / SP6	Rabbit IgG	1:200	
OLIG2	Phosphosolutions 1538	Rabbit IgG	1:500	
PDGFRα	Santacruze / sc-398206	Mouse IgG	1:200	
PU.1	Thermo Fisher Scientific / phpu13	Mouse IgG1	1:50	
P2RY12	Invitrogen / PA5-77671	Rabbit IgG	1:100	
PSD95	Invitrogen 51-6900	Rabbit IgG	1:100	
PSD95	Abcam / ab12093	Goat IgG	1:400	
SPP1	Proteintech / 22952-1-AP	Rabbit IgG	1:200	
Synapsin I	Millipore / AB1543P	Rabbit IgG	1:400	