Supplementary Information

A Hybrid Stochastic Model of the Budding Yeast Cell Cycle

Mansooreh Ahmadian¹, John J. Tyson^{2*}, Jean Peccoud³, Yang Cao^{1*}

¹Department of Computer Science, Virginia Tech, Blacksburg, VA, USA

²Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA

³GenoFAB Inc, Fort Collins, CO, USA

*Correspondence: Yang Cao (ycao@vt.edu) and John J. Tyson (tyson@vt.ecu)

Cell cycle model

The main regulator of the cell cycle in budding yeast is a cyclin-dependent protein kinase (Cdc28) that is constitutively expressed but periodically activated and inhited during progression through the cell cycle. Cdc28 forms an active kinase by binding to two families of cyclin partners, Cln1-3 and Clb1-6, each of which is synthesized and degraded in different phases of the cell cycle. In early G1 phase, Cln3 is the only available partner of Cdc28. As a newborn cell grows, the hetero-dimer of Cln3:Cdc28 accumulates until the cell reaches a critical size, when there is sufficient Cln3:Cdc28 (and a back-up protein, Bck2) to activate the transcription factors SBF and MBF. These transcription factors are responsible for the production of Cln2 and Clb5, respectively. Cln2 accumulation induces emergence of the bud and Clb5 initiates DNA synthesis.

In G1 phase the cyclin-dependent kinase inhibitors (CKI), Sic1 and Cdc6, are in high abundance, and they inhibit the activity of Clb5:Cdc28. However, as the activity of Cln2:Cdc28 increases, these inhibitors get phosphorylated and degraded by the SCF-proteosome pathway. As a result Clb5 accumulates to initiate DNA synthesis (S phase). Clb2 is the cyclin responsible for driving the cell into mitosis (M phase). As CKIs are removed, Clb2 level rises because Clb2 activates its own transcription factor Mcm1 in an autocatalytic reaction. Rising Clb2:Cdc28 activity phosphorylates and inactivates the transcription factors SBF and MBF. In telophase, Clb2 must be degraded below a threshold so that the cell can exit mitosis and return to G1 phase. Clb2 degradation is initiated by two proteins, Cdc20 and Cdh1. Cdc20 has been kept inactive in the early stages of mitosis by the 'mitotic checkpoint complex'. When all chromosomes are properly aligned on the mitotic spindle, Cdc20 becomes active and facilitates the degradation of Clb2.

Moreover, as a yeast cell exits mitosis, Cdh1 is activated by a phosphatase, Cdc14, which has been sequestered in the nucleolus by binding to Net1. After full chromosome alignment on the metaphase plate, first Tem1 and then Cdc15 become active. Cdc15 phosphorylates Net1, which leads to the release of Cdc14. Next, Cdc14 activates Cdh1 (which takes over for Cdc20 as the primary initiator of Clb1-6 degradation in G1), and Cdc14 also activates the transcription factor, Swi5, for production of CKIs in G1 phase. In this way the scene is set for the cell to return to G1 phase, when the CKIs are abundant and all cyclins (except for Cln3) are out of the picture.

Variables, equations, reactions and parameter values

Table S1. Variables and initial values. Except for mass which is a normalized (dimensionless) variable, all other variables are based on number of molecules per cell. Initial values are given for all variables that are governed by differential equations. Some other variables are expressed in algebraic functions of the time-dependent variables, so their initial values are not listed here.

Variable	Description	Initial value
mass	Indicator of cell size (dimensionless)	1.04
Cln2	Total cyclins Cln1 and Cln2 (represented as Cln2 in the	21
	model)	
Clb5	Active forms of cyclins Clb5 and Clb6 (represented as Clb5	48
	in the model)	
Clb2	Active forms of Clb1 and Clb2 (represented as Clb2 in the	233
	model)	
Sic1	A stoichiometric inhibitor of Cdc28/Clb2 and Cdc28/Clb5	8
Sic1P	Phophorylated form of Sic1	6
C2	A complex formed by Clb2 and Sic1	149
C5	A complex formed by Clb5 and Sic1	32
C2P	Phophorylated form of C2	31
C5P	Phophorylated form of C5	6
Cdc6	A stoichiometric inhibitor of Cdc28/Clb2	22
Cdc6P	Phophorylated form of Cdc6	11
F2	A complex formed by Clb2 and Cdc6	66
F5	A complex formed by Clb5 and Cdc6	0
F2P	Phophorylated form of F2	26
F5P	Phophorylated form of F5	0

Swi5	Transcription factor for Sic1 and Cdc6	613
$Swi5_T$	Total Swi5	634
APC	Anaphase Promoting Complex	285
APCP	Active (phosphorylated) form of APC	16
$\rm Cdc20_{T}$	Total Cdc20	4059
Cdc20A	Active form of Cdc20 (an APC partner)	752
Cdh1T	Total Cdh1	1273
Cdh1	Active Cdh1 (an APC partner)	895
Tem1	A GTP-binding protein	1140
$\mathrm{Tem1}_{\mathrm{T}}$	Total Tem1	1166
Cdc15	A kinase required for nuclear division	342
$Cdc15_{T}$	Total Cdc15	518
Cdc14	A phosphatase required for mitosis exit	121
$Cdc14_{T}$	Total of Cdc14	607
Net1	A stoichiometric inhibitor of Cdc14	7
$\rm Net1_{T}$	Total Net1	838
Net1P	Phosphorylated form of Net1	-
RENT	A protein complex of Net1 and Cdc14 that regulates nucle-	324
	olar silencing and telophase	
RENTP	Phosphorylated form of RENT	-
Cdc55	Active form of CDC55 phosphatase	1161
Esp1	A protein required for sister chromatid separation	9
$Esp1_T$	Total Esp1	42
Pds1	A stoichiometric inhibitor of Esp1	2

ORI	An auxiliary variable representing proteins that signal the onset of DNA synthesis	2374
BUD	An auxiliary variable representing proteins that initiate a new bud	0
SPN	An auxiliary variable representing proteins that signal the alignment of all chromosomes	0
SBF	Transcription factor for Cln2	-
SBF_T	Total SBF	527
MBF	Transcription factor for Clb5	-
$\mathrm{MBF}_{\mathrm{T}}$	Total MBF	442
Mcm1	Transcription factor for Clb2, Cdc20 and Swi5	-
$Mcm1_T$	Total Mcm1	10363
		50
Cln3	A G1-cyclin initiating START events	90
Cln3 Bck2	A GI-cyclin initiating START events A back-up protein initiating START events	25
Cln3 Bck2 Clb5 _T	A GI-cyclin initiating START events A back-up protein initiating START events Total Clb5	25 -
$Cln3$ $Bck2$ $Clb5_{T}$ $Clb2_{T}$	A GI-cyclin initiating START events A back-up protein initiating START events Total Clb5 Total Clb2	25 - -
$Cln3$ $Bck2$ $Clb5_{T}$ $Clb2_{T}$ $Sic1_{T}$	A GI-cyclin initiating START events A back-up protein initiating START events Total Clb5 Total Clb2 Total Sic1	50 25 - - -
$Cln3$ $Bck2$ $Clb5_{T}$ $Clb2_{T}$ $Sic1_{T}$ $Cdc6_{T}$	A GI-cyclin initiating START events A back-up protein initiating START events Total Clb5 Total Clb2 Total Sic1 Total Cdc6	25 - - - -
$\begin{array}{c} \text{Cln3} \\ \text{Bck2} \\ \text{Clb5}_{\text{T}} \\ \text{Clb2}_{\text{T}} \\ \text{Sic1}_{\text{T}} \\ \text{Cdc6}_{\text{T}} \\ \text{CKI}_{\text{T}} \end{array}$	A GI-cyclin initiating START events A back-up protein initiating START events Total Clb5 Total Clb2 Total Sic1 Total Cdc6 Total cyclin inhibitors Sic1 and Cdc6	50 25 - - - - - - - - - - - - - -
Cln3 Bck2 Clb5 $_{\rm T}$ Clb2 $_{\rm T}$ Sic1 $_{\rm T}$ Cdc6 $_{\rm T}$ CKI $_{\rm T}$ mCdh1	A GI-cyclin initiating START events A back-up protein initiating START events Total Clb5 Total Clb2 Total Sic1 Total Cdc6 Total cyclin inhibitors Sic1 and Cdc6 Cdh1 messenger RNA	50 25 - - - - - 4
Cln3 Bck2 Clb5 $_{\rm T}$ Clb2 $_{\rm T}$ Sic1 $_{\rm T}$ Cdc6 $_{\rm T}$ CKI $_{\rm T}$ mCdh1 mTem1	A GI-cyclin initiating START events A back-up protein initiating START events Total Clb5 Total Clb2 Total Sic1 Total Cdc6 Total cyclin inhibitors Sic1 and Cdc6 Cdh1 messenger RNA Tem1 messenger RNA	30 25 - - - - - 4 2
Cln3 Bck2 Clb5 $_{\rm T}$ Clb2 $_{\rm T}$ Sic1 $_{\rm T}$ Cdc6 $_{\rm T}$ CKI $_{\rm T}$ mCdh1 mTem1 mCdc15	A GI-cyclin initiating START events A back-up protein initiating START events Total Clb5 Total Clb2 Total Sic1 Total Cdc6 Total cyclin inhibitors Sic1 and Cdc6 Cdh1 messenger RNA Tem1 messenger RNA Cdc15 messenger RNA	50 25 - - - - - - - - 2 2 2 2 2 2 2 2
Cln3 Bck2 Clb5 $_{\rm T}$ Clb2 $_{\rm T}$ Sic1 $_{\rm T}$ Cdc6 $_{\rm T}$ CKI $_{\rm T}$ mCdh1 mTem1 mCdc15 mCdc14	A GI-cyclin initiating START events A back-up protein initiating START events Total Clb5 Total Clb2 Total Sic1 Total Cdc6 Total cyclin inhibitors Sic1 and Cdc6 Cdh1 messenger RNA Tem1 messenger RNA Cdc15 messenger RNA Cdc14 messenger RNA	30 25 - 2 2 6

mCdc55	Cdc55 messenger RNA	4
mEsp1	Esp1 messenger RNA	2
mSBF	SBF messenger RNA	4
mMBF	MBF messenger RNA	4
mMcm1	Mcm1 messenger RNA	3
mAPC	APC messenger RNA	4
mCln2	Cln2 messenger RNA	1
mClb5	Clb5 messenger RNA	1
mClb2	Clb2 messenger RNA	4
mSic1	Sic1 messenger RNA	3
mCdc6	Cdc6 messenger RNA	4
mSwi5	Swi5 messenger RNA	9
mCdc20	Cdc20 messenger RNA	5
mPds1	Pds1 messenger RNA	4

Table S2. Equations.

$\frac{\mathrm{d}mass}{\mathrm{d}t} = k_{\mathrm{g}} \cdot mass$
$\frac{\mathrm{d}Cln2}{\mathrm{d}t} = (k'_{\mathrm{s,n2}} \cdot c_{\mathrm{cln2}} \cdot mass + k''_{\mathrm{s,n2}} \cdot \frac{c_{\mathrm{cln2}}}{c_{\mathrm{sbf}}} \cdot SBF) \cdot mass \cdot mCln2 - k_{\mathrm{d,n2}} \cdot Cln2 + k_{\mathrm{g}} \cdot Cln2$
$\frac{\mathrm{d}Clb5}{\mathrm{d}t} = (k'_{\mathrm{s,b5}} \cdot c_{\mathrm{clb5}} \cdot mass + k''_{\mathrm{s,b5}} \cdot \frac{c_{\mathrm{clb5}}}{c_{\mathrm{mbf}}} \cdot MBF) \cdot mass \cdot mClb5 + (k_{\mathrm{d3,c1}} \cdot C5P + k_{\mathrm{di,b5}} \cdot C5) + (k_{\mathrm{d3,c1}} \cdot C5P + k_{\mathrm{d1,b5}} \cdot C5) + (k_{\mathrm{d3,c1}} \cdot C5P + k_{$
$(k_{\mathrm{d3,f6}} \cdot F5\mathrm{P} + k_{\mathrm{di,f5}} \cdot F5) - (V_{\mathrm{d,b5}} + \frac{k_{\mathrm{as,b5}}}{c_{\mathrm{sic1}} \cdot mass} \cdot Sic1 + \frac{k_{\mathrm{as,f5}}}{c_{\mathrm{cdc6}} \cdot mass} \cdot Cdc6) \cdot Clb5 + k_{\mathrm{g}} \cdot Clb5$
$\frac{\mathrm{d}Clb2}{\mathrm{d}t} = (k'_{\mathrm{s},\mathrm{b2}} \cdot c_{\mathrm{clb2}} \cdot mass + k''_{\mathrm{s},\mathrm{b2}} \cdot \frac{c_{\mathrm{clb2}}}{c_{\mathrm{mcm1}}} \cdot Mcm1) \cdot mass \cdot mClb2 + (k_{\mathrm{d3,c1}} \cdot C2\mathrm{P} + k_{\mathrm{di,b2}} \cdot C2) + (k_{\mathrm{d3,c1}} \cdot C2) + (k_{d3,$
$(k_{\mathrm{d3,f6}} \cdot F2\mathrm{P} + k_{\mathrm{di,f2}} \cdot F2) - (V_{\mathrm{d,b2}} + \frac{k_{\mathrm{as,b2}}}{c_{\mathrm{sic1}} \cdot mass} \cdot Sic1 + \frac{k_{\mathrm{as,f2}}}{c_{\mathrm{cdc6}} \cdot mass} \cdot Cdc6) \cdot Clb2 + k_{\mathrm{g}} \cdot Clb2$
$\frac{\mathrm{d}Sic1}{\mathrm{d}t} = \left(k_{\mathrm{s,c1}}' \cdot c_{\mathrm{sic1}} \cdot mass + k_{\mathrm{s,c1}}'' \frac{c_{\mathrm{sic1}}}{c_{\mathrm{swi5}}} \cdot Swi5\right) \cdot mSic1 + \left(V_{\mathrm{d,b2}} + k_{\mathrm{di,b2}}\right) \cdot C2\mathrm{P} + \left(V_{\mathrm{d,b5}} + k_{\mathrm{di,b5}}\right) \cdot C$
$C5\mathbf{P} + \frac{k_{\mathrm{pp,c1}}}{c_{\mathrm{cdc14}} \cdot mass} \cdot Cdc14 \cdot Sic1\mathbf{P} - (\frac{k_{\mathrm{as,b2}}}{c_{\mathrm{clb2}} \cdot mass} \cdot Clb2 + \frac{k_{\mathrm{as,b5}}}{c_{\mathrm{clb5}} \cdot mass} \cdot Clb5 + V_{\mathrm{kp,c1}}) \cdot Sic1 + k_{\mathrm{g}} $
$\frac{\mathrm{d}Sic1P}{\mathrm{d}t} = V_{\mathrm{kp,c1}} \cdot Sic1 - \left(\frac{k_{\mathrm{pp,c1}}}{c_{\mathrm{cdc14}} \cdot mass} \cdot Cdc14 + k_{\mathrm{d3,c1}}\right) \cdot Sic1P + V_{\mathrm{d,b2}} \cdot C2P + V_{\mathrm{d,b5}} \cdot C5P + k_{\mathrm{g}} \cdot Sic1P$
$\frac{\mathrm{d}C2}{\mathrm{d}t} = \frac{k_{\mathrm{as,b2}}}{c_{\mathrm{clb2}}\cdot mass} \cdot \mathrm{Clb2} \cdot Sic1 + \frac{k_{\mathrm{pp,c1}}}{c_{\mathrm{cdc14}}\cdot mass} \cdot Cdc14 \cdot C2\mathrm{P} - (k_{\mathrm{di,b2}} + V_{\mathrm{d,b2}} + V_{\mathrm{kp,c1}}) \cdot C2 + k_{\mathrm{g}} \cdot C2$
$\frac{\mathrm{d}C5}{\mathrm{d}t} = \frac{k_{\mathrm{as,b5}}}{c_{\mathrm{clb5}}\cdot mass} \cdot \mathrm{Clb5} \cdot Sic1 + \frac{k_{\mathrm{pp,c1}}}{c_{\mathrm{cdc14}}\cdot mass} \cdot Cdc14 \cdot C5\mathrm{P} - (k_{\mathrm{di,b5}} + V_{\mathrm{d,b5}} + V_{\mathrm{kp,c1}}) \cdot C5 + k_{\mathrm{g}} \cdot C5$
$\frac{\mathrm{d}C2\mathrm{P}}{\mathrm{d}t} = V_{\mathrm{kp,c1}} \cdot C2 - \left(\frac{k_{\mathrm{pp,c1}}}{c_{\mathrm{cdc14}} \cdot mass} \cdot Cdc14 + k_{\mathrm{d3,c1}} + V_{\mathrm{d,b2}}\right) \cdot C2\mathrm{P} + k_{\mathrm{g}} \cdot C2\mathrm{P}$
$\frac{\mathrm{d}C5\mathrm{P}}{\mathrm{d}t} = V_{\mathrm{kp,c1}} \cdot C5 - \left(\frac{k_{\mathrm{pp,c1}}}{c_{\mathrm{cdc14}} \cdot mass} \cdot Cdc14 + k_{\mathrm{d3,c1}} + V_{\mathrm{d,b5}}\right) \cdot C5\mathrm{P} + k_{\mathrm{g}} \cdot C5\mathrm{P}$
$\frac{\mathrm{d}Cdc6}{\mathrm{d}t} = (k_{\mathrm{s,f6}}' \cdot c_{\mathrm{cdc6}} \cdot mass + k_{\mathrm{s,f6}}'' \cdot \frac{c_{\mathrm{cdc6}}}{c_{\mathrm{swi5}}} \cdot Swi5 + k_{\mathrm{s,f6}}'' \cdot \frac{c_{\mathrm{cdc6}}}{c_{\mathrm{sbf}}} \cdot SBF) \cdot mCdc6 + (V_{\mathrm{d,b2}} + k_{\mathrm{di,f2}}) \cdot F2 + (V_{\mathrm{d,b5}} + K_{\mathrm{di,f2}}) \cdot F2 + ($
$k_{\mathrm{di},\mathrm{f5}}) \cdot F5 + \frac{k_{\mathrm{pp},\mathrm{f6}}}{c_{\mathrm{cdc14}} \cdot mass} \cdot Cdc14 \cdot Cdc6P - (\frac{k_{\mathrm{as},\mathrm{f2}}}{c_{\mathrm{clb2}} \cdot mass} \cdot Clb2 + \frac{k_{\mathrm{as},\mathrm{f5}}}{c_{\mathrm{clb5}} \cdot mass} \cdot Clb5 + V_{\mathrm{kp},\mathrm{f6}}) \cdot Cdc6 + k_{\mathrm{g}} \cdot Cdc6$
$\frac{\mathrm{d}Cdc6\mathrm{P}}{\mathrm{d}t} = V_{\mathrm{kp,f6}} \cdot Cdc6 - \left(\frac{k_{\mathrm{pp,f6}}}{c_{\mathrm{cdc14}} \cdot mass} \cdot Cdc14 + k_{\mathrm{d3,f6}}\right) \cdot Cdc6\mathrm{P} + V_{\mathrm{d,b2}} \cdot F2\mathrm{P} + V_{\mathrm{d,b5}} \cdot F5\mathrm{P} + k_{\mathrm{g}} \cdot Cdc6\mathrm{P}$
$\frac{\mathrm{d}F2}{\mathrm{d}t} = \frac{k_{\mathrm{as},\mathrm{f2}}}{c_{\mathrm{clb2}}\cdot mass} \cdot \mathrm{Clb2} \cdot Cdc6 + \frac{k_{\mathrm{pp},\mathrm{f6}}}{c_{\mathrm{cdc14}}\cdot mass} \cdot Cdc14 \cdot F2\mathrm{P} - (k_{\mathrm{di},\mathrm{f2}} + V_{\mathrm{d},\mathrm{b2}} + V_{\mathrm{kp},\mathrm{f6}}) \cdot F2 + k_{\mathrm{g}} \cdot F2$
$\frac{\mathrm{d}F5}{\mathrm{d}t} = \frac{k_{\mathrm{as},\mathrm{f5}}}{c_{\mathrm{clb5}}\cdot mass} \cdot Clb5 \cdot Cdc6 + \frac{k_{\mathrm{pp},\mathrm{f6}}}{c_{\mathrm{cdc14}}\cdot mass} \cdot Cdc14 \cdot F5\mathrm{P} - (k_{\mathrm{di},\mathrm{f5}} + V_{\mathrm{d},\mathrm{b5}} + V_{\mathrm{kp},\mathrm{f6}}) \cdot F5 + k_{\mathrm{g}} \cdot F5$
$\frac{\mathrm{d}F2\mathrm{P}}{\mathrm{d}t} = V_{\mathrm{kp,f6}} \cdot F2 - \left(\frac{k_{\mathrm{pp,f6}}}{c_{\mathrm{cdc14}} \cdot mass} \cdot Cdc14 + k_{\mathrm{d3,f6}} + V_{\mathrm{d,b2}}\right) \cdot F2\mathrm{P} + k_{\mathrm{g}} \cdot F2\mathrm{P}$
$\frac{\mathrm{d}F5\mathrm{P}}{\mathrm{d}t} = V_{\mathrm{kp,f6}} \cdot F5 - \left(\frac{k_{\mathrm{pp,f6}}}{c_{\mathrm{cdc14}} \cdot mass} \cdot Cdc14 + k_{\mathrm{d3,f6}} + V_{\mathrm{d,b5}}\right) \cdot F5\mathrm{P} + k_{\mathrm{g}} \cdot F5\mathrm{P}$
$\frac{\mathrm{d}Swi5_{\mathrm{T}}}{\mathrm{d}t} = (k'_{\mathrm{s,swi}} \cdot c_{\mathrm{swi5}} \cdot mass + k''_{\mathrm{s,swi}} \cdot \frac{c_{\mathrm{swi5}}}{c_{\mathrm{mcm1}}} \cdot Mcm1) \cdot mSwi5 - k_{\mathrm{d,swi}} \cdot Swi5T + k_{\mathrm{g}} \cdot Swi5_{\mathrm{T}}$
$\frac{\mathrm{d}Swi5}{\mathrm{d}t} = (k'_{\mathrm{s,swi}} \cdot c_{\mathrm{swi5}} \cdot mass + k''_{\mathrm{s,swi}} \cdot \frac{c_{\mathrm{swi5}}}{c_{\mathrm{mcm1}}} \cdot Mcm1) \cdot mSwi5 + \frac{k_{\mathrm{a,swi}}}{c_{\mathrm{cdc14}} \cdot mass} \cdot Cdc14 \cdot (Swi5_{\mathrm{T}} - Mcm1) \cdot Mcm1) \cdot Mcm1) \cdot Mcm1$
$Swi5) - (k_{\rm d,swi} + \frac{k_{\rm i,swi}}{c_{\rm clb2} \cdot mass} \cdot Clb2) \cdot Swi5 + k_{\rm g} \cdot Swi5$

(continued)

$$\begin{split} & \frac{dApCP}{dt} = \frac{k_{a,apc} - \frac{S_{abc}}{S_{abc}} - Cdt2(4PC-APCP)}{k_{a,apc} - k_{a,apc} - c_{apc} - mass + APCP} + k_{g} \cdot APCP \\ & \frac{dCdc20r}{dt} = (k'_{a,20} \cdot c_{cdc20} \cdot mass + k''_{a,20} \cdot \frac{c_{cdc20}}{s_{ance}} \cdot Mcm1) \cdot mCdc20 - k_{d,20} \cdot Cdc20_T + k_{g} \cdot Cdc20_T \\ & \frac{dCdc20h}{dt} = (k'_{a,20} + \frac{k'_{a,20}}{c_{cd,20} - mass} \cdot APCP) \cdot (Cdc20_T - Cdc20A) - (k_{mad2} + k_{d,20}) \cdot Cdc20A + k_{g} \cdot Cdc20A \\ & \frac{dCdc1}{dt} = k_{s,cdh} \cdot c_{ch1} \cdot mass \cdot mCdh1 - k_{d,cdh} \cdot Cdh1_T + k_{g} \cdot Cdh1_T \\ & \frac{dCdc1}{dt} = k_{s,cdh} \cdot c_{ch1} \cdot mass \cdot mCdh1 - k_{d,cdh} \cdot Cdh1_T + k_{g} \cdot Cdh1_T \\ & \frac{dCdc1}{dt} = k_{s,cdh} \cdot c_{ch1} \cdot mass \cdot mCdh1 - k_{d,cdh} \cdot Cdh1_T + \frac{k_{s,cdh} \cdot c_{sh1} \cdot mass(Cdh1_T - Cdh1)}{k_{s,ch} \cdot c_{ch1} \cdot mass(Cdh1_T - Cdh1)} - \\ & \frac{V_{i,cdh} \cdot c_{ch1} \cdot mass(Cdh1_T + k_{g} \cdot Cdh1)}{k_{s,ch} \cdot c_{ch1} \cdot mass(Cdh1_T - Cdh1)} - \\ & \frac{V_{i,cdh} \cdot c_{ch1} \cdot mass(Cdh1_T + k_{g} \cdot Cdh1)}{k_{s,ch} \cdot c_{ch1} \cdot mass(Cdh1_T - Cdh1)} - \\ & \frac{V_{i,cdh} \cdot c_{ch1} \cdot mass(Cdh1_T + k_{g} \cdot Cdh1)}{k_{s,ch} \cdot c_{ch1} \cdot mass(Cdh1_T - Cdh1)} - \\ & \frac{V_{i,cdh} \cdot c_{ch1} \cdot mass(Cdh1_T + k_{g} \cdot Cdh1)}{k_{s,ch} \cdot c_{ch1} \cdot mass(Cdh1_T - Cdh1)} - \\ & \frac{V_{i,cdh} \cdot c_{ch1} \cdot mass(Cdh1_T + k_{g} \cdot Cdh1)}{k_{s,ch} \cdot c_{ch1} \cdot mass(Cdh1_T - Cdh1)} - \\ & \frac{V_{i,cdh} \cdot c_{ch1} \cdot mass(Cdh1_T + k_{g} \cdot Cdh1)}{k_{s,ch} \cdot c_{ch1} \cdot mass(Cdh1_T - Cdh1)} - \\ & \frac{V_{i,cdh} \cdot c_{ch1} \cdot mass(Cdh1_T + k_{g} \cdot Cdh1)}{k_{s,ch} \cdot c_{ch1} \cdot mass(Cdh1_T - Cdh1)} - \\ & \frac{V_{i,cd1} \cdot c_{ch1} \cdot mass(Cdh1_T - Cdh1)}{k_{s,ch1} \cdot c_{ch1} + c_{ch1} + c_{ch1} + k_{g} \cdot Cdc14} \cdot \\ & \frac{V_{i,cd1} \cdot mass(Cdh1_T - Cdh1)}{k_{s,ch1} \cdot c_{ch1} \cdot mass(Cdh1_T - Cdh1)} + \\ & \frac{V_{i,ch1} \cdot mass}{k_{s,ch1} \cdot c_{ch1} \cdot mass(Cdh1_T - Cdh1)} + \\ & \frac{V_{i,ch1} \cdot mass}{k_{s,ch1} \cdot c_{ch1} \cdot mass(Cdh1_T - Cdh1)} + \\ & \frac{V_{i,ch1} \cdot mass}{k_{s,ch1} \cdot c_{ch1} \cdot mass(Cdh1_T - Cdh1)} + \\ & \frac{V_{i,ch1} \cdot mass}{k_{s,ch1} \cdot c_{ch1} \cdot mass(Cdh1_T - Cdh1_T + K_{i,ch1} \cdot Cdc14_T + \\ & \frac{V_{i,ch1} \cdot mass}{k_{s,ch1} \cdot c_{ch1} \cdot mass} \cdot mCdc14 - \\ & \frac{V_{i,c$$

Table S2. (continued)

$$\begin{split} \frac{dEUD}{dt} &= k_{s,bud} \cdot (c_{bud,n2} \cdot \frac{c_{bud}}{c_{cus2}} \cdot Cln2 + c_{bud,n3} \cdot \frac{c_{au3}}{c_{au3}} \cdot Cln3 + c_{bud,b5} \cdot \frac{c_{bud}}{c_{cus3}} \cdot Clb5) - k_{d,bud} \cdot BUD + \\ k_g \cdot BUD \\ \frac{dSPN}{dt} &= \frac{k_{s,even} \cdot c_{aux} \cdot mass \cdot Clb2}{k_{s,even} \cdot c_{aux} \cdot mass \cdot dtent - k_{d,tent1} \cdot Tem1_T + k_g \cdot Tem1_T} \\ \frac{dCdcds_{T}}{dt} &= k_{s,eep11} \cdot c_{eep1} \cdot mass \cdot mTem1 - k_{d,tent1} \cdot Tem1_T + k_g \cdot Cdc15_T \\ \frac{dEBPN}{dt} &= k_{s,eep11} \cdot c_{eep1} \cdot mass \cdot mTSp1 - k_{d,eep1t} \cdot SP1_T + k_g \cdot SBF_T \\ \frac{dBBPT}{dt} &= k_{s,eep11} \cdot c_{eep1} \cdot mass \cdot mSBF - k_{d,sbf1} \cdot SBF_T + k_g \cdot SBF_T \\ \frac{dBBPT}{dt} &= k_{s,eep11} \cdot c_{md1} \cdot mass \cdot mSBF - k_{d,sbf1} \cdot SBF_T + k_g \cdot MBF_T \\ \frac{dBBPT}{dt} &= k_{s,mbf1} \cdot c_{mb1} \cdot mass \cdot mMBF - k_{d,mbf1} \cdot MBF_T + k_g \cdot MCm1_T \\ \frac{dBBPT}{dt} &= k_{s,mef1} \cdot c_{md1} \cdot mass \cdot mAPC - k_{d,apc1} \cdot APC + k_g \cdot APC \\ \frac{dClm3}{dt} &= k_{s,n3} \cdot c_{cln3} \cdot mass^2 - k_{d,n3} \cdot Cln3 + k_g \cdot Cln3 \\ \frac{dBPet2}{dt} &= k_{s,h2} \cdot c_{bck2} \cdot mass^2 - k_{d,n3} \cdot Cln3 + k_g \cdot SBF_T \\ \frac{dBPet2}{dt} &= k_{s,h2} \cdot c_{bck2} \cdot mass^2 - k_{d,n3} \cdot Cln3 + k_g \cdot SRC \\ \frac{dClm3}{dt} &= k_{s,h2} \cdot c_{bck2} \cdot mass^2 - k_{d,n3} \cdot Cln3 + k_g \cdot Cln3 \\ \frac{dPet2}{dt} &= k_{s,h2} \cdot c_{bck2} \cdot mass^2 - k_{d,n3} \cdot Cln3 + k_g \cdot SRC \\ \frac{dClm3}{dt} &= k_{s,h3} \cdot c_{bd3} \cdot J_{a,sbf} \cdot J_{a,sbf} \cdot J_{a,sbf} \cdot SBF_T \\ MBF &= G(V_{a,sbf}, V_{i,sbf}, J_{a,sbf}, J_{i,sbf}) \cdot SBF_T \\ MBF &= G(V_{a,sbf}, V_{i,sbf}, J_{a,sbf}, J_{i,sbf}) \cdot MBF_T \\ MCm1 &= (\frac{k_{a,com}}{k_{a,com}} \cdot Clb2 + F2 + F2P \\ Sicl_T &= Sicl_1 + Sicl_P + C2 + C2P + F5 + F5P \\ Clb2T &= Clb2 + C2 + C2P + F2 + F2P \\ Sicl_T &= Sicl_1 + Sicl_P + C2 + C2P + C5 + C5P \\ CdcdG_T &= Cdc4 + Cdc6P + F2 + F2P + F5 + F5P \\ Ckde_T &= Cdc14_T - RENT - Cdc14 \\ NetP &= Net1_T - Net1 - Cdc14_T + Cdc14 \\ \end{array}$$

(continued)

$\begin{split} & \text{PE} = Esp1_{\text{T}} - Esp1 \\ & V_{\text{d,b5}} = k'_{\text{d,b5}} + k''_{\text{d,b5}} \cdot Cdc20\text{A} \\ & V_{\text{d,b2}} = k'_{\text{d,b2}} + k''_{\text{d,b2}} \cdot Cdh1 + k_{\text{d,b2p}} \cdot Cdc20\text{A} \\ & V_{\text{a,sbf}} = k_{\text{a,sbf}} \cdot (e_{\text{sbf,n2}} \cdot Cln2 + e_{\text{sbf,n3}} \cdot (Cln3 + Bck2) + e_{\text{sbf,b5}} \cdot Clb5) \\ & V_{\text{i,sbf}} = k'_{\text{i,sbf}} + k''_{\text{i,sbf}}Clb2 \\ & V_{\text{kp,c1}} = k_{\text{d1,c1}} + \frac{k_{\text{d2,c1}}}{J_{\text{d2,c1}} + \text{Sic1T}} \cdot (e_{\text{c1,n3}} \cdot Cln3 + e_{\text{c1,k2}} \cdot Bck2 + e_{\text{c1,n2}} \cdot Cln2 + e_{\text{c1,b5}} \cdot Clb5 + e_{\text{c1,b2}} \cdot Clb2) \\ & V_{\text{kp,f6}} = k_{\text{d1,f6}} + \frac{k_{\text{d2,f6}}}{J_{\text{d2,f6}} + Cdc6} \cdot (e_{\text{f6,n3}} \cdot Cln3 + e_{\text{f6,k2}} \cdot Bck2 + e_{\text{f6,n2}} \cdot Cln2 + e_{\text{f6,b5}} \cdot Clb5 + e_{\text{f6,b2}} \cdot Clb2) \end{split}$
$\begin{aligned} V_{d,b5} &= k'_{d,b5} + k''_{d,b5} \cdot Cdc20A \\ \\ V_{d,b2} &= k'_{d,b2} + k''_{d,b2} \cdot Cdh1 + k_{d,b2p} \cdot Cdc20A \\ \\ V_{a,sbf} &= k_{a,sbf} \cdot (e_{sbf,n2} \cdot Cln2 + e_{sbf,n3} \cdot (Cln3 + Bck2) + e_{sbf,b5} \cdot Clb5) \\ \\ V_{i,sbf} &= k'_{i,sbf} + k''_{i,sbf}Clb2 \\ \\ V_{kp,c1} &= k_{d1,c1} + \frac{k_{d2,c1}}{J_{d2,c1} + Sic1T} \cdot (e_{c1,n3} \cdot Cln3 + e_{c1,k2} \cdot Bck2 + e_{c1,n2} \cdot Cln2 + e_{c1,b5} \cdot Clb5 + e_{c1,b2} \cdot Clb2) \\ \\ V_{kp,f6} &= k_{d1,f6} + \frac{k_{d2,f6}}{J_{d2,f6} + Cdc6} \cdot (e_{f6,n3} \cdot Cln3 + e_{f6,k2} \cdot Bck2 + e_{f6,n2} \cdot Cln2 + e_{f6,b5} \cdot Clb5 + e_{f6,b2} \cdot Clb2) \end{aligned}$
$V_{d,b2} = k'_{d,b2} + k''_{d,b2} \cdot Cdh1 + k_{d,b2p} \cdot Cdc20A$ $V_{a,sbf} = k_{a,sbf} \cdot (e_{sbf,n2} \cdot Cln2 + e_{sbf,n3} \cdot (Cln3 + Bck2) + e_{sbf,b5} \cdot Clb5)$ $V_{i,sbf} = k'_{i,sbf} + k''_{i,sbf}Clb2$ $V_{kp,c1} = k_{d1,c1} + \frac{k_{d2,c1}}{J_{d2,c1} + Sic1T} \cdot (e_{c1,n3} \cdot Cln3 + e_{c1,k2} \cdot Bck2 + e_{c1,n2} \cdot Cln2 + e_{c1,b5} \cdot Clb5 + e_{c1,b2} \cdot Clb2)$ $V_{kp,f6} = k_{d1,f6} + \frac{k_{d2,f6}}{J_{d2,f6} + Cdc6} \cdot (e_{f6,n3} \cdot Cln3 + e_{f6,k2} \cdot Bck2 + e_{f6,n2} \cdot Cln2 + e_{f6,b5} \cdot Clb5 + e_{f6,b2} \cdot Clb2)$
$V_{a,sbf} = k_{a,sbf} \cdot (e_{sbf,n2} \cdot Cln2 + e_{sbf,n3} \cdot (Cln3 + Bck2) + e_{sbf,b5} \cdot Clb5)$ $V_{i,sbf} = k'_{i,sbf} + k''_{i,sbf}Clb2$ $V_{kp,c1} = k_{d1,c1} + \frac{k_{d2,c1}}{J_{d2,c1} + Sic1T} \cdot (e_{c1,n3} \cdot Cln3 + e_{c1,k2} \cdot Bck2 + e_{c1,n2} \cdot Cln2 + e_{c1,b5} \cdot Clb5 + e_{c1,b2} \cdot Clb2)$ $V_{kp,f6} = k_{d1,f6} + \frac{k_{d2,f6}}{J_{d2,f6} + Cdc6} \cdot (e_{f6,n3} \cdot Cln3 + e_{f6,k2} \cdot Bck2 + e_{f6,n2} \cdot Cln2 + e_{f6,b5} \cdot Clb5 + e_{f6,b2} \cdot Clb2)$
$\begin{aligned} V_{i,sbf} &= k'_{i,sbf} + k''_{i,sbf}Clb2 \\ V_{kp,c1} &= k_{d1,c1} + \frac{k_{d2,c1}}{J_{d2,c1} + \text{Sic1T}} \cdot (e_{c1,n3} \cdot Cln3 + e_{c1,k2} \cdot Bck2 + e_{c1,n2} \cdot Cln2 + e_{c1,b5} \cdot Clb5 + e_{c1,b2} \cdot Clb2) \\ V_{kp,f6} &= k_{d1,f6} + \frac{k_{d2,f6}}{J_{d2,f6} + Cdc6} \cdot (e_{f6,n3} \cdot Cln3 + e_{f6,k2} \cdot Bck2 + e_{f6,n2} \cdot Cln2 + e_{f6,b5} \cdot Clb5 + e_{f6,b2} \cdot Clb2) \end{aligned}$
$V_{\rm kp,c1} = k_{\rm d1,c1} + \frac{k_{\rm d2,c1}}{J_{\rm d2,c1} + \text{Sic1T}} \cdot (e_{\rm c1,n3} \cdot Cln3 + e_{\rm c1,k2} \cdot Bck2 + e_{\rm c1,n2} \cdot Cln2 + e_{\rm c1,b5} \cdot Clb5 + e_{\rm c1,b2} \cdot Clb2)$ $V_{\rm kp,f6} = k_{\rm d1,f6} + \frac{k_{\rm d2,f6}}{J_{\rm d2,f6} + Cdc6} \cdot (e_{\rm f6,n3} \cdot Cln3 + e_{\rm f6,k2} \cdot Bck2 + e_{\rm f6,n2} \cdot Cln2 + e_{\rm f6,b5} \cdot Clb5 + e_{\rm f6,b2} \cdot Clb2)$
$V_{\rm kp,f6} = k_{\rm d1,f6} + \frac{k_{\rm d2,f6}}{J_{\rm d2,f6} + Cdc6} \cdot \left(e_{\rm f6,n3} \cdot Cln3 + e_{\rm f6,k2} \cdot Bck2 + e_{\rm f6,n2} \cdot Cln2 + e_{\rm f6,b5} \cdot Clb5 + e_{\rm f6,b2} \cdot Clb2\right)$
$V_{\rm a,cdh} = k'_{\rm a,cdh} + k''_{\rm a,cdh} \cdot Cdc14$
$V_{i,cdh} = k'_{i,cdh} + k''_{i,cdh} \cdot (e_{cdh,n3} \cdot Cln3 + e_{cdh,n2} \cdot Cln2 + e_{cdh,b2} \cdot Clb2 + e_{cdh,b5} \cdot Clb5)$
$V_{\rm pp,net} = k'_{\rm pp,net} + k''_{\rm pp,net} \cdot Cdc55$
$V_{\rm kp,net} = (k'_{\rm kp,net} + k''_{\rm kp,net} \cdot Cdc55) \cdot mass$
$V_{\rm d,55} = k'_{\rm d,55} + k''_{\rm d,55} (J_{20,55} + Cdc20A) \cdot \frac{J_{\rm pds}}{J_{\rm pds} + Pds1}$
$V_{\rm d,pds} = k'_{\rm d1,pds} + k''_{\rm d2,pds} \cdot Cdc20\mathbf{A} + k''_{\rm d3,pds} \cdot Cdh1$

Reset rules: When the normalized concentration of Clb2 (denoted as $[Clb2]_n$) drops below K_{ez} , we reset the auxiliary proteins $[BUD]_n$ and $[SPN]_n$ to zero, and divide all species in the cell, except for Cln3 and Bck2, between daughter and mother cells with a 40:60 ratio, according to observations by Di Talia *et al.* [1]. This ratio for Cln3 and Bck2 is set to 20:80 to match with the experimental observations in [2, 3]. When [Clb2]+[Clb5] drops below K_{ez2} , $[ORI]_n$ is reset to zero. These auxiliary proteins are used as flags to specify particular events (check points in the budding yeast cell cycle). That is $[BUD]_n=1$ indicates bud emergence, $[ORI]_n=1$ specifies initiation of DNA synthesis and $[SPN]_n =1$ signals that the chromosome alignment on spindle is completed.

The reset rules in our hybrid model are similar to the deterministic model by Chen *et al.* [4]. However, to prevent events from misfiring multiple times due to stochastic fluctuations in the hybrid model, we follow specific tactics [5]. In our model, there are two types of events: *First*, events that are associated with the states of certain species that change across predefined thresholds in only one direction (increasing or decreasing), taking BUD as an example. *Second*, events that are associated with the states of certain species that change across predefined thresholds in both directions (increasing and decreasing), taking Clb2 as an instance.

For the first type of events, the thresholds are set to the original predefined values at the beginning of the cell cycle. Once an event is triggered, the corresponding threshold is increased by multiplying it with a large number (e.g., 1000) to prevent misfiring.

For the second type of events, we add two dummy events to prevent misfiring. Supplementary figure S1 illustrates an example which describes the procedure we use to monitor type-two events for Clb2. The goal is to monitor the occurrence of events 2 and 4. We add events 1 and 3 to prevent misfiring of events 2 and 4 in our hybrid stochastic model. At the beginning of cell cycle, all thresholds are set to very high values except for the first event which is set to $0.5K_{ez}$. Once event *i* occurs, the threshold for *i* is set to a very large value and the threshold for event i + 1 is reset to its original predefined value. Using this procedure, we guarantee that events 2 and 4 take place in a correct manner in the presence of stochastic fluctuations.

Supplementary Figure S 1: Type-two event monitoring procedure [6]. Events 2 and 4 are the original events from the deterministic model [4]. Events 1 and 3 are the dummy events added to avoid misfiring of the original events in the presence of stochastic fluctuations. K_{ez} is a dimensionless concentration.

Reaction	Propensity Function	Reaction	Propensity Function
$\phi \to mCdh1$	$k_{ m s,mcdh1}$	$mCdh1 \rightarrow \phi$	$k_{ m d,mcdh1} \cdot mCdh1$
$\phi \to mTem1$	$k_{ m s,mtem1}$	$mTem1 \rightarrow \phi$	$k_{ m d,mtem1} \cdot mTem1$
$\phi \to mCdc15$	$k_{ m s,mcdc15}$	$mCdc15 \rightarrow \phi$	$k_{\rm d,mcdc15} \cdot mCdc15$
$\phi \rightarrow mCdc14$	$k_{ m s,mcdc14}$	$mCdc14 \rightarrow \phi$	$k_{ m d,mcdc14} \cdot mCdc14$
$\phi \to mNet1$	$k_{ m s,mnet1}$	$mNet1 \rightarrow \phi$	$k_{\rm d,mnet1} \cdot mNet1$
$\phi \to mCdc55$	$k_{ m s,mcdc55}$	$mCdc55 \rightarrow \phi$	$k_{ m d,mcdc55} \cdot mCdc55$
$\phi \to mEsp1$	$k_{ m s,mesp1}$	$mEsp1 \rightarrow \phi$	$k_{\rm d,mesp1} \cdot mEsp1$
$\phi \to mSBF$	$k_{ m s,msbf}$	$mSBF \to \phi$	$k_{\rm d,msbf} \cdot mSBF$
$\phi \to m M B F$	$k_{ m s,mmbf}$	$mMBF \rightarrow \phi$	$k_{ m d,mmbf} \cdot mMBF$
$\phi \to mMcm1$	$k_{ m s,mmcm1}$	$mMcm1 \rightarrow \phi$	$k_{ m d,mmcm1} \cdot mMcm1$
$\phi \to mAPC$	$k_{ m s,mapc}$	$mAPC \rightarrow \phi$	$k_{ m d,mapc} \cdot mAPC$
$\phi \to mCln2$	$k_{\mathrm{s,mcln2}} \cdot (k'_{\mathrm{s,n2}} \cdot c_{\mathrm{cln2}} \cdot mass + k''_{\mathrm{s,n2}} \cdot$	$mCln2 \rightarrow \phi$	$k_{ m d,mcln2} \cdot mCln2$
	$\frac{c_{\rm cln2}}{c_{\rm sbf}} \cdot SBF)$		
$\phi \to mClb5$	$k_{\mathrm{s,mclb5}} \cdot (k'_{\mathrm{s,b5}} \cdot c_{\mathrm{clb5}} \cdot mass + k''_{\mathrm{s,b5}} \cdot$	$mClb5 \rightarrow \phi$	$k_{ m d,mclb5} \cdot mClb5$
	$\frac{c_{\rm clb5}}{c_{\rm mbf}} \cdot MBF)$		
$\phi \to mClb2$	$k_{\mathrm{s,mclb2}} \cdot (k'_{\mathrm{s,b2}} \cdot c_{\mathrm{clb2}} \cdot mass + k''_{\mathrm{s,b2}} \cdot$	$mClb2 \rightarrow \phi$	$k_{ m d,mclb2} \cdot mClb2$
	$\frac{c_{\rm clb2}}{c_{\rm mcm1}} \cdot Mcm1)$		
$\phi \to mSic1$	$k_{\mathrm{s,msic1}} \cdot (k_{\mathrm{s,c1}}' \cdot c_{\mathrm{sic1}} \cdot mass + k_{\mathrm{s,c1}}'' \frac{c_{\mathrm{sic1}}}{c_{\mathrm{swi5}}} \cdot$	$mSic1 \rightarrow \phi$	$k_{\rm d,msic1} \cdot mSic1$
	Swi5)		
$\phi \to mCdc6$	$k_{ m s,mcdc6} \cdot (k_{ m s,f6}' \cdot c_{ m cdc6} \cdot mass + k_{ m s,f6}'' \cdot$	$mCdc6 \rightarrow \phi$	$k_{ m d,mcdc6} \cdot mCdc6$
	$\frac{c_{\rm cdc6}}{c_{\rm swi5}} \cdot Swi5 + k_{\rm s,f6}^{\prime\prime\prime} \cdot \frac{c_{\rm cdc6}}{c_{\rm sbf}} \cdot SBF)$		

Table S3. Reaction channels and corresponding propensity functions for the slow subset in the hybrid model.

$\phi \to mSwi5$	$k_{\mathrm{s,mswi5}} \cdot (k_{\mathrm{s,swi}}' \cdot c_{\mathrm{swi5}} \cdot mass + k_{\mathrm{s,swi}}'' \cdot$	$mSwi5 \rightarrow \phi$	$k_{ m d,mswi5} \cdot mSwi5$
	$rac{c_{ m swi5}}{c_{ m mcm1}} \cdot Mcm1)$		
$\phi \to mCdc20$	$k_{\mathrm{s},\mathrm{mcdc20}} \cdot (k_{\mathrm{s},\mathrm{20}}^\prime \cdot c_{\mathrm{cdc20}} \cdot mass + k_{\mathrm{s},\mathrm{20}}^{\prime\prime} \cdot$	$mCdc20 \rightarrow \phi$	$k_{ m d,mcdc20} \cdot mCdc20$
	$\frac{c_{ m cdc20}}{c_{ m mcm1}} \cdot Mcm1)$		
$\phi \to mPds1$	$k_{\mathrm{s,mpds1}} \cdot (k_{\mathrm{s,pds}}' \cdot c_{\mathrm{pds1}} \cdot mass + k_{\mathrm{s1,pds}}'' \cdot$	$mPds1 \rightarrow \phi$	$k_{ m d,mpsd1} \cdot mPds1$
	$\frac{c_{\text{pds1}}}{c_{\text{sbf}}} \cdot SBF + k_{\text{s2,pds}}'' \cdot \frac{c_{\text{pds1}}}{c_{\text{mcm1}}} \cdot Mcm1)$		

$k_{\rm g} = 0.0072$	$k_{\rm s,n2}^\prime=0$	$k_{\rm s,n2}^{\prime\prime} = 0.03$	$k_{\rm d,n2} = 0.12$
$k'_{ m s,b5} = 0.0001$	$k_{\rm s,b5}'' = 0.0007$	$k'_{\rm d3,c1}=1$	$k_{ m di,b5} = 0.06$
$k_{\rm as, f5}=0.01$	$k_{\rm d3,f6} = 1$	$k_{ m di,f5} = 0.01$	$k_{\rm as,b5} = 50$
$k'_{\rm s,b2} = 0.0003$	$k_{\rm s,b2}'' = 0.0114$	$k_{\rm di,b2} = 0.05$	$k_{\rm di,f2} = 0.5$
$k_{\rm as,b2} = 50$	$k_{\rm as,f2} = 15$	$k'_{\rm s,c1} = 0.0036$	$k_{\rm s,c1}'' = 0.0359$
$k_{\rm pp,c1} = 4$	$k_{\rm s,f6}' = 0.0059$	$k_{\rm s,f6}^{\prime\prime} = 0.0295$	$k_{\rm s,f6}^{\prime\prime\prime} = 0.0001$
$k_{\rm pp,f6} = 4$	$k_{\rm s,swi}^\prime=0.0007$	$k_{\rm s,swi}^{\prime\prime}=0.0114$	$k_{\rm d,swi} = 0.08$
$k_{\rm a,swi} = 2$	$k_{\rm i,swi} = 0.05$	$k_{\rm a,apc} = 0.1$	$k_{\rm i,apc} = 0.15$
$k'_{\rm s,20} = 0.0014$	$k_{\rm s,20}'' = 0.1364$	$k'_{\rm a,20} = 0.05$	$k_{\rm a,20}'' = 0.2$
$k_{\rm d,20} = 0.3$	$k_{\rm s,cdh} = 0.0014$	$k_{\rm d,cdh} = 0.01$	$k'_{\rm a,15} = 0.002$
$k_{\rm a,15}'' = 1$	$k_{\rm a,15}^{\prime\prime\prime} = 0.001$	$k_{\rm i,15} = 0.5$	$k_{\rm s,14} = 0.02$
$k_{\rm d,14} = 0.1$	$k_{\rm d,net} = 0.03$	$k_{\rm di,rent} = 1$	$k_{\rm di,rentp} = 2$
$k_{\rm as,rent} = 200$	$k_{\rm as,rentp} = 1$	$k_{\rm s,net}=0.0134$	$k_{\rm s,55} = 0.0143$
$k_{ m s,pds}^\prime=0$	$k_{\rm s1,pds}'' = 0.0043$	$k_{\rm s2,pds}^{\prime\prime} = 0.0079$	$k_{\rm di,esp} = 0.5$
$\frac{k'_{\rm s,pds} = 0}{k_{\rm as,esp} = 50}$	$k_{\rm s1,pds}^{\prime\prime}=0.0043$ $k_{\rm s,ori}=2$	$k_{ m s2,pds}'' = 0.0079$ $k_{ m d,ori} = 0.06$	$k_{ m di,esp} = 0.5$ $k_{ m s,bud} = 0.2$
$k'_{\rm s,pds} = 0$ $k_{\rm as,esp} = 50$ $k_{\rm d,bud} = 0.06$	$k_{\rm s1,pds}^{\prime\prime} = 0.0043$ $k_{\rm s,ori} = 2$ $k_{\rm s,spn} = 0.1$	$k_{ m s2,pds}'' = 0.0079$ $k_{ m d,ori} = 0.06$ $k_{ m d,spn} = 0.06$	$k_{\rm di,esp} = 0.5$ $k_{\rm s,bud} = 0.2$ $k_{\rm s,tem1t} = 0.0150$
$k'_{s,pds} = 0$ $k_{as,esp} = 50$ $k_{d,bud} = 0.06$ $k_{d,tem1t} = 0.046$	$k_{\rm s1,pds}'' = 0.0043$ $k_{\rm s,ori} = 2$ $k_{\rm s,spn} = 0.1$ $k_{\rm s,cdc15t} = 0.0142$	$k_{s2,pds}'' = 0.0079$ $k_{d,ori} = 0.06$ $k_{d,spn} = 0.06$ $k_{d,cdc15t} = 0.046$	$k_{\rm di,esp} = 0.5$ $k_{\rm s,bud} = 0.2$ $k_{\rm s,tem1t} = 0.0150$ $k_{\rm s,esp1t} = 0.0139$
$k'_{s,pds} = 0$ $k_{as,esp} = 50$ $k_{d,bud} = 0.06$ $k_{d,tem1t} = 0.046$ $k_{d,esp1t} = 0.046$	$k_{s1,pds}'' = 0.0043$ $k_{s,ori} = 2$ $k_{s,spn} = 0.1$ $k_{s,cdc15t} = 0.0142$ $k_{s,sbft} = 0.007$	$k_{\rm s2,pds}'' = 0.0079$ $k_{\rm d,ori} = 0.06$ $k_{\rm d,spn} = 0.06$ $k_{\rm d,cdc15t} = 0.046$ $k_{\rm d,sbft} = 0.0462$	$k_{\rm di,esp} = 0.5$ $k_{\rm s,bud} = 0.2$ $k_{\rm s,tem1t} = 0.0150$ $k_{\rm s,esp1t} = 0.0139$ $k_{\rm a,mcm} = 5$
$k'_{s,pds} = 0$ $k_{as,esp} = 50$ $k_{d,bud} = 0.06$ $k_{d,tem1t} = 0.046$ $k_{d,esp1t} = 0.046$ $k_{s,mbft} = 0.0066$	$k_{s1,pds}'' = 0.0043$ $k_{s,ori} = 2$ $k_{s,spn} = 0.1$ $k_{s,cdc15t} = 0.0142$ $k_{s,sbft} = 0.007$ $k_{d,mbft} = 0.046$	$k_{s2,pds}'' = 0.0079$ $k_{d,ori} = 0.06$ $k_{d,spn} = 0.06$ $k_{d,cdc15t} = 0.046$ $k_{d,sbft} = 0.0462$ $k_{s,apct} = 0.0065$	$k_{\rm di,esp} = 0.5$ $k_{\rm s,bud} = 0.2$ $k_{\rm s,tem1t} = 0.0150$ $k_{\rm s,esp1t} = 0.0139$ $k_{\rm a,mcm} = 5$ $k_{\rm d,apct} = 0.0462$
$k'_{s,pds} = 0$ $k_{as,esp} = 50$ $k_{d,bud} = 0.06$ $k_{d,tem1t} = 0.046$ $k_{d,esp1t} = 0.046$ $k_{s,mbft} = 0.0066$ $k_{s,mcm1t} = 0.0078$	$k_{s1,pds}'' = 0.0043$ $k_{s,ori} = 2$ $k_{s,spn} = 0.1$ $k_{s,cdc15t} = 0.0142$ $k_{s,sbft} = 0.007$ $k_{d,mbft} = 0.046$ $k_{d,mcm1t} = 0.046$	$k_{s2,pds}'' = 0.0079$ $k_{d,ori} = 0.06$ $k_{d,spn} = 0.06$ $k_{d,cdc15t} = 0.046$ $k_{d,sbft} = 0.0462$ $k_{s,apct} = 0.0065$ $k_{i,mcm} = 0.15$	$k_{\rm di,esp} = 0.5$ $k_{\rm s,bud} = 0.2$ $k_{\rm s,tem1t} = 0.0150$ $k_{\rm s,esp1t} = 0.0139$ $k_{\rm a,mcm} = 5$ $k_{\rm d,apct} = 0.0462$ $k''_{\rm d3,pds} = 0.04$
$k'_{s,pds} = 0$ $k_{as,esp} = 50$ $k_{d,bud} = 0.06$ $k_{d,tem1t} = 0.046$ $k_{d,esp1t} = 0.046$ $k_{s,mbft} = 0.0066$ $k_{s,mcm1t} = 0.0078$ $k_{a,sbf} = 0.38$	$k_{\rm s1,pds}'' = 0.0043$ $k_{\rm s,ori} = 2$ $k_{\rm s,spn} = 0.1$ $k_{\rm s,cdc15t} = 0.0142$ $k_{\rm s,sbft} = 0.007$ $k_{\rm d,mbft} = 0.046$ $k_{\rm d,mcm1t} = 0.046$ $k_{\rm i,sbf} = 0.6$	$k_{s2,pds}'' = 0.0079$ $k_{d,ori} = 0.06$ $k_{d,spn} = 0.06$ $k_{d,cdc15t} = 0.046$ $k_{d,sbft} = 0.0462$ $k_{s,apct} = 0.0065$ $k_{i,mcm} = 0.15$ $k_{i,sbf}'' = 8$	$k_{\rm di,esp} = 0.5$ $k_{\rm s,bud} = 0.2$ $k_{\rm s,tem1t} = 0.0150$ $k_{\rm s,esp1t} = 0.0139$ $k_{\rm a,mcm} = 5$ $k_{\rm d,apct} = 0.0462$ $k''_{\rm d3,pds} = 0.04$ $k'_{\rm d,b5} = 0.01$
$\begin{aligned} k_{\rm s,pds}' &= 0 \\ k_{\rm as,esp} &= 50 \\ k_{\rm d,bud} &= 0.06 \\ k_{\rm d,tem1t} &= 0.046 \\ k_{\rm d,esp1t} &= 0.046 \\ k_{\rm s,mbft} &= 0.0066 \\ k_{\rm s,mcm1t} &= 0.0078 \\ k_{\rm a,sbf} &= 0.38 \\ k_{\rm d,b2}' &= 0.003 \\ \end{aligned}$	$k_{s1,pds}'' = 0.0043$ $k_{s,ori} = 2$ $k_{s,spn} = 0.1$ $k_{s,cdc15t} = 0.0142$ $k_{s,sbft} = 0.007$ $k_{d,mbft} = 0.046$ $k_{d,mcm1t} = 0.046$ $k_{d,mcm1t} = 0.046$ $k_{d,b2}' = 0.4$	$k_{s2,pds}'' = 0.0079$ $k_{d,ori} = 0.06$ $k_{d,spn} = 0.06$ $k_{d,cdc15t} = 0.046$ $k_{d,sbft} = 0.0462$ $k_{s,apct} = 0.0065$ $k_{i,mcm} = 0.15$ $k_{i,sbf}'' = 8$ $k_{d,b2p} = 0.15$	$k_{\rm di,esp} = 0.5$ $k_{\rm s,bud} = 0.2$ $k_{\rm s,tem1t} = 0.0150$ $k_{\rm s,esp1t} = 0.0139$ $k_{\rm a,mcm} = 5$ $k_{\rm d,apct} = 0.0462$ $k''_{\rm d3,pds} = 0.04$ $k'_{\rm d,b5} = 0.01$ $k_{\rm d1,c1} = 0.01$
$k'_{s,pds} = 0$ $k_{as,esp} = 50$ $k_{d,bud} = 0.06$ $k_{d,tem1t} = 0.046$ $k_{d,esp1t} = 0.046$ $k_{s,mbft} = 0.0066$ $k_{s,mcm1t} = 0.0078$ $k_{a,sbf} = 0.38$ $k'_{d,b2} = 0.003$ $k_{d2,c1} = 1$	$k_{s1,pds}'' = 0.0043$ $k_{s,ori} = 2$ $k_{s,spn} = 0.1$ $k_{s,cdc15t} = 0.0142$ $k_{s,sbft} = 0.007$ $k_{d,mbft} = 0.046$ $k_{d,mcm1t} = 0.046$ $k_{i,sbf}' = 0.6$ $k_{d,b2}'' = 0.4$ $k_{d,b5}'' = 0.16$	$k_{s2,pds}'' = 0.0079$ $k_{d,ori} = 0.06$ $k_{d,spn} = 0.06$ $k_{d,cdc15t} = 0.046$ $k_{d,sbft} = 0.0462$ $k_{s,apct} = 0.0065$ $k_{i,mcm} = 0.15$ $k_{i,sbf}'' = 8$ $k_{d,b2p} = 0.15$ $k_{d1,f6} = 0.01$	$k_{\rm di,esp} = 0.5$ $k_{\rm s,bud} = 0.2$ $k_{\rm s,tem1t} = 0.0150$ $k_{\rm s,esp1t} = 0.0139$ $k_{\rm a,mcm} = 5$ $k_{\rm d,apct} = 0.0462$ $k''_{\rm d3,pds} = 0.04$ $k'_{\rm d,b5} = 0.01$ $k_{\rm d1,c1} = 0.01$ $k_{\rm d2,f6} = 1$
$\begin{aligned} k_{\rm s,pds}' &= 0 \\ k_{\rm as,esp} &= 50 \\ k_{\rm d,bud} &= 0.06 \\ k_{\rm d,tem1t} &= 0.046 \\ k_{\rm d,esp1t} &= 0.046 \\ k_{\rm s,mbft} &= 0.0066 \\ k_{\rm s,mcm1t} &= 0.0078 \\ k_{\rm a,sbf} &= 0.38 \\ k_{\rm d,b2}' &= 0.003 \\ k_{\rm d2,c1} &= 1 \\ k_{\rm a,cdh}' &= 0.01 \end{aligned}$	$k_{s1,pds}'' = 0.0043$ $k_{s,ori} = 2$ $k_{s,spn} = 0.1$ $k_{s,cdc15t} = 0.0142$ $k_{s,sbft} = 0.007$ $k_{d,mbft} = 0.046$ $k_{d,mcm1t} = 0.046$ $k_{d,hb5}' = 0.6$ $k_{d,b5}'' = 0.16$ $k_{a,cdh}'' = 0.8$	$k_{s2,pds}'' = 0.0079$ $k_{d,ori} = 0.06$ $k_{d,spn} = 0.06$ $k_{d,cdc15t} = 0.046$ $k_{d,sbft} = 0.0462$ $k_{s,apct} = 0.0065$ $k_{i,mcm} = 0.15$ $k_{i,sbf}'' = 8$ $k_{d,b2p} = 0.15$ $k_{d1,f6} = 0.01$ $k_{i,cdh}'' = 0.001$	$k_{\rm di,esp} = 0.5$ $k_{\rm s,bud} = 0.2$ $k_{\rm s,tem1t} = 0.0150$ $k_{\rm s,esp1t} = 0.0139$ $k_{\rm a,mcm} = 5$ $k_{\rm d,apct} = 0.0462$ $k'_{\rm d,p5} = 0.04$ $k'_{\rm d,b5} = 0.01$ $k_{\rm d1,c1} = 0.01$ $k_{\rm d2,f6} = 1$ $k''_{\rm i,cdh} = 0.08$
$\begin{aligned} k_{\rm s,pds}' &= 0 \\ k_{\rm as,esp} &= 50 \\ k_{\rm d,bud} &= 0.06 \\ k_{\rm d,tem1t} &= 0.046 \\ k_{\rm d,esp1t} &= 0.046 \\ k_{\rm s,mbft} &= 0.0066 \\ k_{\rm s,mcm1t} &= 0.0078 \\ k_{\rm a,sbf} &= 0.38 \\ k_{\rm d,b2}' &= 0.003 \\ k_{\rm d2,c1} &= 1 \\ k_{\rm a,cdh}' &= 0.01 \\ k_{\rm pp,net}' &= 0.05 \\ \end{aligned}$	$k_{s,ori}'' = 0.0043$ $k_{s,ori} = 2$ $k_{s,spn} = 0.1$ $k_{s,cdc15t} = 0.0142$ $k_{s,sbft} = 0.007$ $k_{d,mbft} = 0.046$ $k_{d,mcm1t} = 0.046$ $k_{d,hbf}' = 0.6$ $k_{d,b5}'' = 0.4$ $k_{d,b5}'' = 0.16$ $k_{a,cdh}'' = 0.8$ $k_{pp,net}'' = 3$	$k_{s2,pds}'' = 0.0079$ $k_{d,ori} = 0.06$ $k_{d,spn} = 0.06$ $k_{d,cdc15t} = 0.046$ $k_{d,sbft} = 0.0462$ $k_{s,apct} = 0.0065$ $k_{i,mcm} = 0.15$ $k_{i,sbf}'' = 8$ $k_{d,b2p} = 0.15$ $k_{d1,f6} = 0.01$ $k_{i,cdh}'' = 0.001$	$k_{\rm di,esp} = 0.5$ $k_{\rm s,bud} = 0.2$ $k_{\rm s,tem1t} = 0.0150$ $k_{\rm s,esp1t} = 0.0139$ $k_{\rm a,mcm} = 5$ $k_{\rm d,apct} = 0.0462$ $k''_{\rm d3,pds} = 0.04$ $k'_{\rm d3,pds} = 0.04$ $k'_{\rm d3,pds} = 0.01$ $k_{\rm d1,c1} = 0.01$ $k_{\rm d2,f6} = 1$ $k''_{\rm i,cdh} = 0.08$ $k''_{\rm kp,net} = 0.6$

Table S4. Basal parameter values for the wild-type cell cycle. Parameters that start with lower case k are rate constants (min⁻¹). All other parameter are dimensionless.

Table S4.(continued)			
$k_{\rm s,n3} = 0.0080$	$k_{\rm d,n3} = 0.12$	$k_{\rm s,k2} = 0.0048$	$k_{\rm d,k2} = 0.12$
$k_{\rm mad2} = 8$ for $[ORI]_{\rm n} >$	1 and $[SPN]_n < 1$; otherw	vise 0.01	
$k_{\text{bud2}} = 1 \text{ for } [\text{ORI}]_{\text{n}} > 1$	1 and $[SPN]_n < 1$; otherw	wise 0.2	
$k_{\text{lte1}} = 1 \text{ for } [\text{SPN}]_{\text{n}} > 1$	and $[Clb2]_n > 1$; otherw	vise 0.1	
$K_{\rm ez} = 0.3$	$K_{\rm ez2} = 0.2$	$J_{\rm i,cdh} = 0.03$	$J_{\rm a,apc}=0.1$
$J_{\rm i,apc} = 0.1$	$J_{\rm a,cdh} = 0.03$	$J_{\rm pds} = 0.04$	$J_{\rm a,sbf} = 0.01$
$J_{n3} = 6$	$J_{\rm a,tem} = 0.1$	$J_{\rm i,tem} = 0.1$	$J_{\rm spn} = 0.14$
$J_{\rm d2, f6} = 0.05$	$J_{ m a,mcm}=0.1$	$J_{ m i,mcm}=0.1$	$J_{\rm d2,c1} = 0.05$
$J_{\rm i,sbf} = 0.01$	$J_{20,55} = 0.15$	$e_{\rm cdh,b2} = 1.2$	$e_{\rm cdh,b5} = 8$
$e_{\rm bud,n3} = 0.05$	$e_{\rm ori,b5} = 0.9$	$e_{\rm ori,b2} = 0.45$	$e_{\rm bud,n2} = 0.12$
$e_{\rm sbf,b5} = 2$	$e_{\rm bud, b5} = 0.25$	$e_{\rm sbf,n2} = 2$	$e_{\rm sbf,n3} = 10$
$e_{\rm c1,b5} = 0.1$	$e_{\rm c1,n3} = 0.3$	$e_{\rm c1,k2} = 0.03$	$e_{\rm c1,n2} = 0.06$
$e_{\rm f6,n2} = 0.06$	$e_{\rm c1,b2} = 0.45$	$e_{\rm f6,n3} = 0.3$	$e_{\rm f6,k2} = 0.03$
$e_{\rm cdh,n2} = 0.4$	$e_{\rm f6, b5} = 0.1$	$e_{\rm f6,b2} = 0.55$	$e_{\rm cdh,n3} = 0.25$
$c_{\rm clb2} = 479.2$	$c_{\rm cln2} = 239.6$	$c_{\rm cln3} = 599$	$c_{\rm bck2} = 599$
$c_{\rm cdh1} = 1198$	$c_{\rm ori} = 119.8$	$c_{\rm bud} = 119.8$	$c_{\rm spn} = 119.8$
$c_{\text{tem1}} = 178.2$	$c_{\rm clb5} = 479.2$	$c_{\rm cdc20} = 1797$	$c_{\rm sic1} = 479.2$
$c_{\rm cdc6} = 479.2$	$c_{\rm cdc14} = 275.54$	$c_{\rm net1} = 275.54$	$c_{\rm cdc15} = 479.2$
$c_{\rm pds1} = 39.5$	$c_{\rm esp1} = 39.5$	$c_{\rm sbf} = 479.2$	$c_{\rm mbf} = 479.2$
$c_{\rm apc} = 263.56$	$c_{\rm cdc55} = 4193$	$c_{\rm rent} = 4193$	$c_{\rm mcm1} = 4193$
$k_{\rm s,mCdc15} = 0.45$	$k_{\rm d,mCdc15} = 0.14$	$k_{\rm s,mTem1} = 0.43$	$k_{\rm d,mTem1} = 0.14$
$k_{\rm s,mNet1} = 0.5$	$k_{\rm d,mNet1} = 0.1$	$k_{\rm s,mCdc14} = 1.5$	$k_{\rm d,mCdc14} = 0.14$
$k_{\rm s,mEsp1} = 0.3$	$k_{\rm d,mEsp1} = 0.08$	$k_{\rm s,mCdc55} = 0.97$	$k_{\rm d,mCdc55} = 0.14$
$k_{ m s,mMBF} = 0.97$	$k_{\rm d,mMBF} = 0.14$	$k_{\rm s,mSBF} = 0.94$	$k_{\rm d,mSBF} = 0.14$
$k_{\rm s,mPds1} = 0.24$	$k_{\rm d,mPds1} = 0.14$	$k_{ m s,mMcm1} = 0.8$	$k_{\rm d,mMcm1} = 0.14$
$k_{ m s,mAPC} = 0.97$	$k_{\rm d,mAPC} = 0.14$	$k_{\rm s,mCln2} = 0.0117$	$k_{\rm d,mCln2} = 0.23$
$k_{\rm s,mClb5} = 0.3916$	$k_{\rm d,mClb5} = 0.14$	$k_{\rm s,mClb2} = 0.0034$	$k_{\rm d,mClb2} = 0.35$

Table S4.(continued)			
$k_{\rm s,mSic1} = 0.0067$	$k_{\rm d,mSic1} = 0.14$	$k_{\rm s,mCdc6} = 0.0083$	$k_{\rm d,mCdc6} = 0.14$
$k_{\rm s,mSwi5}=0.0016$	$k_{\rm d,mSwi5} = 0.14$	$k_{\rm s,mCdc20}=0.0001$	$k_{\rm d,mCdc20} = 0.14$
$k_{\rm s,mCdh1} = 0.97$	$k_{\rm d,mCdh1} = 0.14$		

The FORTRAN code that implements the model described in Tables S1-S4 is provided in Supplementary Code. We notice that the parameters listed in Table S4 are the values that are computed after converting the concentration of species into population. In the code, however, to provide more flexibility in tuning the parameters, the original parameters from Chen's model are listed and then converted. See the README file that further elaborates on the Supplementary Code. Supplementary Table S5: List of mutant strains. Simulation results of our hybrid stochastic model (in column 6) are compared with experimental data (in column 4) and simulation results of the deterministic model by Chen *et al.* [4] (in column 5). The parameter modification column reports the changes made to the parameter values in order to simulate each strain. 'V' means 'viable', 'In' means inviable, and 'pV' partially viable. We generate a sufficiently large population of mother and daughter cells, expanding over time, to compute probability of division. In column 6, we report the probability of division as well as the number of simulations used to calculate this probability. Orange typeface in column 5 indicates disagreement between the Chen deterministic model and the experimental observations. Red typeface in column 6 indicates disagreement between the hybrid model and the experimental observations.

No	Mutant strain	Parameter	Experiment	Chen	Hybrid model
		modification		model	
1	Wild-type (WT) on	-	V	V	V: 0.97
	glucose (Glc)				(11,000)
2.1	WT on galactose (Gal)	$k_{\rm g} = 0.004621$	V	V	V: 0.93
		(MDT = 150)			(22,762)
2.2	WT on raffinose (Raff)	$k_{\rm g} = 0.00433$	V	V	V: 0.93
		(MDT=160)			(14, 198)
3	$cln1\Delta$ $cln2\Delta$	$k_{\rm s,n2}''=0$	V	V	V: 0.92
					(13,710)
4	$GAL\text{-}CLN2 \ cln1\Delta \ cln2\Delta$	$k_{s,n2}'=0.12, k_{s,n2}''=0,$	V	V	V: 0.90
		$k_{\rm g} = 0.004621$			(24,500)
5	$cln1\Delta$ $cln2\Delta$ $sic1\Delta$	$k_{s,n2}''=0,$	V	V	V: 0.75
		$k'_{\rm s,c1} = k''_{\rm s,c1} {=} 0$			$(14,\!010)$
6	$cln1\Delta$ $cln2\Delta$ $cdh1\Delta$	$k_{s,n2}''=0, k_{s,cdh}=0,$	V	V	In: 0.30
		init CDH1T=CDH1=0			(9,373)
7	$GAL\text{-}CLN2~cln1\Delta~cln2\Delta$	$k_{s,n2}^{\prime}=0.12, \ k_{s,n2}^{\prime\prime}=0,$	V	V	V: 0.76
	$cdh1\Delta$	$k_{\rm s,cdh}=0,$			(11, 594)
		$k_{\rm g} = 0.004621,$			
		init CDH1T=CDH1=0			

8	$cln3\Delta$	$k_{\mathrm{s,n3}}=0$	V	V	V: 0.98
					(9,990)
9	GAL-CLN3	$k_{\mathrm{s,n3}} = 5 \times k_{\mathrm{s,n3}},$	V	V	V: 0.94
		$k_{\rm g} = 0.004621$			(9,610)
10	$bck2\Delta$	$k_{\mathrm{s,k2}} = 0$	V	V	V: 0.97
					(11, 326)
11	multi-copy $BCK2$	$k_{\mathrm{s,k2}} = 5 \times k_{\mathrm{s,k2}}$	V	V	V: 0.96
					(10,032)
12	$cln1\Delta$ $cln2\Delta$ $bck2\Delta$	$k_{s,n2}''=0, k_{s,k2}=0$	V	V	V: 0.84
					(11, 294)
13	$cln3\Delta$ $bck2\Delta$	$k_{s,n3}=0, k_{s,k2}=0$	In	In	In : 0.10
					(9,310)
14	$cln3\Delta$ $bck2\Delta$ GAL -	$k_{s,n3}=0, k_{s,k2}=0,$	V	V	V: 0.95
	$CLN2~cln1\Delta~cln2\Delta$	$k_{s,n2}'=0.12, k_{s,n2}''=0,$			(17, 452)
		$k_{\rm g} = 0.004621$			
15	$cln3\Delta~bck2\Delta$ multi-copy	$k_{s,n3}=0, k_{s,k2}=0$	In	In	In : 0.40
	CLN2	$k_{\mathrm{s,n2}}^{\prime\prime}{=}5{\times}k_{\mathrm{s,n2}}^{\prime\prime}$			(16, 523)
16	$cln3\Delta$ $bck2\Delta$ $sic1\Delta$	$k_{s,n3}=0, k_{s,k2}=0,$	In	In	In: 0.44
		${k'}_{\rm s,c1} = {k''}_{\rm s,c1} {=} 0$			(9,614)
17	$cln1\Delta$ $cln2\Delta$ $cln3\Delta$	$k_{\rm s,n2}' {=} k_{\rm s,n2}'' {=} 0,$	In	In	In : 0.04
		$k_{\mathrm{s,n3}}=0$			(9,700)
18	$cln1\Delta$ $cln2\Delta$ $cln3\Delta$	$k_{s,n2}''=0, k_{s,n3}=0,$	V	V	V: 0.95
	GAL- $CLN2$	$k'_{s,n2}=0.12,$			$(17,\!640)$
		$k_{\rm g}{=}0.004621$			
19	$cln1\Delta$ $cln2\Delta$ $cln3\Delta$	$k_{s,n2}'=k_{s,n2}''=0,$	V	V	V: 0.84
	GAL- $CLN3$	$k_{\mathrm{s,n3}} = 5 \times k_{\mathrm{s,n3}},$			(12,598)
		$k_{\rm g} = 0.004621$			

20	$cln1\Delta$ $cln2\Delta$ $cln3\Delta$ $sic1\Delta$	$k_{s,n2}'=0, k_{s,n2}''=0,$	V	V	V: 0.76
		$k_{s,n3}=0,$			(12, 904)
		$k'_{\rm s,c1}=k''_{\rm s,c1}=0$			
21	$cln1\Deltacln2\Deltacln3\Deltacdh1\Delta$	$k_{\rm s,n2}' {=} k_{\rm s,n2}'' {=} 0,$	In	In	In: 0.03
		$k_{\rm s,n3} = 0, k_{\rm s,cdh} = 0,$			(9,800)
		init CDH1=CDH1T=0			
22	$cln1\Delta$ $cln2\Delta$ $cln3\Delta$	$k_{s,n2}'=k_{s,n2}''=0,$	V	V	V: 0.86
	multi-copy $CLB5$	$k_{s,n3}=0,$			(20, 376)
		$k_{\mathrm{s,b5}}^{\prime}{=}4{\times}k_{\mathrm{s,b5}}^{\prime},$			
		$k_{\mathrm{s,b5}}^{\prime\prime}{=}4{\times}k_{\mathrm{s,b5}}^{\prime\prime}$			
23	$cln1\Delta$ $cln2\Delta$ $cln3\Delta$	$k_{s,n2}'=0, k_{s,n2}''=0,$	V	V	V: 0.99
	GAL-CLB5	$k_{s,n3}=0,$			(17, 856)
		$k_{\mathrm{s,b5}}^{\prime}{=}15{\times}k_{\mathrm{s,b5}}^{\prime},$			
		$k_{\rm g} = 0.004621$			
24	$cln1\Delta$ $cln2\Delta$ $cln3\Delta$	$k_{s,n2}'=k_{s,n2}''=0,$	V	V	V: 0.89
	multi-copy $BCK2$	$k_{s,n3} = 0,$			(11, 486)
		$k_{\mathrm{s,k2}} = 10 \times k_{\mathrm{s,k2}}$			
25	$cln1\Delta$ $cln2\Delta$ $cln3\Delta$	$k_{s,n2}'=k_{s,n2}''=0,$	In	In	In: 0.01
	GAL- $CLB2$	$k_{s,n3} = 0,$			(10,030)
		$k_{\mathrm{s,b2}}^{\prime}{=}2{\times}k_{\mathrm{s,b2}}^{\prime},$			
		$k_{\rm g} = 0.004621$			
26	$cln1\Delta$ $cln2\Delta$ $cln3\Delta$ apc -ts	$k_{\rm s,n2}' {=} k_{\rm s,n2}'' {=} 0,$	In	In	In:0
		$k_{\rm s,n3} = 0, k_{\rm s,cdh} = 0,$			(10,000)
		$k_{s,20}'=k_{s,20}''=0,$			
		init CDH1=CDH1T=0			
27	$sic1\Delta$	$k_{\mathrm{s,c1}}^{\prime}=k_{\mathrm{s,c1}}^{\prime\prime}{=}0$	V	V	V: 0.87
					(16, 198)

28	GAL-SIC1	$k_{\rm s,c1}^{\prime}{=}10{\times}k_{\rm s,c1}^{\prime},$	V	V	V: 0.90
		$k_{\rm g} = 0.004621$			(9,848)
29	GAL - $SIC1db\Delta$	$k_{\rm s,c1}^{\prime}{=}10{\times}k_{\rm s,c1}^{\prime},$	In	In	In:0
		$k_{\mathrm{d}3,\mathrm{c}1}=0,$			(10,000)
		$k_{\rm g} = 0.004621$			
30	$GAL\text{-}SIC1~cln1\Delta~cln2\Delta$	$k_{\rm s,c1}^{\prime}{=}10{\times}k_{\rm s,c1}^{\prime},$	In	In	In:0
		$k_{\mathrm{s,n2}}^{\prime\prime}{=}0,$			(1,000)
		$k_{\rm g} = 0.004621$			
31	GAL-SIC1 GAL-CLN2	$k_{\rm s,c1}^{\prime}{=}10{\times}k_{\rm s,c1}^{\prime},$	V	V	V: 0.90
	$cln1\Delta$ $cln2\Delta$	$k_{\mathrm{s,n2}}^{\prime} = 0.12, \ k_{\mathrm{s,n2}}^{\prime\prime} = 0,$			(11, 180)
		$k_{\rm g} = 0.004621$			
32	GAL - $SIC1~cln1\Delta~cln2\Delta$	$k_{\rm s,c1}'=k_{\rm s,c1}''=0.12,$	In	In	In:0
	$cdh1\Delta$	$k_{\rm s,n2}^{\prime\prime} = k_{\rm s,cdh} = 0,$			(1,000)
		$k_{\rm g} = 0.004621,$			
		init CDH1T=CDH1=0			
33	GAL-SIC1 GAL-CLN2	$k'_{\rm s,c1} = 0.12,$	V	V	V: 0.80
	$cln1\Delta$ $cln2\Delta$ $cdh1\Delta$	$k_{s,n2}'=0.12, k_{s,n2}''=0,$			(14, 376)
		$k_{\rm s,cdh}=0,$			
		$k_{\rm g} = 0.004621,$			
		init CDH1T=CDH1=0			
34	$cdh1\Delta$	$k_{\rm s,cdh}=0,$	V	V	In: 0.49
		init CDH1T=CDH1=0			(15,078)
35	Cdh1 constitutively active	$k_{i,cdh}^{\prime\prime}=0,$	In	In	In : 0.32
		$k_{\rm g} = 0.004621,$			(9,238)
		$k_{ m s,cdh} = 3 \times k_{ m s,cdh}$			

36	$sic1\Delta \ cdh1\Delta$	$k_{s,c1}'=k_{s,c1}''=0,$	In	In	In : 0
		$k_{\rm s,cdh}=0,$			(10,000)
		init CDH1T=CDH1=0			
37	$sic1\Delta$ $cdh1\Delta$ $GAL-$	$k'_{\rm s,c1} = k''_{\rm s,c1} = 0,$	V	V	Gal : In : 0.28
	CDC20	$k_{\rm s,cdh} = 0, k_{\rm s,20}' = 10,$			(9,640)
		$k_{\rm g} = 0.004621$			Glc: pV: 0.71
					(10,708)
38	$cdc6\Delta 2$ -49	$k_{\rm s,f6}'\!=\!k_{\rm s,f6}''\!=\!k_{\rm s,f6}'''\!=\!0$	V	V	V: 0.97
					(11, 482)
39	$sic1\Delta$ $cdc6\Delta$ 2-49	$k_{\rm s,c1}'=k_{\rm s,c1}''=0,$	V	V	In: 0.01
		$k_{\rm s,f6}'\!=\!k_{\rm s,f6}''\!=\!k_{\rm s,f6}'''\!=\!0$			(9,016)
40	$cdh1\Delta$ $cdc6\Delta2-49$	$k_{\rm s,f6}'=k_{\rm s,f6}''=k_{\rm s,f6}'''=0,$	V	V	In: 0.16
		$k_{\rm s,cdh}=0,$			(10, 331)
		init CDH1T=CDH1=0			
41^{1}	$sic1\Delta~cdc6\Delta$ 2-49 $cdh1\Delta$	$k_{\rm s,c1}' = k_{\rm s,c1}'' = 0,$	In	In	In
		$k_{ m s,cdh} = 0, k_{ m s,f6}' =$			
		$k_{s,f6}''=k_{s,f6}'''=0,$			
		init CDH1T=CDH1=0			
42	$sic1\Delta$ $cdc6\Delta2$ -	$k_{\rm s,c1}'=k_{\rm s,c1}''=0,$	V	V	In: 0.02
	$49 \ cdh1\Delta \ GAL\text{-}CDC20$	$k_{\rm s,f6}'\!=\!k_{\rm s,f6}''\!=\!k_{\rm s,f6}'''\!=\!0,$			(10,088)
		$k_{\rm s,cdh} = 0, k_{\rm s,20}' = 4,$			
		$k_{\rm g} = 0.004621,$			
		init CDH1T=CDH1=0			
43	$swi5\Delta$	$k_{\rm s,swi}'=k_{\rm s,swi}''=0$	V	V	In: 0.53
					(23,878)

¹Experimental observations show that $sic1\Delta cdc6\Delta 2$ -49 $cdh1\Delta$ (mutant # 41) and $swi5\Delta cdh1\Delta$ (mutant # 45) strains are not able to undergo the cell division and thus are inviable [7]; both strains have similar phenotype and become arrested as binucleate cells with 4C DNA content. Our simulation (similar to Chen's deterministic simulation [4]) shows that the cells are inviable; however, they become arrested in telophase with 2C DNA content. We consider this simulation result as an inconsistency with experimental observations.

44	$swi5\Delta~GAL$ - $CLB2$	$k_{\rm s,swi}'=k_{\rm s,swi}''=0,$	In	In	In: 0.34
		$k_{\rm s,b2} = 0.12,$			(9,790)
		$k_{\rm g} = 0.004621$			
45^{1}	$swi5\Delta~cdh1\Delta$	$k'_{\rm s,swi} = k''_{\rm s,swi} = 0,$	In	In	In
		$k_{\rm s,cdh}=0,$			
		init CDH1T=CDH1=0			
46	$swi5\Delta~cdh1\Delta~GAL\text{-}SIC1$	$k_{\rm s,swi}^{\prime} {=} k_{\rm s,swi}^{\prime\prime} {=} 0,$	V	V	V: 0.83
		$k_{\rm s,cdh}=0,$			$(10,\!636)$
		$k_{\rm s,c1}^{\prime}{=}10{\times}k_{\rm s,c1}^{\prime},$			
		$k_{\rm g} = 0.004621,$			
		init CDH1T=CDH1=0			
47	$clb1\Delta$ $clb2\Delta$	$k_{\rm s,b2}'\!\!=\!\!k_{\rm s,b2}''\!\!=\!\!0$	In	In	In:0
					(10,000)
48	$CLB1\ clb2\Delta$	$k'_{\rm s,b2} = 0.0003,$	V	In	V: 0.82
		$k_{\rm s,b2}''=0.013$			(26, 466)
		(33% WT)			
49	GAL- $CLB2$	$k'_{s,b2} = 0.12,$	V	V	V: 0.86
		$k_{\rm g} = 0.004621$			(17,714)
50	multi-copy GAL - $CLB2$	$k^{\prime}_{\rm s,b2}{=}0.96$ (8 copies	In	In	In:0
		of GAL - $CLB2$),			(10,000)
		$k_{\rm g} = 0.004621$			
51^{2}	$CLB1 \ clb2\Delta \ cdh1\Delta$	$k'_{\rm s,b2} = 0.0003,$	Gal: V	Gal: V	Gal : V : 0.79
		$k_{\rm s,b2}''=0.013$	Glc: pV	$\operatorname{Glc}: \operatorname{V}$	$(17,\!608),$
		(33% WT),			Glc: In: 0.62
		$k_{\rm s,cdh}=0,$			(14,719)
		init CDH1T=CDH1=0			

²Experimental observations (see supplementary figure 1, panel A in [8]) show that $CLB1 \ clb2\Delta \ cdh1\Delta$ cells grow well on galactose; however, they exhibit poor viability on glucose. That is why in column 4 we report this mutant strain as partially viable (pV). 'Glc' refers to growth in glucose medium; 'Gal' to galactose.

52^{3}	$CLB1\ clb2\Delta\ pds1\Delta$	$k'_{s,b2} = 0.0003,$	In	V	In
		$k_{\rm s,b2}''=0.013$			
		(33% WT),			
		$k_{\mathrm{s1,pds}}^{\prime\prime}{=}k_{\mathrm{s2,pds}}^{\prime\prime}{=}0$			
53	$GAL\text{-}CLB2\ sic1\Delta$	$k'_{s,b2} = 0.12,$	In	In	In: 0.20
		$k_{\rm s,c1}'=k_{ m s,c1}''=0,$			(10,090)
		$k_{\rm g} = 0.004621$			
54	$GAL\text{-}CLB2 \ cdh1\Delta$	$k_{\rm s,b2}'=0.12, k_{\rm s,cdh}=0,$	In	In	In : 0 (10,000)
		$k_{\rm g} = 0.004621,$			
		init CDH1T=CDH1=0			
55	$CLB2$ - $db\Delta$	$k_{\rm d,b2p} = 0, k_{\rm d,b2}'' = 0.03$	In	In	In: 0.27
		(8.5% activity left			(9,892)
		due to KEN box).			
56	$CLB2\text{-}db\Delta$ on galactose	$k_{\mathrm{d,b2p}}=0,$	In	In	In: 0.59
		$k_{d,b2}''=0.03,$			(13, 848)
		$k_{\rm g} = 0.004621$			
57	$CLB2\text{-}db\Delta$ multi-copy	$k_{d,b2p}=0,$	V	V	V: 0.79
	SIC1	$k_{d,b2}''=0.03,$			(11,900)
		$k_{\rm s,c1}^{\prime}{=}10{\times}k_{\rm s,c1}^{\prime},$			
		$k_{\rm s,c1}^{\prime\prime}{=}10{\times}k_{\rm s,c1}^{\prime\prime}$			
58	$CLB2$ - $db\Delta$ GAL - $SIC1$	$k_{d,b2p}=0,$	V	V	V: 0.79
		$k_{d,b2}''=0.03,$			(9,044)
		$k_{\rm s,c1}^{\prime}{=}10{\times}k_{\rm s,c1}^{\prime},$			
		$k_{\rm g} = 0.004621$			

³Simulation results show that $CLB1 \ clb2\Delta \ pds1\Delta$ (mutant # 52), and $pds1\Delta$ (mutant # 80) strains are able to exit mitosis; however, Esp1 is active throughout the cell cycle (even before spindle alignment). Thus, according to our viability rules, these mutants are inviable.

59	$CLB2$ - $db\Delta$ multi-copy	$k_{\mathrm{d,b2p}}=0,$	V	V	In: 0.57
	CDC6	$k_{\rm d,b2}''=0.03,$			(13, 484)
		$k_{\rm s,f6}^{\prime}{=}5{\times}k_{\rm s,f6}^{\prime},$			
		$k_{\rm s,f6}^{\prime\prime} = 5 \times k_{\rm s,f6}^{\prime\prime},$			
		$k_{\rm s,f6}^{\prime\prime\prime} = 5 \times k_{\rm s,f6}^{\prime\prime\prime}$			
60	$CLB2$ - $db\Delta$ $clb5\Delta$	$k_{\mathrm{d,b2p}}=0,$	In	In	In : 0.24
		$k_{\rm d,b2}''=0.03,$			(9,672)
		$k_{\mathrm{s,b5}}^{\prime}{=}k_{\mathrm{s,b5}}^{\prime\prime}{=}0$			
61	$CLB2\text{-}db\Delta~clb5\Delta$ on	$k_{d,b2p}=0,$	pV	V	Gal : In : 0.62
	galactose and raffinose	$k_{\rm d,b2}''=0.03,$			(17,338)
		$k_{\rm s,b5}'=k_{ m s,b5}''=0,$			Raff: pV: 0.68
		$k_{\rm g}$ =0.004621 (Gal),			(13, 364)
		$k_{\rm g}{=}0.00433~({\rm Raff})$			
62	GAL - $CLB2$ - $db\Delta$	$k_{\mathrm{d,b2p}}=0,$	In	In	In : 0.03
		$k_{d,b2}''=0.03,$			(10, 118)
		$k_{s,b2}''=0.12,$			
		$k_{\rm g} = 0.004621$			
63	$clb5\Delta$ $clb6\Delta$	$k_{\mathrm{s,b5}}^{\prime}{=}k_{\mathrm{s,b5}}^{\prime\prime}{=}0$	V	V	V: 0.98
					(16,653)
64	$cln1\Delta$ $cln2\Delta$ $clb5\Delta$ $clb6\Delta$	$k_{\rm s,n2}' {=} k_{\rm s,n2}'' {=} 0,$	In	In	In:0
		$k_{\mathrm{s,b5}}^{\prime}{=}k_{\mathrm{s,b5}}^{\prime\prime}{=}0$			(10,000)
65	GAL-CLB5	$k_{\mathrm{s,b5}}^{\prime}{=}15{\times}k_{\mathrm{s,b5}}^{\prime},$	V	V	V: 0.94
		$k_{\rm g} = 0.004621$			(9,612)
66^{4}	$GAL\text{-}CLB5\ sic1\Delta$	$k_{\mathrm{s,b5}}^{\prime}{=}15{\times}k_{\mathrm{s,b5}}^{\prime},$	In	In	In
		$k'_{s,c1} = k''_{s,c1} = 0,$			
		$k_{\rm g} = 0.004621$			

⁴Simulation results show that mutant strains GAL- $CLB5 \ sic1\Delta$ (mutant # 66), CLB5- $db\Delta \ sic1\Delta$ (mutant # 69), and GAL-CLB5- $db\Delta$ (mutant # 72) are able to exit mitosis; however, [ORI] is not relicensed (due to high activity of Clb5 in G1 phase). Thus, according to our viability rules, these mutants are inviable.

67	$GAL\text{-}CLB5\ cdh1\Delta$	$k_{\mathrm{s,b5}}^{\prime}{=}10{\times}k_{\mathrm{s,b5}}^{\prime},$	In	V	In: 0.60
		$k_{\rm s,cdh}=0,$			(20,782)
		$k_{\rm g} = 0.004621,$			
		init CDH1T=CDH1=0			
68	$CLB5$ - $db\Delta$	$k_{\mathrm{d,b5}}^{\prime\prime}{=}0$	V	V	V: 0.95
					(11,656)
69^{4}	$CLB5$ - $db\Delta$ $sic1\Delta$	$k_{\mathrm{d,b5}}^{\prime\prime} = 0,$	In	In	In
		$k_{\rm s,c1}'\!=\!k_{\rm s,c1}''\!=\!0$			
70	$CLB5$ - $db\Delta \ pds1\Delta$	$k_{\rm d,b5}^{\prime\prime}{=}0,$	V	V	V: 0.97
		$k_{\mathrm{s1,pds}}^{\prime\prime}{=}k_{\mathrm{s2,pds}}^{\prime\prime}{=}0$			(12,539)
71	$CLB5$ - $db\Delta \ pds1\Delta$	$k_{\rm d,b5}^{\prime\prime}{=}0,$	In	In	pV: 0.65,
	$cdc20\Delta$	$k_{\rm s1,pds}''\!=\!k_{\rm s2,pds}''\!=\!0,$			(12,846)
		$k_{\rm s,20}'\!=\!k_{\rm s,20}''\!=\!0$			
72^{4}	GAL - $CLB5$ - $db\Delta$	$k_{\mathrm{s,b5}}^{\prime}{=}15{\times}k_{\mathrm{s,b5}}^{\prime},$	In	In	In
		$k_{\rm d,b5}^{\prime\prime}{=}0,$			
		$k_{\rm g} = 0.004621$			
73	cdc20- ts	$k_{\rm s,20}'\!=\!k_{\rm s,20}''\!=\!0$	In	In	In : 0.31
					(9,710)
74	$cdc20\Delta$ $clb5\Delta$	$k_{\rm s,20}'\!=\!k_{\rm s,20}''\!=\!0,$	In	In	In: 0.58
		$k_{\rm s,b5}'{=}k_{\rm d,b5}''{=}0$			(9,944)
75	$cdc20\Delta \ pds1\Delta$	$k_{\rm s,20}'=k_{\rm s,20}''=0,$	In	In	pV: 0.66
		$k_{\rm s1,pds}^{\prime\prime}{=}k_{\rm s2,pds}^{\prime\prime}{=}0$			(16,274)
76	$cdc20\Delta \ pds1\Delta \ clb5\Delta$	$k_{\rm s,20}'\!=\!k_{\rm s,20}''\!=\!0,$	V	V	V: 0.95
		$k'_{s,b5} = k''_{d,b5} = 0,$			(10,920)
		$k_{\rm s1,pds}^{\prime\prime}{=}k_{\rm s2,pds}^{\prime\prime}{=}0$			
77	GAL- $CDC20$	$k_{s,20}'=6,$	In	In	V: 0.99
		$k_{\rm g} = 0.004621$			(11,355)

78	$cdc20$ - $ts\ mad2\Delta$	$k_{s,20}'=k_{s,20}''=0,$	In	In	In : 0.31
		$k_{\rm mad2} = 0.01$			(9,720)
79	cdc 20- ts bub 2 Δ	$k_{s,20}'=k_{s,20}''=0,$	In	In	In: 0.25
		$k_{\text{bub2}}=0,$			(9,586)
		init BUB2=0			
80^{3}	$pds1\Delta$	$k_{\rm s1,pds}^{\prime\prime}{=}k_{\rm s2,pds}^{\prime\prime}{=}0$	V	In	In
81^{5}	esp1- ts	$k_{\rm as,esp} = 0.1, k_{\rm di,esp} =$	In	In	In
		0.002,			
		$(1/500 \times WT)$			
82^{6}	$PDS1$ - $db\Delta$	$k_{\rm d2,pds}^{\prime\prime}{=}k_{\rm d3,pds}^{\prime\prime}{=}0$	In	In	In
83^{6}	GAL - $PDS1$ - $db\Delta$	$k'_{\rm s,pds} = 0.1,$	In	In	In
		$k_{\rm g} = 0.004621$			
		$k_{\rm d2,pds}^{\prime\prime}{=}k_{\rm d3,pds}^{\prime\prime}{=}0$			
84^{6}	GAL - $PDS1$ - $db\Delta$ $esp1$ - ts	$k'_{\rm s,pds} = 0.1,$	In	In	In
		$k_{\rm d2,pds}'' = k_{\rm d3,pds}'' = 0,$			
		$k_{\rm as,esp}=0.1,$			
		$k_{\rm di,esp}=0.002,$			
		$(1/500 \times \text{WT}),$			
		$k_{\rm g} = 0.004621$			
85	GAL-ESP1 cdc20-ts	$k_{s,20}'=k_{s,20}''=0,$	In	In	In: 0.47
		$k'_{\rm s,esp1t} = 3 \times k'_{\rm s,esp1t},$			(10,057)
		$k_{\rm g} = 0.004621$			
86	$tem 1\Delta$	$k_{\rm a,15}''=0.002$ (=	In	In	pV: 0.73
		$k'_{\rm a,15}), k_{\rm s,mTem1} = 0$			(14,096)

 $^{{}^{5}}$ Simulation results show that esp1-ts strains are able to exit mitosis while the sister chromatids are not yet separated. Therefore, according to our viability rule this mutant is inviable.

⁶Simulation results show that $PDS1-db\Delta$ (mutant # 82), $GAL-PDS1-db\Delta$ (mutant # 83), and $GAL-PDS1-db\Delta$ esp1-ts (mutant # 84) strains are able to exit mitosis; however, Esp1 is inactive throughout the cell cycle which means sister chromatids are still attached. Thus, according to our viability rules, these mutants are inviable.

87	GAL-TEM1	$k_{\rm s,tem1t} = 5 \times k_{\rm s,tem1t},$	V	V	V: 0.93
		$k_{\rm g} = 0.004621$			(15,072)
88	tem1- ts multi-copy	$k_{\mathrm{a},15}''=0.002,$	V	V	V: 0.77
	CDC15	$k_{\mathrm{s,mTem1}}=0,$			(17,050)
		$k_{\rm s,tem1t}=0,$			
		$k_{\rm s,cdc15t} = 5 \times k_{\rm s,cdc15t}$			
89	tem 1- ts GAL - $CDC 15$	$k_{\mathrm{a},15}''=0.002,$	V	V	V: 0.81
		$k_{\mathrm{s,mTem1}}=0,$			$(15,\!616)$
		$k_{\rm s,tem1t}=0,$			
		$k_{\mathrm{s,cdc15t}} = 15 \times k_{\mathrm{s,cdc15t}},$			
		$k_{\rm g} = 0.004621$			
90	$tem1\Delta$ $net1$ - ts	$k_{\mathrm{a},15}''=0.002,$	V	V	V: 0.99
		$k_{\mathrm{s,mTem1}}=0,$			(16, 436)
		$k_{\rm s,tem1t}=0,$			
		$k_{\rm as,rent} = 10,$			
		$k_{\rm as,rentp} = 0.05,$			
		$(5\% \mathrm{WT})$			
91	tem1- ts multi-copy	$k_{\mathrm{a},15}''=0.002,$	V	V	V: 0.96
	CDC14	$k_{s,14} = 0.4$ (2 copies),			(10, 470)
		$k_{s,mTem1} = k_{s,tem1t} = 0$			
92	$cdc15\Delta$	$k_{ m kp,net}^{\prime\prime} = 0,$	In	In	pV: 0.73
		$k_{\rm s,cdc15t} = 0$			(13,862)
93	multi-copy $CDC15$	$k_{\rm s,cdc15t} = 5 \times k_{\rm s,cdc15t}$	V	V	V: 0.97
					(15,020)
94	cdc15- ts multi-copy	$k_{ m kp,net}^{\prime\prime} = 0,$	In	In	pV: 0.73
	TEM1	$k_{\rm s,cdc15t}=0,$			(14,076)
		$k_{\rm s,tem1t} = 5 \times k_{\rm s,tem1t}$			

95	$cdc15\Delta$ $net1$ - ts	$k_{\rm kp,net}^{\prime\prime} = 0,$	V	V	V: 0.99
		$k_{\rm as,rentp} = 0.05,$			(27, 612)
		$k_{\rm as,rent} = 10,$			
		(5% WT)			
96	cdc15- ts multi-copy	$k_{\rm kp,net}''=0, k_{\rm s,14}=0.4$	V	V	V: 0.96
	CDC14	(2 copies)			(24, 884)
97	net1- ts	$k_{\rm as,rentp} = 0.05,$	V	V	V: 0.99
		$k_{\rm as,rent} = 10,$			(30, 3160)
		(5% WT)			
98	GAL-NET1	$k_{\mathrm{s,net}} = 5 \times k_{\mathrm{s,net}},$	In	In	In: 0.50
		$k_{\rm g} = 0.004621$			(10, 966)
99	cdc14- ts	$k_{s,14} = 0$	In	In	In: 0.08
					(9,600)
100	GAL-CDC14	$k_{\mathrm{s},14} = 4 \times k_{\mathrm{s},14},$	In	In	In: 0.04
		$k_{\rm g} = 0.004621$			(10,004)
101	GAL-NET1 GAL-	$k_{\mathrm{s,net}} = 3 \times k_{\mathrm{s,net}},$	V	V	V: 0.94
	CDC14	$k_{s,14} = 3 \times k_{s,14},$			$(10,\!651)$
		$k_{\rm g} = 0.004621$			
102	$net1\Delta~cdc20$ -ts	$k_{\rm as,rentp} = 0.05,$	In	In	In: 0.55
		$k_{\rm as,rent} = 10,$			(10, 974)
		(5% WT)			
		$k_{\rm s,20}'\!=\!k_{\rm s,20}''\!=\!0$			
103	cdc14-ts GAL-SIC1	$k_{s,14} = 0,$	In	In	In : 0.49
		$k_{\rm s,c1}^{\prime}{=}10{\times}k_{\rm s,c1}^{\prime},$			(10, 482)
		$k_{\rm g} = 0.004621$			

104	cdc14- ts then GAL - $SIC1$	$k_{\rm s,14} = 0$ for 180 min,	able to	exits	not able to exit
		then 3 copies of	exit		mitosis
		GAL-SIC1	mitosis		
		$(k_{\rm s,c1}^{\prime}{=}3{\times}k_{\rm s,c1}^{\prime},$			
		$k_{\rm g} = 0.004621)$			
105	$cdc14$ - $ts~sic1\Delta$	$k_{\rm s,c1}'=k_{\rm s,c1}''=0,$	In	In	In: 0.27
		(16%Cdc14 activity)			(9,725)
		$k_{\rm pp,c1} = k_{\rm pp,f6} = 0.64,$			
		$k_{\rm a,swi} = 0.32,$			
		$k_{\rm a,cdh}^{\prime\prime}{=}0.128$			
106	$cdc14$ - $ts~cdh1\Delta$	$k_{\rm s,cdh}=0,$	In	In	In: 0.16
		init CDH1=CDH1T=0			(9,200)
		(30%Cdc14 activity)			
		$k_{\rm pp,c1} = k_{\rm pp,f6} = 1.2,$			
		$k_{\rm a,swi} = 0.6, k''_{\rm a,cdh} = 0.13$			
107	cdc14- $ts~GAL$ - $CLN2$	$k_{\rm s,n2}^{\prime}{=}0.12,k_{\rm s,n2}^{\prime\prime}{=}0,$	In	In	In: 0.61
		$k_{\rm g} = 0.004621,$			(11, 612)
		(10%Cdc14 activity)			
		$k_{\rm pp,c1} = k_{\rm pp,f6} = 0.8,$			
		$k_{\rm a,swi} = 0.4, k''_{\rm a,cdh} = 0.16$			
108	TAB6-1	$k_{\rm as,rentp} = 0.05,$	V	V	V: 0.99
		$k_{\rm as,rent} = 10, (5\% \text{ WT})$			(13,010)
109	$TAB6$ -1 $cdc15\Delta$	$k_{\rm as,rentp} = 0.05,$	V	V	V: 0.99
		$k_{\rm as,rent} = 10 (5\% {\rm WT}),$			(12,960)
		$k_{ m kp,net}^{\prime\prime}{=}0$			

110	$TAB6-1\ clb5\Delta\ clb6\Delta$	$k_{\rm as,rentp} = 0.05,$	In	In	V: 0.99
		$k_{\rm as,rent} = 10 \ (5\% \ {\rm WT}),$			$(11,\!638)$
		$k_{\rm s,b5}'=k_{ m s,b5}''=0$			
111	TAB6-1 CLB1 clb2 Δ	$k_{\rm as,rentp} = 0.05,$	V	V	V: 0.98
		$k_{\rm as,rent} = 10 \ (5\% \ {\rm WT}),$			(11, 314)
		$k'_{s,b2} = 0.0003,$			
		$k_{s,b2}''=0.013,$			
		(33% WT)			
112	$mad2\Delta$	$k_{\rm mad2} = 0.01$	V	V	V: 0.98
					(16,510)
113	$bub2\Delta$	$k_{\text{bub2}}=0,$	V	V	V: 0.98
		init BUB2=0			(12,488)
114	$mad2\Delta \ bub2\Delta$	$k_{\text{bub2}}=0,$	V	V	V: 0.99
		$k_{\rm mad2} = 0.01,$			$(11,\!659)$
		init BUB2=0			
115	APC-A	$k_{\rm a,20}''=0$	V	V	V: 0.97
					(12,113)
116	APC - $A \ cdh1\Delta$	$k_{a,20}''=0, k_{s,cdh}=0,$	In	In	In : 0.18
		init CDH1T=CDH1=0			(9,911)
117	$APC\mathchar`-A \ cdh1\Delta$ on	$k_{a,20}''=0, k_{s,cdh}=0,$	In	In	In: 0.47
	galactose	init CDH1T=CDH1=0.			(10,796)
		$k_{\rm g} = 0.004621$			
118	APC - $A \ cdh1\Delta$	$k_{a,20}''=0, k_{s,cdh}=0,$	V	V	V : 0.83
	multi-copy $SIC1$	$k_{\rm s,c1}^{\prime}{=}15{\times}k_{\rm s,c1}^{\prime},$			(16, 949)
		$k_{\rm s,c1}''=15 \times k_{\rm s,c1}'',$			
		init CDH1T=CDH1=0			

119	APC - $A \ cdh1\Delta \ GAL$ -	$k_{a,20}''=0, k_{s,cdh}=0,$	V	V	V: 0.75 (9,934)
	SIC1	$k_{\rm s,c1}'=20 \times k_{\rm s,c1}',$			
		$k_{\rm g} = 0.004621,$			
		init CDH1T=CDH1=0			
120	APC - $A \ cdh1\Delta$	$k_{\rm a,20}^{\prime\prime}=0, k_{\rm s,cdh}=0,$	V	V	V: 0.78
	multi-copy $CDC6$	$k_{\rm s,f6}'{=}10{\times}k_{\rm s,f6}',$			(12,700)
		$k_{\rm s,f6}^{\prime\prime}{=}10{\times}k_{\rm s,f6}^{\prime\prime}$,			
		$k_{\rm s,f6}^{\prime\prime\prime}{=}10{\times}k_{\rm s,f6}^{\prime\prime\prime},$			
		init CDH1T=CDH1=0			
121	APC - $A \ cdh1\Delta \ GAL$ -	$k_{a,20}''=0, k_{s,cdh}=0,$	V	V	V: 0.82
	CDC6	$k_{\mathrm{s,f6}}^{\prime}{=}15{\times}k_{\mathrm{s,f6}}^{\prime},$			(11, 321)
		$k_{\rm g} = 0.004621,$			
		init CDH1T=CDH1=0			
122	APC - $A \ cdh1\Delta$	$k_{a,20}''=0, k_{s,cdh}=0,$	V	V	V: 0.79
	multi-copy $CDC20$	$k_{\rm s,20}'=25 \times k_{\rm s,20}',$			(26,557)
		$k_{\rm s,20}''=25\times k_{\rm s,20}'',$			
		init CDH1T=CDH1=0			
123	$APC-A \ sic1\Delta$	$k_{a,20}''=0,$	V	V	V : 0.83
		$k_{\mathrm{s,c1}}^{\prime}{=}k_{\mathrm{s,c1}}^{\prime\prime}{=}0$			(14, 922)
124	APC-A GAL-CLB2	$k_{\mathrm{a},20}^{\prime\prime} {=} 0, k_{\mathrm{s,b2}}^{\prime} {=} 0.48,$	In	In	In : 0 (10,000)
		$k_{\rm g} = 0.004621$			

References

- Stefano Di Talia, Jan M Skotheim, James M Bean, Eric D Siggia, and Frederick R Cross. The effects of molecular noise and size control on variability in the budding yeast cell cycle. *Nature*, 448(7156):947, 2007.
- [2] Tracy L Laabs, David D Markwardt, Matthew G Slattery, Laura L Newcomb, David J Stillman, and Warren Heideman. Ace2 is required for daughter cell-specific g1 delay in saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 100(18):10275–10280, 2003.
- [3] Stefano Di Talia, Hongyin Wang, Jan M Skotheim, Adam P Rosebrock, Bruce Futcher, and Frederick R Cross. Daughter-specific transcription factors regulate cell size control in budding yeast. *PLoS Biology*, 7(10):e1000221, 2009.
- [4] Katherine C Chen, Laurence Calzone, Attila Csikasz-Nagy, Frederick R Cross, Bela Novak, and John J Tyson. Integrative analysis of cell cycle control in budding yeast. *Molecular Biology of the Cell*, 15(8):3841–3862, 2004.
- [5] Mansooreh Ahmadian, John J Tyson, and Yang Cao. A stochastic model of size control in the budding yeast cell cycle. BMC bioinformatics, 20(12):322, 2019.
- [6] Mansooreh Ahmadian, Shuo Wang, John Tyson, and Young Cao. Hybrid ode/ssa model of the budding yeast cell cycle control mechanism with mutant case study. In *Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics*, pages 464–473. ACM, 2017.
- [7] Vincent Archambault, Caihong X Li, Alan J Tackett, Ralph Wasch, Brian T Chait, Michael P Rout, and Frederick R Cross. Genetic and biochemical evaluation of the importance of cdc6 in regulating mitotic exit. *Molecular Biology of the Cell*, 14(11):4592–4604, 2003.
- [8] Frederick R Cross. Two redundant oscillatory mechanisms in the yeast cell cycle. Developmental Cell, 4(5):741–752, 2003.