

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Magnesium intake has inverse association with type 2 diabetes and total stroke: An updated systematic review and meta-analysis

l Open jopen-2019-032240 earch Jun-2019 o, Binghao; First Affiliated Hospital of Nanchang University, partment of Thoracic Surgery ig, Lianli; The second affiliated hospital of Nanchang University,
earch Jun-2019 o, Binghao; First Affiliated Hospital of Nanchang University, partment of Thoracic Surgery
Jun-2019 no, Binghao; First Affiliated Hospital of Nanchang University, partment of Thoracic Surgery
o, Binghao; First Affiliated Hospital of Nanchang University, partment of Thoracic Surgery
partment of Thoracic Surgery
 artment of Cardiovascular Medicine bo, Jiani; The second affiliated hospital of Nanchang University, boartment of Cardiovascular Medicine content of Cardiovascular Medicine boartment of Cardiovascular Medicine content of Endocrinology boartment of Endocrinology content of Nanchang University, boartment of Neurology content of Neurology content of Surgery cong, Wenxiong; First Affiliated Hospital of Nanchang University, boartment of Thoracic Surgery
nesium Intake, Type 2 Diabetes, Stroke < NEUROLOGY, Meta- lysis

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Magnesium intake has inverse association with type 2 diabetes and total stroke:		
2	An updated systematic review and meta-analysis		
3	Binghao Zhao ^{1,2} ; Lianli Zeng ^{3,4} ; Jiani Zhao ^{3,4} ; Qian Wu ^{3,4} ; Yifei Dong ³ ; Fang Zou ⁵ ;		
4	Li Gan ⁶ ; Yiping Wei ¹ ; Wenxiong Zhang ¹ .		
5	Affiliations		
6	¹ Department of Cardio-Thoracic Surgery, The first affiliated hospital of Nanchang		
7	University, Nanchang, China, 330006.		
8	² Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese		
9	Academy of Medical Sciences and Peking Union Medical College, Beijing, China,		
10	100000.		
11	³ Department of Cardiovascular Medicine, The second affiliated hospital of Nanchang		
12	University, Nanchang, China, 330006.		
13	⁴ Jiangxi medical college, Nanchang University, 330006, Nanchang, China		
14	⁵ Department of Endocrinology, The second affiliated hospital of Nanchang University,		
15	Nanchang, China, 330006.		
16	⁶ Department of Neurology, The second affiliated hospital of Nanchang University,		
17	Nanchang, China, 330006.		
18	Corresponding Author: Wenxiong Zhang, MD, Department of Cardio-Thoracic		
19	Surgery, The first affiliated hospital of Nanchang University, 17 Yongwai Main Street,		
20	Nanchang, P. R. China 330006; E-mail: <u>zwx123dr@126.com</u> ; Phone:		
21	+8618720909414; Fax: 0791-86133161.		
22	Short running head: Magnesium Intake Reduces Diabetes and Total Stroke.		
23	Word count: 4350		

24	Abstract
25	Objective: The detailed associations between type 2 diabetes (T2D) and total stroke
26	and magnesium intake should be timely updated. And, we keep requiring evidence of
27	significant prevention of the two diseases. We conducted a systematic review and
28	meta-analysis to quantify the association and to determine the dose-response
29	relationships between magnesium intake and T2D and stroke.
30	Design: Systematic review search, methodology and meta-analyses.
31	Data sources: PubMed, EMBASE, Cochrane Library, Web of Science and
32	ClinicalTrials.gov.
33	Eligibility criteria: Prospective cohort studies about magnesium intake and risk of
34	T2D or stroke.
35	Data synthesis: Relative risk (RR) and 95% confidence intervals (95% CI) were
36	pooled for inclusion in random-effects models to calculate risk on T2D and stroke.
37	Results: Forty-one studies involving 53 cohorts were included. The magnitude of the
38	risk was significantly reduced by 22% for T2D (RR, 0.78 [95% CI, 0.75-0.81]; P<
39	0.001), 11% for total stroke (RR, 0.89 [95% CI, 0.83-0.94]; P< 0.001), and 12% for
40	ischemic stroke (RR, 0.88 [95% CI, 0.81-0.95]; $P = 0.001$) comparing the highest
41	magnesium intake to the lowest. The inverse association still existed when studies on
42	T2D were adjusted for cereal fiber (RR, 0.79 [95% CI, 0.73-0.85]; P< 0.001) and
43	those on total stroke were adjusted for calcium (RR, 0.89 [95% CI, 0.80-0.99]; $P =$
44	0.040). Subgroup analyses suggested risk for total and ischemic stroke was
45	significantly decreased in females, participants with $\geq 25~\text{mg}/\text{m}^2$ body mass index,

and those with ≥ 12y follow-up, the reduced risk in Asia was not so conspicuous as in
North America and Europe.

Conclusions: Magnesium intake has significantly inverse associations with T2D and 49 total stroke in a dose-dependent manner. Specific populations may receive more 50 benefits from magnesium–rich dietary pattern. Feasible costless dietary approach 51 needs to be highlighted in the primary prevention of T2D and total stroke by the 52 public.

54 Strength and limitation

55 1. We conducted a quantitative analysis suggesting that magnesium intake has a56 strong inverse association with T2D and total stroke.

57 2. Magnesium-rich food consumption should be recommended for high-risk58 individuals in dietary guidelines.

59 3. Highlighting early management of T2D and stroke requires various efforts and60 strategies.

4. This study, which includes a considerable amount of evidence, assists withinnovation of the global dietary pattern.

5. Although strong inverse associations for T2D and total stroke were reported,

64 individual-level studies having more detection power are required.

66 Keywords: Magnesium Intake; Type 2 Diabetes; Stroke; Meta-Analysis.

67 Introduction

Diabetes is a global burden with an alarming increasing rate throughout the world^{1,2}. Stroke is an independent disorder and a typical macrovascular complication of type 2 diabetes (T2D) treated as the second leading cause of death after ischemic heart disease^{3,4}. These pandemic health problems require more primary prevention strategies.

Magnesium, common cellular ion, acts as critical cofactor for hundreds of enzymes involved in glucose metabolism, protein production, and nucleic acid synthesis^{5,6}. Low levels of magnesium have been associated with many chronic and inflammatory diseases, such as Alzheimer's disease, asthma, attention deficit hyperactivity disorder, insulin resistance, T2D, hypertension, cardiovascular disease (e.g., stroke), migraine headaches, osteoporosis and cancer^{1,5,7,8}.

Actually, many adults in developed countries do not successfully meet the recommended daily consumption of magnesium-rich foods such as whole grains, nuts, and green leafy vegetables, and magnesium is less mentioned in dietary guidelines and in studies about T2D or stroke prevention^{9,10}. With this regard, we chose T2D and stroke as our outcome of interest (cardiovascular disease (CVD) was not elaborated because there are so many items relating to CVD and the definitions about CVD varied a lot among searched studies, which would enhance heterogeneity in the pooled process and impair our interpretation of the final conclusion). And, emerging studies¹¹⁻⁵¹ on this topic are limited, and the results still remain mixed possibly due to the limitations of small simple sizes and differences in intervention duration, study

design, characteristics of participants. Moreover, consecutive meta-analyses^{52,53} have used less rigorous inclusion, the statistics were inadequate, the results were incomprehensive, and they did not completely address the influence of other confounders (i.e., body mass index (BMI), cereal fiber, calcium, potassium) on the relationship. Accordingly, we performed a meta-analysis to (1) establish a comprehensive estimate and update the epidemiological evidence for clinical practice; (2) discuss the results of stroke subtype and the impact of several statistical and epidemiology confounders on the investigated association; and (3) highlight a detailed dose-response pattern for the participants in the studies analyzed.

99 Methods

This study was reported according to the Meta-analysis of Observational Studies in
Epidemiology (MOOSE) Guidelines Checklist and the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Table S1)
(Registration information: PROSPERO CRD42018092690).

105 Search Strategy

PubMed, EMBASE, Cochrane Library, Web of Science and ClinicalTrials.gov were
systematically reviewed through inception to March 15, 2019 for studies about
magnesium intake and T2D or stroke without language restrictions. The following key
words were used: "Magnesium", "Type 2 Diabetes Mellitus", "Type 2 Diabetes",
"Stroke", "Cerebrovascular Stroke", "Cohort Studies", and "Prospective Studies". We

Page 7 of 66

BMJ Open

also manually searched the reference lists of the retrieved literature (including
meta-analyses and brief reports), bibliographies and gray literature (including
presentations and unpublished literature) for further eligible articles.

115 Selection Criteria

(1) Eligible populations must be composed of individuals with plausible
dietary/energy intake, who had no history of diabetes and/or insulin treatment for T2D
analysis and no current stroke for stroke analysis. (2) Their apparent life expectancy
was long enough for proper follow-up. (3) We only included prospective cohort
studies that reported magnesium intake and T2D and/or various types of stroke.
Notably, magnesium intake contained dietary magnesium intake and total magnesium
intake (dietary and supplementary magnesium).

123 Only studies containing the most comprehensive information on the population 124 or endpoints were included to avoid duplication. We excluded reviews, basic studies, 125 meta-analyses, etc.

127 Data Extraction and Quality Assessments

Two researchers independently extracted the following information: the first author, publication year, period of cohort studies, duration of persistent exposure, basic characteristics of the enrolled participants (weight, age, region, BMI, drinking and smoking habits (previous plus current), etc.), median magnesium intake for each quantile (tertile, quartile, or quintile), diabetes and total stroke cases, subtypes of total

> stroke, dietary and case assessments, adjusted confounding covariates. Importantly, total stroke is classified as clinical ischemic stroke (87%), hemorrhagic stroke (13%) and undetermined stroke⁵⁴. Hemorrhagic stroke is classified as subarachnoid hemorrhage and intracerebral hemorrhage according to anatomical site or presumed etiology⁵⁵.In cases of continuing disagreement, a final decision was reached after discussion with a third member of the panel.

> Methodological quality was described by the Newcastle-Ottawa Scale (NOS), which was validated for assessment of the quality of nonrandomized controlled trials in meta-analyses⁵⁶. As for 0-10 scale, each study was categorized as low (0-5), medium (6-7), of high (8-10) quality.

144 Statistical Analysis

Articles providing data separately for men and women or black and white or different types of disease within an article were treated as independent studies. Multivariate relative risk (RR) and corresponding 95% confidence intervals (CI) for measuring the quantitative associations between exposure and T2D, total stroke and other wanted outcomes, particularly for the highest vs. the lowest categories of magnesium intake were estimated by DerSimonian-Laird random effects model because the assumptions involved account for the presence of within-study and between-study variability. Statistical heterogeneity was determined with the Cochran Q chi-square test and the I^2 . An $I^2 > 50\%$ or a P value for the Q test < 0.1 was considered to indicate significant heterogeneity⁵⁷. We performed sensitivity analyses to test the robustness and

Page 9 of 66

BMJ Open

post-subgroup analyses to detect source of heterogeneity. In addition, a random-effects meta-regression analysis on BMI, sex, participants region, and dietary assessments with RR for each trial was performed to obtain an understanding of the reasons for heterogeneity. RR and 95% CI might begin to significantly change as publication years increased in T2D and total stroke etc., which would be validated by cumulative meta-analyses.

The dose-response analyses for all outcomes were proposed by Greenland and Longnecker⁵⁸ and Orsini⁵⁹ et al. The categories of magnesium intake, distributions of cases and person-year, RR and 95 CI were extracted. Once the number of cases and/or person-years was not available, variance-weighted least squares regression was used to pool the risk estimate. For most studies, the median intake for each quantile (tertile, quartile or quintile) of magnesium intake was assigned as the representative dose. For continuous intake reported as category data with a range in some studies, we assigned the mid-point category of the lower and upper bound to the RR in these studies; when the highest category was open ended, we assumed the length of the open ended interval to be 1.5 times as the adjacent interval; when the lowest category was open, we assigned the adjacent interval of the category to be 1.5 times as the length of the open ended interval. We determined generalized least squares regression models to calculate study-specific RR estimates per 50 mg/day, 100 mg/day, and 150 mg/day of magnesium intake increment if there was evidence for linear relationships. In addition, the non-linear relationships between magnesium intake and all outcomes were evaluated using restricted cubic splines with four knots located at the 5th, 35th, 65th,

and 95th percentiles of the distribution. The P value for curve linearity or non-linearity was calculated by testing the null hypothesis that the coefficient of the second spline is equal to zero. All results were presented using two-stage dose-response model plots (including linear and nonlinear relationships). Some results were demonstrated in forest plots for $< 50 \text{ mg/day}, \ge 50 \text{ and} < 100 \text{ mg/day}, \ge 100 \text{ and} < 150 \text{ mg/day}, \ge 150$ mg/day increments. Publication bias was assessed graphically by Begg's adjusted rank correlation funnel plots⁶⁰ and Egger's linear regression tests⁶¹. All analyses were performed using Stata version 14.0 (StataCorp, College Station, TX, USA); two-sided P < 0.05 was considered statistically significant except where otherwise specified. **Patient and Public Involvement:** We did not involve patients or the public in this research at any stage. Results **Study Characteristics and Quality Assessment** Of the total 8713 studies, 107 studies were considered for eligibility after screening of titles and abstracts (Figure 1). And a total of 41^{11-51} prospective cohort studies involving 53 cohorts, 1 912 634 participants and 76 678 cases were eligible for current systematic review and meta-analysis (Table S2). Hodge et al¹⁸ only recorded 500 mg/day increment of magnesium for further pooled analyses; 2 studies^{33,51} failed

to clearly distinguish the diabetes type, but the great majority of cases had T2D. We

Page 11 of 66

BMJ Open

computed the subtype data in three studies^{14,27,36} after the extraction of total stroke, and we considered ischemic stroke in three other studies^{28,30,42} as total stroke given ischemic stroke accounting for nearly 87% of total stroke. Participants were predominately middle-age at baseline, with mean magnesium intake for the highest category of 370 mg/day, mean for the lowest category of 232 mg/day. The mean duration of all eligible studies was 10.7 years. Nineteen studies were conducted in North America (America); 5 studies were in Europe (Sweden, the Netherlands and Britain); 13 studies in Asia (China and Japan and Taipei); 4 studies enrolled individuals in multiple nations. Most of the studies included used food frequency questionnaires (FFQs) or semi-quantitative FFQs (SFFQs) to assess individual dietary intake. Eighteen studies used dietary magnesium intake, and 21 studies recorded total magnesium intake (dietary and supplementary magnesium intake). Of note, supplementary magnesium intake was assessed from the use of magnesium or multivitamin supplements; nevertheless, dietary magnesium accounted for the majority of magnesium intake. Adjusted confounders were mostly similar; however, adjusted dietary confounders such as cereal fiber, potassium, and calcium still varied across individual studies. It was unclear whether included studies had adjusted for sodium because they did not provide the information. All these studies were written in English. After the quality assessments of the studies according to NOS, the average score was

219 8.85 (Table S3) and all studies were of high quality (NOS score 8-10).

221 Magnesium Intake and T2D Incidence

Thirty-five cohorts from 26 publications^{11,12,15,20,22-26,29,31-35,37,39,41,43,48,49,51}(1 219 636 participants and 56 540 T2D cases) reported the magnitude of the risk of T2D was reduced by 22% (RR, 0.78 [95% CI, 0.75-0.81]; P < 0.001) comparing the highest category of magnesium intake to the lowest with a little evidence of heterogeneity (I^2) = 35.6%; P = 0.021). The dose category-specific analysis suggested that for < 50 mg/day magnesium increment, the risk of T2D was reduced by 10% (RR, 0.90 [95% CI, 0.88-0.93]; P < 0.001); for ≥ 50 and < 100 mg/day, the risk was decreased by 16% (RR, 0.84 [95% CI, 0.82-0.87]; P < 0.001); for ≥ 100 and < 150 mg/day, the risk was reduced by 22% (RR, 0.78 [95% CI, 0.74-0.83]; P < 0.001); and for ≥ 150 mg/day, the risk was reduced by 21% (RR, 0.79 [95% CI, 0.74-0.84]; P < 0.001) (Figure 2). Little evidence of publication bias was found (Egger's test: P = 0.088) (Figure S1A).

Magnesium Intake and Stroke Incidence

from 15 publications^{13,14,21,27,28,30,36,38,40,42,44-47,50} (692 Eighteen cohorts participants and 20 138 total stroke cases) reported the magnitude of the risk of total stroke was decreased by 11% (RR, 0.89 [95% CI, 0.83-0.94]; P < 0.001) with no heterogeneity ($I^2 = 0\%$; P = 0.529) in the highest category of magnesium intake VS. the lowest. Dose category-specific analysis identified no significant association with the $< 50 \text{ mg/day}, \ge 50 \text{ and} < 100 \text{ mg/day}, \text{ or} \ge 100 \text{ and} < 150 \text{ mg/day}$ of increments. For the $\geq 150 \text{ mg/day}$ increment, the risk of total stroke was decreased by 15% (RR, 0.85 [95% CI, 0.79-0.91]; P< 0.001) (Figure S2). Publication bias was evaluated for

Page 13 of 66

BMJ Open

243	stroke subtypes respectively.
244	Fifteen cohorts from 12 publications ^{14,21,27,28,30,36,38,40,42,45,46,50} reported ischemic
245	stroke. The magnitude of the risk of ischemic stroke was reduced by 12% (RR, 0.88
246	[95% CI, 0.81-0.95]; $P = 0.001$) with no significant heterogeneity ($l^2 = 16.9\%$; $P =$
247	0.265). Dose category-specific analysis identified no significant association with the $<$
248	50 mg/day, \geq 50 and < 100 mg/day, or \geq 100 and < 150 mg/day increments. A trend
249	to decrease existed but remained insignificant. The original risk was reduced by
250	16% in the analysis of the \geq 150 mg/day increment (RR, 0.84 [95% CI, 0.78-0.91]; P<
251	0.001) (Figure S3). No publication bias was observed in terms of ischemic stroke
252	(Egger's test: $P = 0.937$) (Figure S1B).
253	Ten cohorts from 8 studies ^{14,21,27,36,38,45,46,50} reported that hemorrhagic stroke was
254	not significantly associated with magnesium intake (RR, 0.93 [95% CI, 0.82-1.06]; P
255	= 0.282).Dose category-specific analysis identified no significant association (Figure

S4). No significant heterogeneity or publication bias were identified with regard to hemorrhagic stroke (Egger's test: P = 0.809) (Figure S1C).

Three publications involving 3 cohorts^{14,27,36} showed that high magnesium intake had no significant efficacy in reducing subarachnoid hemorrhage risk (RR, 0.99 [95% CI, 0.71-1.39]; P = 0.963). Dose category-specific analysis identified no significant association (Figure S5).

With respect to intracerebral hemorrhage, the pooled results from 3 cohorts^{14,27,36} in 3 publications revealed no significant advantages of intracerebral hemorrhage (RR, 0.92 [95% CI, 0.71-1.20]; P = 0.540). Dose category-specific analysis identified no

significant association (Figure S6).

267 Meta-Regression and Cumulative Meta-Analysis

Meta-regression identified no evidence of BMI, sex, participant region and dietary assessment for each individual trial bias in T2D (Figure S7), total stroke (Figure S8), ischemic stroke (Figure S9) and hemorrhagic stroke events (Figure S10). The male subgroup (P = 0.041) in the sex category might cast little heterogeneity on total stroke; however, the sex category (P = 0.112) had no association with total stroke incidence. Analyses on T2D (Figure S11), total stroke (Figure S12) and ischemic stroke demonstrated that the RRs of the final results became robust within a narrow range and remained significant as publication years increased and as recent high quality studies were included. After inclusion of the Iso et al¹⁴ study, the RR and 95% CI for ischemic stroke decreased to less than 1 and became stable (Figure S13). Although there was no significantly reduced risk in hemorrhagic stroke, clear evidence showed that the confidence interval was becoming narrow, which had a trend toward significance (Figure S14). Thus, risk for hemorrhagic stroke might be reduced, and further studies are still needed.

 283 Sensitivity Analysis

When three²⁴⁻²⁶ studies were excluded in T2D analysis, the summary RR changed from 0.78 ([95% CI, 0.75-0.81]) to 0.78 ([95% CI, 0.75-0.82]) with the heterogeneity declining from ($I^2 = 35.6\%$; P = 0.021) to ($I^2 = 24.0\%$; P = 0.112). Among T2D

BMJ Open

analysis, eight studies^{19,22,23,26,33,39,48,49} adjusted for cereal fiber intake yield an RR of 0.79 ([95% CI, 0.73-0.85]; P < 0.001) and two studies^{15,35} for calcium yielded an RR of 0.87 ([95% CI, 0.73-1.04]; P = 0.128). While among total stroke analysis, the summary RR was 0.92 ([95% CI, 0.82-1.02]; P = 0.097) in five studies^{13,44-46,50} adjusted for potassium intake and was 0.89 ([95% CI, 0.80-0.99]; P = 0.040) in five studies^{14,44-46,50} adjusted for calcium. Only one study¹⁵ adjusted for potassium intake in T2D, one study³⁶ for cereal fiber in total stroke.

295 Subgroup Analysis

Stratified analyses by characteristics of the population and study design were conducted on T2D (Table 1), total stroke, ischemic stroke and hemorrhagic stroke (Table 2). The inverse association with T2D remained robust across all subgroups with little evidence of heterogeneity. As for stroke incidence, a decreased risk of total stroke and ischemic stroke was found in female participants (RR, 0.91 [95% CI, 0.83-0.99] for total stroke; 0.89 [95% CI, 0.79-1.00] for ischemic stroke) and individuals with ≥ 25 kg/m² mean BMI (RR, 0.89 [95% CI, 0.82-0.96] for total stroke; 0.88 [95% CI, 0.81-0.96] for ischemic stroke). When restricted to $a \ge 12$ y follow-up, the risk of total stroke and ischemic stroke could be significantly reduced (RR, 0.89 [95% CI, 0.83-0.95] for total stroke; 0.88 [95% CI, 0.81-0.95] for ischemic stroke). These risks were more reduced in North American and European individuals than Asians. Cardiovascular events (CV events, coronary heart disease, heart failure, atrial fibrillation, self-reported and heart disease other than stroke), etc.

hypercholesterolemia and diabetes would blunt the effect of magnesium on total and ischemic stroke. However, magnesium intake could still, or at least, demonstrate the trend to decrease total and ischemic stroke in individuals even with those risk factors. Similarly, CV events, hypercholesterolemia and family diabetes history had no substantial impact on the inverse association between T2D incidence and magnesium intake. We did not find significantly reduced risk in hemorrhagic stroke across the subgroup analyses.

317 Dose-Response Analysis

In this part, both linear and nonlinear relationships were found in T2D (**Figure 3A**), in total stroke (**Figure 3B**), and in ischemic stroke (**Figure 3C**). However, no linear or non-linear dose-response relationship was observed in hemorrhagic stroke (**Figure 3D**) along with the subtypes including subarachnoid hemorrhage and intracerebral hemorrhage (**Figure S15**).

Specifically, we calculated RR for the magnesium increments if there was linear relationship found. The calculated RR was 0.94 ([95% CI, 0.93-0.95]) for the 100 mg/day increment for T2D. For total stroke, the summary RR was0.98 ([95% CI, 0.97-0.99]) related to 100 mg/day increment in magnesium intake, RR for ischemic stroke was 0.98 ([95% CI, 0.97-0.99]) related to 100 mg/day increment in magnesium intake. Magnesium intake showed an inverse dose-response relationship with T2D, total stroke and ischemic stroke. Moreover, a more substantial reduction on risks was observed with more magnesium intake.

1 2
3 4
5 6 7
7 8 9
) 10 11
12
13 14 15
16 17
18 19
20 21
22 23 24
25 26
27 28
29 30
31 32
33 34 35
36 37
38 39
40 41
42 43
44 45 46
40 47 48
49 50
51 52
53 54
55 56 57
57 58 59
60

332	Discussion
333	This paper used a general and up-to-date search strategy to identify some additional
334	studies that were missed in prior meta-analyses under real-world conditions. Our
335	results support a significant inverse association between magnesium consumption and
336	T2D, total stroke and ischemic stroke at the highest level vs. the lowest. No
337	significant association for hemorrhagic stroke, subarachnoid hemorrhage and
338	intracerebral hemorrhage was detected. Female obese participants (mean BMI ≥ 25
339	kg/m ²) with longer follow-up period (\geq 12 y) might obtain a greater benefit from
340	magnesium intake for preventing total and ischemic stroke. Enhancing magnesium
341	intake seemed to be more effective for North American and European individuals to
342	get lower stroke risks. Significant risk reduced by 6%, 2%, and 2% for T2D, total
343	stroke and ischemic stroke respectively at per 100 mg/day increment in magnesium
344	intake level. Overall, the correction of magnesium deficiencies and enhancement of
345	magnesium intake appears to be useful for T2D and total stroke high-risk participants;
346	our study supports the guidelines to address the role of magnesium intake for T2D and
347	stroke early prevention. Even though, we still require more randomized controlled
348	trials (RCTs) in the future to validate the causality.

349 Dietary nutrients are hot topics for current clinical medicine, folic acid, vitamin 350 D, and ω -3 fatty acids have been specifically recommended to pregnant women, 351 infants and children, and the elderly^{62,63}, however, magnesium has been less 352 extensively discussed. This is a noteworthy study for the following reasons. First, this

study focused on an important and timely topic related to correlations between two chronic diseases and magnesium. Preventing T2D and stroke still requires high-quality evidence. Current study reinforces the possible role of magnesium in the prevention and management of these illnesses and causes new considerations on the avoidance of other chronic disease with potential diet strategy. Second, this comprehensive study with nearly two million individuals and abundant statistical power provides confirming evidence for medical practitioners, health educators and policy makers. Third, until this study, no related paper has discussed such detailed stratified analyses, which helps physicians to amplify the dietary benefits through individualized strategies. Interestingly, we detected North American and European participants seemed to receive more benefits from magnesium intake than Asians. Fourth, to our knowledge, this is the first study in which cumulative meta-analysis was performed to forecast the changing tendency of main risk estimates. Based on past and current cutting edge evidence about nutrition and T2D prevention, the US Diabetes Prevention Program (DPP) conducted a study that demonstrated that proper lifestyle modification (exercise and Mediterranean diet) significantly reduced T2D risks irrespective of population baselines, and the benefit expanded with increased follow-up⁶⁴. The UK national health service (UK NHS) will launch an intervention program including weight loss, nutrition, monitoring and peer support targeting up to 10 000 people prone to develop $T2D^{65}$.

2018 American Diabetes Association (ADA) guidelines⁶⁶ recommend to enhance
intake of nuts, berries, yogurt, coffee and tea in individuals who are at high risk of

Page 19 of 66

BMJ Open

375	diabetes. The latest guidelines by the American Heart Association (AHA)/American
376	Stroke Association (ASA) ⁹ also validate considerable status of early management of
377	stroke (ischemic stroke). In deed, a poor outcome on hemorrhagic stroke was
378	observed in a RCT, however, high serum magnesium might be better for intracerebral
379	hemorrhage prognosis ⁶⁷ . Most specific nutrients especially macronutrients are
380	correlated with total energy intake. In included free-living human studies, variation of
381	total energy intake is originated from physical activity, differences in body size, and
382	differences in energy efficiency ⁶⁸ . Thus total energy intake can weaken the
383	investigated association with considerable nutrients intake if this covariable is not
384	properly removed. Epidemiologists should assess reproducibility and validity of
385	energy-adjusted nutrients as well as absolute nutrients intake. Though micronutrient
386	as magnesium is, inverse association could be still found in T2D, total stroke and
387	ischemic stroke outcomes after total energy intake adjustment. As for other nuttrients,
388	potassium intake is proposed to lower blood pressure (BP) and improve vascular
389	outcomes (including stroke); dietary potassium may also be influential in glucose
390	control and limiting the risk of diabetes ⁶⁹ . Vitamin D and calcium may negatively
391	influence glycemia, but the evidence is limited for mostly being based on
392	cross-sectional observational studies ⁷⁰ . Calcium may be inversely associated with
393	stroke in populations with low to moderate calcium intakes, but no significant
394	association was found between calcium and CVD71. All things considered,
395	magnesium-rich food such as nuts (151-567 mg/100g edibles), fruits (132-448
396	mg/100g edibles), vegetables (132-1257 mg/100g edibles), legumes (138-243

mg/100g edibles), fish (143-303 mg/100g edibles) and total grain (134-306 mg/100g

edibles) should be recommended to populations with insufficient magnesium intake from T2D and total stroke. This seminar has several differences with previous studies. Dong et al⁵² found magnesium intake had an inverse association with T2D incidence (RR, 0.78 [95% CI, 0.73-0.84]), and with an intake of 100 mg/day magnesium, the risk was reduced by 14%. In fact, they failed to include adequate studies, and standard quality assessments of eligible studies were absent. Individuals from multiple nations in some studies^{18,25,26,32} were incorrectly assigned to Asia or the U.S. in the subgroups, and minor imperfections existed in the selection criteria because it was unclear whether they excluded participants with subclinical diabetes. BMI was not a potential modifier for T2D in our study due to the inclusion of more evidence which had longer follow-up period. Fang et al⁷² revealed dietary magnesium had a smaller effect on cardiovascular disease but significantly reduced T2D (RR, 0.74 [95% CI, 0.69-0.80]) and stroke (RR, 0.88 [95% CI, 0.82-0.95]) risks. The results were comparable, but they just focused on dietary magnesium intake rather than overall magnesium intake (total or dietary), and subtypes of total stroke were missed. To our overall knowledge, BMI, follow-up, family diabetes history, etc. were crucial confounders for evaluating the association, which were not addressed in their study. Moreover, researchers had

better investigate the likelihood of linear association in the dose-response pattern (using methods by Greenland and Orsini et al). Fang et al⁷³ found that the 100 mg/day intake of dietary magnesium was associated with an 8-13% reduction in T2D risk, and

Page 21 of 66

BMJ Open

while a nonlinear relationship did not exist, a minor publication bias was present. Twenty-five studies were eligible; however, some of them focused not on dietary but on total magnesium intake. Moreover, there were two included studies focusing on red meat intake instead of magnesium intake. After excluding actual ineligible studies, we found no evidence of publication bias. Additionally, both linear and nonlinear relationships existed for T2D, because the RRs of the highest category of magnesium intake VS. the lowest in our pooled study were still used. A study by Larsson et al⁵³including 7 studies supported a modest but statistically significant inverse association between dietary magnesium intake and stroke. The sample size was quite small, and there was no useful information for stroke subtypes (e.g., ischemic stroke, hemorrhagic stroke) in the main analysis. In our opinion, a well-designed subgroup analysis is a compulsory undertaking, and a pooled stroke result restricted by potassium and calcium adjustment is recommended. The current study found magnesium intake was strongly inversely associated with total stroke and ischemic stroke, which still existed in the dose-response pattern.

Future studies still have something to be addressed. At first, no significant efficacy was found in hemorrhagic stroke, however, the beneficial trend was observed in the cumulative meta-analysis, which addresses needs for more updated prospective studies and RCTs. Second, there is a key question regarding the optimal time to start prevention and methods to screen severe complications. Cardiovascular events occur in more than 50% and diabetic kidney disease occurs in 20-40% of patients with diabetes. Actually, cardiovascular events increase the risk of death three to four times

compared with patients without such complications. A sustained period of intensive
glucose control early in T2D has been confirmed to reduce complication rates⁷⁴. Most
importantly, to the public, educators and guideline makers, boosting magnesium-rich
food consumption brings considerable benefits to T2D and total stroke prevention,
especially in high-risk populations.

Several limitations deserve further discussion. First, this group-level meta-analysis is insufficient. Although strong inverse associations for T2D and total stroke were reported, individual-level studies having more detection power are required. Second, several variations cannot be totally understood, for example, we cannot exclude the possibility that other nutrients and/or dietary components correlated with dietary magnesium may have been responsible, either partially or entirely, for the observed associations. Based on eligible studies, we could not quantify the impact of supplementary magnesium (not combined with dietary intake) on T2D and stroke incidence. The real effect of some dietary supplements on T2D or cardiovascular disease seems very interesting to a number of medical experts, clinicians and nutrition educators. Third, FFQs/validated FFQs mostly used in primary studies could not characterize all the nutrients, which misclarified plausible associations. Finally, besides prospective cohort studies, we still required further RCTs, because observational studies might only reach the same conclusion (i.e., magnesium intake is inversely associated with T2D incidence) but could not prove causality. However, there has been some evidence suggesting that magnesium achieves glucose and insulin metabolism through tyrosine kinase activity of the

 BMJ Open

insulin receptor; magnesium also helps to eliminate calcium cation cytotoxicity and
has vasodilatory effect⁷⁵.

466 Conclusion

Magnesium intake has a substantial inverse association with T2D and total stroke. Among these populations, magnesium consumption can be recommended as an optimization for T2D, total stroke and ischemic stroke primary prevention or early management. In particular, the greater the magnesium intake, the more the risk is reduced. As patients, physicians, policy makers and legislators debate on these issues, such a cost-effective alternative is needed to inform policy decisions and assist reform in global dietary health care.

Acknowledgements: The authors thank professor Yanhua Tang, MD (The second
affiliated hospital of Nanchang University) for her advice and professor Xiaoshu
Cheng, MD, PhD (The second affiliated hospital of Nanchang University) for his data
collection.

Competing interests

481 None declared

- **Provenance and peer review**
- 484 Not commissioned; externally peer reviewed.

2	
3	
4	
5	
6 7	
8	
9	
10	
11 12	
12	
17	
12 13 14 15	
12	
16 17	
1/	
18	
19 20	
20	
21	
//	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51 52	
52 53	
54 55	
55 56	
57 58	
58 59	
60	

485

486	Data sharing statement
487	No additional data are available.
488	
489	Patient consent for publication
490	Not required.
491	
492	Funding Sources
493	This study was supported by National Natural Science Foundation of China (NSFC),
494	number of grants (81560345), Natural Science Foundation of Jiangxi Province (Grant
495	number: 20161BAB215237).
496	
497	Author Contribution: Dr Zhao had full access to all of the data in the manuscript
498	and takes responsibility for the integrity of the data and the accuracy of the data
499	analysis.
500	Concept and design: All authors.
501	Acquisition, analysis, or interpretation of data: All authors.
502	Drafting of the manuscript: Binghao Zhao and Wenxiong Zhang.
503	Critical revision of the manuscript for important intellectual content: Binghao Zhao,
504	Lianli Zeng, Jiani Zhao, Qian Wu, Fang Zou, Li Gan and Yifei Dong.

505 Statistical analysis: Binghao Zhao.

506 Supervision: Wenxiong Zhang and Yiping Wei

507

508 **Reference**

509 1. Centers for Disease Control and Prevention. National Diabetes Statistics Report,

Page 25 of 66

512

1

BMJ Open

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

2017. Atlanta, GA: Centers for Disease Control and Prevention, US Department of 510 Health and Human Services; 2017. 511 2. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since

1980: a pooled analysis of 751 population-based studies with 4.4 million participants. 513

Lancet. 2016;387(10027):1513-1530. 514

- 3. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart 515 Disease and Stroke Statistics-2017 Update: A Report From the American Heart 516 Association. Circulation. 2017;135(10):e146-e603. 517
- 4. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett 518 DA, et al. Global and regional burden of stroke during 1990-2010: findings from the 519 Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245-254. 520
 - 5. Barbagallo M, Dominguez LJ. Magnesium metabolism in type 2 diabetes mellitus, 521 resistance. metabolic syndrome and insulin Arch Biochem Biophys. 522 2007;458(1):40-47. 523
 - 6. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria 524 selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 525 2018;359(6380):1151-1156. 526
 - Reffelmann T, Ittermann T, Dörr M, Völzke H, Reinthaler M, Petersmann A, et al. 527 7.
 - Low serum magnesium concentrations predict cardiovascular and all-cause mortality. 528
 - Atherosclerosis. 2011;219(1):280-284. 529
 - 8. Fadelu T, Zhang S, Niedzwiecki D, Ye X, Saltz LB, Mayer RJ, et al. Nut 530
- Consumption and Survival in Patients With Stage III Colon Cancer: Results From 531

532	CALGB 89803 (Alliance). J Clin Oncol. 2018;36(11):1112-1120.
533	9. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K,
534	et al. 2018 Guidelines for the Early Management of Patients With Acute Ischemic
535	Stroke: A Guideline for Healthcare Professionals From the American Heart
536	Association/American Stroke Association. Stroke. 2018;49(3):e46-e110.
537	10. Brignole M, Moya A, de Lange FJ, Deharo JC, Elliott PM, Fanciulli A, et al.
538	2018 ESC Guidelines for the diagnosis and management of syncope. Eur Heart J.
539	2018:ehy037.
540	11. Salmerón J, Ascherio A, Rimm EB, Colditz GA, Spiegelman D, Jenkins DJ, et al.
541	Dietary Fiber, Glycemic Load, and Risk of NIDDM in Men. Diabetes care.
542	1997;20(4):545-550.
543	12. Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC.
544	Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in
545	women. JAMA. 1997;277(6):472-477.
546	13. Ascherio A, Rimm EB, Hernán MA, Giovannucci EL, Kawachi I, Stampfer MJ,
547	et al. Intake of potassium, magnesium, calcium, and fiber and risk of stroke among
548	US men. Circulation. 1998;98(12):1198-1204.
549	14. Iso H, Stampfer MJ, Manson JE, Rexrode K, Hennekens CH, Colditz GA, et al.
550	Prospective study of calcium, potassium, and magnesium intake and risk of stroke in
551	women. Stroke. 1999;30(9):1772-1779.
552	15. Kao WH, Folsom AR, Nieto FJ, Mo JP, Watson RL, Brancati FL. Serum and
553	dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk

Page 27 of 66

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
22	
22	
23 24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55	
55	
55	
57	
57	
58 59	
74	

60

in Communities Study. Arch Intern Med. 1999;159(18):2151-2159. 554 16. Liu S, Manson JE, Stampfer MJ, Hu FB, Giovannucci E, Colditz GA, et al. A 555 prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US 556 women. Am J Public Health. 2000;90(9):1409-1415. 557 17. Meyer KA, Kushi LH, Jacobs DR, Jr., Slavin J, Sellers TA, Folsom AR. 558 Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J 559 ClinNutr. 2000;71(4):921-930. 560 18. Hodge AM, English DR, O'Dea K, Giles GG. Glycemic index and dietary fiber 561 562 and the risk of type 2 diabetes. Diabetes care. 2004;27(11):2701-2706. 19. Lopez-Ridaura R, Willett WC, Rimm EB, Liu S, Stampfer MJ, Manson JE, et al. 563 Magnesium intake and risk of type 2 diabetes in men and women. Diabetes care. 564 565 2004;27(1):134-140. 20. Song Y, Manson JE, Buring JE, Liu S. Dietary magnesium intake in relation to 566 plasma insulin levels and risk of type 2 diabetes in women. Diabetes care. 567 568 2004;27(1):59-65. 21. Song Y, Manson JE, Cook NR, Albert CM, Buring JE, Liu S. Dietary magnesium 569 intake and risk of cardiovascular disease among women. Am J Cardiol. 570 2005;96(8):1135-1141. 571 22. Liu S, Choi HK, Ford E, Song Y, Klevak A, Buring JE, et al. A prospective study 572 of dairy intake and the risk of type 2 diabetes in women. Diabetes care. 573 2006;29(7):1579-1584. 574 23. Pereira MA, Parker ED, Folsom AR. Coffee consumption and risk of type 2 575

diabetes mellitus: an 11-year prospective study of 28812 postmenopausal women.
Arch Intern Med. 2006;166(12):1311-1316.

578 24. Pittas AG, Dawson-Hughes B, Li T, Van Dam RM, Willett WC, Manson JE, et al.

579 Vitamin D and calcium intake in relation to type 2 diabetes in women. Diabetes care.

580 2006;29(3):650-656.

- 581 25. Van Dam RM, Hu FB, Rosenberg L, Krishnan S, Palmer JR. Dietary calcium and
 582 magnesium, major food sources, and risk of type 2 diabetes in U.S. black women.
 583 Diabetes care. 2006;29(10):2238-2243.
- Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H.
 Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and
- 586 meta-analysis. Arch Intern Med. 2007;167(9):956-965.
- 587 27. Larsson SC, Virtanen MJ, Mars M, Männistö S, Pietinen P, Albanes D, et al.
 588 Magnesium, calcium, potassium, and sodium intakes and risk of stroke in male
 589 smokers. Arch Intern Med. 2008;168(5):459-465.
- 590 28. Weng LC, Yeh WT, Bai CH, Chen HJ, Chuang SY, Chang HY, et al. Is ischemic
 591 stroke risk related to folate status or other nutrients correlated with folate intake?
 592 Stroke. 2008;39(12):3152-3158.
 - 593 29. Kirii K, Mizoue T, Iso H, Takahashi Y, Kato M, Inoue M, et al. Calcium, vitamin
 - 594 D and dairy intake in relation to type 2 diabetes risk in a Japanese cohort.
 595 Diabetologia. 2009;52(12):2542-2550.
 - 596 30. Ohira T, Peacock JM, Iso H, Chambless LE, Rosamond WD, Folsom AR. Serum
- 597 and Dietary Magnesium and Risk of Ischemic Stroke: The Atherosclerosis Risk in

Page 29 of 66

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

598 Communities Study. Am J Epidemiol. 2009;169(12):1437-1444.
599 31. Villegas R, Gao YT, Dai Q, Yang G, Cai H, Li H, et al. Dietary calcium and

600 magnesium intakes and the risk of type 2 diabetes: the Shanghai Women's Health 601 Study. Am J ClinNutr. 2009;89(4):1059-1067.

- 602 32. Hopping BN, Erber E, Grandinetti A, Verheus M, Kolonel LN, Maskarinec G.
- Dietary fiber, magnesium, and glycemic load alter risk of type 2 diabetes in a
 multiethnic cohort in hawaii. J Nutr. 2010;140(1):68-74.

33. Kim DJ, Xun P, Liu K, Loria C, Yokota K, Jacobs DR Jr, et al. Magnesium
Intake in Relation to Systemic Inflammation, Insulin Resistance, and the Incidence of
Diabetes. Diabetes care. 2010;33(12):2604-2610.

608 34. Kirii K, Iso H, Date C, Fukui M, Tamakoshi A, JACC Study Group. Magnesium
609 intake and risk of self-reported type 2 diabetes among Japanese. J Am Coll Nutr.
610 2010;29(2):99-106.

611 35. Nanri A, Mizoue T, Noda M, Takahashi Y, Kirii K, Inoue M, et al. Magnesium
612 intake and type II diabetes in Japanese men and women: the Japan Public Health
613 Center-based Prospective Study. Eur J Clin Nutr. 2010;64(10):1244-1247.

614 36. Larsson SC, Virtamo J, Wolk A. Potassium, calcium, and magnesium intakes and
615 risk of stroke in women. Am J Epidemiol. 2011;174(1):35-43.

- 616 37. Weng LC, Lee NJ, Yeh WT, Ho LT, Pan WH. Lower intake of magnesium and
- dietary fiber increases the incidence of type 2 diabetes in Taiwanese. J Formos MedAssoc. 2012;111(11):651-659.
- 619 38. Zhang W, Iso H, Ohira T, Date C, Tamakoshi A, JACC Study Group.

2	
3	
4	
5	
4 5 6 7 8 9 10 11 12 13 14 15 16	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
17 18 19 20	
יי רכ	
20 21	
21	
22 23	
24 25	
25	
26	
26 27	
28	
29	
30	
31 32	
34 35	
36	
37	
38 39	
39	
40	
41	
42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
54	
55	
56	
57	
58	
59	
60	

1

620 Associations of dietary magnesium intake with mortality from cardiovascular disease:

621 the JACC study. Atherosclerosis. 2012;221(2):587-595.

39. Hata A, Doi Y, NinomiyaT, Mukai N, Hirakawa Y, Hata J, et al. Magnesium
intake decreases Type 2 diabetes risk through the improvement of insulin resistance

and inflammation: the Hisayama Study. Diabet Med. 2013;30(12):1487-1494.

40. Lin PH, Yeh WT, Svetkey LP, Chuang SY, Chang YC, Wang C, et al. Dietary
intakes consistent with the DASH dietary pattern reduce blood pressure increase with
age and risk for stroke in a Chinese population. Asia Pac J Clin Nutr.
2013;22(3):482-491.

41. Oba S, Nanri A, Kurotani K, Goto A, Kato M, Mizoue T, et al. Dietary glycemic
index, glycemic load and incidence of type 2 diabetes in Japanese men and women:
the Japan Public Health Center-based Prospective Study. Nutr J. 2013;12(1):165.

42. Sluijs I, Czernichow S, Beulens JWJ. Dietary electrolytes and risk of ischemic
stroke. Eur J Prev Cardiol. 2013;20(1):S76.

43. Hruby A, Meigs JB, O'Donnell CJ, Jacques PF, Mckeown NM. Higher
Magnesium Intake Reduces Risk of Impaired Glucose and Insulin Metabolism and
Progression From Prediabetes to Diabetes in Middle-Aged Americans. Am J Dis
Child. 2014;37(2):419-427.

44. Sluijs I, Czernichow S, Beulens JW, Boer JM, van der Schouw YT, Verschuren
WM, et al. Intakes of potassium, magnesium, and calcium and risk of stroke. Stroke.
2014;45(4):1148-1150.

641 45. Adebamowo SN, Spiegelman D, Flint AJ, Willett WC, Rexrode KM. Intakes of

1	
-	
2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20 21	
21	
22	
23	
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 17 8 9 10 11 2 3 14 15 16 7 8 9 10 11 2 3 14 15 16 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 15 16 7 8 9 10 11 2 3 2 4 5 6 7 8 9 10 11 2 3 2 4 5 6 7 8 9 10 11 2 3 2 4 5 6 7 8 9 10 11 2 3 2 4 5 6 7 8 9 10 11 2 3 2 4 5 6 7 8 9 10 11 2 3 2 4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
27	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47 48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
57	
58	
59	
60	

642	magnesium, potassium, and calcium and the risk of stroke among men. Int J Stroke.
643	2015;10(7):1093-1100.
644	46. Adebamowo SN, Spiegelman D, Willett WC, Rexrode KM. Association between
645	intakes of magnesium, potassium, and calcium and risk of stroke: 2 cohorts of US
646	women and updated meta-analyses. Am J ClinNutr. 2015;101(6):1269-1277.
647	47. Bain LK, Myint PK, Jennings A, Lentjes MA, Luben RN, Khaw KT, et al. The
648	relationship between dietary magnesium intake, stroke and its major risk factors,
649	blood pressure and cholesterol, in the EPIC-Norfolk cohort. Int J Cardiol.
650	2015;196:108-114.
651	48. Huang Y-C, Wahlqvist ML, Kao M-D, Wang J-L, Lee M-S. Optimal Dietary and
652	Plasma Magnesium Statuses Depend on Dietary Quality for a Reduction in the Risk of
653	All-Cause Mortality in Older Adults. Nutrients. 2015;7(7):5664-5683.
654	49. Hruby A, Guasch-Ferré M, Bhupathiraju SN, Manson JE, Willett WC, McKeown
655	NM, et al. Magnesium Intake, Quality of Carbohydrates, and Risk of Type 2 Diabetes:
656	Results From Three U.S. Cohorts. Diabetes care. 2017;40(12):1695-1702.
657	50. Kokubo Y, Saito I, Iso H, Yamagishi K, Yatsuya H, Ishihara J, et al. Dietary
658	magnesium intake and risk of incident coronary heart disease in men: A prospective
659	cohort study. Clin Nutr. 2018;37(5):1602-1608.
660	51. Konishi K, Wada K, Tamura T, Tsuji M, Kawachi T, Nagata C. Dietary
661	magnesium intake and the risk of diabetes in the Japanese community: results from
662	the Takayama study. Eur J Nutr. 2017;56(2):767-774.
663	52. Dong JY, Xun P, He K, Qin LQ. Magnesium intake and risk of type 2 diabetes:

2	
3	
4	
5	
6	
7	
8	
9	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
57	
58	
59	
60	

1

664 meta-analysis of prospective cohort studies. Diabetes care. 2011;34(9):2116-2122.

53. Larsson SC, Orsini N, Wolk A. Dietary magnesium intake and risk of stroke: a
meta-analysis of prospective studies. Am J Clin Nutr. 2012;95(2):362-366.

54. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al.
Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter
clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke.

670 1993;24(1):35-41.

55. Rannikmäe K, Woodfield R, Anderson CS, Charidimou A, Chiewvit P,
Greenberg SM, et al. Reliability of intracerebral hemorrhage classification systems: A
systematic review. Int J Stroke. 2016;11(6):626-636.

- 674 56. GA Wells, B Shea, D O'Connell, J Peterson, V Welch, M Losos. The
 675 Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized
 676 Studies in Meta-Analysis. Appl Eng Agric. 2014;18(6): 727-734.
- 57. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in
 meta-analyses. BMJ. 2003;327(7414):557-560.
 - 58. Greenland S, Longnecker MP. Methods for trend estimation from summarized
 dose-response data, with applications to meta-analysis. Am J Epidemiol.
 1992;135(11):1301-1309.
 - 682 59. Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation
 683 of summarized dose–response data. Stata J. 2006;6(6):40-57.
 - 684 60. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for
- 685 publication bias. Biometrics. 1994;50(4):1088-1101.

Page 33 of 66

BMJ Open

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
14	
10	
16 17	
1/	
18	
19	
20	
21 22 23	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
38 39	
40	
40 41	
41	
42 43	
43 44	
45 46	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

686	61. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected
687	by a simple, graphical test. BMJ. 1997;315(7109):629-634.
688	62. Manson JE, Bassuk SS. Vitamin and mineral supplements: What clinicians need
689	to know. JAMA. 2018;319(9):859-860.
690	63. Papanicolas I, Woskie LR, Jha AK. Health Care Spending in the United States and
691	Other High-Income Countries. JAMA. 2018;319(10):1024-1039.
692	64. Group DPP, Temprosa M. Long-term effects of lifestyle intervention or
693	metformin on diabetes development and microvascular complications over 15-year
694	follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes
695	Endocrinol. 2015;3(11):866-875.
696	65. Maruthappu M, Sood H, Keogh B. Radically upgrading diabetes prevention in
697	England. Lancet Diabetes Endocrinol. 2015;3(5):312-313.
698	66. American Diabetes Association. Prevention or Delay of Type 2 Diabetes:
699	Standards of Medical Care in Diabetes-2018. Diabetes care. 2018;41(1):S51-S54.
700	67. Goyal N, Tsivgoulis G, Malhotra K, Houck AL, Khorchid YM, Pandhi A, et al.
701	Serum Magnesium Levels and Outcomes in Patients With Acute Spontaneous
702	Intracerebral Hemorrhage. J Am Heart Assoc. 2018;7(8): e008698.
703	68. Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in
704	epidemiologic studies. Am J ClinNutr. 1997;65(4):1220S-1228S; discussion
705	12298-12318.
706	69. Stone MS, Martyn L, Weaver CM. Potassium Intake, Bioavailability,
707	Hypertension, and Glucose Control. Nutrients. 2016;8(7): E444.

2	
3	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
20	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
33	
34 35 36	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

708 70. Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium

in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab.

710 2007;92(6): 2017-2029.

711 71. Larsson SC, Orsini N, Wolk A. Dietary calcium intake and risk of stroke: a
712 dose-response meta-analysis. Am J Clin Nutr.2013;97(5): 951-957.

713 72. Fang X, Wang K, Han D, He X, Wei J, Zhao L, et al. Dietary magnesium intake
714 and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: a
715 dose-response meta-analysis of prospective cohort studies. BMC Med.
716 2016;14(1):210.

717 73. Fang X, Han H, Li M, Liang C, Fan Z, Aaseth J, et al. Dose-Response
718 Relationship between Dietary Magnesium Intake and Risk of Type 2 Diabetes
719 Mellitus: A Systematic Review and Meta-Regression Analysis of Prospective Cohort
720 Studies. Nutrients. 2016;8(11):739.

721 74. Riddle MC, Ambrosius WT, Brillon DJ, Buse JB, Byington RP, Cohen RM, et al.
722 Epidemiologic Relationships Between A1C and All-Cause Mortality During a Median
723 3.4-Year Follow-up of Glycemic Treatment in the ACCORD Trial. Diabetes care.
724 2010;33(5):983-990.

725 75. Guerrero-Romero F, Simental-Mendía LE, Hernández-Ronquillo G,
726 Rodriguez-Morán M. Oral magnesium supplementation improves glycaemic status in
raubjects with prediabetes and hypomagnesaemia: A double-blind placebo-controlled
randomized trial. Diabetes & Metabolism. 2015;41(3):202

Table 1 Subgroup Analysis relating to Magnesium Intake and Type 2Diabetes (T2D)

729 1 730

3 Group			T2D			
4 ^γ ·ν ^ω ν 5	No. of studies	RR (95% CI)	P_{ES}	$P_{heterogeneity}$	$I^{2}(\%)$	$P_{interaction}$
Total	26	0.78 (0.75-0.81)	< 0.001	0.021	35.6	NA
Participants region	26					0.905
8 North America	13	0.77 (0.73-0.82)	< 0.001	0.048	39.5	
10 ^{Europe}	0	NA	NA	NA	NA	
11Asia	9	0.78 (0.71-0.87)	< 0.001	0.165	21.7	
¹² Multiple nations 13	4	0.79 (0.71-0.88)	< 0.001	0.048	58.3	
Sex ^a	34					0.284
15Male	9	0.81(0.76-0.87)	< 0.001	0.337	11.7	
16 _{Female}	17	0.77 (0.73-0.81)	< 0.001	0.055	37.5	
17 Both ^b	8	0.70 (0.57-0.85)	< 0.001	0.067	45.3	
18 B §/II (kg/m ²)	26	-				0.716
20 <u>≥</u> 25	12	0.75 (0.69-0.81)	< 0.001	0.135	31	
21- 225	11	0.78 (0.74-0.83)	< 0.001	0.022	45.4	
22 23 ^{Unknown}	3	0.81 (0.76-0.86)	< 0.001	0.586	0	
E d llow-up duration (y)	26					0.150
$\frac{25}{2c^2} 10$	12	0.80 (0.76-0.84)	< 0.001	0.047	38.8	
$25 \ge 10$ $26 \ge 270$	14	0.74 (0.68-0.80)	< 0.001	0.164	25.2	
Di setary assessment	26					0.281
²⁹ FFQ/validated FFQ	15	0.77 (0.73-0.82)	< 0.001	0.159	23.7	
30 31SFFQ/validated SFFQ	9	0.79 (0.74-0.84)	< 0.001	0.017	52.5	
31 ⁵¹¹ Q, validated 511 Q 32Other	2	0.55 (0.36-0.83)	0.005	0.826	0	
Magnesium intake type ^c	28					0.335
³⁴ Total magnesium intake ^d 35	15	0.79 (0.75-0.84)	< 0.001	0.035	39.8	-
35 ¹ 36Dietary magnesium intake	13	0.77 (0.72-0.82)	< 0.001	0.166	25.0	
Total energy adjustment	26	(<u> </u>	4			0.396
38 18s	17	0.79 (0.74-0.84)	< 0.001	0.027	40.4	
39 40	9	0.76 (0.72-0.81)	< 0.001	0.225	21.6	
40' Difference between top and	-		5.501		-1.0	
bottom intake (mg/day) ^e	27					0.671
43 $43 \ge 140$	13	0.78 (0.74-0.83)	< 0.001	0.020	45.3	
44 ⁻¹⁴⁰ 45 ¹⁴⁰	13	0.77 (0.72-0.82)	< 0.001	0.209	43.3 21.0	
4540 Eurrent CV events status ^f	26	(0.12-0.02)	0.001	J. J	<u> </u>	0.536
47 _{Yes} 48	13	0.79 (0.74-0.83)	< 0.001	0.049	37.9	0.000
48 ^{Y es} 49Unknown	13	0.79 (0.74-0.83)	< 0.001 < 0.001	0.049	37.9	
49 ^{0 nknown} Bypercholesterolemia status^g	13 26	0.77 (0.71-0.02)	~ 0.001	0.002	55.1	0.625
Dispercholesterolemia status ^g 51 _{Yes}	26 5	0.79 (0.73-0.85)	< 0.001	0.021	57.5	0.023
52		· · · · · · · · · · · · · · · · · · ·				
53 ^{Unknown}	21	0.77 (0.73-0.82)	< 0.001	0.096	27.3	0 160
E4 mily diabetes history 55 _{Yes}	26 17	0.76 (0.72.0.00)	~ 0.001	0.021	<i>A</i> 1 0	0.168
	17	0.76 (0.72-0.80)	< 0.001	0.021	41.8	
56 57 ^{Unknown} 38 Abbreviation: T2D, type 2	9	0.81 (0.76-0.87)	< 0.001	0.258	14.3	

738 Abbreviation: T2D, type 2 diabetes; BMI, body mass index; FFQ, food frequencyquestionnaire; SFFQ, semi-quantitative food

7**32** 760 733 frequent questionnaire; RR, relative risk; ES, effect size; CV events, cardiovascular events.

^a, Male and female of T2D outcome were treated as independent cohorts within eight studies;

734 ^b, Male and female participants were in independent cohorts;

- 1 736 ^c, Two studies reported total magnesium and dietary magnesium intake outcome;
 - ^d, Total magnesium intake (milligrams per day) included the total amount of magnesium from both food (diet) and supplement;
- **3**7 ^e, Subtract the lowest category intake from the highest. Oba el al (M) was in < 140 group, while Oba el al (F) was in \geq 140 group;
- 739 740 f, Grouped by whether participants with or without CV events. CV events in this part include coronary heart disease, heart failure, stroke, atrial fibrillation, and self-reported heart disease etc;

For peer teriew only

- ^g, Grouped by whether participants with or without hypercholesterolemia. Hypercholesterolemia in this part means cholesterol **4**1 concentration $\geq 240 \text{ mg/dL}$.

Table 2. Subgroup Analyses Relating to Magnesium Intake and Total Stroke, Ischemic Stroke, Hemorrhagic stroke.

		Total Stro	oke			Ischemic S	troke			Hemorrhagi	c stroke	
Group	No.of studies	RR (95% CI)	I ² (%)	$P_{interation}$	No.of studies	RR (95% CI)	I ² (%)	Pinteration	No.of studies	RR (95% CI)	I ² (%)	$P_{interation}$
Total	15	0.89 (0.83-0.94)	0.00	NA	12	0.88 (0.81-0.95)	16.90	NA	8	0.93 (0.82-1.06)	0.461	NA
Participants region	15			0.733	12			0.584	8			0.873
North America	6	0.87 (0.79-0.96)	0.00		5	0.85 (0.76-0.95)	0.00		4	0.90 (0.71-1.15)	0.00	
Europe	5	0.87 (0.77-0.98)	14.80		3	0.86 (0.78-0.95)	0.00		2	0.99 (0.79-1.25)	0.00	
Asia	4	0.90 (0.78-1.05)	32.80		4	0.93 (0.75-1.14)	45.50		2	0.89 (0.66-1.21)	53.40	
Multiple nations	0	NA	NA		0	NA	NA		0	NA	NA	
Sex ^a	18			0.031	14			0.134	10			0.425
Male	6	0.95(0.86-1.05)	0.00		4	0.99 (0.82-1.19)	52.80		4	0.97 (0.75-1.26)	35.50	
Female	7	0.91 (0.83-0.99)	0.00		6	0.89 (0.79-1.00)	0.00		6	0.88 (0.74-1.06)	0.00	
Both ^b	5	0.74 (0.64-0.85)	0.00		4	0.76 (0.65-0.88)	0.00		0	NA	NA	
Mean BMI (kg/m²)	15			0.606	12			0.631	8			0.418
≥25	8	0.89 (0.82-0.96)	0.00		6	0.88 (0.81-0.96)	0.00		5	0.97 (0.81-1.17)	0.00	
< 25	5	0.89 (0.78-1.01)	30.00		5	0.87 (0.73-1.03)	44.00		3	0.88 (0.69-1.12)	39.30	
Unknown	2	0.80 (0.63-1.02)	0.00		1	0.76 (0.57-1.07)	NA		0	NA	NA	
Follow-up duration (y)	15			0.798	12			0.811	8			0.808
≥12	11	0.88 (0.82-0.94)	5.30		10	0.87 (0.80-0.95)	19.10		7	0.93 (0.81-1.08)	7.70	
< 12	4	0.90 (0.77-1.05)	0.00		2	0.86 (0.62-1.20)	48.40		1	0.88 (0.57-1.36)	NA	
Dietary assessment	15	. ,		0.578	12			NA	8			NA
FFQ/validated FFQ	14	0.89 (0.83-0.95)	3.80		12	0.88 (0.81-0.95)	16.90		8	0.93 (0.82-1.06)	0.00	
SFFQ/validated SFFQ	0	NA	NA		0	NA	NA		0	NA	NA	
Other	1	0.81 (0.61-1.09)	0.00		0	NA	NA		0	NA	NA	
Magnesium intake type	15			0.865	12			0.831	8			0.831
Total magnesium intake ^c	8	0.89 (0.82-0.96)	0.00		6	0.87 (0.80-0.94)	0.00		5	0.94 (0.79-1.12)	0.00	
Dietary magnesium		0.88	0.44			0.89	35.40			0.91 (0.70-1.18)	39.40	

36

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

44 45 46

1 2	intake Total energy adjustment	7 15	(0.81-0.96)		0.888	6 12	(0.77-1.03)		0.689	3 8			0.538
3 4 5	Yes No Difference between top	5 10	0.87 (0.77-0.99) 0.89 (0.83-0.96)	27.00 0.00		2 10	0.86 (0.78-0.94) 0.88 (0.79-0.99)	0.00 26.60		2 6	0.93 (0.82-1.06) 0.90 (0.76-1.07)	0.00 11.40	
6 7 8	and bottom intake (mg/day) ^d	15			0.107	12			0.180	8			0244
9 10	≥ 180	7	0.83 (0.76-0.91)	0.00		5	0.83 (0.76-0.91)	0.00		6	1.07 (0.83-1.37)	0.00	
11 12	< 180	8	0.93 (0.86-1.00)	0.00		7	0.92 (0.81-1.03)	26.20		2	0.89 (0.76-1.03)	0.00	
13 14	Current CV events status ^e	15			0.074	12			0.393	8			NA
15	Yes	12	0.90 (0.85-0.96)	0.00		11	0.88 (0.81-0.96)	18.20		8	0.93 (0.82-1.06)	0.00	
16 17	Unknown	3	0.75 (0.63-0.90)	0.00			0.76 (0.57-1.01)	NA		0	NA	NA	
18 19	Hypercholesterolemia status ^f	15			0.480	12			0.565	8			0.651
20	Yes	7	0.91 (0.83-0.99)	0.00		6	0.90 (0.80-1.01)	6.90		5	0.90 (0.76-1.08)	0.00	
21 22	Unknown	8	0.86 (0.79-0.95)	13.10		6	0.86 (0.77-0.97)	32.40		3	0.94 (0.72-1.22)	40.30	
23 24	Current diabetes status ^g	15	、		0.039	12			0.159	8			NA
25	Yes	10	0.91 (0.82-0.97)	0.00		10	0.89 (0.82-0.97)	13.50		8	0.93 (0.82-1.06)	0.00	0.00
26 27	Unknown	5	0.75 (0.64-0.88)	0.00		2	0.72 (0.56-0.92)	0.00		0	NA	NA	NA
28	Abbreviation: BMI, body	mass inde	· · · · · · · · · · · · · · · · · · ·	uency quest	onnaire: SFFO.	semi-quantitati	· /	questionnai	re: CV events, cardiovas	cular events;	RR. relative risk: NA.	not availab	le.

Abbreviation: BMI, body mass index; FFQ, food frequency questionnaire; SFFQ, semi-quantitative food frequency questionnaire; CV events, cardiovascular events; RR, relative risk; NA, not available.

^a, several studies reported stroke outcome of male and female participants in different cohorts;

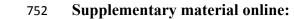
^b, male and female participants were in the same cohort;

 c, total magnesium intake (milligrams per day) included the total amount of magnesium from both food (diet) and supplements;

^d, subtract the lowest category intake from the highest;

e, grouped by whether participants with or without CV events. CV events in this part include coronary heart disease, heart failure, atrial fibrillation, and self-reported heart disease etc., stroke is not included;

f, grouped by whether participants with or without hypercholesterolemia. Hypercholesterolemia in this part means cholesterol concentration $\geq 240 \text{ mg/dL}$;

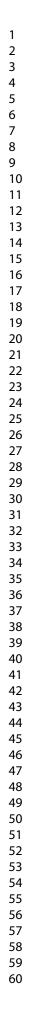

^g, grouped by whether participants with or without diabetes.

744 Figure Legends

- 745 Figure 1. Flow Chart for Literature Search and Screening Process
- **Figure 2.** Forest Plots for Risk of Type 2 Diabetes (T2D) for Magnesium Intake (A)
- and for < 50 mg/day (B), $\ge 50 \text{ and} < 100 \text{ mg/day}$ (C), $\ge 100 \text{ and} < 150 \text{ mg/day}$ (D) and
- $\geq 150 \text{ mg/day Magnesium increments (E)}.$
- **Figure 3.** Two-Stage Dose-Response Effect on the Relationships betweenMagnesium
- 750 Intake and Type 2 Diabetes (T2D) (A), Total Stroke (B), Ischemic Stroke (C) and

Topper terrer on the only

751 Hemorrhagic Stroke (D).


- **Table S1**. PRISMA 2009 Checklist
- **Table S2.** Summary of Baseline Characteristics of Included Studies
- 755 Table S3. Methodological Quality Assessments Of Studies Included With
 756 Newcastle-Ottawa Scales
- Figure S1. Funnel Plots for Magnesium Intake and Type 2 Diabetes (A), Ischemic
 Stroke (B) and Hemorrhagic Stroke (C).
- **Figure S2.** Forest Plots for Risk of Total Stroke for Magnesium Intake (A) and for <
- 760 50 mg/day (B), \geq 50 and < 100 mg/day (C), \geq 100 and <150 mg/day (D) and \geq 150
- 761 mg/day Magnesium increments (E).
- **Figure S3.** Forest Plots for Risk of Ischemic Stroke for Magnesium Intake (A) and for
- 763 < 50 mg/day (B), \ge 50 and < 100 mg/day (C), \ge 100 and <150 mg/day (D) and \ge 150
 - 764 mg/day Magnesium increments (E).
 - **Figure S4.** Forest Plots for Risk of Hemorrhagic Stroke for Magnesium Intake (A)
- and for < 50 mg/day (B), $\ge 50 \text{ and} < 100 \text{ mg/day}$ (C), $\ge 100 \text{ and} < 150 \text{ mg/day}$ (D) and
 - \geq 150 mg/day Magnesium increments (E).
- 768 Figure S5. Forest Plots for Risk of Subarachnoid Hemorrhage for Magnesium Intake
- 769 (A) and for < 50 mg/day (B), $\ge 50 \text{ and } < 100 \text{ mg/day}$ (C), $\ge 100 \text{ and } < 150 \text{ mg/day}$ (D)
- and \geq 150 mg/day Magnesium increments (E)
 - 771 Figure S6. Forest Plots for Risk of Intracerebral Hemorrhage for Magnesium Intake
- 772 (A) and for < 50 mg/day (B), $\ge 50 \text{ and} < 100 \text{ mg/day}$ (C), $\ge 100 \text{ and} < 150 \text{ mg/day}$ (D)
- and \geq 150 mg/day Magnesium increments (E)
- **Figure S7.** Meta-Regression of Relative Risk for Type 2 Diabetes According to Body
- 775 Mass Index (A, P = 0.716), Sex (B, P = 0.284), Participant Region (C, P = 0.904) and
- Dietary Assessment (D, P = 0.521).

Page 41 of 66

BMJ Open

1	
2	
۲ ۲	
1	
4 5	
5	
07	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 24 \\ 25 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37$	
23	
24	
25	
26	
27	
28	
29	
30	
31	
37	
22	
37	
24	
22	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

777	Figure S8. Meta-Regression of Relative Risk for Total Stroke According to Body
778	Mass Index (A, $P = 0.606$), Sex (B, $P = 0.112$), Participant region (C, $P = 0.891$) and
779	Dietary Assessment (D, $P = 0.891$).
780	Figure S9. Meta-Regression of Relative Risk for Ischemic Stroke According to Body
781	Mass Index (A, $P = 0.631$), Sex (B, $P = 0.134$), Participant Region (C, $P = 0.584$) and
782	Dietary Assessment (D, no regression P-value due to limited data).
783	Figure S10. Meta-Regression of Relative Risk for Hemorrhagic Stroke According to
784	Body Mass Index (A, $P = 0.418$), Sex (B, $P = 0.872$), Participant Region (C, $P =$
785	0.872) and Dietary Assessment (D, no regression P-value due to limited data).
786	Figure S11. Cumulative Meta-Analysis Related to Magnesium Intake and Type 2
787	Diabetes (T2D)
788	Figure S12. Cumulative Meta-Analysis Related to Magnesium Intake and Total
789	Stroke
790	Figure S13. Cumulative Meta-Analysis Related to Magnesium Intake and Ischemic
791	Stroke
792	Figure S14. Cumulative Meta-Analysis Related to Magnesium Intake and
793	Hemorrhagic Stroke
794	Figure S15. Dose-Response Effect on the Relationships between Magnesium Intake
795	and Subarachnoid Hemorrhage (A) and Intracerebral Hemorrhage (B).

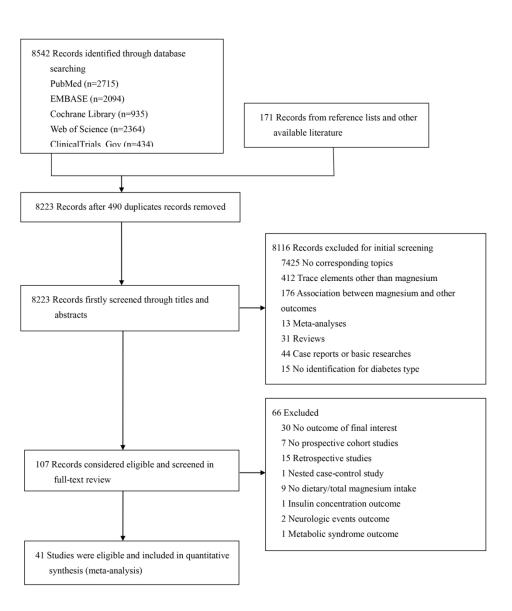
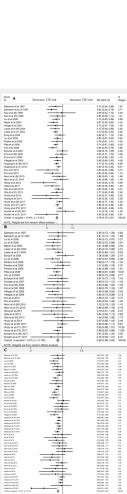


Figure 1. Flow Chart for Literature Search and Screening Process

- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11 12
- 13
- 14 15
- 16
- 17 18
- 19 20
- 21
- 22 23 24
- 26 27

- 28 29
- 30 31
- 32 33 34


35

- 36 37 38
- 40 41

39

- 42 43 44 45
- 46 47
- 48 49 50
- 51 52
- 53 54
- 55 56
- 57 58
- 59 60

BMJ Open

Figure 2. Forest Plots for Risk of Type 2 Diabetes (T2D) for Magnesium Intake (A) and for < 50 mg/day (B), \geq 50 and < 100 mg/day (C), \geq 100 and <150 mg/day (D) and \geq 150 mg/day Magnesium increments (E).

• • • •

++++++

+++ ~

 0.000,000,000
 3.000

 0.000,000,000
 3.000

 0.000,000,000
 4.000

 0.000,000,000
 4.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.000,000,000
 5.000

 0.72 (10%, 0.08)
 3.87

 0.72 (10%, 1.04)
 2.74

 0.72 (10%, 0.08)
 8.84

 0.72 (10%, 0.08)
 8.84

 0.84 (17%, 0.08)
 1.08

 0.84 (17%, 0.08)
 1.08

 0.84 (17%, 0.08)
 1.08

 0.84 (17%, 0.08)
 1.08

 0.84 (17%, 0.08)
 1.08

 0.84 (17%, 0.08)
 1.08

 0.84 (17%, 0.08)
 1.08

 0.84 (17%, 0.08)
 1.08

 0.84 (17%, 0.08)
 1.08

 0.84 (17%, 0.08)
 1.08

 0.84 (17%, 0.08)
 1.08

 0.84 (17%, 0.08)
 1.08

 0.84 (17%, 0.08)
 1.08

 0.84 (17%, 0.08)
 1.08

 0.84 (17%, 0.08)
 1.08

 0.84 (17%, 0.08)
 1.28

 0.84 (17%, 0.08)
 1.28

 0.10 (10%, 0.08)
 1.28

 0.10 (10%, 0.08)
 1.28

 0.10 (10%, 0.08)
 1.28

 0.10 (10%, 0.08)
 1.28

 0.10 (10%, 0.08)
 1.28

 0.10 (10%, 0.08)
 1.28

 <t

Inclusion Salamanon (Salaman

NOTE W

Salwaros et al 1997 Hidge et al 2004 Lapas et al (N) 2004 Lapas et al (N) 2004 Magging et al (N) 201 Hidge et al (N) 201 Kim et al 2010 Wineg et al 2010 Hidge et al (N) 201 Hidge et al (N) 2015 Hidge et al (N) 2015 Hidge et al (N) 2015

Konishi et a Oversili (i-e

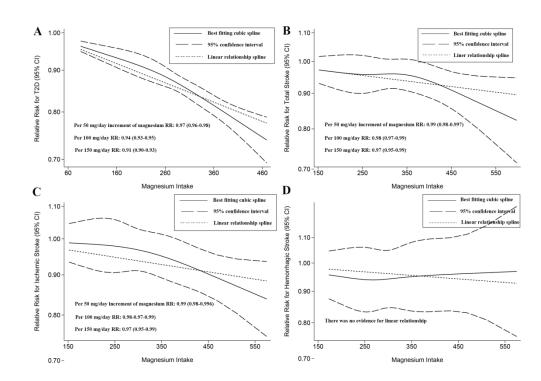


Figure 3. Two-Stage Dose-Response Effect on the Relationships betweenMagnesium Intake and Type 2 Diabetes (T2D) (A), Total Stroke (B), Ischemic Stroke (C) and Hemorrhagic Stroke (D).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table S1 PRISMA 2009 Checklist

Section/topic	#	Checklist item	Repo on pa #	
TITLE				
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1	
ABSTRACT				2-:
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3	
INTRODUCTION				4-
Rationale	3	Describe the rationale for the review in the context of what is already known.	4	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4-5	
METHODS				5-9
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5-6	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5-6	
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5-6	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-6	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6	
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6	
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta and height http://bmjopen.bmj.com/site/about/guidelines.xhtml	6-10	

Table S1 PRISMA 2009 Checklist

Page 1 of 2

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	8-9
RESULTS			9-16
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	9
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	9-10
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	9-10
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10-16
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	10-16
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	10-16
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	10-16
DISCUSSION	<u>.</u>		16-22
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	16-22
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	21-22
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	22
FUNDING	<u> </u>		23
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	23

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. 42 doi:10.1371/journal.pmed1000097

For more information, visit: <u>www.prisma-statement.org</u>.

Page 2 of 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Table S2 Summary of Baseline Characteristics of Included Studies

Source	Nation	Period	Population	BMI	Dietary Assessment	Case Ascertainment	Case (Cohort size)	Magnesium intake (mg/day) highest VS. the lowest [Adjusted RR (95% CI)]
Salmeron 1997 ¹¹	USA	1986-1992	М; 40-75 у	25.5	validated SFFQ	self-reported questionnaire	523 T2D (42759)	461 VS. 262 (0.72 (0.54-0.96))
Salmeron 1997(2) ¹²	USA	1986-1992	F; 40-65 y	25.1	validated SFFQ	self-reported questionnaire	915 T2D (65173)	338 VS. 222 (0.62 (0.50-0.78))
Ascherio 1998 ¹³	USA	1986-1994	М; 40-75 у	NA	validated FFQ	self-reported questionnaire	328 stroke (43738)	425 VS. 243 (0.92 (0.58-1.46))
Iso 1999 ¹⁴	USA	1980-1994	F; 34-59 y	22.7	FFQ	self-reported questionnaire	690 stroke (85764)	381 VS. 211 (0.80 (0.63-1.01))
Kap 1000 ¹⁵	TIC A	NIA	M/E: 45 64	27.2	EEO	salf non-outed superior noire	black: 367 T2D (2622)	374 VS. 264 (0.95 (0.52-1.74))
Kao 1999 ¹⁵	USA	NA	M/F; 45-64 y	27.2	FFQ	self-reported questionnaire	white: 739 T2D (9506)	418 VS. 308 (0.80 (0.56-1.14))
Liu 2000 ¹⁶	USA	1976-1984	F; 38-63 y	24.8	validated FFQ	self-reported questionnaire	1879 T2D (75521)	342 VS. 248 (0.75 (0.63-0.89))
Meyer 2000 ¹⁷	USA	1986-1992	F; 55-69 y	26.8	validated FFQ	self-reported questionnaire	1141 T2D (35998)	362 VS. 220 (0,67 (0.55-0.82))
Hodge 2004 ^{18a}	multiple	1990-1994	M/F; 45-64 y	26.1	validated FFQ	self-reported questionnaire	365 T2D (31641)	500 increment per day
L 2004 ¹⁹		M: 1986-1998	М; 40-75 у	25.4			1333 T2D (42872)	457 VS. 314 (0.72 (0.58-0.89))
Lopez 2004 ¹⁹	USA	W: 1980-1998	F; 30-35 y	24.3	validated SFFQ	self-reported questionnaire	4085 T2D (85060)	373 VS. 222 (0.73 (0.65-0.82))
Song 2004 ²⁰	USA	1993-2001	F; \geq 45 y ^c	26	SFFQ	self-reported questionnaire	918 T2D (38025)	433 VS. 255 (0.89 (0.71-1.10))
Song 2005 ²¹	USA	1993-2003	F; 39-89 y	26	FFQ	follow-up examination	368 stroke (39876)	433 VS. 255 (0.90 (0.65-1.26))
Liu 2006 ²²	USA	1996-2006	F; 47-63 y	25.8	validated SFFQ	self-reported questionnaire	1603 T2D (37183)	340 VS. 307 (0.80 (0.67-0.95))
Pereira 2006 ²³	USA	1986-1997	F; 56-66 y	26.7	validated FFQ	self-reported questionnaire	1418 T2D (28812)	334 VS. 281 (0.78(0.61-1.01))
Pittas 2006 ²⁴	USA	1980-2000	F; 30-55 y	24.1	validated SFFQ	self-reported questionnaire	4843 T2D (83779)	352 VS. 258 (0.74 (0.67-0.82))
Van 2006 ²⁵	multiple	1995-2003	F; 21-69 y	27.6	validated FFQ	self-reported questionnaire	1964 T2D (41186)	244 VS. 115 (0.65 (0.54-0.78))
Schulze2007 ²⁶	multiple	1994-2005	M/F; 35-65 y	26.1	validated SFFQ	self-reported questionnaire	844 T2D (25067)	377 VS. 268 (0.99 (0.78-1.26))
Larsson 2008 ²⁷	Sweden	1985-2004	М; 50-69 у	26.4	validated FFQ	follow-up examination	3370 stroke (26556)	575 VS. 382 (0.91 (0.77-1.07))
Weng 2008 ²⁸	Taipei	1989-2002	M/F;≥40 y	24.5	validated FFQ	Self-reported and cross-checked questionnaire	132 ischemic stroke (1772)	423 VS. 162 (0.69 (0.45-1.06))
<i>V</i> : 2 000 ²⁹	T	1002 1008	М; 40-69 у	23.6	FEO		634 T2D (25876)	331 VS. 245 (0.93 (0.71-1.22))
Kirii 2009 ²⁹	Japan	1993-1998	F; 40-69 y	23.5	FFQ	self-reported questionnaire	480 T2D (33919)	314 VS. 248 (0.76 (0.56-1.03))
Ohira 2009 ³⁰	USA	1987-2004	M/F; 45-64 y	27.4	validated FFQ	follow-up examination	577 ischemic stroke (14221)	362 VS. 152 (0.80 (0.75-1.13))
Villegas 2009 ³¹	China	2000-2006	F; 40-70 y	23.8	validated FFQ	follow-up examination	2273 T2D (64191)	318 VS. 214 (0.80 (0.68-0.93))
$11_{-1} = 2010^{32}$		1002 2007	М; 45-75 у	NT 4	li data d EEO		4555 T2D (36256)	278 VS. 86 (0.77 (0.70-0.85))
Hopping 2010 ³²	multiple	1993-2007	F; 45-75 y	NA	validated FFQ	self-reported questionnaire	4032 T2D (39256)	300 VS. 93 (0.84 (0.76-0.93))
Kim 2010 ³³	USA	1985-2005	M/F; 18-30 y	24.5	validated DHQ	self-reported questionnaire	330 T2D (4497)	302 VS. 182 (0.53 (0.32-0.86))
Kirii 2010 ³⁴	Japan	NA	M/F; 40-65 y	22.9	validated FFQ	self-reported questionnaire	459 T2D (17592)	303 VS. 158 (0.64 (0.44-0.94))

Page 48 of 66

1	Nanri 2010 ³⁵	Japan	1990-1995	M; 40-65 y	NA	validated FFQ	self-reported questionnaire	634 T2D (25872)	348 VS. 213 (0.86 (0.63-1.16))
2	110111 2010	Jupun	1770 1775	F; 40-65 y	1111		son reported questionnaire	480 T2D (33919)	333 VS. 213 (0.92 (0.66-1.28))
3	Larsson 2011 ³⁶	Sweden	1998-2008	F; 49-83 y	25	validated FFQ	follow-up examination	1680 stroke (34670)	373 VS. 297 (1.02 (0.82-1.27))
4	W. 2012 ³⁷		1000 0000		~ (follow-up examination or		
5	Weng 2012 ³⁷	Taipei	1993-2002	M/F; ≥30 y	24	validated FFQ	self-reported questionnaire	141 T2D (1604)	406 VS. 212 (0.44 (0.25-0.75))
7				M; 40-79 y	22.7			634 stroke (23083)	294 VS. 173 (1.03 (0.79-1.35))
8	Zhang 2012 ³⁸	Japan	1988-2006/	F; 40-79 y	22.9	validated FFQ	follow-up examination	620 stroke (35533)	274 VS. 175 (0.90 (0.69-1.16))
9 10	Hata 2013 ³⁹	Japan	1988-2009	M/F; 40-79 y	22.9	validated SFFQ	self-reported questionnaire	417 T2D (1999)	215 VS. 133 (0.63 (0.44-0.90))
11	z , a , a , a , a , a , a , b ,	 .					follow-up examination and		
12	Lin 2013 ⁴⁰	Taipei	1989-2002	M/F; ≥ 18 y	23.3	validated FFQ	self-reported questionnaire	123 stroke (2061)	378 VS. 210 (0.62 (0.40-0.97))
13	01 001041		1000 0000	M; 40-69 y	23.6			690 T2D (27769)	349 VS. 232 (0.84 (0.69-1.05))
14	Oba 2013 ⁴¹	Japan	1990-2000	F; 40-69 y	23.5	validated FFQ	self-reported questionnaire	500 T2D (36864)	356 VS. 211 (0.69 (0.54-0.88))
	Sluijs 2013 ⁴²	Netherland	NA	M/F; 21-70 y	NA	FFQ	NA	361 ischemic stroke (36359)	435 VS. 253 (0.76 (0.57-1.01))
17	Hruby 2014 ⁴³	USA	1995-2001	M/F; 26-81 y	27	validated FFQ	self-reported questionnaire	179 T2D (2582)	395 VS. 235 (0.49 (0.27-0.88))
18 10	Sluijs 2014 ⁴⁴	Netherland	NA	M/F; 21-70 y	NA	FFQ	follow-up examination	631 stroke (36094)	597 VS. 190 (0.64 (0.44-0.94))
20	Adebamowo 2015 ⁴⁵	USA	1986-2010	M; 40-75 y	25.4	validated FFQ	self-reported questionnaire	1547 stroke (42669)	467 VS. 267 (0.89 (0.71-1.11))
21	A 1 1		1976-2006	F; 30-55 y	26.4			3237 stroke (86149)	
22 23	Adebamowo 2015(2) ⁴⁶	USA	1989-2011	F; 25-42 y	25.7	validated FFQ	self-reported questionnaire	543 stroke (94715)	411 VS. 233 (0.93 (0.79-1.08))
24	D: 2015 ⁴⁷	D''.	2002 2008	M; 40-75 y	26.5	7 1 1 11		364 stroke (2000)	456 VS. 266 (0.81 (0.53-1.22))
25	Bain 2015 ⁴⁷	Britain	2002-2008	F; 40-75 y	26.2	7-day diary recall	follow-up examination	511 stroke (2445)	374 VS. 456 (0.82 (0.54-1.24))
26	Huang 2015 ⁴⁸	Taipei	2000-2008	M/F; ≥65 y	NA	24 h dietary recall and SFFQ	follow-up examination	231 T2D (1400)	398 VS. 103 (0.59 (0.26-1.33))
27 28			1984-2012	F; 30-55 y	24.8			7620 T2D (69176)	390 VS. 229 (0.80 (0.73-0.88))
	Hruby 2017 ⁴⁹	USA	1991-2013	F; 25-42 y	24.6	validated SFFQ	self-reported questionnaire	6080 T2D (91471)	424 VS. 249 (0.89 (0.81-0.99))
30			1986-2012	M; mean 53.5 y	24.8			3430 T2D (42096)	469 VS. 280 (0.88 (0.77-1.00))
31 22		_	1990-2009	M; 40-69 y	23.6			2576 stroke (39505)	348 VS. 213 (1.07 (0.86-1.33))
33	Kokubo 2017 ^{50b}	Japan	1993-2010	F; 40-69 y	23.6	FFQ	follow-up examination	1846 stroke (45788)	333 VS. 213 (0.88 (0.67-1.14))
34				M;≥35 y	22.6			266 T2D (5885)	469 VS. 310 (1.13 (0.76-1.70))
35 36	Konishi 2017 ⁵¹	Japan	1992-2002	F; ≥35 y	22.1	validated FFQ	self-reported questionnaire	172 T2D (7640)	432 VS. 285 (0.50 (0.30-0.84))

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

37 Abbreviations: FFQ, food-frequency questionnaire; SFFQ, semi-quantitative food-frequency questionnaire; BMI, body mass index; T2D, type 2 diabetes; NA, not available.

38 ^a, different ethnicities of participants are in multiple nations cohort;
39 ^b, the dose of magnesium intake which is not available in this study is retrieved from the same cohort reported in former publication;
40

41 ^c the range of enrolled participants age is not mentioned.

42

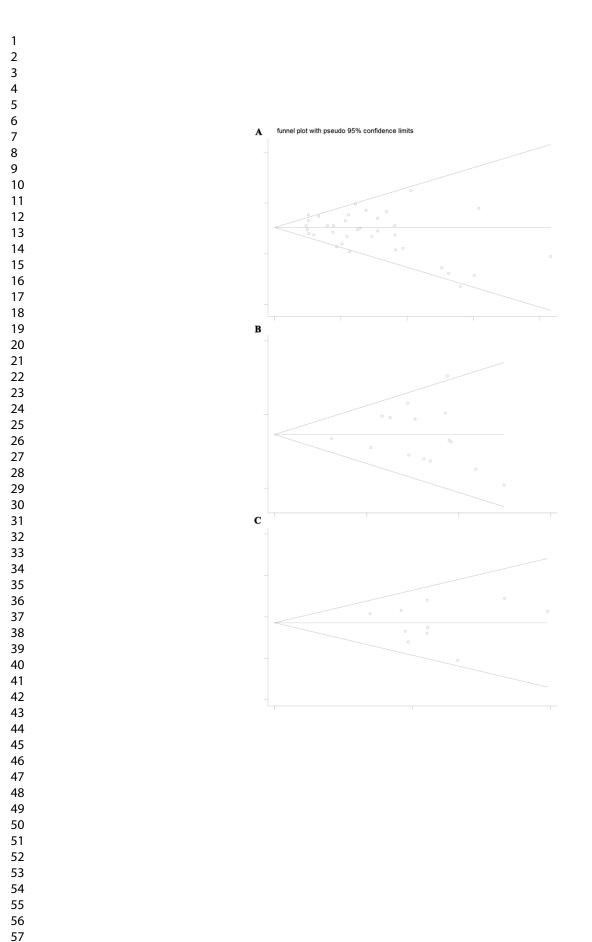
Page 49 of 66

1

45 46

BMJ Open

Table S3 Methodological Quality Assessments Of Included Studies With Newcastle-Ottwa Scales


	Study			Selection				Outcome		Total
		Exposed	Nonexposed	Ascertainment	Outcome of	Comparability	Assessment	Length of	Adequacy of	score
		cohort	cohort	of exposure	interest		of outcome	follow-up	follow-up	
1997	Salmeron et al, ¹¹	*	*	*	*	**	*	*		9
1997	Salmeron et al (2) , ¹²	*	*	*	*	**	*	*	*	9
1998	Ascherio et al, ¹³	*	*	*	*	**	*	*	*	9
1999	Iso et al, ¹⁴	*	*	*	*	**	*	*	*	9
1999	Kao et al, ¹⁵	*	*	*	*	**	*	*	*	9
2000	Liu et al, ¹⁶	*	*	*	*	**	*	*	*	9
2000	Meyer et al, ¹⁷	*	*	*	*	**	*	*	*	9
2004	Hodge et al, ¹⁸	*	*	*	*	*	*	*		7
2004	Lopez et al, ¹⁹	*	*	*	*	**	*	*	*	9
2004	Song et al, ²⁰	*	*	*	*	**	*	*	*	9
2005	Song et al, ²¹	*	*	*	*	**	*	*	*	9
2006	Liu et al, ²²	*	*	*	*	**	*	*	*	9
2006	Pereira et al, ²³	*	*	*	*	**	*	*	*	9
2006	Pittas et al, ²⁴	*	*	*	*	**	*	*	*	9
2006	Van et al, ²⁵	*	*	*	*	**	*	*	*	9
2007	Schulze et al, ²⁶	*	*	*	*	**	*	*	*	9
2008	Larsson et al, ²⁷	*	*	*	*	**	*	*	*	9
2008	Weng et al, ²⁸	*	*	*	*	**	*	*	*	9
2009	Kirii et al, ²⁹	*	*	*	*	**	*	*	*	9
2009	Ohira et al, ³⁰	*	*	*	*	**	*	*	*	9
2009	Villegas et al, ³¹	*	*	*	*	**	*	*	*	9
2010	Hopping et al, ³²	*	*	*	*	**	*	*	*	9
2010	Kim et al, ³³	*	*	*		**	*	*	*	8
2010	Kirii et al, ³⁴	*	*	*	*	**	*	*	*	9
2010	Nanri et al, ³⁵	*	*	*	*	**	*	*	*	9
2011	Larsson et al, ³⁶	*	*	*	*	**	*	*	*	9
2012	Weng et al, ³⁷	*	*	*	*	**	*	*		8
2012	Zhang et al, ³⁸	*	*	*	*	** /site/about/guideli	*	*	*	9

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	2013	Hata et al, ³⁹	*	*	*	*	**	*	*	*	9	
	2013	Lin et al, ⁴⁰	*	*	*	*	**	*	*	*	9	
<u>/</u> }	2013	Oba et al, ⁴¹	*	*	*	*	**	*	*	*	9	
1	2013	Sluijs et al, ⁴²	*	*	*	*	**		*	*	8	
5	2014	Hruby et al, ⁴³	*	*	*	*	**	*	*	*	9	
5	2014	Sluijs et al, ⁴⁴	*	*	*	*	**	*	*	*	9	
3	2015	Adebamowo et al, ⁴⁵	*	*	*	*	**	*	*	*	9	
)	2015	Adebamowo et al (2), ⁴⁶	*	*	*	*	**	*	*	*	9	
10	2015	Bain et al, ⁴⁷	*	*	*	*	**	*	*	*	9	
1	2015	Huang et al, ⁴⁸	*	*	*		**	*	*	*	8	
3	2017	Hruby et al, ⁴⁹	*	*	*	*	**	*	*	*	9	
4	2017	Kokubo et al, ⁵⁰	*	*	*	*	**	*	*	*	9	
5 6	2017	Konishi et al, ⁵¹	*	*	*	*	*	*	*	*	9	
10	_017											
8												
19												
20												
22												
23												
24												
25												
26 27												
<u>2</u> 8												
<u>29</u>												
30						*						
31												
32 33												
55												

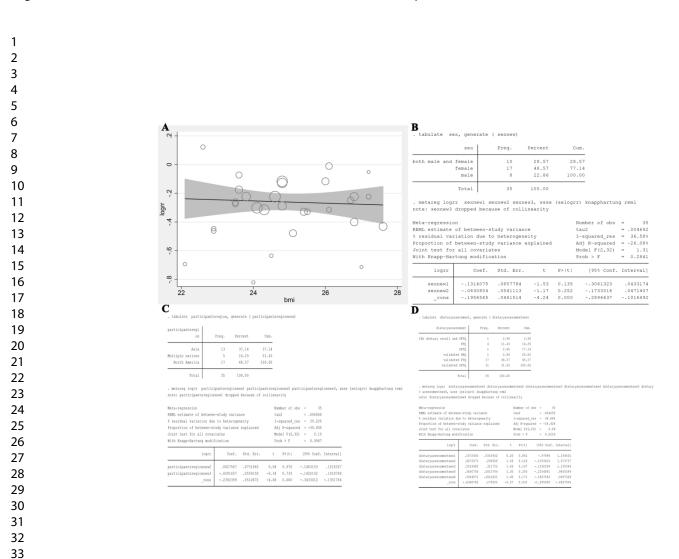
60

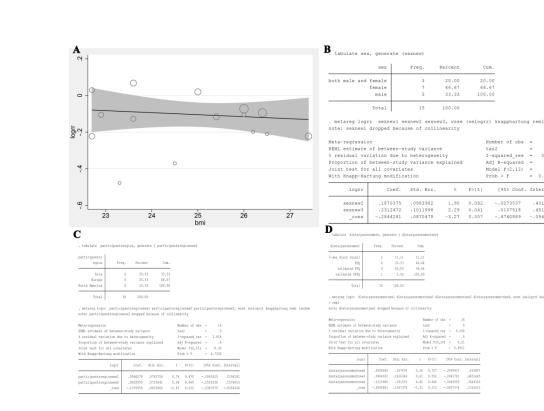
BMJ Open

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	

and A			
Study A	Decreases ischemic stroke	Increases ischemic stroke BR (95% CI)	74 Weight
lso et al 1999		0.74 (0.54, 1.02)	5.34
lso et al (2) 1999		0.73 (0.52, 1.01)	4.95
Song et al 2005		0.83 (0.57, 1.21)	3.95
Larsson et al 2008		0.85 (0.76, 0.97)	20.78
Weng et al 2008		0.69 (0.45, 1.06)	3.12
Ohira et al 2029		0.00 (0.75, 1.13)	10.88
Larsson et al 2011		0.98 (0.77, 1.26)	8.20
Zhang et al (M) 2012		1.30 (0.90, 1.88)	4.11
Zhang et al (F) 2012		0.04 (0.58, 1.22)	4.04
Lin et al 2013 Skuijs et al 2013		0.62 (0.38, 1.01) 0.76 (0.57, 1.01)	2.44
Slugs et al 2013 Adebamovo et al 2015		0.97 (0.57, 1.51)	5.93
Adebamovo et al (2) 201 Adebamovo et al (2) 201		0.99 (0.79, 1.25)	0.17
Adebamovo et al (2) 201 Kokubo et al (M) 2017		1.08 (0.80, 1.41)	6.50
Kokubo et al (F) 2017		1.01 (0.70, 1.45)	4.20
Overall (I-squared = 16.1	66, p = 0.265)	0.85 (0.81, 0.95)	100.00
	Ť		
NOTE: Weights are from	I 5 1	1.5	
no et al 1999		0.05 (0.02, 1.17)	9.25
ko et al (2) 1999		0.79(0.50, 1.11)	8.55
long et al 2005	<+	0.72 (0.49, 1.02)	7.15
anseon et al 2211		0.06 (0.01, 1.15)	26.64
Drang et al (M) 2012		1.00 (0.88, 1.40)	6.30
Drang et al (F) 2912		1.32 (0.82, 1.88)	7.40
fokubo-et al (M) 2017		0.91 (0.75, 1.11)	21.78
Colluboration (F) 2017		1.05 (0.81, 1.85)	13.86
Overall (Fequared = 10.3%, p		0.94 (0.85, 1.04)	100.00
(repartd = 10.2%, p	- 4	0.04 (0.05, 1.04)	
C.	n effects analysis		
С		15	
lso et al 1999		0.90 (0.66, 1.23)	2.65
lso et al (2) 1999 Song et al 2005		0.85 (0.62, 1.18) 0.81 (0.58, 1.17)	2.48
Song et al 2005 Larsson et al 2008		- 0.81 (0.56, 1.17) - 1.02 (0.91, 1.14)	1.89
Larsson et al 2008		- 1.02 (0.91, 1.14) 0.95 (0.84, 1.07)	20.22
Ohira et al 2009		1.08 (0.85, 1.37)	4.51
Larsson et al 2011		0.91 (0.74, 1.11)	6.25
Larsson et al 2011		0.91 (0.73, 1.13)	5.38
Zhang et al (M) 2012 Zhang et al (M) 2012		1.10 (0.75, 1.60) 1.14 (0.78, 1.65)	1.79 1.83
Zhang et al (N) 2012 Zhang et al (F) 2012		0.89 (0.60, 1.31)	1,03
Zhang et al (F) 2012		1.10 (0.77, 1.57)	2.02
Zhang et al (F) 2012		0.84 (0.58, 1.22)	1.86
Adebamowo et al 20	5	1.09 (0.86, 1.38)	4.59
Adebamowo et al 20 Adebamowo et al (2)		1.04 (0.80, 1.34) 1.00 (0.82, 1.21)	3.86 6.78
Adebamowo et al (2) Kokubo et al (M) 201		1.00 (0.82, 1.21) 0.97 (0.77, 1.21)	6.78 5.03
Kokubo et al (M) 201		- 0.93 (0.73, 1.20)	4.16
Kokubo et al (F) 2011	·	1.03 (0.77, 1.38)	3.02
Kokubo et al (F) 2011		0.99 (0.72, 1.37)	2.48
Overall (I-squared =		0.98 (0.93, 1.03)	100.00
NOTE: Weights are f	om random effects analysis	15	
50 et al 1999		0.75 (0.55, 1.03)	7.10
iso et al 1999 Iso et al (2) 1999		0.75 (0.55, 1.05) 0.72 (0.55, 1.00)	7.10
Song et al 2005		0.77 (0.50, 1.12)	5.18
Larsson et al 2008	-++-	0.94 (0.03, 1.06)	28.84
Wang at al 2008		0.91 (0.57, 1.46)	3.37
Offica et al 2009		0.96 (0.73, 1.25)	9.29
Larsson et al 2011		0.98 (0.77, 1.28)	10.76
Zhang et al (M) 2012		1.30 (0.90, 1.88)	5.31
Adebarrows et al 2015		1.14 (0.87, 1.49)	9.28
Kokubo et al (M) 2017		1.06 (0.80, 1.41)	8.49
Kokubo et al (M) 2017 Kokubo et al (F) 2017		1.09 (0.00, 1.41)	5.43
Overall (I-squared = 14.45	p=0.307)	0.95 (0.87, 1.04)	100.00
NOTE: Weights are from ra	ndum effects analysis		
E	5 1	1.5	
		874 (8.54, 1.02)	6.48
to at al 1989		875-8.52, 101	5.95
se et al (2) 1989	4	0.02 (0.07, 123)	4.62
		6.86 (0.76, 0.07)	44.82
se et al (2) 1989			
no et al (2) 1989 long et al 2005 anacor et al 2008		100.0	3.07
ee et al (2) 1089 long et al 2005 "anaor et al 2008		0.00(0.40,100)	3.07
oo et al (2) 1989 long et al 3005 amoor et al 2008 Yeng et al 2008		6.80(8.75, 1.12)	15.80
ee et al (2) 1089 long et al 2005 "anaor et al 2008			
oo et al (2) 1989 long et al 3005 amoor et al 2008 Yeng et al 2008		6.80(8.75, 1.12)	15.80
ee et al (2) 1989 Jong et al 2005 Januar et al 2008 Neng et al 2008 Neng et al 2008 Neng et al 2008		6.46 (8.75, 1.13) 6.87 (8.75, 1.35) 6.89 (8.75, 1.25)	15.00
no et al (2) 1999 Jong el al 2005 Janaso et al 2008 Yang el al 2008 Salas et al 2008		6.86 (6.75, 1.12) 9.97 (6.72, 1.31)	15.00 7.31 12.45


Page 55 of 66	BMJ Open
1 2 3 4 5	
6 7 8	A Decreases subarachnoid hemorrhage Increases subarachnoid hemorrhage
9 10	0 (81.95% C) (94.94%
11 12	54.65.67.200 418
13 14	148.021.10) 208 Over i Sequeri 105.1-1264 488.071.78 93.09
15	Vote ingine an loss readon dhas andore
16 17	B is in the second seco
18 19	1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
20 21	
22	etil tappato sta oka osa
23 24	Nora 1000
25 26	Lanux et al 2008
27 28	Lance of 2011
29	MCE lingth as the sector when anyon
30 31	
32 33	100 1 1 10 1 10 1 10 1 10 1 10 1 10 1
34 35	146/138 MB
36	
37 38	144231.0) da
39 40	
41	
42 43	
44 45	
46 47	
48	
49 50	
51 52	
53 54	
55	
56 57	
58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guideline


зыу А

•
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
24
26
27

Decreases intracere	bral hemorrhage	Increases intrace	erebral hemorrhage	Weght
Iso et al 1989	•		0.64 (0.30, 1.37)	11.86
Lanson-et.al 2008	•		0.96-(0.89, 1.32)	65.00
Lanson-stal 2011			1.02 (0.59, 1.75)	25.54
Overall (Heparted = 0.0%, p = 0.001)	\langle	>	0.92 (0.71, 1.20)	100.00
NOTE: Weights are from variables effects analysis				
B	5	15		
10 cm 100	•		0.06 (0.42, 178)	25.62
Lamon et al 2011		•	5.87 (6.78, 5.63)	26.0
Overall () squared = 3.0%, p = 8.807)	<	>	101(020,100)	100.00
NOTE: Integras are from random effects analysis				
С	1	Ļ.		
lao et al 1990			0.49 (0.21, 1.13)	6.31
Lamson et al 2008	-	<u> </u>	1.12 (0.82, 1.53)	40.22
Lanson et al 2008	-	_	1.00 (0.73, 1.38)	38.82
Lanson et al 2011			1.02 (0.59, 1.75)	14.85
Overall (i-squared = 8.1%, p = 0.352)	\diamond	>	1.00 (0.81, 1.24)	100.00
NOTE: Weights are from random effects analysis				
D	<i>.</i> , ,	18		
No ef al 1305			1.33 (0.71, 2.48)	20.78
			1.00 (0.11, 0.48)	20.75
Larson et al 2006			8.99 (0.71, 1.36)	79.22
Cvenil 5-spared = 0.0%, p = 0.200)	<	\geq	1.04 (0.75, 1.36)	105.00
NOTE: Weights are from random effects analysis				
E	1			
ka etal 1990			0.64 (630, 1.37)	15.43
Lanson et al 2008			0.86-(1.03	84.57
Cveni (Fopared + 1.05, p + 1.34)	\langle	>	0.89(0.96, 1.20)	100.00
NOTE: Weights are from random effects analysis				
		1.6		

BMJ Open

sex	Freq.	Percent	Cum.
both male and female	3	20.00	20.00
female	7	46.67	66.67
male	5	33.33	100.00
Total	15	100.00	

eta-regressio	n			N	umber of obs	=	15
EML estimate	of between-s	tudy variance	e	t	au2	=	
residual var	iation due to	o heterogene:	ity	I	-squared_res	-	0.00
roportion of	between-stud	y variance e:	xplained	A	dj R-squared	=	
oint test for	all covaria	tes		M	lodel F(2,12)	-	2.6
lith Knapp-Har	tung modific	ation		P	rob > F	-	0.112
lith Knapp-Har logrr	tung modific Coef.	std. Err.	t	P> t	rob > F		
			t 1.90			In	0.112 terval 401428
logrr	Coef.	Std. Err.		P> t	[95% Conf	In	terval

With Raapp-Hartung modification Prob > F = 0.8811 logrr Osef. Rtd. Err. t P>(t) [958 Conf. 1	
	[nterval]
dietaryassessmentnew2 .0596066 .167476 0.36 0.7272995937	.418807
distaryaspensmentnew3 .0984932 .1616344 0.61 0.5522481781	.4451645
dietaryassessmentnew4 .1211865 .291519 0.42 0.6845040595	.7464325
cons2045601 .1567379 -1.31 0.2135407374	.1316013

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

60

BMJ Open

Percent

26.67 46.67 26.67

100.00

t P>|t|

Cum. 40.00 100.00

-2.17 0.050 -0.79 0.447 -0.70 0.495

Cum

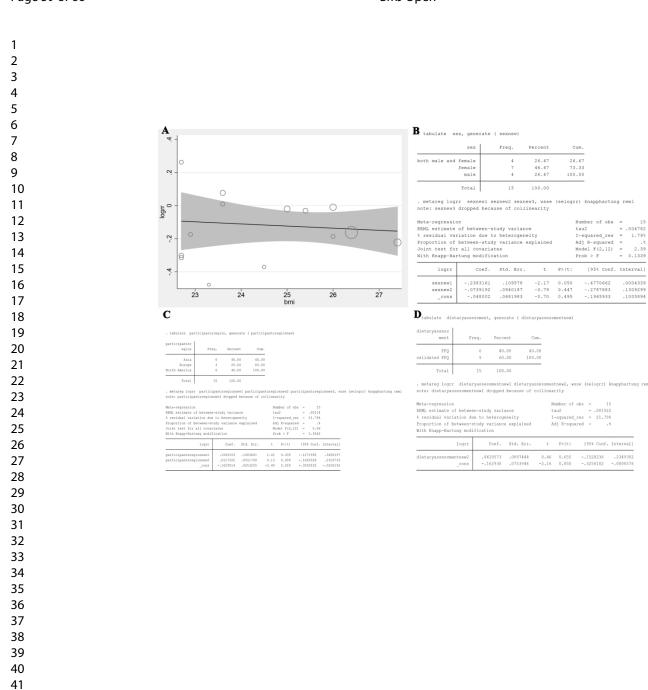
26.67 73.33 100.00

Number of obs = 15 tau2 = .004782 I-squared_res = 1.79% Adj R-squared = .% Model F(2,12) = 2.39 Prob > F = 0.1339

[95% Conf. Interval]

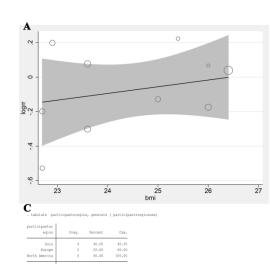
.0004339 .1309299 .1005894

-.4770662 -.2787683 -.1965933


Number of obs = 15 tau2 = .001922 I-squared_res = 21.79% Adj R-squared = .%

[95% Conf. Interval]

-.1528236 .2349382 -.3258182 -.0000578


t P>|t|

0.46 0.655

60

F12,7

t P>|t

Std. Er

B . tabulate s	ex, generate	(sexnew)	
sex	Freq.	Percent	Cum.
female	6	60.00	60.00
male	4	40.00	100.00
Total	10	100.00	

. metareg logrr sexnewl sexnew2, wsse (selogrr) knapphartung reml note: sexnew2 dropped because of collinearity

		tudy variance o heterogenei:	-y	tau2 I-square	d_res	2	0.42%
Proportion of	between-stud	v variance ext	lained	Adi R-sa	uared	-	. 8
With Knapp-Ha				,			

1120692 0110753			.1955211

D

dietary						

Cum.	Percent	Freq.	ment
40.00	40.00	4	FFQ
100.00	60.00	6	validated FFQ
	100.00	10	Total

. metareg logrr dietaryassessmentnewl dietaryassessmentnew2, wsse (selogrr) knapphartung reminote: dietaryassessmentnew1 dropped because of collinearity

Meta-regression REML estimate of between % residual variation due Proportion of between-st With Knapp-Hartung modi:	e to heterog tudy varianc	eneity	t. I		obs = 1 00109 res = 6.09 red = .	7
logrr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
dietaryassessmentnew2 cons	.0642559	.1426454	0.45	0.664	2646851	.3931968

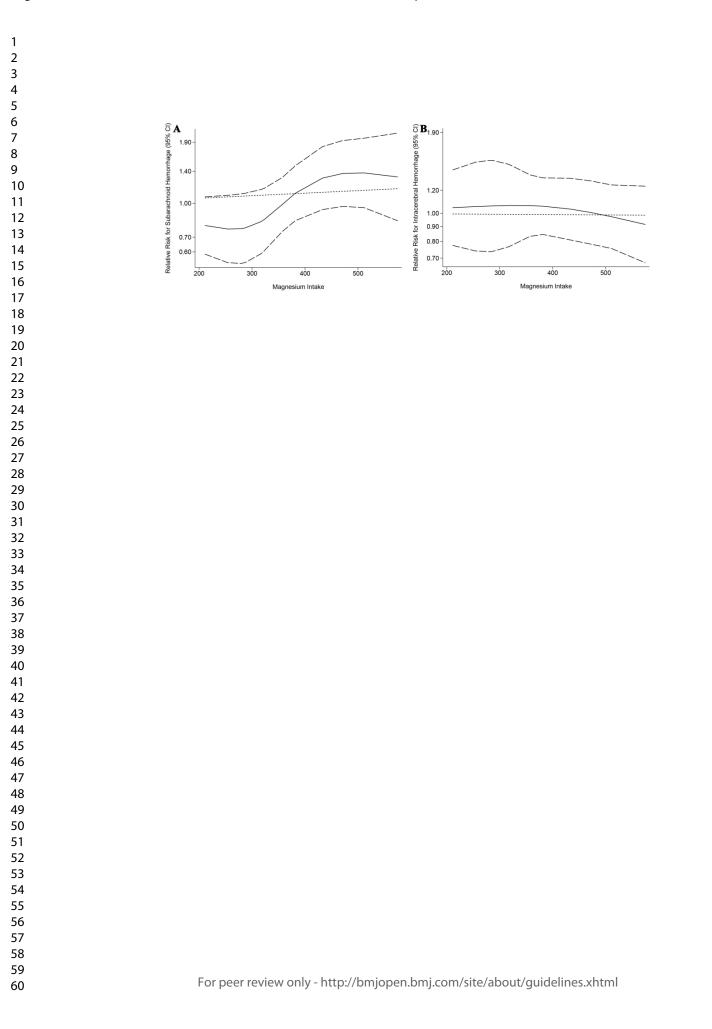
study	year		RR (95% CI)
Salmeron et al	1997		0.72 (0.54, 0.96)
Salmeron et al (2)	1997		0.66 (0.55, 0.78)
Kao et al (B)	1999		0.67 (0.57, 0.80)
Kao et al (W)	1999	—	0.70 (0.60, 0.81)
Liu et al	2000	—	0.72 (0.64, 0.81)
Meyer et al	2000	—	0.71 (0.64, 0.78)
Hodge et al	2004	—	0.71 (0.64, 0.78)
Lopez et al (M)	2004	—	0.71 (0.65, 0.78)
Lopez et al (F)	2004	-	0.72 (0.67, 0.77)
Song et al	2004	→	0.73 (0.68, 0.78)
Liu et al	2006	~	0.74 (0.70, 0.79)
Pereira et al	2006	→	0.74 (0.70, 0.79)
Pitta et al	2006	+	0.74 (0.70, 0.78)
Van et al	2006	+	0.73 (0.70, 0.77)
Schulze et al	2007	+	0.74 (0.71, 0.79)
Kirii et al (M)	2009	→	0.75 (0.71, 0.80)
Kirii et al (W)	2009	+	0.75 (0.71, 0.79)
Villegas et al	2009	+	0.75 (0.72, 0.79)
Hopping et al (M)	2010	+	0.76 (0.72, 0.79)
Hopping et al (F)	2010	+	0.77 (0.73, 0.80)
Kim et al	2010	+	0.76 (0.73, 0.80)
Kirii et al	2010	+	0.76 (0.73, 0.80)
Nanri et al (M)	2010	+	0.76 (0.73, 0.80)
Nanri et al (F)	2010	+	0.77 (0.73, 0.80)
Weng et al	2012	+	0.76 (0.73, 0.80)
Hata et al	2013	+	0.76 (0.73, 0.80)
Oba et al (M)	2013	+	0.76 (0.73, 0.80)
Oba et al (F)	2013	+	0.76 (0.73, 0.80)
Hruby et al	2014	+	0.76 (0.73, 0.80)
Huang et al	2015	+	0.76 (0.73, 0.80)
Hruby et al (M)	2017	+	0.77 (0.74, 0.80)
Hruby et al (F1)	2017	• I	0.77 (0.74, 0.80)
Hruby et al (F2)	2017	+++++++++++++++++++++++++++++++++++++++	0.78 (0.75, 0.81)
Konishi et al (M)	2017	+	0.78 (0.75, 0.82)
Konishi et al (F)	2017	+	0.78 (0.75, 0.81)
	2017		
	l .2	.6 1 1.2	 1.6 2
	.2	.0 1 1.2	1.0 2

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
3 4	
5	
6	
6 7	
8	
0	
9 10	
10	
11	
12	
13	
14	
13 14 15 16 17	
16	
17	
18	
19	
20	
21	
22	
21 22 23 24 25 26 27 28 29 30 31	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
35 36 37	
27	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

60

study	year		RR (95% CI)
Ascherio et al	1998		0.92 (0.58, 1.46)
lso et al	1999		0.82 (0.67, 1.02)
Song et al	2005	-	0.84 (0.71, 1.01)
Larsson et al	2008	_ - _	0.88 (0.78, 0.99)
Weng et al	2008	—	0.86 (0.77, 0.97)
Ohira et al	2009	—	0.85 (0.77, 0.94)
Larsson et al	2011	- - -	0.88 (0.80, 0.96)
Zhang et al (M)	2012	- -	0.89 (0.82, 0.97)
Zhang et al (F)	2012	→	0.89 (0.82, 0.97)
Lin et al	2013	- - -	0.88 (0.81, 0.96)
Sluijs et al	2013	- - -	0.87 (0.81, 0.94)
Sluijs et al	2014	→	0.86 (0.79, 0.93)
Adebamowo et al	2015	~	0.86 (0.80, 0.93)
Adebamowo et al (2)	2015	-	0.87 (0.82, 0.93)
Bain et al (M)	2015	~	0.87 (0.82, 0.93)
Bain et al (F)	2015	~	0.87 (0.82, 0.93)
Kokubo et al (M)	2017	+	0.89 (0.83, 0.94)
Kokubo et al (F)	2017	→	0.89 (0.83, 0.94)
	.2	.6 1 1.2	1.6 2


lso et al			
	1999		0.74 (0.54, 1.0
lso et al (2)	1999		0.74 (0.58, 0.9
Song et al	2005		0.76 (0.62, 0.9
Larsson et al	2008	—	0.82 (0.74, 0.9
Weng et al	2008	—	0.82 (0.74, 0.9
Ohira et al	2009	-	0.81 (0.74, 0.8
Larsson et al	2011	—	0.83 (0.76, 0.9
Zhang et al (M)	2012	—	0.85 (0.77, 0.9
Zhang et al (F)	2012	-	0.85 (0.77, 0.9
Lin et al	2013		0.84 (0.76, 0.9
Sluijs et al	2013	—	0.83 (0.76, 0.9
Adebamowo et al	2015	-+-	0.84 (0.78, 0.9
Adebamowo et al (2)	2015	-	0.86 (0.79, 0.9
Kokubo et al (M)	2017	-	0.87 (0.80, 0.9
Kokubo et al (F)	2017		0.88 (0.81, 0.9

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3 4	
5	
6 7	
8	
9 10	
11	
12 13	
14	
15	
16 17	
18	
19 20	
21	
22 23	
24	
25 26	
27	
28 29	
30	
31 32	
33	
34 35	
36	
37 38	
30 39	
40 41	
42	
43 44	
44 45	
46 47	
47 48	
49 50	
50 51	
52	
53 54	
55	
56 57	

58	
59	
60	

study	year		RR (95% CI)
lso et al	1999		0.82 (0.53, 1.26)
Song et al	2005		0.87 (0.60, 1.27)
Larsson et al	2008	-	0.98 (0.79, 1.22)
Larsson et al	2011	+	0.96 (0.79, 1.17)
Zhang et al (M)	2012		0.90 (0.75, 1.08)
Zhang et al (F)	2012	+	0.94 (0.78, 1.13)
Adebamowo et al	2015	- _	0.96 (0.81, 1.14)
Adebamowo et al (2)	2015	+ _	0.94 (0.81, 1.09)
Kokubo et al (M)	2017	- _	0.96 (0.84, 1.10)
Kokubo et al (F)	2017		0.93 (0.82, 1.06)
	.2	.6 1 1.2 1.	6 2

Table S1 PRISMA 2009 Checklist

Section/topic	#	Checklist item	Repo on pa	
TITLE				
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1	
ABSTRACT				2-3
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3	
INTRODUCTION				4-5
Rationale	3	Describe the rationale for the review in the context of what is already known.	4	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4-5	
METHODS	•	·		5-9
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5-6	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5-6	
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5-6	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-6	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6	
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6	
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	6-8	

Table S1 PRISMA 2009 Checklist

3 4 Section/topic	#	Checklist item	Reported on page #	
⁵ Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7	
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	8-9	
RESULTS				
3 Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	9	
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	9-10	
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	9-10	
P Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10-16	
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	10-16	
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	10-16	
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	10-16	
8 Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	16-21	
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	21-22	
3 Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	22	
FUNDING			23	
⁶ Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	23	
39 39 40 <i>From:</i> Moher D, Liberati A, Tetzlaf doi:10.1371/journal.pmed1000097	f J, Altm	nan DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med	6(7): e1000097.	
41 42		For more information, visit: <u>www.prisma-statement.org</u> .		
13		Page 2 of 2		
44 45 46 47		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

BMJ Open

Magnesium intake has inverse association with type 2 diabetes and total stroke: an updated systematic review and meta-analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-032240.R1
Article Type:	Original research
Date Submitted by the Author:	19-Nov-2019
Complete List of Authors:	Zhao, Binghao; The Second Affiliated Hospital of Nanchang University, Department of Cardio-Thoracic Surgery Zeng, Lianli; The second affiliated hospital of Nanchang University, Department of Cardiovascular Medicine Zhao, Jiani; The second affiliated hospital of Nanchang University, Department of Cardiovascular Medicine Wu, Qian; The second affiliated hospital of Nanchang University, Department of Cardiovascular Medicine Dong, Yifei; The second affiliated hospital of Nanchang University, Department of Cardiovascular Medicine Zou, Fang; The second affiliated hospital of Nanchang University, Department of Cardiovascular Medicine Zou, Fang; The second affiliated hospital of Nanchang University, Department of Endocrinology Gan, Li; The second affiliated hospital of Nanchang University, Department of Neurology Wei, Yiping; The Second Affiliated Hospital of Nanchang University, Department of Cardio-Thoracic Surgery Zhang, Wenxiong; The Second Affiliated Hospital of Nanchang University, Department of Cardio-Thoracic Surgery
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Diabetes and endocrinology, Epidemiology, Evidence based practice, Neurology, Cardiovascular medicine
Keywords:	Magnesium Intake, Type 2 Diabetes, Stroke < NEUROLOGY, Meta- Analysis

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Magnesium intake has inverse association with type 2 diabetes and total stroke:
2	an updated systematic review and meta-analysis
3	Binghao Zhao ^{1,2} ; Lianli Zeng ^{3,4} ; Jiani Zhao ^{3,4} ; Qian Wu ^{3,4} ; Yifei Dong ³ ; Fang Zou ⁵ ;
4	Li Gan ⁶ ; Yiping Wei ¹ ; Wenxiong Zhang ¹ .
5	Affiliations
6	¹ Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of
7	Nanchang University, Nanchang, China, 330006.
8	² Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese
9	Academy of Medical Sciences and Peking Union Medical College, Beijing, China,
10	100000.
11	³ Department of Cardiovascular Medicine, The Second Affiliated Hospital of
12	Nanchang University, Nanchang, China, 330006.
13	⁴ Jiangxi medical college, Nanchang University, 330006, Nanchang, China
14	⁵ Department of Endocrinology, The Second Affiliated Hospital of Nanchang
15	University, Nanchang, China, 330006.
16	⁶ Department of Neurology, The Second Affiliated Hospital of Nanchang University,
17	China, 330006.
18	Corresponding Author: Wenxiong Zhang, MD, Department of Cardio-Thoracic
19	Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road,
20	Nanchang, China, 330006; E-mail: <u>zwx123dr@126.com</u> ; Phone: +8618720909414;
21	Fax: 0791-86133161.
22	Short running head: Magnesium Intake Reduces Diabetes and Total Stroke.
23	Word count: 4971.

Page 3 of 73

BMJ Open

3		
4	24	Abstract
5		
6	25	Objective: The detailed associations between type 2 diabetes (T2D) and total stroke
7 8		
9	20	
10	26	and magnesium intake as well as the dose-response manner should be timely updated.
11		
12	27	Design: Systematic review search, methodology and meta-analyses.
13		
14	28	Data sources: PubMed, EMBASE, Cochrane Library, Web of Science and
15 16		
10	29	ClinicalTrials.gov were rigorously searched from the inception to March 15, 2019.
18	29	Chinear mais.gov were rigorously searched from the inception to watch 15, 2017.
19		
20	30	Eligibility criteria: Prospective cohort studies about the two diseases
21		
22	31	Data synthesis: Relative risk (RR) and 95% confidence intervals (95% CI) in
23 24		
24 25	32	random-effects models as well as absolute risk (AR) were pooled to calculate risk on
26		
27	22	T2D and strake Methodological quality was accorded by the Newcostle Ottown Scale
28	33	T2D and stroke. Methodological quality was assessed by the Newcastle-Ottawa Scale.
29		
30	34	Results: Forty-one studies involving 53 cohorts were included. The magnitude of the
31 22		
32 33	35	risk was significantly reduced by 22% for T2D (RR, 0.78 [95% CI, 0.75-0.81]; P<
34		
35	36	0.001; AR reduction, 0.120%), 11% for total stroke (RR, 0.89 [95% CI, 0.83-0.94]; P<
36	50	
37	~-	0.001 AD 1 (* 0.0010/) 1.100/ C * 1 * 1 (DD 0.00 F0.50/ CL
38	37	0.001; AR reduction, 0.281%), and 12% for ischemic stroke (RR, 0.88 [95% CI,
39 40		
40 41	38	0.81-0.95]; $P = 0.001$; AR reduction, $0.246%$) comparing the highest magnesium
42		
43	39	intake to the lowest. The inverse association still existed when studies on T2D were
44		
45	40	adjusted for cereal fiber (RR, 0.79 [95% CI, 0.73-0.85]; $P < 0.001$) and those on total
46	40	adjusted for cerear fiber (RR, 0.79 [9570 CI, 0.75 - 0.05], $1 < 0.001$) and those of rotat
47 48		
40 49	41	stroke were adjusted for calcium (RR, 0.89 [95% CI, 0.80-0.99]; $P = 0.040$).
50		
51	42	Subgroup analyses suggested risk for total and ischemic stroke was significantly
52		
53	43	decreased in females, participants with $\geq 25 \text{ mg/m}^2$ body mass index, and those with \geq
54	10	
55		
56 57	44	12y follow-up, the reduced risk in Asia was not so conspicuous as in North America
58		
59	45	and Europe.
60		

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25 26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	
60	
00	

1

Conclusions: Magnesium intake has significantly inverse associations with T2D and 46 total stroke in a dose-dependent manner. Feasible magnesium-rich dietary pattern 47 may highly benefit specific populations, and can be highlighted in the primary 48 prevention of T2D and total stroke by the public. 49 50 PROSPERO registration number CRD42018092690 51 Strengths and limitations of this study 52 1. An inverse association between magnesium intake and T2D and stroke is 53 established. 54 2. Magnesium-rich food consumption may be recommended for high-risk individuals 55 in dietary guidelines. 56 3. Considerable evidence assists with innovation of the global dietary pattern. 57 4. Event ascertainments are limited by FFQ or self-reports. 58 5. More individual-level studies are required for reducing potential bias. 59 60 Keywords: Magnesium Intake; Type 2 Diabetes; Stroke; Meta-Analysis. 61

62 Introduction

Diabetes is a global burden with an alarming increasing rate throughout the world^{1,2}. Stroke is an independent disorder and a typical macrovascular complication of type 2 diabetes (T2D) treated as the second leading cause of death after ischemic heart disease^{3,4}. These pandemic health problems require more primary prevention strategies.

Magnesium, common cellular ion, acts as critical cofactor for hundreds of enzymes involved in glucose metabolism, protein production, and nucleic acid synthesis^{5,6}. Low levels of magnesium have been associated with many chronic and inflammatory diseases, such as Alzheimer's disease, asthma, attention deficit hyperactivity disorder, insulin resistance, T2D, hypertension, cardiovascular disease (e.g., stroke), migraine headaches, osteoporosis and cancer^{1,5,7,8}.

Actually, many adults in developed countries do not successfully meet the recommended daily consumption of magnesium-rich foods such as whole grains, nuts, and green leafy vegetables, and magnesium is less mentioned in dietary guidelines and in studies about T2D or stroke prevention^{9,10}. With this regard, we chose T2D and stroke as our outcome of interest (cardiovascular disease (CVD) was not elaborated because there are so many items relating to CVD and the definitions about CVD varied a lot among searched studies, which would enhance heterogeneity in the pooled process and impair our interpretation of the final conclusion). And, emerging studies¹¹⁻⁵¹ on this topic are limited, and the results still remain mixed, for example, most of the studies support magnesium intake has inverse association with T2D or

total stroke incidence, however, several studies reveal there is an inverse trend but not significant association, which possibly due to the limitations of small simple sizes and differences in intervention duration, study design, characteristics of participants. Moreover, consecutive meta-analyses^{52,53} have used less rigorous inclusion, the results were incomprehensive, and they did not completely address the influence of other confounders (i.e., body mass index (BMI), cereal fiber, calcium, potassium) on the relationship. Accordingly, we performed a meta-analysis to (1) establish a comprehensive estimate and update the epidemiological evidence for clinical practice; (2) discuss the results of stroke subtype and the impact of several statistical and epidemiology confounders on the investigated association; and (3) highlight a detailed dose-response pattern for the participants in the studies analyzed.

96 Methods

97 This study was reported according to the Preferred Reporting Items for Systematic
98 Reviews and Meta-Analyses (PRISMA) guidelines (Table S1) and the Meta-analysis
99 of Observational Studies in Epidemiology (MOOSE) Guidelines Checklist (Table S2)
100 (Registration information: PROSPERO CRD42018092690).

Z.C.

Search Strategy

PubMed, EMBASE, Cochrane Library, Web of Science and ClinicalTrials.gov were
systematically reviewed through inception to March 15, 2019 for studies about
magnesium intake and T2D or stroke without language restrictions. The following key

words were used: "Magnesium", "Type 2 Diabetes Mellitus", "Type 2 Diabetes",
"Stroke", "Cerebrovascular Stroke", "Cohort Studies", and "Prospective Studies". We
also manually searched the reference lists of the retrieved literature (including
meta-analyses and brief reports), bibliographies and gray literature (including
presentations and unpublished literature) for further eligible articles. The search
strategy could be found in Table S3.

- - **Selection Criteria**

(1) Eligible populations must be composed of individuals with plausible dietary/energy intake, who had no history of diabetes and/or insulin treatment for T2D analysis and no current stroke for stroke analysis. (2) Their apparent life expectancy was long enough for proper follow-up. (3) We only included prospective cohort studies that reported magnesium intake and T2D and/or various types of stroke. (4) Follow-up duration of eligible studies should not be less than one year if they provided the follow-up data. Notably, magnesium intake contained dietary magnesium intake and total magnesium intake (dietary and supplementary magnesium).

Only studies containing the most comprehensive information on the population or endpoints were included to avoid duplication. We excluded reviews, basic studies, meta-analyses, studies on gestational diabetes mellitus (GDM) or studies only focusing on magnesium supplementation.

128 Data Extraction and Quality Assessments

Two researchers independently extracted the following information: the first author, publication year, period of cohort studies, duration of persistent exposure, basic characteristics of the enrolled participants (weight, age, region, BMI, drinking and smoking habits (previous plus current), etc.), median magnesium intake for each quantile (tertile, quartile, or quintile), diabetes and total stroke cases, subtypes of total stroke, dietary and case assessments, adjusted confounding covariates. Importantly, total stroke is classified as clinical ischemic stroke (87%), hemorrhagic stroke (13%) and undetermined stroke⁵⁴. Hemorrhagic stroke is classified as subarachnoid hemorrhage and intracerebral hemorrhage according to anatomical site or presumed etiology⁵⁵.In cases of continuing disagreement, a final decision was reached after discussion with a third member of the panel.

Methodological quality was described by the Newcastle-Ottawa Scale (NOS), which was validated for assessment of the quality of nonrandomized controlled trials in meta-analyses⁵⁶. As for 0-10 scale, each study was categorized as low (0-5), medium (6-7), of high (8-10) quality.

145 Statistical Analysis

Articles providing data separately for men and women or black and white or different types of disease within an article were treated as independent studies. Multivariate relative risk (RR) and corresponding 95% confidence intervals (CI) as well as absolute risk (AR) for measuring the quantitative associations between exposure and Page 9 of 73

BMJ Open

T2D, total stroke and other wanted outcomes, particularly for the highest vs. the lowest categories of magnesium intake were estimated by DerSimonian-Laird random effects model because the assumptions involved account for the presence of within-study and between-study variability. Statistical heterogeneity was determined with the Cochran Q chi-square test and the I^2 . An $I^2 > 50\%$ or a P value for the Q test < 0.1 was considered to indicate significant heterogeneity⁵⁷. We performed sensitivity analyses to test the robustness and post-subgroup analyses to detect source of heterogeneity. In addition, a random-effects meta-regression analysis on BMI, sex, participants region, and dietary assessments with RR for each trial was performed to obtain an understanding of the reasons for heterogeneity. RR and 95% CI might begin to significantly change as publication years increased in T2D and total stroke etc., which would be validated by cumulative meta-analyses.

The dose-response analyses for all outcomes were proposed by Greenland and Longnecker⁵⁸ and Orsini⁵⁹ et al. The categories of magnesium intake, distributions of cases and person-year, RR and 95 CI were extracted. Once the number of cases and/or person-years was not available, variance-weighted least squares regression was used to pool the risk estimate. For most studies, the median intake for each quantile (tertile, quartile or quintile) of magnesium intake was assigned as the representative dose. For continuous intake reported as category data with a range in some studies, we assigned the mid-point category of the lower and upper bound to the RR in these studies; when the highest category was open ended, we assumed the length of the open ended interval to be 1.5 times as the adjacent interval; when the lowest category was open,

2	
л Л	
4 7	
S	
3 4 5 7 8 9 10	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
19	
20	
21	
22	
23	
24	
25	
26	
27	
22	
20	
29	
30	
31 32 33	
32	
33	
34	
35	
34 35 36 37	
37	
38	
39	
40	
40 41	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
56	
57	
58	
59	

60

1

we assigned the adjacent interval of the category to be 1.5 times as the length of the 172 open ended interval. We determined generalized least squares regression models to 173 calculate study-specific RR estimates per 50 mg/day, 100 mg/day, and 150 mg/day of 174 magnesium intake increment if there was evidence for linear relationships. In addition, 175 the non-linear relationships between magnesium intake and all outcomes were 176 evaluated using restricted cubic splines with four knots located at the 5th, 35th, 65th, 177 and 95th percentiles of the distribution. The P value for curve linearity or non-linearity 178 was calculated by testing the null hypothesis that the coefficient of the second spline 179 180 is equal to zero. All results were presented using two-stage dose-response model plots (including linear and nonlinear relationships).Some results were demonstrated in 181 forest plots for $< 50 \text{ mg/day}, \ge 50 \text{ and} < 100 \text{ mg/day}, \ge 100 \text{ and} < 150 \text{ mg/day}, \ge 150$ 182 183 mg/day increments.

Publication bias was assessed graphically by Begg's adjusted rank correlation funnel plots⁶⁰ and Egger's linear regression tests⁶¹. All analyses were performed using Stata version 14.0 (StataCorp, College Station, TX, USA); two-sided P < 0.05 was considered statistically significant except where otherwise specified.

188

189 Patient and Public Involvement

190 No patients were involved in setting the research question or the outcome measures, 191 and no patients were involved in developing plans for design or implementation of the 192 study. Furthermore, no patients were asked to advice on interpretation or writing up of 193 results. Since this study used aggregated data from previous publications, it is not easy

BMJ Open

to disseminate the results of the research to study participants directly.

Results **Study Characteristics and Quality Assessment** Of the total 8713 studies, 107 studies were considered for eligibility after screening of titles and abstracts (Figure 1). And a total of 41¹¹⁻⁵¹ prospective cohort studies involving 53 cohorts, 1 912 634 participants and 76 678 cases were eligible for current systematic review and meta-analysis (Table S4). Hodge et al¹⁸ only recorded 500 mg/day increment of magnesium for further pooled analyses; 2 studies^{33,51} failed to clearly distinguish the diabetes type, but the great majority of cases had T2D. We computed the subtype data in three studies^{14,27,36} after the extraction of total stroke, and we considered ischemic stroke in three other studies^{28,30,42} as total stroke given ischemic stroke accounting for nearly 87% of total stroke. Participants were predominately middle-age at baseline, with mean magnesium intake for the highest category of 370 mg/day, mean for the lowest category of 232 mg/day. The mean duration of all eligible studies was 10.7 years. Nineteen studies were conducted in North America (America); 5 studies were in Europe (Sweden, the Netherlands and Britain); 13 studies in Asia (China and Japan and Taipei); 4 studies enrolled individuals in multiple nations. Most of the studies included used food frequency questionnaires (FFQs) or semi-quantitative FFQs (SFFQs) to assess individual dietary intake. Eighteen studies used dietary magnesium intake, and 21 studies recorded total magnesium intake (dietary and supplementary magnesium intake). Of note,

supplementary magnesium intake was assessed from the use of magnesium or multivitamin supplements; nevertheless, dietary magnesium accounted for the majority of magnesium intake. Adjusted confounders were mostly similar; however, adjusted dietary confounders such as cereal fiber, potassium, and calcium still varied across individual studies. It was unclear whether included studies had adjusted for sodium because they did not provide the information. All these studies were written in English.

After the quality assessments of the studies according to NOS, the average score was
8.85 (Table S5) and all studies were of high quality (NOS score 8-10).

226 Magnesium Intake and T2D Incidence

Thirty-five cohorts from 26 publications^{11,12,15,20,22-26,29,31-35,37,39,41,43,48,49,51}(1 219 636 participants and 56 540 T2D cases) reported the magnitude of the risk of T2D was reduced by 22% (RR, 0.78 [95% CI, 0.75-0.81]; $P \le 0.001$; AR reduction, 0.120%) comparing the highest category of magnesium intake to the lowest with a little evidence of heterogeneity ($I^2 = 35.6\%$; P = 0.021). The dose category-specific analysis suggested that for < 50 mg/day magnesium increment, the risk of T2D was reduced by 10% (RR, 0.90 [95% CI, 0.88-0.93]; P < 0.001); for ≥ 50 and < 100mg/day, the risk was decreased by 16% (RR, 0.84 [95% CI, 0.82-0.87]; P < 0.001); for \geq 100 and < 150 mg/day, the risk was reduced by 22% (RR, 0.78 [95% CI, 0.74-0.83]; P < 0.001); and for $\ge 150 \text{ mg/day}$, the risk was reduced by 21% (RR, 0.79) [95% CI, 0.74-0.84]; P < 0.001) (Figure 2). Little evidence of publication bias was

1 2		
3 4 5	238	found (Egger's test: $P = 0.088$) (Figure S1A).
6 7	239	
8 9 10	240	Magnesium Intake and Stroke Incidence
11 12 13	241	Eighteen cohorts from 15 publications ^{13,14,21,27,28,30,36,38,40,42,44-47,50} (692 998
14 15	242	participants and 20 138 total stroke cases) reported the magnitude of the risk of total
16 17 18	243	stroke was decreased by 11% (RR, 0.89 [95% CI, 0.83-0.94]; $P < 0.001$; AR
19 20 21	244	reduction, 0.281%) with no heterogeneity ($l^2 = 0\%$; $P = 0.529$) in the highest category
22 23	245	of magnesium intake VS. the lowest. Dose category-specific analysis identified no
24 25 26	246	significant association with the < 50 mg/day, \geq 50 and < 100 mg/day, or \geq 100 and <
27 28 29	247	150 mg/day of increments. For the \geq 150 mg/day increment, the risk of total stroke
30 31	248	was decreased by 15% (RR, 0.85 [95% CI, 0.79-0.91]; P< 0.001) (Figure S2).
32 33	249	Publication bias was evaluated for stroke subtypes respectively.
32 33 34 35 36	249 250	Publication bias was evaluated for stroke subtypes respectively. Fifteen cohorts from 12 publications ^{14,21,27,28,30,36,38,40,42,45,46,50} reported ischemic
32 33 34 35		
32 33 34 35 36 37 38 39 40 41	250	Fifteen cohorts from 12 publications ^{14,21,27,28,30,36,38,40,42,45,46,50} reported ischemic
32 33 34 35 36 37 38 39 40 41 42 43 44	250 251	Fifteen cohorts from 12 publications ^{14,21,27,28,30,36,38,40,42,45,46,50} reported ischemic stroke. The magnitude of the risk of ischemic stroke was reduced by 12% (RR, 0.88
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	250 251 252	Fifteen cohorts from 12 publications ^{14,21,27,28,30,36,38,40,42,45,46,50} reported ischemic stroke. The magnitude of the risk of ischemic stroke was reduced by 12% (RR, 0.88 [95% CI, 0.81-0.95]; $P = 0.001$; AR reduction, 0.246%) with no significant
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	250 251 252 253	Fifteen cohorts from 12 publications ^{14,21,27,28,30,36,38,40,42,45,46,50} reported ischemic stroke. The magnitude of the risk of ischemic stroke was reduced by 12% (RR, 0.88 [95% CI, 0.81-0.95]; $P = 0.001$; AR reduction, 0.246%) with no significant heterogeneity ($l^2 = 16.9\%$; $P = 0.265$). Dose category-specific analysis identified no
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	250 251 252 253 254	Fifteen cohorts from 12 publications ^{14,21,27,28,30,36,38,40,42,45,46,50} reported ischemic stroke. The magnitude of the risk of ischemic stroke was reduced by 12% (RR, 0.88 [95% CI, 0.81-0.95]; $P = 0.001$; AR reduction, 0.246%) with no significant heterogeneity ($I^2 = 16.9\%$; $P = 0.265$). Dose category-specific analysis identified no significant association with the < 50 mg/day, \geq 50 and < 100 mg/day, or \geq 100 and <
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	250 251 252 253 254 255	Fifteen cohorts from 12 publications ^{14,21,27,28,30,36,38,40,42,45,46,50} reported ischemic stroke. The magnitude of the risk of ischemic stroke was reduced by 12% (RR, 0.88 [95% CI, 0.81-0.95]; $P = 0.001$; AR reduction, 0.246%) with no significant heterogeneity ($I^2 = 16.9\%$; $P = 0.265$). Dose category-specific analysis identified no significant association with the < 50 mg/day, \geq 50 and < 100 mg/day, or \geq 100 and < 150 mg/day increments. A trend to decrease existed but remained insignificant. The
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	250 251 252 253 254 255 256	Fifteen cohorts from 12 publications ^{14,21,27,28,30,36,38,40,42,45,46,50} reported ischemic stroke. The magnitude of the risk of ischemic stroke was reduced by 12% (RR, 0.88 [95% CI, 0.81-0.95]; $P = 0.001$; AR reduction, 0.246%) with no significant heterogeneity ($I^2 = 16.9\%$; $P = 0.265$). Dose category-specific analysis identified no significant association with the < 50 mg/day, \geq 50 and < 100 mg/day, or \geq 100 and < 150 mg/day increments. A trend to decrease existed but remained insignificant. The original risk was reduced by 16% in the analysis of the \geq 150 mg/day increment (RR,

not significantly associated with magnesium intake (RR, 0.93 [95% CI, 0.82-1.06]; P = 0.282). Dose category-specific analysis identified no significant association (Figure S4). No significant heterogeneity or publication bias were identified with regard to hemorrhagic stroke (Egger's test: P = 0.809) (Figure S1C). Three publications involving 3 cohorts^{14,27,36} showed that high magnesium intake had no significant efficacy in reducing subarachnoid hemorrhage risk (RR, 0.99 [95% CI, 0.71-1.39]; P = 0.963). Dose category-specific analysis identified no significant association (Figure S5). With respect to intracerebral hemorrhage, the pooled results from 3 cohorts^{14,27,36} in 3 publications revealed no significant advantages of intracerebral hemorrhage (RR, 0.92 [95% CI, 0.71-1.20]; P = 0.540). Dose category-specific analysis identified no 1.e significant association (Figure S6). Meta-Regression and Cumulative Meta-Analysis Meta-regression identified no evidence of BMI, sex, participant region and dietary assessment for each individual trial bias in T2D (Figure S7), total stroke (Figure S8), ischemic stroke (Figure S9) and hemorrhagic stroke events (Figure S10). The male subgroup (P = 0.041) in the sex category might cast little heterogeneity on total stroke; however, the sex category (P = 0.112) had no association with total stroke incidence. Analyses on T2D (Figure S11), total stroke (Figure S12) and ischemic stroke demonstrated that the RRs of the final results became robust within a narrow range and remained significant as publication years increased and as recent high quality

BMJ Open

studies were included. After inclusion of the Iso et al¹⁴ study, the RR and 95% CI for ischemic stroke decreased to less than 1 and became stable (**Figure S13**). Although there was no significantly reduced risk in hemorrhagic stroke, clear evidence showed that the confidence interval was becoming narrow, which had a trend toward significance (**Figure S14**). Thus, risk for hemorrhagic stroke might be reduced, and further studies are still needed.

289 Sensitivity Analysis

When three²⁴⁻²⁶ studies were excluded in T2D analysis, the summary RR changed from 0.78 ([95% CI, 0.75-0.81]) to 0.78 ([95% CI, 0.75-0.82]) with the heterogeneity declining from $(I^2 = 35.6\%; P = 0.021)$ to $(I^2 = 24.0\%; P = 0.112)$. Among T2D analysis, eight studies^{19,22,23,26,33,39,48,49} adjusted for cereal fiber intake vield an RR of 0.79 ([95% CI, 0.73-0.85]; P < 0.001) and two studies^{15,35} for calcium yielded an RR of 0.87 ([95% CI, 0.73-1.04]; P = 0.128). While among total stroke analysis, the summary RR was 0.92 ([95% CI, 0.82-1.02]; P = 0.097) in five studies^{13,44-46,50} adjusted for potassium intake and was 0.89 ([95% CI, 0.80-0.99]; P = 0.040) in five studies^{14,44-46,50} adjusted for calcium. Only one study¹⁵ adjusted for potassium intake in T2D, one study³⁶ for cereal fiber in total stroke.

301 Subgroup Analysis

302 Stratified analyses by characteristics of the population and study design were 303 conducted on T2D (**Table 1**), total stroke, ischemic stroke and hemorrhagic stroke

304	(Table 2). The inverse association with T2D remained robust across all subgroups
305	with little evidence of heterogeneity. As for stroke incidence, a decreased risk of total
306	stroke and ischemic stroke was found in female participants (RR, 0.91 [95% CI,
307	0.83-0.99] for total stroke; 0.89 [95% CI, 0.79-1.00] for ischemic stroke) and
308	individuals with \geq 25 kg/m ² mean BMI (RR, 0.89 [95% CI, 0.82-0.96] for total stroke;
309	0.88 [95% CI, 0.81-0.96] for ischemic stroke). When restricted to a \ge 12 y follow-up,
310	the risk of total stroke and ischemic stroke could be significantly reduced (RR, 0.89
311	[95% CI, 0.83-0.95] for total stroke; 0.88 [95% CI, 0.81-0.95] for ischemic stroke).
312	These risks were more reduced in North American and European individuals than
313	Asians. Cardiovascular events (CV events, coronary heart disease, heart failure, atrial
314	fibrillation, and self-reported heart disease etc. other than stroke),
315	hypercholesterolemia and diabetes would blunt the effect of magnesium on total and
316	ischemic stroke. However, magnesium intake could still, or at least, demonstrate the
317	trend to decrease total and ischemic stroke in individuals even with those risk factors.
318	Similarly, CV events, hypercholesterolemia and family diabetes history had no
319	substantial impact on the inverse association between T2D incidence and magnesium
320	intake. We did not find significantly reduced risk in hemorrhagic stroke across the
321	subgroup analyses.

323 Dose-Response Analysis

In this part, both linear and nonlinear relationships were found in T2D (Figure 3A), in
total stroke (Figure 3B), and in ischemic stroke (Figure 3C). However, no linear or

Page 17 of 73

BMJ Open

non-linear dose-response relationship was observed in hemorrhagic stroke (Figure 3D)
along with the subtypes including subarachnoid hemorrhage and intracerebral
hemorrhage (Figure \$15).

Specifically, we calculated RR for the magnesium increments if there was linear relationship found. The calculated RR was 0.94 ([95% CI, 0.93-0.95]) for the 100 mg/day increment for T2D. For total stroke, the summary RR was 0.98 ([95% CI, 0.97-0.99]) related to 100 mg/day increment in magnesium intake, RR for ischemic stroke was 0.98 ([95% CI, 0.97-0.99]) related to 100 mg/day increment in magnesium intake. There was no RR cut-off point at which the decreasing trend reversed, but the RR decreased a bit rapidly with any slightly decreases at approximately 260 mg/day for T2D and 350 mg/day for total/ischemic stroke. But there was substantial uncertainty in the lower range of this distribution (Figure 3A, 3B, 3C).

Discussion

340 Main findings

This paper used a general and up-to-date search strategy to identify some additional studies that were missed in prior meta-analyses under real-world conditions. Our results support a significant inverse association between magnesium consumption and T2D, total stroke and ischemic stroke at the highest level vs. the lowest. No significant association for hemorrhagic stroke, subarachnoid hemorrhage and intracerebral hemorrhage was detected. Female obese participants (mean BMI ≥ 25 kg/m²) with longer follow-up period (≥ 12 y) might obtain a greater benefit from

magnesium intake with a lower risk of total and ischemic stroke incidence. In subgroup analyses, RR of stroke risk was highly decreased among North American and European individuals. Significant risk reduced by 6%, 2%, and 2% for T2D, total stroke and ischemic stroke respectively at per 100 mg/day increment in magnesium intake level. Overall, our study supports the guidelines to address the role of magnesium intake for T2D and stroke early prevention. Even though, we still require more randomized controlled trials (RCTs) in the future to validate the causality.

Clinical implications

Dietary nutrients are hot topics for current clinical medicine, folic acid, vitamin D, and ω -3 fatty acids have been specifically recommended to pregnant women, infants and children, and the elderly^{62,63}, however, magnesium has been less extensively discussed. This is a noteworthy study for the following reasons. First, current study reinforces the possible role of magnesium in the prevention and management of two chronic illnesses and causes new considerations on the avoidance of other chronic disease with potential diet strategy. Second, this comprehensive study with nearly two million individuals and abundant statistical power provides confirming evidence for medical practitioners, health educators and policy makers. Third, until this study, no related paper has discussed such detailed stratified analyses, which helps physicians to amplify the dietary benefits through individualized strategies. Interestingly, we detected North American and European participants seemed to receive more benefits from magnesium intake than Asians. Fourth, to our knowledge, this is the first study

Page 19 of 73

BMJ Open

in which cumulative meta-analysis was performed to forecast the changing tendency of main risk estimates. Based on past and current cutting edge evidence about nutrition and T2D prevention, the US Diabetes Prevention Program (DPP) conducted a study that demonstrated that proper lifestyle modification (exercise and Mediterranean diet) significantly reduced T2D risks irrespective of population baselines, and the benefit expanded with increased follow-up⁶⁴. The UK national health service (UK NHS) will launch an intervention program including weight loss, nutrition, monitoring and peer support targeting up to 10 000 people prone to develop T2D⁶⁵.

2018 American Diabetes Association (ADA) guidelines⁶⁶ recommend to enhance intake of nuts, berries, yogurt, coffee and tea in individuals who are at high risk of diabetes. The latest guidelines by the American Heart Association (AHA)/American Stroke Association (ASA)⁹ also validate considerable status of early management of stroke (ischemic stroke). In fact, magnesium is a cofactor of enzyme systems that regulate diversity biomedical reactions including protein synthesis, muscle and nerve transmission, neuromuscular conduction, signal transduction blood glucose control and blood pressure management⁶⁷. Magnesium played a role in transporting calcium and potassium ions across cell membrane, also is crucial for structural function of proteins, nucleic acids or mitochondria⁶⁸. In diabetes, magnesium achieves glucose and insulin metabolism through tyrosine kinase activity of the insulin receptor, intake of magnesium also influences phosphorylase B kinase activity by releasing glucose-1-phophate from glycogen. Magnesium regulates glucose translocation into

the cell⁶⁹. In stroke higher magnesium level deregulates glutamate and calcium cation influx by reducing NMDA receptor activity, and blocks voltage-gated calcium channel eliminating calcium cation cytotoxicity. Additionally, magnesium has vasodilatory effect which may do benefit to ischemic stroke patients⁷⁰. In deed, a poor outcome on hemorrhagic stroke was observed in a RCT, however, high serum magnesium might be better for intracerebral hemorrhage prognosis⁷¹.

Most specific nutrients especially macronutrients are correlated with total energy intake. In included free-living human studies, variation of total energy intake is originated from physical activity, differences in body size, and differences in energy efficiency⁷². Thus total energy intake can weaken the investigated association with considerable nutrients intake if this covariable is not properly removed. Epidemiologists should assess reproducibility and validity of energy-adjusted nutrients as well as absolute nutrients intake. Though micronutrient as magnesium is, inverse association could be still found in T2D, total stroke and ischemic stroke outcomes after total energy intake adjustment. As for other nutrients, potassium intake is proposed to lower blood pressure (BP) and improve vascular outcomes (including stroke); dietary potassium may also be influential in glucose control and limiting the risk of diabetes⁷³. Vitamin D and calcium may negatively influence glycemia, but the evidence is limited for mostly being based on cross-sectional observational studies⁷⁴. Calcium may be inversely associated with stroke in populations with low to moderate calcium intakes, but no significant association was found between calcium and CVD⁷⁵. All things considered, magnesium-rich food such as nuts (151-567 mg/100g edibles),

BMJ Open

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

fruits (132-448 mg/100g edibles), vegetables (132-1257 mg/100g edibles), legumes
(138-243 mg/100g edibles), fish (143-303 mg/100g edibles) and total grain (134-306
mg/100g edibles) should be recommended to populations with insufficient magnesium
intake.

418

419 Compared with other similar studies

This seminar has several differences with previous studies. Dong et al⁵² found 420 magnesium intake had an inverse association with T2D incidence (RR, 0.78 [95% CI, 421 422 0.73-0.84]), and with an intake of 100 mg/day magnesium, the risk was reduced by 14%. In fact, they failed to include adequate studies, and standard quality assessments 423 of eligible studies were absent. Individuals from multiple nations in some 424 studies^{18,25,26,32} were incorrectly assigned to Asia or the U.S. in the subgroups, and 425 minor imperfections existed in the selection criteria because it was unclear whether 426 they excluded participants with subclinical diabetes. BMI was not a potential modifier 427 for T2D in our study due to the inclusion of more evidence which had longer 428 follow-up period. Fang et al⁷⁶ revealed dietary magnesium was 429 significantly associated with reduced risk of T2D (RR, 0.74 [95% CI, 0.69-0.80]) and stroke (RR, 430 0.88 [95% CI, 0.82-0.95]). The results were comparable, but they just focused on 431 dietary magnesium intake rather than overall magnesium intake (total or dietary), and 432 subtypes of total stroke were missed. To our overall knowledge, BMI, follow-up, 433 434 family diabetes history, etc. were crucial confounders for evaluating the association, which were not addressed in their study. Moreover, researchers had better investigate 435

the likelihood of linear association in the dose-response pattern (using methods by Greenland and Orsini et al). Fang et al⁷⁷ found that the 100 mg/day intake of dietary magnesium was associated with an 8-13% reduction in T2D risk, and while a nonlinear relationship did not exist, a minor publication bias was present. Twenty-five studies were eligible; however, some of them focused not on dietary but on total magnesium intake. Moreover, there were two included studies focusing on red meat intake instead of magnesium intake. After excluding actual ineligible studies, we found no evidence of publication bias. Additionally, both linear and nonlinear relationships existed for T2D, because the RRs of the highest category of magnesium intake VS. the lowest in our pooled study were still used. A study by Larsson et al⁵³including 7 studies supported a modest but statistically significant inverse association between dietary magnesium intake and stroke. The sample size was quite small, and there was no useful information for stroke subtypes (e.g., ischemic stroke, hemorrhagic stroke) in the main analysis. In our opinion, a well-designed subgroup analysis is a compulsory undertaking, and a pooled stroke result restricted by potassium and calcium adjustment is recommended. The current study found magnesium intake was strongly inversely associated with total stroke and ischemic stroke, which still existed in the dose-response pattern.

Directions for further research

456 Future studies still have something to be addressed. At first, no significant association457 was found in hemorrhagic stroke, however, the beneficial trend was observed in the

Page 23 of 73

BMJ Open

cumulative meta-analysis, which addresses needs for more updated prospective studies and RCTs. Second, there is a key question regarding the optimal time to start prevention and methods to screen severe complications. Cardiovascular events occur in more than 50% and diabetic kidney disease occurs in 20-40% of patients with diabetes. Actually, cardiovascular events increase the risk of death three to four times compared with patients without such complications. A sustained period of intensive glucose control early in T2D has been confirmed to reduce complication rates⁷⁸. Most importantly, to the public, educators and guideline makers, boosting magnesium-rich food consumption relates to considerable benefits to T2D and total stroke prevention, especially in high-risk populations.

469 Limitations

Several limitations deserve further discussion. First, this group-level meta-analysis is insufficient. Although strong inverse associations for T2D and total stroke were reported, individual-level studies having more detection power are required. Second, several variations cannot be totally understood, for example, we cannot exclude the possibility that other nutrients and/or dietary components correlated with dietary magnesium may have been responsible, either partially or entirely, for the observed associations. Based on eligible studies, we could not quantify the impact of supplementary magnesium (not combined with dietary intake) on T2D and stroke incidence. The real effect of some dietary supplements on T2D or cardiovascular disease seems very interesting to a number of medical experts, clinicians and nutrition

educators. Third, FFQs/validated FFQs mostly used in primary studies could not characterize all the nutrients, which misclarified plausible associations. It was suggested that magnesium specific food questionnaire and/or food records should be reasonably used for accurate magnesium intake estimation. Finally, we still required further RCTs, because observational studies might only reach the same conclusion (i.e., magnesium intake is inversely associated with T2D incidence) but could not prove causality.

488 Conclusion

Magnesium intake has a substantial inverse association with T2D and total stroke. Among these populations, magnesium consumption can be recommended as an optimization for T2D, total stroke and ischemic stroke primary prevention or early management. In particular, the greater the magnesium intake, the more reduced risk is observed. As patients, physicians, policy makers and legislators debate on these issues, such a cost-effective alternative is needed to inform policy decisions and assist reform in global dietary health care.

497 Acknowledgements: The authors thank professor Yanhua Tang, MD (The second
498 affiliated hospital of Nanchang University) for her advice and professor Xiaoshu
499 Cheng, MD, PhD (The second affiliated hospital of Nanchang University) for his data
500 collection.

1 2		
3		
4 5	502	Competing interests
6 7	503	None declared
8 9 10	504	
11 12 13	505	Provenance and peer review
14 15	506	Not commissioned; externally peer reviewed.
16 17 18	507	
19 20	508	Data availability statement
21 22 23	509	All data relevant to the study are included in the article or uploaded as supplementary
24 25 26	510	information.
27 28	511	
29 30 31	512	Patient consent for publication
32 33	513	Not required.
34 35 36	514	
37 38 39	515	Funding Sources
40 41	516	This study was supported by National Natural Science Foundation of China (NSFC),
42 43 44	517	number of grants (81560345), Natural Science Foundation of Jiangxi Province (Grant
45 46 47	518	number: 20161BAB215237).
47 48 49	519	
50 51	520	Author Contribution: Binghao Zhao had full access to all of the data in the
52 53	521	manuscript and takes responsibility for the integrity of the data and the accuracy of
54 55	522	the data analysis.
56 57	523	Concept and design: All authors.
58 59	524	Acquisition, analysis, or interpretation of data: All authors.
60	525	Drafting of the manuscript: Binghao Zhao and Wenxiong Zhang.

526 Critical revision of the manuscript for important intellectual content: Binghao Zhao,

- 527 Lianli Zeng[,] Jiani Zhao, Qian Wu, Fang Zou, Li Gan and Yifei Dong.
- 528 Statistical analysis: Binghao Zhao.
- 529 Supervision: Wenxiong Zhang and Yiping Wei

- **Reference**
- 532 1. Centers for Disease Control and Prevention. National Diabetes Statistics Report,
- 533 2017. Atlanta, GA: Centers for Disease Control and Prevention, US Department of
- Health and Human Services; 2017.
- 535 2. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since
- 536 1980: a pooled analysis of 751 population-based studies with 4.4 million participants.
- 537 Lancet. 2016;387(10027):1513-1530.
- 3. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart
 Disease and Stroke Statistics-2017 Update: A Report From the American Heart
 Association, Circulation, 2017;135(10):e146-e603.
- 541 4. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett
 542 DA, et al. Global and regional burden of stroke during 1990-2010: findings from the
 543 Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245-254.
 - 5. Barbagallo M, Dominguez LJ. Magnesium metabolism in type 2 diabetes mellitus,
 metabolic syndrome and insulin resistance. Arch Biochem Biophys.
 2007;458(1):40-47.
- 547 6. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria 548 selectively promoted by dietary fibers alleviate type 2 diabetes. Science.

BMJ Open

2	
3	
4	
5	
6 7 8	
7	
8	
0	
9	
9 10 11	
11	
12	
13	
12 13 14 15 16 17 18 19	
14	
15	
16	
17	
10	
10	
19	
20	
21	
20 21 22 23 24 25	
22	
23	
24	
25	
26	
20	
26 27 28	
28	
29	
30	
31	
21	
32 33 34 35 36 37 38	
33	
34	
35	
22	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54	
55	
56	
57	
58	
59	
60	

549	2018;359(6380):1151-1156.
550	7. Reffelmann T, Ittermann T, Dörr M, Völzke H, Reinthaler M, Petersmann A, et al.
551	Low serum magnesium concentrations predict cardiovascular and all-cause mortality.
552	Atherosclerosis. 2011;219(1):280-284.
553	8. Fadelu T, Zhang S, Niedzwiecki D, Ye X, Saltz LB, Mayer RJ, et al. Nut
554	Consumption and Survival in Patients With Stage III Colon Cancer: Results From
555	CALGB 89803 (Alliance). J Clin Oncol. 2018;36(11):1112-1120.
556	9. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K,
557	et al. 2018 Guidelines for the Early Management of Patients With Acute Ischemic
558	Stroke: A Guideline for Healthcare Professionals From the American Heart
559	Association/American Stroke Association. Stroke. 2018;49(3):e46-e110.
560	10. Brignole M, Moya A, de Lange FJ, Deharo JC, Elliott PM, Fanciulli A, et al.
561	2018 ESC Guidelines for the diagnosis and management of syncope. Eur Heart J.
562	2018:ehy037.
563	11. Salmerón J, Ascherio A, Rimm EB, Colditz GA, Spiegelman D, Jenkins DJ, et al.
564	Dietary Fiber, Glycemic Load, and Risk of NIDDM in Men. Diabetes care.
565	1997;20(4):545-550.
566	12. Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC.
567	Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in
568	women. JAMA. 1997;277(6):472-477.
569	13. Ascherio A, Rimm EB, Hernán MA, Giovannucci EL, Kawachi I, Stampfer MJ,

570 et al. Intake of potassium, magnesium, calcium, and fiber and risk of stroke among

3	
-	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	
60	

- 571 US men. Circulation. 1998;98(12):1198-1204.
- 572 14. Iso H, Stampfer MJ, Manson JE, Rexrode K, Hennekens CH, Colditz GA, et al.

573 Prospective study of calcium, potassium, and magnesium intake and risk of stroke in
574 women. Stroke. 1999;30(9):1772-1779.

575 15. Kao WH, Folsom AR, Nieto FJ, Mo JP, Watson RL, Brancati FL. Serum and
576 dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk
577 in Communities Study. Arch Intern Med. 1999;159(18):2151-2159.

578 16. Liu S, Manson JE, Stampfer MJ, Hu FB, Giovannucci E, Colditz GA, et al. A
579 prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US
580 women. Am J Public Health. 2000;90(9):1409-1415.

- 581 17. Meyer KA, Kushi LH, Jacobs DR, Jr., Slavin J, Sellers TA, Folsom AR.
 582 Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J
- 583 ClinNutr. 2000;71(4):921-930.
 - 18. Hodge AM, English DR, O'Dea K, Giles GG. Glycemic index and dietary fiber
 and the risk of type 2 diabetes. Diabetes care. 2004;27(11):2701-2706.
 - 19. Lopez-Ridaura R, Willett WC, Rimm EB, Liu S, Stampfer MJ, Manson JE, et al.
 Magnesium intake and risk of type 2 diabetes in men and women. Diabetes care.
 2004;27(1):134-140.
 - 589 20. Song Y, Manson JE, Buring JE, Liu S. Dietary magnesium intake in relation to
 590 plasma insulin levels and risk of type 2 diabetes in women. Diabetes care.
 591 2004;27(1):59-65.
 - 592 21. Song Y, Manson JE, Cook NR, Albert CM, Buring JE, Liu S. Dietary magnesium

Page 29 of 73

BMJ Open

2		
3 4 5	593	intake and risk of cardiovascular disease among women. Am J Cardiol.
6 7 8	594	2005;96(8):1135-1141.
9 10	595	22. Liu S, Choi HK, Ford E, Song Y, Klevak A, Buring JE, et al. A prospective study
11 12 13	596	of dairy intake and the risk of type 2 diabetes in women. Diabetes care.
14 15	597	2006;29(7):1579-1584.
16 17 18	598	23. Pereira MA, Parker ED, Folsom AR. Coffee consumption and risk of type 2
19 20 21	599	diabetes mellitus: an 11-year prospective study of 28812 postmenopausal women.
22 23	600	Arch Intern Med. 2006;166(12):1311-1316.
24 25 26	601	24. Pittas AG, Dawson-Hughes B, Li T, Van Dam RM, Willett WC, Manson JE, et al.
27 28	602	Vitamin D and calcium intake in relation to type 2 diabetes in women. Diabetes care.
29 30 31	603	2006;29(3):650-656.
32 33 34	604	25. Van Dam RM, Hu FB, Rosenberg L, Krishnan S, Palmer JR. Dietary calcium and
35 36	605	magnesium, major food sources, and risk of type 2 diabetes in U.S. black women.
37 38 39	606	Diabetes care. 2006;29(10):2238-2243.
40 41	607	26. Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H.
42 43 44	608	Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and
45 46	609	meta-analysis. Arch Intern Med. 2007;167(9):956-965.
47 48 49	610	27. Larsson SC, Virtanen MJ, Mars M, Männistö S, Pietinen P, Albanes D, et al.
50 51 52	611	Magnesium, calcium, potassium, and sodium intakes and risk of stroke in male
53 54	612	smokers. Arch Intern Med. 2008;168(5):459-465.
55 56 57	613	28. Weng LC, Yeh WT, Bai CH, Chen HJ, Chuang SY, Chang HY, et al. Is ischemic
58 59 60	614	stroke risk related to folate status or other nutrients correlated with folate intake?

5 4
4 5
6
7
, 8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1 2

615 Stroke. 2008;39(12):3152-3158.

616 29. Kirii K, Mizoue T, Iso H, Takahashi Y, Kato M, Inoue M, et al. Calcium, vitamin

617 D and dairy intake in relation to type 2 diabetes risk in a Japanese cohort.

- 618 Diabetologia. 2009;52(12):2542-2550.
- 619 30. Ohira T, Peacock JM, Iso H, Chambless LE, Rosamond WD, Folsom AR. Serum
 620 and Dietary Magnesium and Risk of Ischemic Stroke: The Atherosclerosis Risk in
 621 Communities Study. Am J Epidemiol. 2009;169(12):1437-1444.

31. Villegas R, Gao YT, Dai Q, Yang G, Cai H, Li H, et al. Dietary calcium and
magnesium intakes and the risk of type 2 diabetes: the Shanghai Women's Health
Study. Am J ClinNutr. 2009;89(4):1059-1067.

625 32. Hopping BN, Erber E, Grandinetti A, Verheus M, Kolonel LN, Maskarinec G.

626 Dietary fiber, magnesium, and glycemic load alter risk of type 2 diabetes in a
627 multiethnic cohort in hawaii. J Nutr. 2010;140(1):68-74.

- 628 33. Kim DJ, Xun P, Liu K, Loria C, Yokota K, Jacobs DR Jr, et al. Magnesium
- 629 Intake in Relation to Systemic Inflammation, Insulin Resistance, and the Incidence of
- 630 Diabetes. Diabetes care. 2010;33(12):2604-2610.

34. Kirii K, Iso H, Date C, Fukui M, Tamakoshi A, JACC Study Group. Magnesium
intake and risk of self-reported type 2 diabetes among Japanese. J Am Coll Nutr.
2010;29(2):99-106.

35. Nanri A, Mizoue T, Noda M, Takahashi Y, Kirii K, Inoue M, et al. Magnesium
intake and type II diabetes in Japanese men and women: the Japan Public Health
Center-based Prospective Study. Eur J Clin Nutr. 2010;64(10):1244-1247.

Page 31 of 73

1

BMJ Open

2
2
2
4
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
6
7
8
9
10
11
11
12
13
14
15
16
17
18
19
20
20 21
∠ I 22
22
23
24
25
26
27
28
20
29
50
31
32
33 34 35 36 37 38
34
35
36
37
20
39
40
41
42
43
44
45
46
47
47 48
49
50
51
52
53
54
55
56
57
58
59
60

637	36. Larsson SC, Virtamo J, Wolk A. Potassium, calcium, and magnesium intakes and
638	risk of stroke in women. Am J Epidemiol. 2011;174(1):35-43.
639	37. Weng LC, Lee NJ, Yeh WT, Ho LT, Pan WH. Lower intake of magnesium and
640	dietary fiber increases the incidence of type 2 diabetes in Taiwanese. J Formos Med
641	Assoc. 2012;111(11):651-659.
642	38. Zhang W, Iso H, Ohira T, Date C, Tamakoshi A, JACC Study Group.
643	Associations of dietary magnesium intake with mortality from cardiovascular disease:
644	the JACC study. Atherosclerosis. 2012;221(2):587-595.
645	39. Hata A, Doi Y, NinomiyaT, Mukai N, Hirakawa Y, Hata J, et al. Magnesium
646	intake decreases Type 2 diabetes risk through the improvement of insulin resistance
647	and inflammation: the Hisayama Study. Diabet Med. 2013;30(12):1487-1494.
648	40. Lin PH, Yeh WT, Svetkey LP, Chuang SY, Chang YC, Wang C, et al. Dietary
649	intakes consistent with the DASH dietary pattern reduce blood pressure increase with
650	age and risk for stroke in a Chinese population. Asia Pac J Clin Nutr.
651	2013;22(3):482-491.
652	41. Oba S, Nanri A, Kurotani K, Goto A, Kato M, Mizoue T, et al. Dietary glycemic
653	index, glycemic load and incidence of type 2 diabetes in Japanese men and women:
654	the Japan Public Health Center-based Prospective Study. Nutr J. 2013;12(1):165.
655	42. Sluijs I, Czernichow S, Beulens JWJ. Dietary electrolytes and risk of ischemic
656	stroke. Eur J Prev Cardiol. 2013;20(1):S76.
657	43. Hruby A, Meigs JB, O'Donnell CJ, Jacques PF, Mckeown NM. Higher
658	Magnesium Intake Reduces Risk of Impaired Glucose and Insulin Metabolism and

Progression From Prediabetes to Diabetes in Middle-Aged Americans. Am J Dis
Child. 2014;37(2):419-427.

44. Sluijs I, Czernichow S, Beulens JW, Boer JM, van der Schouw YT, Verschuren
WM, et al. Intakes of potassium, magnesium, and calcium and risk of stroke. Stroke.
2014;45(4):1148-1150.

- 45. Adebamowo SN, Spiegelman D, Flint AJ, Willett WC, Rexrode KM. Intakes of
 magnesium, potassium, and calcium and the risk of stroke among men. Int J Stroke.
 2015;10(7):1093-1100.
- 46. Adebamowo SN, Spiegelman D, Willett WC, Rexrode KM. Association between
 intakes of magnesium, potassium, and calcium and risk of stroke: 2 cohorts of US
 women and updated meta-analyses. Am J ClinNutr. 2015;101(6):1269-1277.

47. Bain LK, Myint PK, Jennings A, Lentjes MA, Luben RN, Khaw KT, et al. The
relationship between dietary magnesium intake, stroke and its major risk factors,
blood pressure and cholesterol, in the EPIC-Norfolk cohort. Int J Cardiol.
2015;196:108-114.

48. Huang Y-C, Wahlqvist ML, Kao M-D, Wang J-L, Lee M-S. Optimal Dietary and
Plasma Magnesium Statuses Depend on Dietary Quality for a Reduction in the Risk of
All-Cause Mortality in Older Adults. Nutrients. 2015;7(7):5664-5683.

49. Hruby A, Guasch-Ferré M, Bhupathiraju SN, Manson JE, Willett WC, McKeown

678 NM, et al. Magnesium Intake, Quality of Carbohydrates, and Risk of Type 2 Diabetes:

679 Results From Three U.S. Cohorts. Diabetes care. 2017;40(12):1695-1702.

680 50. Kokubo Y, Saito I, Iso H, Yamagishi K, Yatsuya H, Ishihara J, et al. Dietary

Page 33 of 73

1

BMJ Open

2	
4	
5 6 7 8	
6	
7	
8	
9 10 11 12 13 14 15 16 17 18	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19 20	
20	
21	
22	
23	
24	
25	
25 26	
20	
27 28	
28	
29	
30	
31	
32	
32 33	
34	
24	
35 36	
36	
37 38	
38	
39	
40	
41	
42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
53	
54	
55	
56	
57	
58	
50 59	
60	
1111	

681	magnesium intake and risk of incident coronary heart disease in men: A prospective
682	cohort study. Clin Nutr. 2018;37(5):1602-1608.

51. Konishi K, Wada K, Tamura T, Tsuji M, Kawachi T, Nagata C. Dietary
magnesium intake and the risk of diabetes in the Japanese community: results from
the Takayama study. Eur J Nutr. 2017;56(2):767-774.

52. Dong JY, Xun P, He K, Qin LQ. Magnesium intake and risk of type 2 diabetes:
meta-analysis of prospective cohort studies. Diabetes care. 2011;34(9):2116-2122.

53. Larsson SC, Orsini N, Wolk A. Dietary magnesium intake and risk of stroke: a
meta-analysis of prospective studies. Am J Clin Nutr. 2012;95(2):362-366.

690 54. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al.

691 Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter
692 clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke.
693 1993;24(1):35-41.

694 55. Rannikmäe K, Woodfield R, Anderson CS, Charidimou A, Chiewvit P,
695 Greenberg SM, et al. Reliability of intracerebral hemorrhage classification systems: A
696 systematic review. Int J Stroke. 2016;11(6):626-636.

- 697 56. GA Wells, B Shea, D O'Connell, J Peterson, V Welch, M Losos. The
 698 Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized
 699 Studies in Meta-Analysis. Appl Eng Agric. 2014;18(6): 727-734.
- 57. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in
 meta-analyses. BMJ. 2003;327(7414):557-560.
- 58. Greenland S, Longnecker MP. Methods for trend estimation from summarized

3	
4	
5	
6	
7	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	
20	
21	
22 23 24 25 26 27 28 29 30	
23	
24	
25	
26	
27	
28	
29	
20	
50 21	
31	
32	
33	
34 35	
35	
36	
36 37 38	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	
60	

1 2

dose-response data, with applications to meta-analysis. Am J Epidemiol. 703 1992;135(11):1301-1309. 704 705 59. Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose-response data. Stata J. 2006;6(6):40-57. 706 60. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for 707 publication bias. Biometrics. 1994;50(4):1088-1101. 708 61. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected 709 by a simple, graphical test. BMJ. 1997;315(7109):629-634. 710 711 62. Manson JE, Bassuk SS. Vitamin and mineral supplements: What clinicians need to know. JAMA. 2018;319(9):859-860. 712 63. Papanicolas I, Woskie LR, Jha AK. Health Care Spending in the United States and 713 Other High-Income Countries. JAMA. 2018;319(10):1024-1039. 714 64. Group DPP, Temprosa M. Long-term effects of lifestyle intervention or 715 metformin on diabetes development and microvascular complications over 15-year 716 717 follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015;3(11):866-875. 718 65. Maruthappu M, Sood H, Keogh B. Radically upgrading diabetes prevention in 719 England. Lancet Diabetes Endocrinol. 2015;3(5):312-313. 720 66. American Diabetes Association. Prevention or Delay of Type 2 Diabetes: 721 Standards of Medical Care in Diabetes-2018. Diabetes care. 2018;41(1):S51-S54. 722 723 67. Guerrero-Romero F, Simental-Mendía LE, Hernández-Ronquillo G, Rodriguez-Morán M. Oral magnesium supplementation improves glycaemic status in 724

33

Page 35 of 73

1

BMJ Open

2		
3 4 5	725	subjects with prediabetes and hypomagnesaemia: A double-blind placebo-controlled
6 7	726	randomized trial. Diabetes Metab. 2015;41(3):202-207.
8 9 10	727	68. Ramadass S, Basu S, Srinivasan AR. SERUM magnesium levels as an indicator
11 12 13	728	of status of Diabetes Mellitus type 2. Diabetes Metab Syndr. 2015;9(1):42-45.
14 15	729	69. Eimerl S, Schramm M. The Quantity of Calcium that Appears to Induce Neuronal
16 17 18	730	Death. J Neurochem. 2010;62(3):1223-1226.
19 20 21	731	70. Wm VDB, Algra A, Van KF, et al. Magnesium sulfate in aneurysmal
22 23	732	subarachnoid hemorrhage: a randomized controlled trial. Stroke.
24 25 26	733	2005;36(5):1011-1015.
27 28	734	71. Goyal N, Tsivgoulis G, Malhotra K, Houck AL, Khorchid YM, Pandhi A, et al.
29 30 31	735	Serum Magnesium Levels and Outcomes in Patients With Acute Spontaneous
32 33	736	Intracerebral Hemorrhage. J Am Heart Assoc. 2018;7(8): e008698.
34 35 36	737	72. Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in
37 38 39	738	epidemiologic studies. Am J ClinNutr. 1997;65(4):1220S-1228S; discussion
40 41	739	12298-12318.
42 43 44	740	73. Stone MS, Martyn L, Weaver CM. Potassium Intake, Bioavailability,
45 46	741	Hypertension, and Glucose Control. Nutrients. 2016;8(7): E444.
47 48 49	742	74. Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium
50 51	743	in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab.
52 53 54	744	2007;92(6): 2017-2029.
55 56 57	745	75. Larsson SC, Orsini N, Wolk A. Dietary calcium intake and risk of stroke: a
57 58 59 60	746	dose-response meta-analysis. Am J Clin Nutr.2013;97(5): 951-957.

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 35	
35 36	
30 37	
37 38	
30 39	
39 40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 2

76. Fang X, Wang K, Han D, He X, Wei J, Zhao L, et al. Dietary magnesium intake 747 and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: a 748 749 dose-response meta-analysis of prospective cohort studies. BMC Med. 2016;14(1):210. 750 77. Fang X, Han H, Li M, Liang C, Fan Z, Aaseth J, et al. Dose-Response 751 Relationship between Dietary Magnesium Intake and Risk of Type 2 Diabetes 752 Mellitus: A Systematic Review and Meta-Regression Analysis of Prospective Cohort 753 Studies. Nutrients. 2016;8(11):739. 754

Epidemiologic Relationships Between A1C and All-Cause Mortality During a Median 756 3.4-Year Follow-up of Glycemic Treatment in the ACCORD Trial. Diabetes care. 757 Z.C.Z.ONI

78. Riddle MC, Ambrosius WT, Brillon DJ, Buse JB, Byington RP, Cohen RM, et al.

758 2010;33(5):983-990.

759	Table 1 Subgroup Analysis relating to Magnesium Intake and Type 2Diabetes (T2D)
-----	---

1 760

3	T2D					
Group 5	No. of studies	RR (95% CI)	P_{ES}	$P_{heterogeneity}$	I ² (%)	P interaction
Fotal	26	0.78 (0.75-0.81)	< 0.001	0.021	35.6	NA
Participants region	26					0.905
8 9 North America	13	0.77 (0.73-0.82)	< 0.001	0.048	39.5	
10 ^{Europe}	0	NA	NA	NA	NA	
11Asia	9	0.78 (0.71-0.87)	< 0.001	0.165	21.7	
¹² Multiple nations 13	4	0.79 (0.71-0.88)	< 0.001	0.048	58.3	
Sgx ^a	34					0.284
15Male	9	0.81(0.76-0.87)	< 0.001	0.337	11.7	
16 _{Female}	17	0.77 (0.73-0.81)	< 0.001	0.055	37.5	
17 Both ^b 18	8	0.70 (0.57-0.85)	< 0.001	0.067	45.3	
$\mathbf{B}\mathbf{M}\mathbf{I} \ (\mathbf{kg}/\mathbf{m}^2)$	26					0.716
20 _{≥ 25}	12	0.75 (0.69-0.81)	< 0.001	0.135	31	
²¹ ₂₂ 5	11	0.78 (0.74-0.83)	< 0.001	0.022	45.4	
22 23Unknown	3	0.81 (0.76-0.86)	< 0.001	0.586	0	
26 Ilow-up duration (y)	26					0.150
$25 \ge 10$ $26 \ge 270$	12	0.80 (0.76-0.84)	< 0.001	0.047	38.8	
26 ≤√0	14	0.74 (0.68-0.80)	< 0.001	0.164	25.2	
27 Desetary assessment	26					0.281
29 _{FFO} /validated FFO	15	0.77 (0.73-0.82)	< 0.001	0.159	23.7	
30 31 SFFQ/validated SFFQ	9	0.79 (0.74-0.84)	< 0.001	0.017	52.5	
310 Contraction of	2	0.55 (0.36-0.83)	0.005	0.826	0	
Ragnesium intake type ^c	28					0.335
³⁴ Total magnesium intake ^d 35	15	0.79 (0.75-0.84)	< 0.001	0.035	39.8	
35 ^{°°°°°} 36 [°] Dietary magnesium intake	13	0.77 (0.72-0.82)	< 0.001	0.166	25.0	
3 77 tal energy adjustment	26	()				0.396
38 12s	17	0.79 (0.74-0.84)	< 0.001	0.027	40.4	0.020
39 40	9	0.76 (0.72-0.81)	< 0.001	0.225	21.6	
40' Difference between top and	2	5.70 (0.72 0.01)	0.001	0.220	21.0	
ABttom intake (mg/day) ^e	27					0.671
43 $44^{2} 140$	13	0.78 (0.74-0.83)	< 0.001	0.020	45.3	0.071
44 ⁻¹⁴⁰ 45 ¹ 40	13	0.77 (0.72-0.82)	< 0.001	0.209	43.3 21.0	
Eurrent CV events status ^f	26	0.77 (0.72 - 0.02)	× 0.001	0.207	£1.U	0.536
47 _{Yes} 48	13	0.79 (0.74-0.83)	< 0.001	0.049	37.9	0.330
48 Allinknown	13	0.77 (0.71-0.82)	< 0.001	0.049	37.9	
49Unknown Ffynarchalastaralamia status		0.77(0.71-0.82)	< 0.001	0.062	55.1	0.625
BQ ypercholesterolemia status ^g 51 _{Yes}	26	0.70 (0.72, 0.95)	< 0.001	0.021	57 5	0.023
52 52 53 ^{Unknown}	5	0.79 (0.73-0.85)			57.5 27.2	
	21	0.77 (0.73-0.82)	< 0.001	0.096	27.3	0.170
F4 mily diabetes history 55 _{Yes}	26	0.7(0.72,0.90)	< 0.001	0.021	41.0	0.168
	17	0.76 (0.72-0.80)	< 0.001	0.021	41.8	
56. 57 ^{Unknown} 7 58 Abbreviation: T2D, type 2	9	0.81 (0.76-0.87)	< 0.001	0.258	14.3	

768 Abbreviation: T2D, type 2 diabetes; BMI, body mass index; FFQ, food frequencyquestionnaire; SFFQ, semi-quantitative food

762 frequent questionnaire; RR, relative risk; ES, effect size; CV events, cardiovascular events.

⁶⁰
 ^a, Male and female of T2D outcome were treated as independent cohorts within eight studies;

764 ^b, Male and female participants were in independent cohorts;

- ^c, Two studies reported total magnesium and dietary magnesium intake outcome;
- ^d, Total magnesium intake (milligrams per day) included the total amount of magnesium from both food (diet) and supplement;
- ^e, Subtract the lowest category intake from the highest. Oba el al (M) was in < 140 group, while Oba el al (F) was in \geq 140 group;
- 769 f, Grouped by whether participants with or without CV events. CV events in this part include coronary heart disease, heart failure, stroke, atrial fibrillation, and self-reported heart disease etc;

tor peer terien ont

^g, Grouped by whether participants with or without hypercholesterolemia. Hypercholesterolemia in this part means cholesterol concentration $\geq 240 \text{ mg/dL}$.

Table 2. Subgroup Analyses Relating to Magnesium Intake and Total Stroke, Ischemic Stroke, Hemorrhagic stroke.

Total Stroke					Ischemic Stroke				Hemorrhagic stroke			
Group	No.of studies	RR (95% CI)	I ² (%)	Pinteration	No.of studies	RR (95% CI)	I ² (%)	Pinteration	No.of studies	RR (95% CI)	I ² (%)	Pinteration
Total	15	0.89 (0.83-0.94)	0.00	NA	12	0.88 (0.81-0.95)	16.90	NA	8	0.93 (0.82-1.06)	0.461	NA
Participants region	15			0.733	12			0.584	8			0.873
North America	6	0.87 (0.79-0.96)	0.00		5	0.85 (0.76-0.95)	0.00		4	0.90 (0.71-1.15)	0.00	
Europe	5	0.87 (0.77-0.98)	14.80		3	0.86 (0.78-0.95)	0.00		2	0.99 (0.79-1.25)	0.00	
Asia	4	0.90 (0.78-1.05)	32.80		4	0.93 (0.75-1.14)	45.50		2	0.89 (0.66-1.21)	53.40	
Multiple nations	0	NA	NA		0	NA	NA		0	NA	NA	
Sex ^a	18			0.031	14			0.134	10			0.425
Male	6	0.95(0.86-1.05)	0.00		4	0.99 (0.82-1.19)	52.80		4	0.97 (0.75-1.26)	35.50	
Female	7	0.91 (0.83-0.99)	0.00		6	0.89 (0.79-1.00)	0.00		6	0.88 (0.74-1.06)	0.00	
Both ^b	5	0.74 (0.64-0.85)	0.00		4	0.76 (0.65-0.88)	0.00		0	NA	NA	
Mean BMI (kg/m²)	15	(0.01 0.00)		0.606	12	(0.00 0.00)		0.631	8			0.418
≥25	8	0.89 (0.82-0.96)	0.00		6	0.88 (0.81-0.96)	0.00		5	0.97 (0.81-1.17)	0.00	
< 25	5	0.89 (0.78-1.01)	30.00		5	0.87 (0.73-1.03)	44.00		3	0.88 (0.69-1.12)	39.30	
Unknown	2	0.80 (0.63-1.02)	0.00		1	0.76 (0.57-1.07)	NA		0	NA	NA	
Follow-up duration (y)	15			0.798	12			0.811	8			0.808
≥12	11	0.88 (0.82-0.94)	5.30		10	0.87 (0.80-0.95)	19.10		7	0.93 (0.81-1.08)	7.70	
< 12	4	0.90 (0.77-1.05)	0.00		2	0.86 (0.62-1.20)	48.40		1	0.88 (0.57-1.36)	NA	
Dietary assessment	15	(0.578	12	(NA	8			NA
FFQ/validated FFQ	14	0.89 (0.83-0.95)	3.80		12	0.88 (0.81-0.95)	16.90		8	0.93 (0.82-1.06)	0.00	
SFFQ/validated SFFQ	0	NA	NA		0	NA	NA		0	NA	NA	
Other	1	0.81 (0.61-1.09)	0.00		0	NA	NA		0	NA	NA	
Magnesium intake type	15			0.865	12			0.831	8			0.831
Total magnesium intake ^c	8	0.89 (0.82-0.96)	0.00		6	0.87 (0.80-0.94)	0.00		5	0.94 (0.79-1.12)	0.00	
Dietary magnesium		0.88	0.44			0.89	35.40			0.91 (0.70-1.18)	39.40	
						38						

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

44 45 46

	intake Total energy	7 15	(0.81-0.96)		0.888	6 12	(0.77-1.03)		0.689	3 8			0.538
	adjustment												
	Yes No Difference between top	5 10	0.87 (0.77-0.99) 0.89 (0.83-0.96)	27.00 0.00		2 10	0.86 (0.78-0.94) 0.88 (0.79-0.99)	0.00 26.60		2 6	0.93 (0.82-1.06) 0.90 (0.76-1.07)	0.00 11.40	
	and bottom intake												0244
	(mg/day) ^d	15			0.107	12			0.180	8			0
			0.02										
0	\geq 180	7	0.83 (0.76-0.91)	0.00		5	0.83 (0.76-0.91)	0.00		6	1.07 (0.83-1.37)	0.00	
1 2	< 180	8	0.93 (0.86-1.00)	0.00		7	0.92 (0.81-1.03)	26.20		2	0.89 (0.76-1.03)	0.00	
3	Current CV events status ^e	15			0.074	12			0.393	8			NA
4 5	Yes	12	0.90 (0.85-0.96)	0.00		11	0.88 (0.81-0.96)	18.20		8	0.93 (0.82-1.06)	0.00	
6 7	Unknown	3	0.75 (0.63-0.90)	0.00		1	0.76 (0.57-1.01)	NA		0	NA	NA	
8	Hypercholesterolemia status ^f	15			0.480	12			0.565	8			0.651
0	Yes	7	0.91 (0.83-0.99)	0.00		6	0.90 (0.80-1.01)	6.90		5	0.90 (0.76-1.08)	0.00	
1 2	Unknown	8	0.86 (0.79-0.95)	13.10		6	0.86 (0.77-0.97)	32.40		3	0.94 (0.72-1.22)	40.30	
3 4	Current diabetes status ^g	15	. ,		0.039	12			0.159	8			NA
5 6	Yes	10	0.91 (0.82-0.97)	0.00		10	0.89 (0.82-0.97)	13.50		8	0.93 (0.82-1.06)	0.00	0.00
0 7	Unknown	5	0.75 (0.64-0.88)	0.00		2	0.72 (0.56-0.92)	0.00	06	0	NA	NA	NA
8		· 1	EEO 6 16		: GEEO	·	6 1.6			1			

Abbreviation: BMI, body mass index; FFQ, food frequency questionnaire; SFFQ, semi-quantitative food frequency questionnaire; CV events, cardiovascular events; RR, relative risk; NA, not available.

^a, several studies reported stroke outcome of male and female participants in different cohorts;

^b, male and female participants were in the same cohort;

 c, total magnesium intake (milligrams per day) included the total amount of magnesium from both food (diet) and supplements;

^d, subtract the lowest category intake from the highest;

e, grouped by whether participants with or without CV events. CV events in this part include coronary heart disease, heart failure, atrial fibrillation, and self-reported heart disease etc., stroke is not included;

f, grouped by whether participants with or without hypercholesterolemia. Hypercholesterolemia in this part means cholesterol concentration \geq 240 mg/dL;

^g, grouped by whether participants with or without diabetes.

775

776

777

778

779

780

781

Figure Legends

Hemorrhagic Stroke (D).

1 2

Figure 2. Forest Plots for Risk of Type 2 Diabetes (T2D) for Magnesium Intake (A)

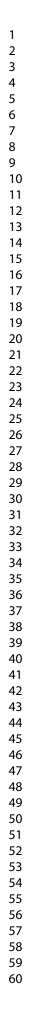
and for < 50 mg/day (B), $\geq 50 \text{ and} < 100 \text{ mg/day}$ (C), $\geq 100 \text{ and} < 150 \text{ mg/day}$ (D) and

Figure 3. Two-Stage Dose-Response Effect on the Relationships between Magnesium

Intake and Type 2 Diabetes (T2D) (A), Total Stroke (B), Ischemic Stroke (C) and

(l.

Figure 1. Flow Chart for Literature Search and Screening Process


 \geq 150 mg/day Magnesium increments (E).

3	
4	
5	
6	
5 6 7	
/	
8	
8 9 10	
11	
12	
13	
14	
12 13 14 15 16 17	
16	
17	
18 19	
19	
20	
21	
22	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	
24	
25	
25	
20	
27	
20	
29	
50 21	
31	
32	
33	
34	
35 36	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
55 56	
50 57	
58	
59	
60	

2 3 4	782	Supplementary material online:											
5 6	783	Table S1. PRISMA 2009 Checklist											
7 8	784	Table S2. MOOSE Checklist											
9 10 11	785	Table S3. The complete search terms for Pubmed											
12 13	786	Table S4. Summary of Baseline Characteristics of Included Studies											
14 15	787	Table S5. Methodological Quality Assessments Of Studies Included With											
16 17	788	Newcastle-Ottawa Scales											
18 19 20	789	Figure S1. Funnel Plots for Magnesium Intake and Type 2 Diabetes (A), Ischemic											
20 21 22	790	Stroke (B) and Hemorrhagic Stroke (C).											
23 24	791	Figure S2. Forest Plots for Risk of Total Stroke for Magnesium Intake (A) and for <											
25 26	792	50 mg/day (B), \geq 50 and < 100 mg/day (C), \geq 100 and <150 mg/day (D) and \geq 150											
27 28 29	793	mg/day Magnesium increments (E).											
30 31	794	Figure S3. Forest Plots for Risk of Ischemic Stroke for Magnesium Intake (A) and for											
32 33	795	< 50 mg/day (B), ≥ 50 and < 100 mg/day (C), ≥100 and <150 mg/day (D) and ≥ 150											
34 35	796	mg/day Magnesium increments (E).											
36 37 38	797	Figure S4. Forest Plots for Risk of Hemorrhagic Stroke for Magnesium Intake (A)											
39 40	798	and for $< 50 \text{ mg/day}$ (B), $\ge 50 \text{ and } < 100 \text{ mg/day}$ (C), $\ge 100 \text{ and } < 150 \text{ mg/day}$ (D) and											
41 42	799	\geq 150 mg/day Magnesium increments (E).											
43 44	800	Figure S5. Forest Plots for Risk of Subarachnoid Hemorrhage for Magnesium Intake											
45 46 47	801	(A) and for $< 50 \text{ mg/day}$ (B), $\geq 50 \text{ and } < 100 \text{ mg/day}$ (C), $\geq 100 \text{ and } < 150 \text{ mg/day}$ (D)											
48 49	802	and $\geq 150 \text{ mg/day Magnesium increments (E)}$											
50 51													
52 53	803	Figure S6. Forest Plots for Risk of Intracerebral Hemorrhage for Magnesium Intake (A) and for $(50 \text{ mg/deg}(D) \ge 50 \text{ mg/deg}(D) \ge 100 \text{ mg/deg}(D) \ge 100 \text{ mg/deg}(D)$											
54 55 56	804	(A) and for < 50 mg/day (B), \geq 50 and < 100 mg/day (C), \geq 100 and <150 mg/day (D)											
57 58	805	and $\geq 150 \text{ mg/day Magnesium increments (E)}$											
59 60	806	Figure S7. Meta-Regression of Relative Risk for Type 2 Diabetes According to Body											

BMJ Open

807	Mass Index (A, $P = 0.716$), Sex (B, $P = 0.284$), Participant Region (C, $P = 0.904$) and
808	Dietary Assessment (D, $P = 0.521$).
809	Figure S8. Meta-Regression of Relative Risk for Total Stroke According to Body
810	Mass Index (A, $P = 0.606$), Sex (B, $P = 0.112$), Participant region (C, $P = 0.891$) and
811	Dietary Assessment (D, $P = 0.891$).
812	Figure S9. Meta-Regression of Relative Risk for Ischemic Stroke According to Body
813	Mass Index (A, $P = 0.631$), Sex (B, $P = 0.134$), Participant Region (C, $P = 0.584$) and
814	Dietary Assessment (D, no regression <i>P</i> -value due to limited data).
815	Figure S10. Meta-Regression of Relative Risk for Hemorrhagic Stroke According to
816	Body Mass Index (A, $P = 0.418$), Sex (B, $P = 0.872$), Participant Region (C, $P = 0.418$), Sex (B, $P = 0.872$), Participant Region (C, $P = 0.418$), Sex (B, $P = 0.872$), Participant Region (C, $P = 0.418$), Sex (B, $P = 0.872$), Participant Region (C, $P = 0.418$), Sex (B, $P = 0.872$), Participant Region (C, $P = 0.418$), Sex (B, $P = 0.872$), Participant Region (C, $P = 0.418$), Sex (B, $P = 0.872$), Participant Region (C, $P = 0.418$), Sex (B, $P = 0.872$), Participant Region (C, $P = 0.418$), Sex (B, $P = 0.872$), Participant Region (C, $P = 0.418$), Sex (B, $P = 0.872$), Participant Region (C, $P = 0.418$), Sex (B, $P = 0.872$), Participant Region (C, $P = 0.$
817	0.872) and Dietary Assessment (D, no regression P-value due to limited data).
818	Figure S11. Cumulative Meta-Analysis Related to Magnesium Intake and Type 2
819	Diabetes (T2D)
820	Figure S12. Cumulative Meta-Analysis Related to Magnesium Intake and Total
821	Stroke
822	Figure S13. Cumulative Meta-Analysis Related to Magnesium Intake and Ischemic
823	Stroke
824	Figure S14. Cumulative Meta-Analysis Related to Magnesium Intake and
825	Hemorrhagic Stroke
826	Figure S15. Dose-Response Effect on the Relationships between Magnesium Intake
827	and Subarachnoid Hemorrhage (A) and Intracerebral Hemorrhage (B).
	 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

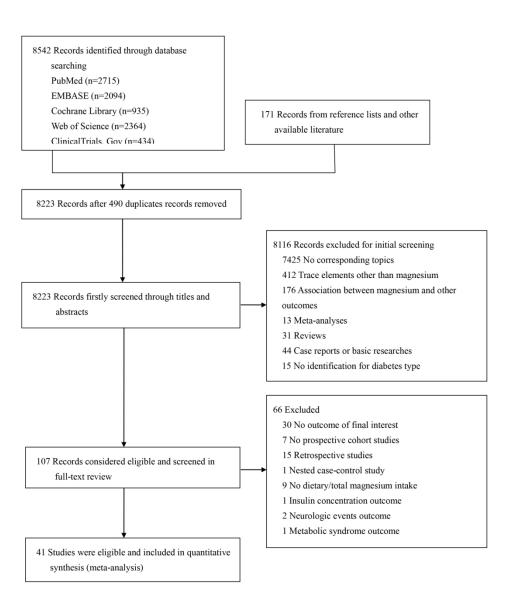


Figure 1. Flow Chart for Literature Search and Screening Process

BMJ Open

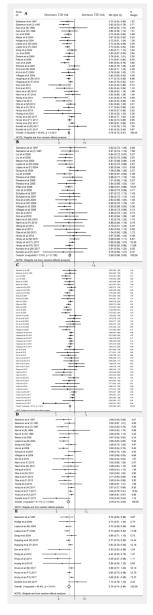


Figure 2. Forest Plots for Risk of Type 2 Diabetes (T2D) for Magnesium Intake (A) and for < 50 mg/day (B), \geq 50 and < 100 mg/day (C), \geq 100 and <150 mg/day (D) and \geq 150 mg/day Magnesium increments (E).

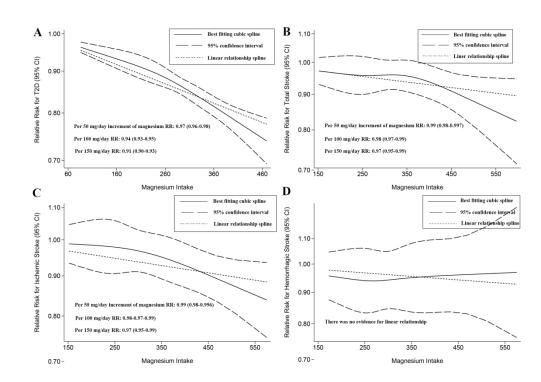


Figure 3. Two-Stage Dose-Response Effect on the Relationships betweenMagnesium Intake and Type 2 Diabetes (T2D) (A), Total Stroke (B), Ischemic Stroke (C) and Hemorrhagic Stroke (D).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table S1 PRISMA 2009 Checklist

Section/topic	#	Checklist item	Repoi on pa #	
TITLE				1
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1	
ABSTRACT				2-3
2 Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3	
INTRODUCTION				4-5
Rationale	3	Describe the rationale for the review in the context of what is already known.	4	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4-5	
METHODS				5-9
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5-6	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5-6	
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5-6	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-6	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6	
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6	
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for eachemeter analysis - http://bmjopen.bmj.com/site/about/guidelines.xhtml	6-10	·

Table S1 PRISMA 2009 Checklist

Page 1 of 2

Section/topic	#	Checklist item	Reported on page #		
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7		
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	8-9		
RESULTS			9-16		
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	9		
Study characteristics	tudy characteristics 18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) provide the citations.				
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	9-10		
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.			
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	10-16		
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	10-16		
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	10-16		
DISCUSSION			16-22		
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	16-22		
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	21-22		
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	22		
FUNDING	I		23		
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	23		

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. 42 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

Page 2 of 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table S2. MOOSE Checklist

MOOSE Checklist for Meta-analyses of Observational Studies

Item No	No Recommendation						
Reporting	of background should include	L					
1	Problem definition	4					
2	Hypothesis statement	4					
3	Description of study outcome(s)	5					
4	Type of exposure or intervention used	5					
5	Type of study designs used	5					
6	Study population	4-5					
Reporting	of search strategy should include	I					
7	Qualifications of searchers (eg, librarians and investigators)	6-7					
8	Search strategy, including time period included in the synthesis and key words	5-6					
9	Effort to include all available studies, including contact with authors	5-6					
10	Databases and registries searched	5-6					
11	Search software used, name and version, including special features used (eg, explosion)						
12	Use of hand searching (eg, reference lists of obtained articles)	5-6					
13	List of citations located and those excluded, including justification	6					
14	Method of addressing articles published in languages other than English	6					
15	Method of handling abstracts and unpublished studies	6					
16	Description of any contact with authors	6					
Reporting	of methods should include						
17	Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	7-8					
18	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	6-7					
19	Documentation of how data were classified and coded (eg, multiple raters, blinding and interrater reliability)	6-7					
20	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	7-9					
21	Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results	7-9					
22	Assessment of heterogeneity	7-9					
23	Description of statistical methods (eg, complete description of fixed	7-9					

	or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated							
24	Provision of appropriate tables and graphics	9						
Reporting of results should include								
25	Graphic summarizing individual study estimates and overall estimate							
26	Table giving descriptive information for each study included							
27	Results of sensitivity testing (eg, subgroup analysis)	14						
28	Indication of statistical uncertainty of findings	16						

	BMJ Open	
	or random effects models, justification of whether the chosen models	
	account for predictors of study results, dose-response models, or	
	cumulative meta-analysis) in sufficient detail to be replicated	
24	Provision of appropriate tables and graphics	9
Reporting	of results should include	
25	Graphic summarizing individual study estimates and overall estimate	10-14
		10-11,
26	Table giving descriptive information for each study included	Table S4
27	Results of sensitivity testing (eg, subgroup analysis)	14
28	Indication of statistical uncertainty of findings	16
		Reported
Item No	Recommendation	on Page
		No
Reporting	of discussion should include	
29	Quantitative assessment of bias (eg, publication bias)	11-14
30	Justification for exclusion (eg, exclusion of non-English language	10
00	citations)	
31	Assessment of quality of included studies	11, Table
		S 5
	of conclusions should include	
32	Consideration of alternative explanations for observed results	16-22
33	Generalization of the conclusions (ie, appropriate for the data	16, 23
34	presented and within the domain of the literature review) Guidelines for future research	17-20, 22
35	Disclosure of funding source	None
		None

Table S3. The complete search terms for Pubmed

A search example for Pubmed

The combined text and medical subject heading (MeSH) terms used were: "Magnesium" and "Magnesium Supplementation" "Diabetes Mellitus, Type 2", "Stroke", "Cerebrovascular Stroke", and "Cohort Studies". The complete search terms for PubMed included: (Magnesium [MeSH terms]) AND (Magnesium Supplementation [MeSH terms]) AND (Diabetes Mellitus, Type 2 [MeSH term] OR Diabetes Mellitus, Noninsulin-Dependent [Text Word] OR Diabetes Mellitus, Ketosis-Resistant [Text Word] OR Diabetes Mellitus, Non-Insulin-Dependent [Text Word] OR Non-Insulin-Dependent Diabetes Mellitus [Text Word] OR Diabetes Mellitus, Stable [Text Word] OR NIDDM [Text Word] OR Maturity-Onset Diabetes Mellitus [Text Word] OR Diabetes Mellitus, Slow-Onset [Text Word] OR Type 2 Diabetes [Text Word] OR Diabetes Mellitus, Adult-Onset [Text Word]) AND (Stroke [MeSH terms] OR Cerebrovascular Stroke [Text Word] OR Cerebrovascular Accident [Text Word] OR CVA (Cerebrovascular Accident) [Text Word] OR Vascular Accident, Brain [Text Word] OR Cerebrovascular Apoplexy [Text Word] OR Cerebral Stroke [Text Word] OR Stroke, Acute [Text Word] OR Cerebrovascular Accident, Acute [Text Word] OR Acute Cerebrovascular Accident [Text Word] OR Apoplexy, Cerebrovascular [Text Word]) AND (Cohort Studies [MeSH term] OR Cohort Study [Text Word] OR Studies, Cohort [Text Word] OR Study, Cohort [Text Word] OR Concurrent Studies [Text Word] OR Studies, Concurrent [Text Word] OR Closed Cohort Studies [Text Word] OR Closed Cohort Study [Text Word] OR Study, Closed Cohort [Text Word] OR Cohort Analysis [Text Word] OR Cohort Analysis [Text Word] OR Prospective Studies [Text Word] OR Prospective Study [Text Word] OR Studies, Prospective [Text Word])

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Table S4 Summary of Baseline Characteristics of Included Studies

Source	Nation	Period	Population	BMI	Dietary Assessment	Case Ascertainment	Case (Cohort size)	Magnesium intake (mg/day) highest VS. the lowest [Adjusted RR (95% CI)]
Salmeron 1997 ¹¹	USA	1986-1992	М; 40-75 у	25.5	validated SFFQ	self-reported questionnaire	523 T2D (42759)	461 VS. 262 (0.72 (0.54-0.96))
Salmeron 1997(2) ¹²	USA	1986-1992	F; 40-65 y	25.1	validated SFFQ	self-reported questionnaire	915 T2D (65173)	338 VS. 222 (0.62 (0.50-0.78))
Ascherio 1998 ¹³	USA	1986-1994	М; 40-75 у	NA	validated FFQ	self-reported questionnaire	328 stroke (43738)	425 VS. 243 (0.92 (0.58-1.46))
Iso 1999 ¹⁴	USA	1980-1994	F; 34-59 y	22.7	FFQ	self-reported questionnaire	690 stroke (85764)	381 VS. 211 (0.80 (0.63-1.01))
Kao 1999 ¹⁵	USA	NA	M/E. 45 64	27.2	FFQ	salf reported question point	black: 367 T2D (2622)	374 VS. 264 (0.95 (0.52-1.74))
	USA	NA	M/F; 45-64 y	21.2	ггү	self-reported questionnaire	white: 739 T2D (9506)	418 VS. 308 (0.80 (0.56-1.14))
Liu 2000 ¹⁶	USA	1976-1984	F; 38-63 y	24.8	validated FFQ	self-reported questionnaire	1879 T2D (75521)	342 VS. 248 (0.75 (0.63-0.89))
Meyer 2000 ¹⁷	USA	1986-1992	F; 55-69 y	26.8	validated FFQ	self-reported questionnaire	1141 T2D (35998)	362 VS. 220 (0,67 (0.55-0.82))
Hodge 2004 ^{18a}	multiple	1990-1994	M/F; 45-64 y	26.1	validated FFQ	self-reported questionnaire	365 T2D (31641)	500 increment per day
L 2004 ¹⁹	TIC A	M: 1986-1998	М; 40-75 у	25.4			1333 T2D (42872)	457 VS. 314 (0.72 (0.58-0.89))
Lopez 2004 ¹⁹	USA	W: 1980-1998	F; 30-35 y	24.3	validated SFFQ	self-reported questionnaire	4085 T2D (85060)	373 VS. 222 (0.73 (0.65-0.82))
Song 2004 ²⁰	USA	1993-2001	F; \geq 45 y ^c	26	SFFQ	self-reported questionnaire	918 T2D (38025)	433 VS. 255 (0.89 (0.71-1.10))
Song 2005 ²¹	USA	1993-2003	F; 39-89 y	26	FFQ	follow-up examination	368 stroke (39876)	433 VS. 255 (0.90 (0.65-1.26))
Liu 2006 ²²	USA	1996-2006	F; 47-63 y	25.8	validated SFFQ	self-reported questionnaire	1603 T2D (37183)	340 VS. 307 (0.80 (0.67-0.95))
Pereira 2006 ²³	USA	1986-1997	F; 56-66 y	26.7	validated FFQ	self-reported questionnaire	1418 T2D (28812)	334 VS. 281 (0.78(0.61-1.01))
Pittas 2006 ²⁴	USA	1980-2000	F; 30-55 y	24.1	validated SFFQ	self-reported questionnaire	4843 T2D (83779)	352 VS. 258 (0.74 (0.67-0.82))
Van 2006 ²⁵	multiple	1995-2003	F; 21-69 y	27.6	validated FFQ	self-reported questionnaire	1964 T2D (41186)	244 VS. 115 (0.65 (0.54-0.78))
Schulze2007 ²⁶	multiple	1994-2005	M/F; 35-65 y	26.1	validated SFFQ	self-reported questionnaire	844 T2D (25067)	377 VS. 268 (0.99 (0.78-1.26))
Larsson 2008 ²⁷	Sweden	1985-2004	М; 50-69 у	26.4	validated FFQ	follow-up examination	3370 stroke (26556)	575 VS. 382 (0.91 (0.77-1.07))
Weng 2008 ²⁸	Taipei	1989-2002	M/F;≥40 y	24.5	validated FFQ	Self-reported and cross-checked questionnaire	132 ischemic stroke (1772)	423 VS. 162 (0.69 (0.45-1.06))
K::: 2000 ²⁹	T	1002 1008	М; 40-69 у	23.6	FEO	- 16	634 T2D (25876)	331 VS. 245 (0.93 (0.71-1.22))
Kirii 2009 ²⁹	Japan	1993-1998	F; 40-69 y	23.5	FFQ	self-reported questionnaire	480 T2D (33919)	314 VS. 248 (0.76 (0.56-1.03))
Ohira 2009 ³⁰	USA	1987-2004	M/F; 45-64 y	27.4	validated FFQ	follow-up examination	577 ischemic stroke (14221)	362 VS. 152 (0.80 (0.75-1.13))
Villegas 2009 ³¹	China	2000-2006	F; 40-70 y	23.8	validated FFQ	follow-up examination	2273 T2D (64191)	318 VS. 214 (0.80 (0.68-0.93))
H : 2 010 ³²	1/1 1	1002 2007	М; 45-75 у	N T 4			4555 T2D (36256)	278 VS. 86 (0.77 (0.70-0.85))
Hopping 2010 ³²	multiple	1993-2007	F; 45-75 y	NA	validated FFQ	self-reported questionnaire	4032 T2D (39256)	300 VS. 93 (0.84 (0.76-0.93))
Kim 2010 ³³	USA	1985-2005	M/F; 18-30 y	24.5	validated DHQ	self-reported questionnaire	330 T2D (4497)	302 VS. 182 (0.53 (0.32-0.86))
Kirii 2010 ³⁴	Japan	NA	M/F; 40-65 y	22.9	validated FFQ	self-reported questionnaire	459 T2D (17592)	303 VS. 158 (0.64 (0.44-0.94))

44

1

	25			M; 40-65 y				634 T2D (25872)	348 VS. 213 (0.86 (0.63-1.16))
1 2	Nanri 2010 ³⁵	Japan	1990-1995	F; 40-65 y	NA	validated FFQ	self-reported questionnaire	480 T2D (33919)	333 VS. 213 (0.92 (0.66-1.28))
	Larsson 2011 ³⁶	Sweden	1998-2008	F; 49-83 y	25	validated FFQ	follow-up examination	1680 stroke (34670)	373 VS. 297 (1.02 (0.82-1.27))
4 5 6	Weng 2012 ³⁷	Taipei	1993-2002	M/F;≥30 y	24	validated FFQ	follow-up examination or self-reported questionnaire	141 T2D (1604)	406 VS. 212 (0.44 (0.25-0.75))
7	$7_{hone} 2012^{38}$	Ionon	1088 2006/	M; 40-79 y	22.7	validated FFQ	follow-up examination	634 stroke (23083)	294 VS. 173 (1.03 (0.79-1.35))
8	Zhang 2012 ³⁸	Japan	1988-2006/	F; 40-79 y	22.9	validated FFQ	ionow-up examination	620 stroke (35533)	274 VS. 175 (0.90 (0.69-1.16))
9 10	Hata 2013 ³⁹	Japan	1988-2009	M/F; 40-79 y	22.9	validated SFFQ	self-reported questionnaire	417 T2D (1999)	215 VS. 133 (0.63 (0.44-0.90))
11 12	Lin 2013 ⁴⁰	Taipei	1989-2002	M/F;≥18 y	23.3	validated FFQ	follow-up examination and self-reported questionnaire	123 stroke (2061)	378 VS. 210 (0.62 (0.40-0.97))
13	Oba 2013 ⁴¹	Ionon	1990-2000	M; 40-69 y	23.6	validated FFQ	self-reported questionnaire	690 T2D (27769)	349 VS. 232 (0.84 (0.69-1.05))
15		Japan	1990-2000	F; 40-69 y	23.5	validated FFQ	sen-reported questionnane	500 T2D (36864)	356 VS. 211 (0.69 (0.54-0.88))
	Sluijs 2013 ⁴²	Netherland	NA	M/F; 21-70 y	NA	FFQ	NA	361 ischemic stroke (36359)	435 VS. 253 (0.76 (0.57-1.01))
10	Hruby 2014 ⁴³	USA	1995-2001	M/F; 26-81 y	27	validated FFQ	self-reported questionnaire	179 T2D (2582)	395 VS. 235 (0.49 (0.27-0.88))
18 19	Sluijs 2014 ⁴⁴	Netherland	NA	M/F; 21-70 y	NA	FFQ	follow-up examination	631 stroke (36094)	597 VS. 190 (0.64 (0.44-0.94))
20	Adebamowo 2015 ⁴⁵	USA	1986-2010	M; 40-75 y	25.4	validated FFQ	self-reported questionnaire	1547 stroke (42669)	467 VS. 267 (0.89 (0.71-1.11))
21	Adebamowo 2015(2) ⁴⁶	USA	1976-2006	F; 30-55 y	26.4	validated FFQ	self-reported questionnaire	3237 stroke (86149)	411 VS. 233 (0.93 (0.79-1.08))
22	Adebaillow0 2015(2)	USA	1989-2011	F; 25-42 y	25.7	valuated 11Q	sen-reported questionnaire	543 stroke (94715)	411 V 3. 233 (0.93 (0.79-1.08))
24 25	Bain 2015 ⁴⁷	Britain	2002-2008	M; 40-75 y	26.5	7-day diary recall	follow-up examination	364 stroke (2000)	456 VS. 266 (0.81 (0.53-1.22))
25	Balli 2015	Dinain	2002-2008	F; 40-75 y	26.2	7-day diary recail	Tonow-up examination	511 stroke (2445)	374 VS. 456 (0.82 (0.54-1.24))
26 27	Huang 2015 ⁴⁸	Taipei	2000-2008	M/F; ≥65 y	NA	24 h dietary recall and SFFQ	follow-up examination	231 T2D (1400)	398 VS. 103 (0.59 (0.26-1.33))
28			1984-2012	F; 30-55 y	24.8			7620 T2D (69176)	390 VS. 229 (0.80 (0.73-0.88))
	Hruby 2017 ⁴⁹	USA	1991-2013	F; 25-42 y	24.6	validated SFFQ	self-reported questionnaire	6080 T2D (91471)	424 VS. 249 (0.89 (0.81-0.99))
30			1986-2012	M; mean 53.5 y	24.8			3430 T2D (42096)	469 VS. 280 (0.88 (0.77-1.00))
31 32	Kokubo 2017 ^{50b}	Iomon	1990-2009	M; 40-69 y	23.6	FFQ	follow up examination	2576 stroke (39505)	348 VS. 213 (1.07 (0.86-1.33))
33	KOKUUU 2017	Japan	1993-2010	F; 40-69 y	23.6	УTT	follow-up examination	1846 stroke (45788)	333 VS. 213 (0.88 (0.67-1.14))
34	Konishi 2017 ⁵¹	Ionon	1002 2002	M; ≥35 y	22.6	validated EEO	calf reported questions -:	266 T2D (5885)	469 VS. 310 (1.13 (0.76-1.70))
35 36		Japan	1992-2002	F;≥35 y	22.1	validated FFQ	self-reported questionnaire	172 T2D (7640)	432 VS. 285 (0.50 (0.30-0.84))

37 Abbreviations: FFQ, food-frequency questionnaire; SFFQ, semi-quantitative food-frequency questionnaire; BMI, body mass index; T2D, type 2 diabetes; NA, not available.

³⁸ ^a, different ethnicities of participants are in multiple nations cohort;
³⁹ ^b, the dose of magnesium intake which is not available in this study is retrieved from the same cohort reported in former publication;
⁴⁰

41 ^c the range of enrolled participants age is not mentioned.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

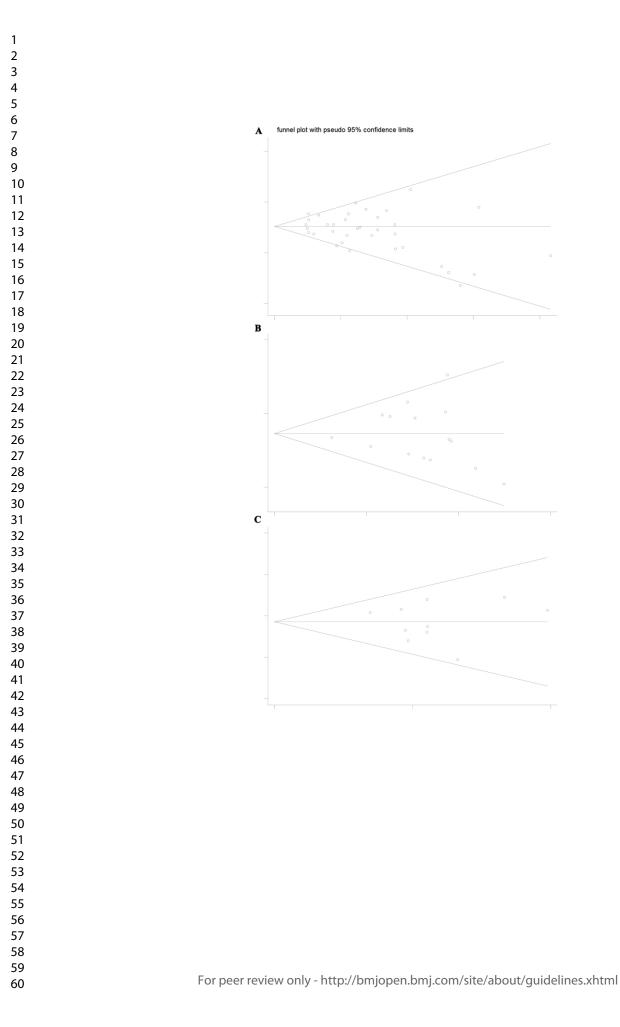

44 45 46

 Table S5 Methodological Quality Assessments Of Included Studies With Newcastle-Ottwa Scales

	Study			Selection				Outcome		Total
		Exposed cohort	Nonexposed cohort	Ascertainment of exposure	Outcome of interest	Comparability	Assessment of outcome	Length of follow-up	Adequacy of follow-up	score
1997	Salmeron et al, ¹¹	*	*	*	*	**	*	*	*	9
1997	Salmeron et al (2) , ¹²	*	*	*	*	**	*	*	*	9
1998	Ascherio et al, ¹³	*	*	*	*	**	*	*	*	9
1999	Iso et al, ¹⁴	*	*	*	*	**	*	*	*	9
1999	Kao et al, ¹⁵	*	*	*	*	**	*	*	*	9
2000	Liu et al, ¹⁶	*	*	*	*	**	*	*	*	9
2000	Meyer et al, ¹⁷	*	*	*	*	**	*	*	*	9
2004	Hodge et al, ¹⁸	*	*	*	*	*	*	*		7
2004	Lopez et al, ¹⁹	*	*	*	*	**	*	*	*	9
2004	Song et al, ²⁰	*	*	*	*	**	*	*	*	9
2005	Song et al, ²¹	*	*	*	*	**	*	*	*	9
2006	Liu et al, ²²	*	*	*	*	**	*	*	*	9
2006	Pereira et al, ²³	*	*	*	*	**	*	*	*	9
2006	Pittas et al, ²⁴	*	*	*	*	**	*	*	*	9
2006	Van et al, ²⁵	*	*	*	*	**	*	*	*	9
2007	Schulze et al, ²⁶	*	*	*	*	**	*	*	*	9
2008	Larsson et al, ²⁷	*	*	*	*	**	*	*	*	9
2008	Weng et al, ²⁸	*	*	*	*	**	*	*	*	9
2009	Kirii et al, ²⁹	*	*	*	*	**	*	*	*	9
2009	Ohira et al, ³⁰	*	*	*	*	**	*	*	*	9
2009	Villegas et al, ³¹	*	*	*	*	**	*	*	*	9
2010	Hopping et al, ³²	*	*	*	*	**	*	*	*	9
2010	Kim et al, ³³	*	*	*		**	*	*	*	8
2010	Kirii et al, ³⁴	*	*	*	*	**	*	*	*	9
2010	Nanri et al, ³⁵	*	*	*	*	**	*	*	*	9
2011	Larsson et al, ³⁶	*	*	*	*	**	*	*	*	9
2012	Weng et al, ³⁷	*	*	*	*	**	*	*		8
2012	Zhang et al, ³⁸	*	*	*	*	** n/site/about/guidelin	*	*	*	9

	2013	Hata et al, ³⁹	*	*	*	*	**	*	*	*	9
1	2013	Lin et al, ⁴⁰	*	*	*	*	**	*	*	*	9
2 3	2013	Oba et al, ⁴¹	*	*	*	*	**	*	*	*	9
4	2013	Sluijs et al, ⁴²	*	*	*	*	**		*	*	8
5 6	2014	Hruby et al, ⁴³	*	*	*	*	**	*	*	*	9
6 7	2014	Sluijs et al, ⁴⁴	*	*	*	*	**	*	*	*	9
8	2015	Adebamowo et al, ⁴⁵	*	*	*	*	**	*	*	*	9
9	2015	Adebamowo et al (2), ⁴⁶	*	*	*	*	**	*	*	*	9
10 11	2015	Bain et al, ⁴⁷	*	*	*	*	**	*	*	*	9
12	2015	Huang et al, ⁴⁸	*	*	*		**	*	*	*	8
13	2017	Hruby et al, ⁴⁹	*	*	*	*	**	*	*	*	9
14	2017	Kokubo et al, ⁵⁰	*	*	*	*	**	*	*	*	9
15 16	2017	Konishi et al, ⁵¹	*	*	*	*	*	*	*	*	9
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33						*					

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

study A Decreases total stroke Increases total stroke see pers of weget

1	
2	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Ascherio et al 1998 Iso et al 1999			
lass at al 1000		0.92 (0.58, 1.46)	1.68
		0.80 (0.63, 1.01)	6.42
Song et al 2005		0.90 (0.65, 1.26)	3.27
Larsson et al 2008	· · · · ·	0.91 (0.77, 1.87)	13.22
Wang et al 2008		0.69 (0.45, 1.06)	1.95
Ohina et al 2009 Lamaon et al 2011		0.80 (0.75, 1.13) 1.82 (0.82, 1.27)	8.51
Lanson et al 2011 Zhang et al (M) 2012		1.02 (0.82, 1.27) 1.03 (0.79, 1.35)	7.48
Zhang et al (F) 2012 Zhang et al (F) 2012		0.90 (0.69, 1.16)	4.95
Lin et al 2013 -		0.62 (0.40, 0.97)	1.82
Shija et al 2013		0.76 (0.57, 1.01)	4.37
Shuje et al 2014		0.64 (0.44, 0.94)	2.48
Adebarnowo et al 2015		0.89 (0.71, 1.11)	7.16
Adebarnowo et al (2) 2015		0.93 (0.79, 1.08)	14.63
Bain et al (M) 2015		0.81 (0.53, 1.22)	2.05
Bein et al (F) 2015		0.82 (0.54, 1.24)	2.07
Kokubo et al (M) 2017	÷+•	1.07 (0.86, 1.33)	7.53
Kokubo et al (F) 2017		0.88 (0.67, 1.14)	5.05
Overall (I-squared = 0.0%, p = 0.5	⁵²⁹⁾ \diamondsuit	0.89 (0.83, 0.94)	100.00
NOTE: Weights are from random e	effects analysis		
В	.5 1 1.5		
ha at of 1999		0.89-(0.70, 1.13)	11.47
long et al 2005		4.81-0164, 1.131	6.05
amound at 2011		142-042-110	19.47
2hang et al (95/2012		0.79-0.40, 1.09	8.08
Chang still (P) 2312		1.24-(0.04, 1.58)	10.83
Dain et al (7) 2015		0.72 (0.56, 1.54)	5.05
Tolube et al (M) 2017		0.98 (0.94, 1.14)	12.95
Tolube et al (7) 2017		0.00-(0.00, 1.10)	15.00
Cremit (I-squared + 32.1%, p + 0.172)	\diamond	0.00(0.07,1.00)	123.00
	η		
NOTE: Weight are from random effects analy	**		
C ¹ / ₅	1 1		
Ascherio et al 1998 Ascherio et al 1998		1.23 (0.87, 1.74)	1.56
Ascherio et al 1998		0.98 (0.66, 1.45) 0.86 (0.68, 1.09)	1.21
Iso et al 1999 Song et al 2005		0.86 (0.68, 1.09)	3.38
Larsson et al 2008		0.90 (0.65, 1.24) 1.04 (0.94, 1.16)	1.80
Larsson et al 2008		1.07 (0.83, 1.37)	2.99
Ohira et al 2009		1.08 (0.85, 1.37)	3.30
Larsson et al 2011		0.95 (0.80, 1.14)	5.99
Larsson et al 2011		0.97 (0.80, 1.17)	5.20
Zhang et al (M) 2012		0.96 (0.74, 1.25)	2.73
Zhang et al (M) 2012		0.94 (0.72, 1.23)	2.62
Zhang et al (F) 2012 Zhang et al (F) 2012		0.93 (0.71, 1.21) 1.12 (0.87, 1.44)	2.64 2.96
Zhang et al (F) 2012 Zhang et al (E) 2012		0.90(0.69, 1.44)	2.90
Zhang et al (F) 2012 Lin et al 2013		0.65 (0.42, 1.00)	1.00
Adebamowo et al 2015		1.01 (0.85, 1.21)	6.03
Adebamowo et al 2015		0.93 (0.76, 1.12)	5.00
Adebamowo et al (2) 2015		0.92 (0.80, 1.05)	10.16
Bain et al (M) 2015 Bain et al (E) 2015		0.87 (0.81, 1.25) 0.73 (0.50, 1.08)	1.48
Bain et al (F) 2015 Kokubo et al (M) 2017		0.96 (0.81, 1.15)	6.12
Kokubo et al (M) 2017		0.96 (0.79, 1.17)	4.87
		0.90 (0.73, 1.11)	4.28
Kokubo et al (F) 2017			3.64
Kokubo et al (F) 2017 Kokubo et al (F) 2017		0.92(0.73, 1.15)	
Kokubo et al (F) 2017 Kokubo et al (F) 2017 Overall (I-squared = 0.0%, p		0.92 (0.73, 1.15) 0.97 (0.92, 1.01)	100.00
Kokubo et al (F) 2017 Kokubo et al (F) 2017		0.92(0.73, 1.15)	100.00
Kokubo et al (F) 2017 Kokubo et al (F) 2017 Overall (I-squared = 0.0%, p NOTE: Weights are from ran	dom effects analysis	0.92 (0.73, 1.15) 0.97 (0.92, 1.01)	100.00
Kokubo et al (F) 2017 Kokubo et al (F) 2017 Overall (I-equared = 0.0%, p NOTE: Weights are from ran	dom effects analysis	0.92 (0.73, 1.15) 0.97 (0.92, 1.01) - 1.15 (0.76, 1.73)	
Kokubo et al (F) 2017 Kokubo et al (F) 2017 Overall ()-equared = 0.0%, p NOTE: Weights are from ran D Ascherio et al 1999 Iso et al 1999	dom effects analysis	0.92 (0.73, 1.15) 0.97 (0.92, 1.01) - 1.15 (0.76, 1.73) 0.91 (0.72, 1.14)	3.00 9.61
Kokubo et al (F) 2017 Kokubo et al (F) 2017 Overall (-lequard = 0.0%, p NOTE: Weights are from rain D Aschrio et al 1996 Song et al 2005	dom effects analysis	0.92 (0.73, 1.15) 0.97 (0.92, 1.01) - 1.15 (0.76, 1.73) 0.91 (0.72, 1.14) 0.81 (0.58, 1.13)	3.00 9.61 4.56
Kokubo et al (F) 2017 Kokubo et al (F) 2017 Overal (-equared = 0.0%, p NOTE: Weights are from ran D Ascherio et al 1996 Song et al 1999 Song et al 2005 Lassan et al 2008	dom effects analysis	0.92 (0.73, 1.15) 0.97 (0.92, 1.01) - 1.15 (0.76, 1.73) 0.91 (0.72, 1.14) 0.91 (0.72, 1.14) 0.91 (0.81, 1.15)	3.00 9.61 4.56 6.02
Kokubo et al (F) 2017 Kokubo et al (F) 2017 Overall (-equared - 0.0%, p NOTE: Weights are from ran D Authenis et al 1990 Song et al 2009 Lansen et al 2009 Weng et al 2008	dom effects analysis	0.92 (0.73, 1.15) 0.97 (0.92, 1.01) - 1.15 (0.76, 1.73) 0.91 (0.72, 1.14) 0.91 (0.56, 1.13) 1.11 (0.81, 1.53) 0.91 (0.57, 1.66)	3.00 9.61 4.56 6.02 2.29
Kolubo et al (F)2017 Kolubo et al (F)2017 Overal (Halipiaged = 0.0%, p NOTE: Weights are from rare D Anthree of 1990 Song et al 1990 Song et al 2000 Wing et al 2000 Wing et al 2000	dom effects analysis	0.92 (0.73, 1.15) 0.97 (0.92, 1.01) - 1.15 (0.76, 1.73) 0.91 (0.72, 1.14) 0.91 (0.72, 1.14) 0.91 (0.75, 1.13) 1.11 (0.81, 1.13) 0.91 (0.77, 1.46) 0.96 (0.72, 1.25)	3.00 9.61 4.56 6.02 2.29 7.02
Kolubo et al (F) 2017 Kolubo et al (F) 2017 Overall ()-equared = 0.0%, p NOTE: Veights are from ran D Activitio et al 1990 Song et al 2005 Liessen et al 2008 Wing et al 2008 Oras at al 2009 Liessen et al 2011	dom effects analysis	0.92 (0.73, 1.15) 0.97 (0.92, 1.01) - 1.15 (0.76, 1.73) 0.91 (0.72, 1.14) 0.81 (0.56, 1.13) 1.11 (0.81, 1.13) 0.91 (0.57, 1.46) 0.94 (0.57, 1.45) 1.02 (0.82, 1.25) 1.02 (0.82, 1.27)	3.00 9.61 4.56 6.02 2.29 7.02 12.61
Kotubo et al (F) 2017 Overal ()-equared = 0.0%, p NOTE: Weights are from rare D Astherio et al 1998 Song et al 2008 Censo et al 2008 Chris et al 2008 Chris et al 2009 Chris et al 2001 Chris et al 2001	dom effects analysis	0.92 (0.73, 1.15) 0.97 (0.92, 1.01) - 115 (0.76, 1.73) 0.91 (0.72, 1.14) 0.91 (0.72, 1.14) 0.91 (0.57, 1.46) 0.98 (0.77, 1.46) 0.98 (0.77, 1.25) 1.02 (0.82, 1.27) 1.02 (0.82, 1.27)	3.00 9.61 4.56 6.02 2.29 7.02 13.61 7.07
Kolubo et al (F) 2017 Kolabo et al (F) 2017 Cverall (I-equared = 0.0%, p NOTE: Weights are from ran D Anthenio et al 1980 Song et al 2005 Lanson et al 2008 Lanson et al 2008 Lanson et al 2001 Lanson et al 2001 Lanson et al 2001	dom effects analysis	0.92 (0.73, 1.15) 0.97 (0.92, 1.01) - 1.16 (0.76, 1.73) 0.91 (0.72, 1.54) 0.91 (0.72, 1.54) 0.91 (0.72, 1.54) 0.91 (0.57, 1.65) 0.96 (0.73, 1.25) 1.02 (0.82, 1.27) 1.03 (0.78, 1.35) 0.88 (0.72, 1.55)	3.00 9.61 4.56 6.02 2.29 7.02 10.61 7.07 9.93
Kokubo et al (F) 2017 Overall (I-lequared - 0.0%), p. NOTE: Weights are from only, p. NOTE: Weights are from only of Song et al 2008 Overa et al 2008 Overa et al 2008 Overa et al 2001 Caress et al 2011 Caress et al 2011 Caress et al 2011 Caress et al 2014 Overa et al 2014	dom effects analysis	0.92 (0.73, 1.15) 0.97 (0.92, 1.01) - 115 (0.76, 1.73) 0.91 (0.72, 1.14) 0.91 (0.72, 1.14) 0.91 (0.72, 1.14) 0.91 (0.72, 1.14) 0.91 (0.72, 1.25) 0.91 (0.72, 1.25) 1.22 (0.82, 1.27) 1.03 (0.72, 1.35) 0.98 (0.72, 1.15) 0.98 (0.72, 1.15)	3.00 9.61 4.56 6.02 2.29 7.02 10.61 7.07 9.93 12.35
Kolubo et al (*) (2017) Overstill (*) (squared + 0.0 %); NOTE: Weights are from ran D Anthreis et al 1919 Song et al 1930 Lanson et al 2020 Weng et al 2020 Weng et al 2021 Supper al 2021	dom effects analysis	0.82 (0.73, 1.15) 0.87 (0.92, 1.01) 0.11 (0.72, 1.04) 0.11 (0.72, 1.04) 0.11 (0.72, 1.04) 0.11 (0.72, 1.04) 0.11 (0.81, 1.03) 1.11 (0.81, 1.03) 0.01 (0.73, 1.25) 1.12 (0.02, 1.27) 1.12 (0.02, 1.27) 0.06 (0.02, 1.27) 0.06 (0.00, 1.20) 0.07 (0.00, 1.00)	3.00 9.61 4.56 6.02 2.29 7.02 10.61 7.07 9.93 12.35 3.59
Kolubo et al (*) 2017 Overall (*) equared = 0.0 %, p. Not? Weight are from real to 0.%, p. D Overall (*) equared = 0.0 %, p. Sol of al 100 Sol of al 100 Sol of al 100 Sol of al 100 United and the sol of al 100 Sol of al 100 United and the sol of al 100 Sol of al 100 United and the sol of al 100 Sol of al 100 United and the sol of al 100 Sol of al 100 United and the sol of al 100 Sol of al 100 Sol of al 100 Sol of al 100 United and the sol of 100 Sol of al 100 Sol of al 100 Sol of al 100 United and the sol of 100 Sol of al 100 Sol of al 100 Sol of al 100 S	dom effects analysis	0.92 (0.72, 1.15) 0.97 (0.92, 1.01) 0.97 (0.92, 1.01) 0.97 (0.92, 1.01) 0.97 (0.92, 1.94) 0.97 (0.95, 1.13) 1.17 (0.81, 1.33) 1.17 (0.81, 1.33) 1.17 (0.81, 1.33) 1.17 (0.81, 1.33) 1.17 (0.81, 1.33) 1.17 (0.91, 1.35) 0.98 (0.92, 1.27) 1.20 (0.72, 1.16) 0.98 (0.96, 1.29) 0.73 (0.96, 1.39) 0.99 (0.95, 1.17) 0.90 (0.95, 1.17)	3.00 9.61 4.56 6.02 2.29 7.02 10.61 7.07 9.93 12.35 3.59 3.56
Kolubo et al (*) (2017) Overstill (*) (squared + 0.0 %); NOTE: Weights are from ran D Anthreis et al 1919 Song et al 1930 Lanson et al 2020 Weng et al 2020 Weng et al 2021 Supper al 2021	dom effects analysis	0.92 (0.72, 1.15) 0.97 (0.92, 1.01) 0.97 (0.92, 1.01) 0.97 (0.92, 1.01) 0.97 (0.92, 1.94) 0.97 (0.95, 1.13) 1.17 (0.81, 1.33) 1.17 (0.81, 1.33) 1.17 (0.81, 1.33) 1.17 (0.81, 1.33) 1.17 (0.81, 1.33) 1.17 (0.91, 1.35) 0.98 (0.92, 1.27) 1.20 (0.72, 1.16) 0.98 (0.96, 1.29) 0.73 (0.96, 1.39) 0.99 (0.95, 1.17) 0.90 (0.95, 1.17)	3.00 9.61 4.56 6.02 2.29 7.02 10.61 7.07 9.93 12.35 3.59 3.56
Katuba et al (*) 2017 Overall (*) equared = 0.05 k; p. Overall (*) equared = 0.05 k; p. Overall (*) equared = 0.05 k; p. D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D	dom effects analysis	0.927 (0.72, 1.15) 0.977 (0.92, 1.61) 0.97 (0.92, 1.61) 0.91 (0.72, 1.14) 0.91 (0.72, 1.15) 0.96 (0.72, 1.15) 0.96 (0.92, 1.15) 0.96 (0.95, 1.17) 0.96 (0.95, 1.17) 0.96 (0.95, 1.17)	3.00 9.61 4.56 6.02 2.29 7.02 13.61 7.07 9.93 12.35 3.59 3.56 3.53
Kaluba de al (*) 2017 Overall (*) equares = 0.0%; (; Statuers et al (*) D	dom effects analysis	 B 522 (0.72, 1.15) B 77 (0.02, 1.01) B 77 (0.02, 1.01) D 71 (0.02, 1.01) 	3.00 9.61 4.56 6.02 2.29 7.02 9.03 12.35 3.59 3.56 3.53 10.68
Katuba et al (*) 2017 Overall (*) equared = 0.05 k; p. DOTE: Weighter are flow res D		0.922 (0.73, 1:15) 0.977 (0.92, 1:51) 0.977 (0.92, 1:51) 0.91 (0.72, 1:14) 0.91 (0.72, 1:14) 0.91 (0.72, 1:14) 0.91 (0.72, 1:13) 0.91 (0.71, 1:35) 0.96 (0.72, 1:25) 1.92 (0.82, 1:27) 1.93 (0.96, 1:36) 0.96 (0.55, 1:77) 0.96 (0.55, 1:77) 0.96 (0.55, 1:79) 0.96 (0.25, 1:14) 0.96 (0.25	3.00 9.61 4.56 6.02 2.29 7.02 10.61 7.07 9.93 12.35 3.59 3.56 3.53 10.68 7.18
Kaluba et al (*) 2017 Overall (*) equared = 0.01%, p. DOTE: Weight are from at D D Solar at 1990 Solar at 1900 Solar at 2000 Water at 2000 Water at 2000 Water at 2000 Solar at 2010 Solar at 2017 Solar at 2010 Solar 3000 Solar 3000 <td></td> <td> B 522 (0.72, 1.15) B 77 (0.02, 1.01) B 77 (0.02, 1.01) D 71 (0.02, 1.01) </td> <td>3.00 9.61 4.56 6.02 2.29 7.02 9.03 12.35 3.59 3.56 3.53 10.68</td>		 B 522 (0.72, 1.15) B 77 (0.02, 1.01) B 77 (0.02, 1.01) D 71 (0.02, 1.01) 	3.00 9.61 4.56 6.02 2.29 7.02 9.03 12.35 3.59 3.56 3.53 10.68
Kaluba et al (*) 2017 Overall (*) elegantet - 0.014 Overall (*) elegantet - 0.014 Overall (*) elegantet - 0.014 D D <		0.922 (0.73, 1:15) 0.977 (0.92, 1:51) 0.977 (0.92, 1:51) 0.91 (0.72, 1:14) 0.91 (0.72, 1:14) 0.91 (0.72, 1:14) 0.91 (0.72, 1:13) 0.91 (0.71, 1:35) 0.96 (0.72, 1:25) 1.92 (0.82, 1:27) 1.93 (0.96, 1:36) 0.96 (0.55, 1:77) 0.96 (0.55, 1:77) 0.96 (0.55, 1:79) 0.96 (0.25, 1:14) 0.96 (0.25	3.00 9.61 4.56 6.02 2.29 7.02 10.61 7.07 9.93 12.35 3.59 3.56 3.53 10.68 7.18
Kaluba et al (*) 2017 Overall (*) eliquited = 0.5%, p. Overall (*) eliquited = 0.5%, p. Overall (*) eliquited = 0.5%, p. D D D D D Overall (*) eliquited = 0.5%, p. Status of al 100 Status of al 100 Status of al 100 Users of al 2008 Overall al 2008 Overall al 2008 Users of al 2008 Overall al 2008 Status of al 2018 Status of al 2010 Status of al 2018 Status of al 2018 Status of al 2015 Status of al 2010 Overall 3.48, add 1.0270 Status of al 2017 Status or al 2017 Status or al 2017 Status or al 2017 Status or al 2017 Status or al 2017 Status or al 2017 Status or al 2017 Status or al 2017		0.92 (0.74, 1.95) 0.92 (0.72, 1.94) 0.01 (0.92, 1.94) 0.01 (0.93, 1.93) 0.01 (0.05, 1.93) 0.01 (0.05, 1.93) 0.01 (0.05, 1.93) 0.01 (0.05, 1.93) 0.01 (0.05, 1.93) 0.01 (0.05, 1.93) 1.07 (0.06, 1.93) 1.07 (0.06, 1.93) 1.07 (0.06, 1.93) 0.01 (0.05, 1.93) 1.07 (0.06, 1	3.00 9.61 4.56 5.02 2.29 7.02 12.35 3.59 3.55 3.53 13.68 7.18 190.00
Kaluba et al (*) 2017 Overall (*) elegantet - 0.014 Overall (*) elegantet - 0.014 Overall (*) elegantet - 0.014 D D <		8 92 (87, 7, 15) 8 92 (87, 7, 15) 9 92 (80, 7, 15) 9 10 (80, 7, 15) 9 11 (80, 7, 15) 9 11 (80, 7, 15) 9 11 (80, 7, 15) 11 (18, 11, 13) 9 11 (18, 7, 13) 12 (18, 7, 13) 13 (18, 13) 14 (19, 13) 14 (19, 13) 14 (19, 13) 15 (19, 13) 15 (19, 13) 16 (19, 13) 17 (19, 13) 18 (19, 13) 18 (19, 13) 19 (3.00 9.61 4.56 6.02 2.29 7.02 10.61 7.07 9.93 12.35 3.59 3.56 3.53 10.68 7.18
Kaluba et al (#) (2017) Kaluba et al (#) (2014) Martine et al (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)		8 82 (87, 1.15) 8 87 (86, 1.16) 9 87 (86, 1.16) 9 87 (86, 1.13) 9 11 (9 8, 1.13) 9 11 (9 8, 1.13) 9 11 (9 8, 1.13) 9 11 (9 8, 1.13) 11 (9 8, 1.13) 9 88 (9 7, 1.29) 12 (9 8, 12, 12) 12 (9 8, 12, 12) 13 (9 8, 12, 12) 13 (9 8, 12, 12) 14 (9 8, 12, 12) 15 (9 8, 12) 16 (9 8, 12) 17 (9 8, 13) 17 (9 8, 13) 17 (9 8, 13) 18 (9 8, 14) 18 (14) 18 (14) 1	3.00 9.61 4.56 5.02 2.29 7.02 12.61 7.07 9.93 3.56 3.55 3.55 3.55 3.55 3.55 3.55 3.5
Robubb et al (2) (2) (2) Robubb et al (2) (2) (2) NOTE: Weight are how row of the set of the		8 (2) (2), 1 (1) 9 (2) (2), 1 (1) 9 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	3.00 9.61 4.56 5.02 2.29 7.02 9.33 12.35 3.56 3.56 3.56 3.56 7.18 190.00 2.28 8.82 4.38
Kaluba et al (*) 2017 Charlos et al (*) 2017 Daras et al (*) 2017 Daras et al (*) 2017 Charlos et al (*) 2017 Charlos et al (*) 2017 Star et al (*) 2017		8 (2) (2) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	3.00 9.61 4.56 6.02 2.29 7.02 13.81 13.50 3.56 3.53 13.68 130.00 2.25 4.38 12.25 4.38 17.74
Natures or at (P) (2017) Natures of (P) (2017) <td></td> <td>8 (2) (2) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2</td> <td>3.00 9.61 4.56 6.02 2.29 9.30 12.35 3.59 12.35 3.59 12.05 7.18 100.00 2.25 8.42 4.38 4.32 4.38 4.32 4.38 4.34 4.34 4.35 4.35 4.35 4.35 4.35 4.35</td>		8 (2) (2) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	3.00 9.61 4.56 6.02 2.29 9.30 12.35 3.59 12.35 3.59 12.05 7.18 100.00 2.25 8.42 4.38 4.32 4.38 4.32 4.38 4.34 4.34 4.35 4.35 4.35 4.35 4.35 4.35
Kaluba et al (*) 2017 Charles (*) al (*) 2017 Charles (*) al (*) 2017 Charles (*) al (*) 2017 Dame		응 전 (2) 7, 110 6 20 (2) 7, 110 6 20 (2) 7, 120 6 210 (2) 7, 120 7 20 7 20 7 20 7 20 7 20 7 20 7 20 7	3.00 9.61 4.56 6.02 2.29 7.02 12.81 7.07 9.93 3.56 3.59 3.56 3.59 19.00 7.18 190.00 2.25 8.82 4.38 17.74 19.00 2.25 8.82 4.38 17.74 11.74
Natures or at (P) 2017 Natures of at (P) 2018 Natures of at (P) 2018 Natures of at (P) D D D D D D D D D D D D D D D		8 (2) (2) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	3.00 9.61 4.56 6.02 2.29 9.33 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 4.38 10.000 2.28 8.82 4.38 17.74 2.45
Nature of a (P) (2017) NOTE: Works of a (P) (2017) NOTE: Works of a (P) (2017) NOTE: Works of a (P) (2017) Note at (P)		응 문 (2) 것, 1 (3)	3.00 9.61 4.56 6.02 2.29 7.02 13.81 7.07 9.93 12.35 3.59 3.56 3.53 13.08 7.18 130.00 7.18 13.18 10.00 7.18 13.18 10.00 7.18 13.18 10.00 7.18 13.18 10.00 7.18 13.18 10.00 7.18 13.18 10.00 7.18 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.0
Kaluba da al 87 (2017) Martin al 86 (2017) Mart 100 (2018) Mart 100		응 명은 (27, 11) 6 명 (27, 11) 6 15(8)(7, 12) 6 15(8)(7, 12) 6 15(8)(7, 12) 6 15(8)(7, 12) 6 15(8)(7, 12) 6 15(8)(7, 12) 110(8)(7, 12)	3.00 9.61 4.56 6.02 2.29 9.23 9.93 3.56 3.53 3.59 3.59 3.56 3.53 3.56 7.18 10.00 7.18
Nature of a (P) (2017) NOTE: Works of a (P) (2017) NOTE: Works of a (P) (2017) NOTE: Works of a (P) (2017) Note at (P)		응 문 (2) 것, 1 (3)	3.00 9.61 4.56 6.02 2.29 7.02 13.81 7.07 9.93 12.35 3.59 3.56 3.53 13.08 7.18 130.00 7.18 13.18 10.00 7.18 13.18 10.00 7.18 13.18 10.00 7.18 13.18 10.00 7.18 13.18 10.00 7.18 13.18 10.00 7.18 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.0
Kaluba da al 87 (2017) Martin al 86 (2017) Mart 100 (2018) Mart 100		응 명은 (27, 11) 6 명 (27, 11) 6 15(8)(7, 12) 6 15(8)(7, 12) 6 15(8)(7, 12) 6 15(8)(7, 12) 6 15(8)(7, 12) 6 15(8)(7, 12) 110(8)(7, 12)	3.00 9.61 4.56 6.02 2.29 9.23 9.93 3.56 3.53 3.59 3.59 3.56 3.53 3.56 7.18 10.00 7.18
Kaluba da al 97,2017 Albaba da al 87,2017 Albaba da al 87,2017 Albaba da al 87,2017 Albaba da al 87,2017 Barl da albaba da albababa da albaba da albababa da albaba		8 30 (2014, 11) 5 40 (2014, 11) 5 40 (2014, 12) 5 40 (3.00 9.61 4.56 6.02 2.29 7.02 13.81 7.07 9.93 3.56 3.55 3.56 3.55 3.56 3.55 3.56 3.56
Kathada et al (*) (2017) Marchar et al (*) (2013) Marchar et al (*) (2014) NOTE: Wange et al (2014) Marchar et al (*) (2014)		응 원 (2) 전, 11 (3)	3.00 9.61 4.56 0.02 2.29 7.02 13.81 13.35 3.59 3.53 13.86 3.53 13.86 3.53 13.86 8.82 4.38 4.38 10.000 2.25 8.82 4.38 11.43 2.45 11.45 11
Kaluba et al (P) 2017 Charlos et al (P) 2017 </td <td></td> <td>8 8 (2) (2), 1 (1) 9 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)</td> <td>3.00 9.61 4.56 6.02 2.29 7.02 12.35 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 4.38 4.38 4.38 4.38 4.38 4.38 4.38 4.38</td>		8 8 (2) (2), 1 (1) 9 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	3.00 9.61 4.56 6.02 2.29 7.02 12.35 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 4.38 4.38 4.38 4.38 4.38 4.38 4.38 4.38
Kathada et al (*) (2017) Marther at al (*) (2017) Marther at al (*) (2017) NOTE: Wanging area (wonn (en)) Damber at al (*) (2017) Marther at al (*) (2017) Wang, et al (2017) Wa		응합(世代,16) 응합(世代,17) (15)((17)(17)(17)(17)(17)(17)(17)(17)(17)(1	3.00 9.61 4.56 002 2.29 7.02 9.93 12.35 12.35 13.59 3.56 3.56 3.55 13.69 3.56 3.55 13.69 3.56 12.08 7.16 130.00 2.28 8.62 12.45 8.62 2.45 8.62 12.45 1
Kaluba et al (P) 2017 Charlos et al (P) 2017 </td <td></td> <td>8 8 (2) (2), 1 (1) 9 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)</td> <td>3.00 9.61 4.56 6.02 2.29 7.02 12.35 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 4.38 4.38 4.38 4.38 4.38 4.38 4.38 4.38</td>		8 8 (2) (2), 1 (1) 9 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	3.00 9.61 4.56 6.02 2.29 7.02 12.35 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 3.53 3.56 4.38 4.38 4.38 4.38 4.38 4.38 4.38 4.38

	BMJ Open
1 2 3 4 5	
6 7	more A Decreases ischemic stroke Increases ischemic stroke stroke wegen op wegen
8 9	Nord at 1999 - 4.71 x21 x 1.00) 8.34 Nord at 2019 - 4.71 x21 x 1.00) 8.34 Part at 2015 - 4.71 x21 x 1.00) 8.64
10	Leases at 42007
11 12	Jong at 47 (372)
13	Addiserved of 2013 400 (201, 201) 8.0 Addiserved of 2010
14 15	0x000188 arg/str20 10/10/10 k to 1 6.00 0x0018 arg/str20 10/10/10 k to 1 6.00 0x0018 arg/str20 10/10/10 k to 1 6.00 0x018 arg/str20 10/10/10 k to 1 6.00
16	No.64 (100) - 4.66 (40, 101) 8.20 No.64 (2010) - 4.66 (40, 101) 8.30
17 18	Bing of COBD I Cliptan Litio 1.0 Lanse of ADD1 I I I/I I/I Lanse of ADD1 I I/I I/I I/I
19	Darge of (3:00) 1 1.00 (20, 100) 1.00 Made of (3:00) 0 0.00 (20, 100) 1.00 Made of (3:00) 0 0.00 (20, 100) 1.00 Made of (3:00) 0 0.00 (20, 100) 1.00
20 21	Overall (*) paper4 = 103, p = 1,020 1.06 (5.01, 1.00) 106.00 MOTE: Despite as the values where 1.06 (5.01, 1.00) 106.00
22	C 1 500 (0.06, 1.20) 2.46 too at 210 (0.00)
23 24	Lumison et al 2008 102 (0.91, 102 262 Lamason et al 2008 085 (244, 102) 17.53 Ohne et al 2009 108 (264, 102) 4.51 Lamason et al 2011 0.01 (272, 113) 5.58
25	Joneg et (a) (502) 1 100 (27, 150) 170 Joneg et (a) (502) 1 140 / 74, 160) 143 Joneg et (a) (512) 0 000 (27, 157) 143
26 27	Janeg et al (1) 2012 0.01 (2) (2) (2) (2) Adeberoo et al 2015 0.00 (2) (3) (3) (2) Adaberoo et al 2015 0.00 (2) (3) (3) (3) Adaberoo et al 2015 0.00 (2) (3) (3) (3)
28	Kealuse of all (M) 2017 0.87 (27), 533 Kealuse of all (M) 2017 0.80 (27), 1.30 4.64 Kealuse of all (M) 2017 1.00 (27), 1.30 3.02 Kealuse of all (M) 2017 0.80 (27), 1.30 3.02 Kealuse of all (M) 2017 0.80 (27), 1.30 3.02 Kealuse of all (M) 2017 0.80 (27), 1.30 1.00
29 30	NOTE: Weights are from cardion effects analysis D
31	Ward and With P -
32 33	Oracia of 2000 4.87 e.07.40 3.07 Oracia of 2001 4.86 e.07.20 4.96 e.07.20 Lansano of 2011 4.96 e.07.7.20 4.96
34	Damage and 2010 - 1,56 all, 56 5,1 Antennon et al 2010 - 1,56 all, 56 5,2 Kolon et al (2017) - 1,56 all, 1,40 6,20
35 36	Kolada ar 2012 L121 (23, 14) 6.0 Oward Squarest Kol, 1, 1-1327) L88 (6.87, 16) 106.00 VIDE (might are for match effect area).
37	
38 39	Single-2000 400.057.1/h 400 Lease 42.000 400.057.1/h 400
40	Magazine Read. (1) Sp Characterize Kall, (1) Sp Characterize Kall, (1) Sp Amazonize Kall, (1) Sp
41 42	Additional of additional (3):17 I & But M, 10() U & Count of additional (3):17:10:10 V Model (Model
43	
44 45	
46 47	
48	
49 50	
51	
52 53	
54	
55 56	
57	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

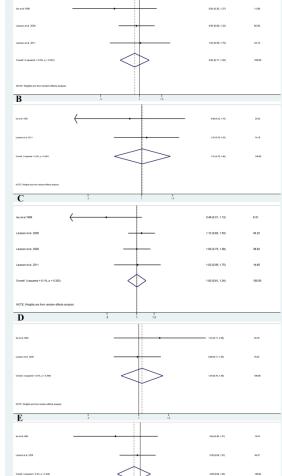
- 57
- 58

1	
2	

For peer review only - http://bmjopen.bmj.com/site/abou	t/guidelines.xhtml
---	--------------------

Staty A Decreases hemorrhagic stroke	Increases hemorrha	IGIC STROKE	Weight
loo et al 1999		0.82 (0.53, 1.26)	9.02
Song at al 2005		1.07 (0.49, 2.31)	2.81
Larazon et al 2008 -		1.04 (0.79, 1.30)	22.94
Lareace, et al 2011		0.88 (0.57, 1.36)	1.95
Zhang et al (M) 2012		0.59 (0.35, 0.99)	6.26
Zhang et al (F) 2012 -		1.22 (0.79, 1.88)	9.00
Adabamovs et al 2015		1.25 (0.65, 2.40)	3.97
Adebarrows et al (2) 2015	•++	0.84 (0.58, 1.22)	12.24
Kokubo et al (M) 2017		1.08 (0.75, 1.54)	13.07
Kokubo et al (F) 2017		0.74 (0.51, 1.09)	11.73
Overall (I-equared = 0.0%, p = 0.401)	\diamond	0.93 (0.82, 1.06)	100.00
	M		
NOTE: Weights are from random effects analysis			
B	1 1.5		
ino et al 1999		0.80 (0.51, 1.25)	9.82
Bong et al 2006	•	1.20 (0.66, 2.57)	3.40
Lanson et al 2011		0.88 (0.56, 1.41)	0.25
Zhang et al (M) 2012		1.15 (2.65, 2.04)	6.19
Zhang et al (F) 2012	· · · · · · · · · · · · · · · · · · ·	1.12 (571, 1.77)	9.45
Kelubo at al (M) 2017	-+•	1.09 (0.05, 1.39)	32.81
Koluba et al (F) 2017	+	0.93 (0.72, 1.21)	29.27
Overall (required + 0.0%, p = 0.841)	\wedge	1.00 (0.87, 1.15)	100.00
	\checkmark	1.vv (8017, 1.15)	-00.00
NOTE Weights are from random effects analysis			
C .			
	1 6		
iso et al 1999		0.71 (0.43, 1.20) 0.93 (0.41, 2.08)	4.09
Song et al 2005		0.93 (0.41, 2.08) 1.19 (0.91, 1.54)	1.82
Lanson et al 2006 -	1	1.24 (0.77, 2.00)	4.60
Larsson et al 2011	•	0.88 (0.57, 1.37)	5.26
Zhang et al (M) 2012	- 1	0.54 (0.33, 0.88)	4.40
Zhang et al (M) 2012		0.66 (0.40, 1.08)	4.31
Zhang et al (F) 2012	+	1.39 (0.87, 2.20)	4.81
Zhang et al (F) 2012 - Zhang et al (F) 2012 -		1.22 (0.78, 1.91) 1.22 (0.79, 1.88)	5.09
Adebamowo et al 2015		1.22 (0.79, 1.88)	3.92
Adebamowo et al 2015		1.01 (0.56, 1.81)	3.26
Adebamowo et al (2) 2015	•	0.88 (0.65, 1.21)	8.55
Kakubo et al (M) 2017		0.93 (0.70, 1.25)	9.31
Kakubo et al (M) 2017	<u> </u>	1.01 (0.74, 1.39)	8.40
Kokubo et al (F) 2017 Kokubo et al (F) 2017		0.76 (0.56, 1.03) 0.83 (0.59, 1.16)	8.76 7.66
Cverall (I-squared = 26.4%, p = 0.152)		0.83 (0.59, 1.16) 0.95 (0.85, 1.07)	7.66
	T	(2000, 100 ²)	
NOTE: Weights are from random effects analysis D 5			
D .5	1 1.5		
Instal 1000	· · · · ·	1.11 (0.74, 1.66)	18.75
Seng et al 2005		0.85 (0.36, 1.92)	5.55
Lanson et al 2008	· · · · · · · · · · · · · · · · · · ·	1.31 (0.71, 2.41)	9.49
Drang et al (N) 2012	++-	0.59 (0.35, 1.09)	10.05
Adabamovo et al 2015		0.78 (0.41, 1.49)	6.50
Kalubo et al (M) 2017		1.08 (0.75, 1.54)	23.90
Kolubo et al (F) 2017		0.74 (0.51, 1.09)	21.00
Overall (Feguared = 11.0%, p = 0.342)	\rightarrow	0.91 (0.75, 1.11)	100.00
	1		
NOTE. Weights are from random effects analysis			
E			
	1		
lo d d 1000		0.82 (0.53, 1.26)	57.76
long and 2005		101000.000	1.12
		(1 p. m. 1 P)	
anaor et al 2008		1.04 (0.75. 1.26)	-11.20
Addatuses of a 2018		120.000.240	7.78
		0.84 (0.98, 1.22)	24.01
Addamove et al (2) 2915			100.80
Addamented # (2):295	\wedge	0.00 (0.00, 1.15)	
	\diamond	0.00 (0.00, 1.11)	100.80
	\diamond	0.00 (0.00), 1.11()	10.40

1
2
3
4
5
6
7
8
9
-
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26


[™] A Decreases subarachnoid hemorrh	age	Increases subarachn	oid hemorrhage	% Weght
No et al 1666			0.82 (0.54, 1.57)	37.72
Lansson et al 2008		•	1.28 (0.77, 2.12)	41.88
Lanuor et al 2011			0.68 (0.33, 1.42)	20.60
$\label{eq:constraint} Constant (is spanned = 3.08, p = 0.254)$	\triangleleft	>	0.99 (0.71, 1.39)	100:00
NOTE: Weights are from random effects analysis				
B		15		
	•		13(04),136	
Lansace at al 2011	•		640 (630, 121)	41.00
0+# Humor-ER.(+1356)	\bigcirc	>	671.040.108	100.08
NTI tega sete edu eta espe				
Ino et al 1999	•		0.86 (0.50, 1.49)	25.31
Lanson et al 2006			1.37 (0.84, 2.25)	26.06
Lanson et al 2016			1.64 (1.01, 2.64)	28.75
Lanson et al 2011			0.68 (0.33, 1.42)	17.86
Overall () requered = 48.8%, p = 0.131)	<	>	1.13 (0.78, 1.85)	100.00
NOTE: Weights are from random effects analysis				
	1	13		
be et el 1989			0.88(0.98, 1.89)	48.07
Lansace of al 2008			1.80(115,2.80)	51.83
Constit. () equated + $47.7\%, y + 3.002$)	<		1.38 (0.76, 2.80)	135.00
50% Vingets an ton meters offices and yes				
L ,				
ha et al 1999			882(859,157)	47.30
Lamon et al 2009		•	1.20 (877,2.12)	52.62
Overall (-squared +3.0%, y +3.5%)	\triangleleft	>	189(176.139)	185.00
NOTE: Vitagets are from random effects analysis				

Increases intracerebral hemorrhage

Weint

say A

Decreases intracerebral hemorrhage

1 2	
2	
3 4	
- -	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18 10	
19 20	
20 21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 34	
34 35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47 49	
48 49	
49 50	
50	
52	
53	
51	

53	
54	
55	
56	
57	
58	

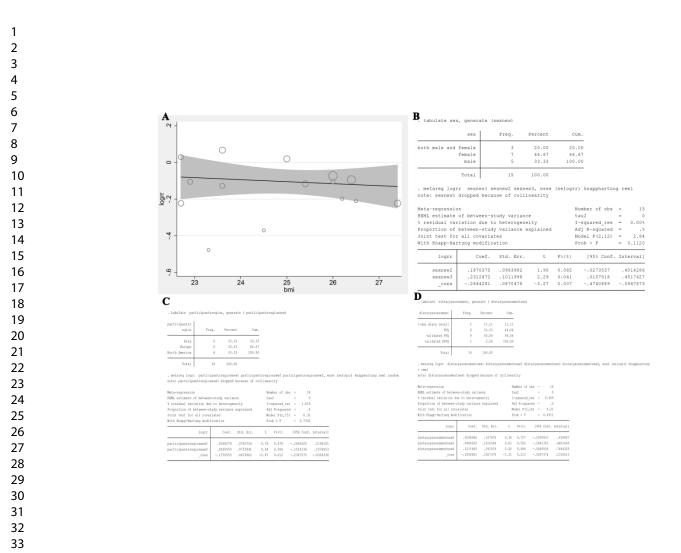
FC	<u>۱</u>
25	,
60)
ou	,

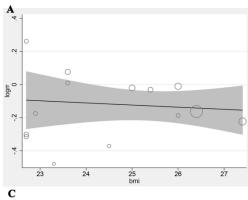
-6 -4 -3- -5	8	0	0	0		0	0 0	0	
® 22		° 24		bmi		26	0		:
C . tabulate participarticipantsregi on Asia	Freq.	Percent 37.14	Cun. 37.14	egionnew)					
Multiple nations North America Total	5 17 35 rticipantsregio	100.00	51.43 100.00	onnew2 pa	rticipantsre	gionnew3, ws	se (selogrr) k	napphartu	ng :
Note: participantsr Meta-regression REML estimate of be % residual variatio Proportion of betwe Joint test for all variate for all variations of the second second second second second second second second second second second second second	tween-study var n due to hetero en-study varian covariates	lance geneity	Nu ta I- Ad	mber of o u2 squared_r	= .00486 es = 39.22 ed = -30.80	8 8 8			
participantsregionn participantsregionn		7 .0731865 7 .0599158	t 0.04 -0.34 -4.68	<pre>P> t 0.970 0.739 0.000</pre>	[95% Conf. 1463193 1422102 3433012	.1518327 .1018788 1351786			

Ľ	5					
	tabulate	sex,	generate	(sexnew)	

sex	Freq.	Percent	Cum.
both male and female	10	28.57	28.57
female	17	48.57	77.14
male	8	22.86	100.00
Total	35	100.00	

. metareg logrr sexnew1 sexnew2 sexnew3, wsse (selogrr) knapphartung rem1 note: sexnew3 dropped because of collinearity


leta-regressio					Hanser or one	-
EML estimate					tau2	= .004
residual var					I-squared_res	= 36.5
roportion of	between-stud	y variance e	xplained		Adj R-squared	= -26.0
oint test for	all covaria	tes			Model F(2,32)	= 1
With Knapp-Har	tung modific	ation			Prob > F	= 0.23
lith Knapp-Har logrr	tung modific Coef.	ation Std. Err.	t	P> t	Prob > F [95% Conf.	
			t -1.53	P> t 0.135		
logrr	Coef.	Std. Err.			[95% Conf.	Interv


D. tabulate dietaryassessment, generate (dietar

Com.	Percent	Freq.	dietaryassessment
2.86	2.86	1	24h dietary recall and SFFQ
14.25	11.43	4	FFQ
17.14	2.86	1	SFFQ
20.00	2.86	1	validated DHQ
68.57	48.57	17	validated FFQ
100.00	31.43	11	validated SFFQ
	100.00	35	Total

. metareg logr distaryarsessmentoewl distaryarsessmentoewl distaryarsessmentsewi distarya

Meta-regression REML estimate of between % residual variation du Proportion of between-s Joint test for all cova With Knapp-Hartung modi	e to heterog tudy varianc riates	eneity	t. I h	umber of au2 -squared_ ij R-squa odel F(5, rob > F	= .0 res = 3 red = -1 29) =	3 0425 8.66 4.42 0.8 .521	0 3 3 6
logrr	Coef.	Std. Err.	t	p t	(95% 0	loaf.	Interval]
dietarvassessmentnew1	,1072455	.5310922	0.20	0.841	-,978	96	1.19345
dietaryassessmentnew2	.4672073	.296568	1.58	0.126	13934	23	1.073757
dietaryassessmentnew3	.5183445	.311752	1.66	0.107	11925	99	1.15594
dietaryassessmentnew5	.3650754	.2813784	1.30	0.205	21040	181	.9405589
dietaryassessmentnew6	.3944872	.2812621	1.40	0.171	18075	83	.9697328
000	-,6348783	.279225	+2.27	0.031	-1.2055	58	0637997

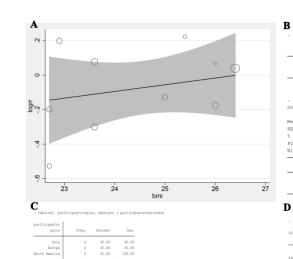
participantsr egion	Freq.	Percent	Cun.			
Asia	6	40.00	40.00			
Europe	3	20.00	60.00			
forth America	6	40.00	100.00			
Total	15	100.00				
metareg logrr	participant	sregionnev1 p	articipants	regionnew2 part	icip	antsregios
ote: participant	sregionnew3	dropped beca	use of coll	inearity		
Meta-regression				Number of obs		15
EML estimate of	between-stu	dy variance		tau2	-	.00114
				I-squared res		21,76%

REML estimate of between % residual variation due Proportion of between-at Joint test for all covar With Enamo-Bartung modif	to heteroge udy variance lates	neity	I- Ad Mo	u2 squared_res j R-squared del F(2,12) ob > F	-	.00114 21.76% .% 0.56	
logrr	Coef.	Std. Err.	t	P> t	[95]	Conf.	[nterval]
participantsregionnewl	.1089103	.1083661	1.01	0.335	12	1992	.3450197
participantsregionnew2	.0117202	.0911749	0.13	0.900	18	59328	.2103732
_cons	1629514	.0653255	-2.49	0.028	305	2835	0206191

 ${f B}$ tabulate sex, generate (sexnew)

sex	Freq.	Percent	Cum.
both male and female	4	26.67	26.67
female	7	46.67	73.33
male	4	26.67	100.00
Total	15	100.00	

. metareg logrr sexnew1 sexnew2 sexnew3, wsse (selogrr) knapphartung rem1 note: sexnew3 dropped because of collinearity


	of between-st				tau2		.00478
	between-study				I-squared_res Adj R-squared	-	1.79
oint test for	r all covariat	tes			Model F(2,12)	-	2.3
ith Knapp-Har	rtung modifica	ation			Prob > F	-	0.133
ith Knapp-Har logrr	coef.	std. Err.	t	P> t	Prob > F [95% Conf.		
			t -2.17			In	terval
logrr	Coef.	Std. Err.		₽> t	[95% Conf.	In	0.133 terval 000433 130929

D_{tabulate dietar}

dietaryassess ment	Freq.	Percent	Cum.
FFQ	6	40.00	40.00
validated FFQ	9	60.00	100.00
Total	15	100.00	

. metareg logrr dietaryassessmentnewl dietaryassessmentnew note: dietaryassessmentnewl dropped because of collinearity

Meta-regression REML estimate of betwees % residual variation due Proportion of between-st With Knapp-Hartung modif	t. I	umber of au2 -squared_ ij R-squa	res =		2		
logrr	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
dietaryassessmentnew2 cons	.0410573	.0897444	0.46	0.655	152		.2349382

tau2

Std. Er

I-squared_re Adj R-square Model F(2,7) Prob > F

PIt [95% Conf

-0.06 0.954 0.41 0.694 -0.69 0.514

. tabulate se:	<, generate	(sexnew)	
sex	Freq.	Percent	Cum.
female	6	60.00	60.00
male	4	40.00	100.00
Total	10	100.00	

. metareg logrr sexnewl sexnew2, wsse (selogrr) knapphartung reml note: sexnew2 dropped because of collinearity

REML estimate of between-study variance tau2 = % residual variation due to heterogeneity I-squared res = 0.4	% residual variation due to heterogeneity Proportion of between-study variance explained With Knapp-Hartung modification							
		-						

TOĞIT	0001.	JUGA. BII.	, in the second se	12101	Lage court.	Incervary
sexnewl	1120692	.1333867	-0.84	0.425	4196595	.1955211
_cons	0110753	.0978042	-0.11	0.913	2366123	.2144617

D

dietarya	 					
diocarya	1.0					

Cum.	Percent	Freq.	ment
40.00	40.00	4	FFQ
100.00	60.00	6	validated FFQ
	100.00	10	Total

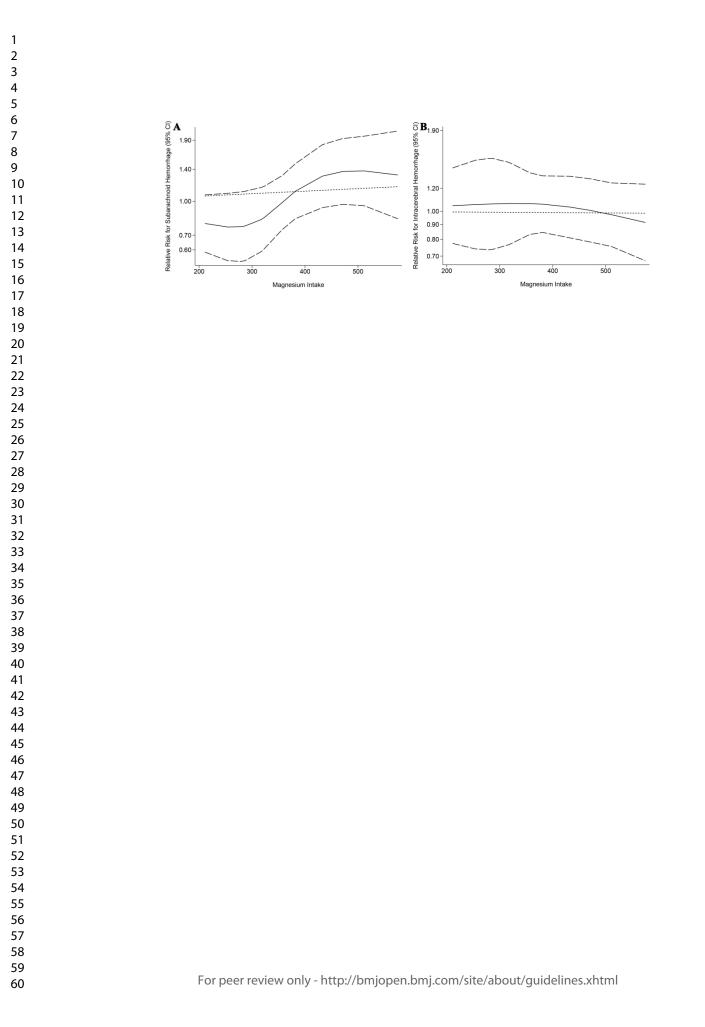
. metareg logrr note: dietaryas: dietaryassessmenting mause of collinearity

Meta-regression REML estimate of between % residual variation due Proportion of between-st With Knapp-Hartung modi:	e to heteroge tudy variance	eneity	t I	amber of au2 -squared_ ij R-squa	res =	1 .00109 6.09	7
logrr	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
dietaryassessmentnew2	.0642559	.1426454	0.45	0.664	264	6851	.3931968

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

study	year		RR (95% CI)
Salmeron et al	1997		0.72 (0.54, 0.96)
Salmeron et al (2)	1997	—	0.66 (0.55, 0.78)
Kao et al (B)	1999	→	0.67 (0.57, 0.80)
(w) (Kao et al	1999	—	0.70 (0.60, 0.81)
iu et al	2000	→	0.72 (0.64, 0.81)
/leyer et al	2000	→	0.71 (0.64, 0.78)
lodge et al	2004	→	0.71 (0.64, 0.78)
opez et al (M)	2004	→	0.71 (0.65, 0.78)
opez et al (F)	2004	—	0.72 (0.67, 0.77)
Song et al	2004	→	0.73 (0.68, 0.78)
iu et al	2006	→	0.74 (0.70, 0.79)
Pereira et al	2006	→	0.74 (0.70, 0.79)
Pitta et al	2006	+	0.74 (0.70, 0.78)
/an et al	2006	+	0.73 (0.70, 0.77)
Schulze et al	2007	+	0.74 (0.71, 0.79)
(irii et al (M)	2009	+	0.75 (0.71, 0.80)
(irii et al (W)	2009	+	0.75 (0.71, 0.79)
/illegas et al	2009	+	0.75 (0.72, 0.79)
lopping et al (M)	2010	+ + + + + + + + + + + +	0.76 (0.72, 0.79)
lopping et al (F)	2010	+	0.77 (0.73, 0.80)
Kim et al	2010	+	0.76 (0.73, 0.80)
Kirii et al	2010	+	0.76 (0.73, 0.80)
Nanri et al (M)	2010	+ ↓	0.76 (0.73, 0.80)
Nanri et al (F)	2010	+	0.77 (0.73, 0.80)
Veng et al	2012	+	0.76 (0.73, 0.80)
lata et al	2013	+	0.76 (0.73, 0.80)
Oba et al (M)	2013	+ +	0.76 (0.73, 0.80)
Oba et al (F)	2013	+	0.76 (0.73, 0.80)
Hruby et al	2014	+	0.76 (0.73, 0.80)
luang et al	2015	+	0.76 (0.73, 0.80)
Hruby et al (M)	2017	+	0.77 (0.74, 0.80)
ruby et al (F1)	2017	+	0.77 (0.74, 0.80)
Iruby et al (F2)	2017	→	0.78 (0.75, 0.81)
Konishi et al (M)	2017	+	0.78 (0.75, 0.82)
Konishi et al (F)	2017	+	0.78 (0.75, 0.81)
	I .2	I I I .6 1 1.2	I I 1.6 2

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


study	year		RR (95% CI)
Ascherio et al	1998		0.92 (0.58, 1.46
lso et al	1999	_	0.82 (0.67, 1.02
Song et al	2005	+	0.84 (0.71, 1.01
Larsson et al	2008	_	0.88 (0.78, 0.99
Weng et al	2008	_	0.86 (0.77, 0.97
Ohira et al	2009	_	0.85 (0.77, 0.94
Larsson et al	2011	-	0.88 (0.80, 0.96
Zhang et al (M)	2012		0.89 (0.82, 0.97
Zhang et al (F)	2012	-	0.89 (0.82, 0.97
Lin et al	2013		0.88 (0.81, 0.96
Sluijs et al	2013	~	0.87 (0.81, 0.94
Sluijs et al	2014	→	0.86 (0.79, 0.93
Adebamowo et al	2015	→	0.86 (0.80, 0.93
Adebamowo et al (2)	2015	~	0.87 (0.82, 0.93
Bain et al (M)	2015	→	0.87 (0.82, 0.93
Bain et al (F)	2015	~	0.87 (0.82, 0.93
Kokubo et al (M)	2017	~	0.89 (0.83, 0.94
Kokubo et al (F)	2017	+	0.89 (0.83, 0.94

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16	
17	
18	
19	
20	
21	
22	
23	
24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
57	
57	

60

study	year		RR (95% CI)
so et al	1999		0.74 (0.54, 1.02)
lso et al (2)	1999	_	0.74 (0.58, 0.92)
Song et al	2005	_	0.76 (0.62, 0.92)
Larsson et al	2008	~	0.82 (0.74, 0.91)
Weng et al	2008	—	0.82 (0.74, 0.90)
Ohira et al	2009	—	0.81 (0.74, 0.89)
Larsson et al	2011	~	0.83 (0.76, 0.90)
Zhang et al (M)	2012	- -	0.85 (0.77, 0.94)
Zhang et al (F)	2012	—	0.85 (0.77, 0.93)
Lin et al	2013	—	0.84 (0.76, 0.92)
Sluijs et al	2013	~	0.83 (0.76, 0.91)
Adebamowo et al	2015	~	0.84 (0.78, 0.91)
Adebamowo et al (2)	2015	~	0.86 (0.79, 0.93)
Kokubo et al (M)	2017	-	0.87 (0.80, 0.94)
Kokubo et al (F)	2017	→	0.88 (0.81, 0.95)

		BMJ Open	
study	year		RR (95% CI)
lso et al	1999		0.82 (0.53, 1.26)
Song et al	2005		0.87 (0.60, 1.27)
Larsson et al	2008		0.98 (0.79, 1.22)
Larsson et al	2011	-	0.96 (0.79, 1.17)
Zhang et al (M)	2012	+	0.90 (0.75, 1.08)
Zhang et al (F)	2012	+	0.94 (0.78, 1.13)
Adebamowo et al	2015	- _	0.96 (0.81, 1.14)
Adebamowo et al (2)	2015	+	0.94 (0.81, 1.09)
Kokubo et al (M)	2017	- _	0.96 (0.84, 1.10)
Kokubo et al (F)	2017	-+-	0.93 (0.82, 1.06)
	.2	.6 1 1.2	1.6 2

Table S1 PRISMA 2009 Checklist

Section/topic	#	Checklist item	Repo on pa	
TITLE				
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1	
ABSTRACT				2-3
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3	
INTRODUCTION				4-5
Rationale	3	Describe the rationale for the review in the context of what is already known.	4	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4-5	
METHODS	I	· · · · · · · · · · · · · · · · · · ·		5-9
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5-6	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5-6	
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5-6	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-6	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6	
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6	
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	6-8	

Table S1 PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	8-9
RESULTS			9-16
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	9
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	9-10
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	9-10
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10-16
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	10-16
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	10-16
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	10-16
DISCUSSION			16-22
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	16-21
imitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	21-22
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	22
			23
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	23
From: Moher D, Liberati A, Tetzlaff loi:10.1371/journal.pmed1000097	J, Altm	an DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med	6(7): e1000097
		For more information, visit: www.prisma-statement.org.	
		Page 2 of 2	
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Item No

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Reporting of background should include Problem definition

Study population

key words

English

Reporting of search strategy should include

used (eg, explosion)

Hypothesis statement

Description of study outcome(s)

Type of study designs used

Type of exposure or intervention used

Databases and registries searched

1 2

Reported

on Page No

4

4

5

5

5

4-5

6-7

5-6

5-6

5-6

5-6

5-6

6

6

2
3
4
5
6
0
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
23 24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55
7
55
56
57
57

60

Recommendation

Qualifications of searchers (eg, librarians and investigators)

Search strategy, including time period included in the synthesis and

Effort to include all available studies, including contact with authors

Search software used, name and version, including special features

Use of hand searching (eg, reference lists of obtained articles)

List of citations located and those excluded, including justification

Method of addressing articles published in languages other than

	5 -			
15	Method of handling abstracts and unpublished studies	6		
16	Description of any contact with authors	6		
Reporting of methods should include				
17	Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	7-8		
18	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	6-7		
19	Documentation of how data were classified and coded (eg, multiple raters, blinding and interrater reliability)	6-7		
20	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	7-9		
21	Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results	7-9		
22	Assessment of heterogeneity	7-9		
23	Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or	7-9		

1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26
27 28 29 30
31 32 33 34
35 36 37 38
39 40 41 42
43 44 45 46
47 48 49 50
51 52 53 54
55 56 57 58
59 60

	cumulative meta-analysis) in sufficient detail to be replicated		
24	Provision of appropriate tables and graphics		
Reporting of results should include			
25	Graphic summarizing individual study estimates and overall estimate	10-14	
26 Table giving descriptive information for each study included		10-11,	
		Table S4	
27	27 Results of sensitivity testing (eg, subgroup analysis)		
28	Indication of statistical uncertainty of findings	16	

		Reported
Item No	Recommendation	on Page
		No
Reporting	of discussion should include	
29	Quantitative assessment of bias (eg, publication bias)	11-14
30	Justification for exclusion (eg, exclusion of non-English language citations)	10
0.1	Assessment of quality of included studies	11, Table
31		S5
Reporting	of conclusions should include	
32	Consideration of alternative explanations for observed results	16-22
33	Generalization of the conclusions (ie, appropriate for the data	
33	presented and within the domain of the literature review)	16, 23
34	Guidelines for future research	17-20, 22
35	Disclosure of funding source	None

BMJ Open

The association of magnesium intake with type 2 diabetes and total stroke: an updated systematic review and metaanalysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-032240.R2
Article Type:	Original research
Date Submitted by the Author:	09-Feb-2020
Complete List of Authors:	Zhao, Binghao; The Second Affiliated Hospital of Nanchang University, Department of Cardio-Thoracic Surgery Zeng, Lianli; The second affiliated hospital of Nanchang University, Department of Cardiovascular Medicine Zhao, Jiani; The second affiliated hospital of Nanchang University, Department of Cardiovascular Medicine Wu, Qian; The second affiliated hospital of Nanchang University, Department of Cardiovascular Medicine Dong, Yifei; The second affiliated hospital of Nanchang University, Department of Cardiovascular Medicine Zou, Fang; The second affiliated hospital of Nanchang University, Department of Cardiovascular Medicine Zou, Fang; The second affiliated hospital of Nanchang University, Department of Endocrinology Gan, Li; The second affiliated hospital of Nanchang University, Department of Neurology Wei, Yiping; The Second Affiliated Hospital of Nanchang University, Department of Cardio-Thoracic Surgery Zhang, Wenxiong; The Second Affiliated Hospital of Nanchang University, Department of Cardio-Thoracic Surgery
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Diabetes and endocrinology, Epidemiology, Evidence based practice, Neurology, Cardiovascular medicine
Keywords:	Magnesium Intake, Type 2 Diabetes, Stroke < NEUROLOGY, Meta- Analysis

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	The association of magnesium intake with type 2 diabetes and total stroke: an
2	updated systematic review and meta-analysis
3	Binghao Zhao ^{1,2} ; Lianli Zeng ^{3,4} ; Jiani Zhao ^{3,4} ; Qian Wu ^{3,4} ; Yifei Dong ³ ; Fang Zou ⁵ ;
4	Li Gan ⁶ ; Yiping Wei ¹ ; Wenxiong Zhang ¹ .
5	Affiliations
6	¹ Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of
7	Nanchang University, Nanchang, China, 330006.
8	² Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese
9	Academy of Medical Sciences and Peking Union Medical College, Beijing, China,
10	100000.
11	³ Department of Cardiovascular Medicine, The Second Affiliated Hospital of
12	Nanchang University, Nanchang, China, 330006.
13	⁴ Jiangxi medical college, Nanchang University, 330006, Nanchang, China
14	⁵ Department of Endocrinology, The Second Affiliated Hospital of Nanchang
15	University, Nanchang, China, 330006.
16	⁶ Department of Neurology, The Second Affiliated Hospital of Nanchang University,
17	China, 330006.
18	Corresponding Author: Wenxiong Zhang, MD, Department of Cardio-Thoracic
19	Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road,
20	Nanchang, China, 330006; E-mail: <u>zwx123dr@126.com</u> ; Phone: +8618720909414;
21	Fax: 0791-86133161.
22	Short running head: Magnesium Intake Reduces Diabetes and Total Stroke.
23	Word count: 5071.

Page 3 of 74		BMJ Open
1 2		
- 3 4 5	24	Abstract
6 7	25	Objective: The detailed associations between type 2 diabetes (T2D) and total stroke
8 9 10	26	and magnesium intake as well as the dose-response trend should be updated in a
11 12 12	27	timely manner.
13 14 15	28	Design: Systematic review and meta-analyses.
16 17 18	29	Data sources: PubMed, EMBASE, Cochrane Library, Web of Science and
19 20	30	ClinicalTrials.gov were rigorously searched from inception to March 15, 2019.
21 22 23	31	Eligibility criteria: Prospective cohort studies investigating these two diseases were
24 25	32	included.
26 27 28	33	Data synthesis: Relative risk (RR) and 95% confidence intervals (95% CI) in random
29 30 31	34	effects models as well as absolute risk (AR) were pooled to calculate the risk of T2D
32 33	35	and stroke. Methodological quality was assessed by the Newcastle-Ottawa Scale.
34 35 36	36	Results: Forty-one studies involving 53 cohorts were included. The magnitude of the
37 38	37	risk was significantly reduced by 22% for T2D (RR, 0.78 [95% CI, 0.75-0.81]; P<
39 40 41	38	0.001; AR reduction, 0.120%), 11% for total stroke (RR, 0.89 [95% CI, 0.83-0.94];
42 43 44	39	P< 0.001; AR reduction, 0.281%), and 12% for ischemic stroke (RR, 0.88 [95% CI,
44 45 46	40	0.81-0.95]; $P = 0.001$; AR reduction, 0.246%) when comparing the highest
47 48 49	41	magnesium intake to the lowest. The inverse association still existed when studies on
50 51	42	T2D were adjusted for cereal fiber (RR, 0.79; $P < 0.001$) and those on total stroke
52 53 54	43	were adjusted for calcium (RR, 0.89; $P = 0.040$). Subgroup analyses suggested that
55 56	44	the risk for total and ischemic stroke was significantly decreased in females,
57 58 59 60	45	participants with $\geq 25 \text{ mg/m}^2$ body mass index, and those with $\geq 12 \text{ y}$ follow-up; the
		2
		For poor review only http://bmienen.hmi.com/cite/about/quidelines.yhtml

3
4
5
6
7
8
9
10
11
12
13
14
15
16 17 18
17
19
20
21
22
23
24
25
26 27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
45 46
47
48
49
50
51
52
53
54
55
56
57
58
59

1 2

46	reduced risk in Asians was not as notable as that in North American and European
47	populations.
48	Conclusions: Magnesium intake has significantly inverse associations with T2D and
49	total stroke in a dose-dependent manner. Feasible magnesium-rich dietary patterns
50	may be highly beneficial for specific populations and could be highlighted in the
51	primary T2D and total stroke prevention strategies disseminated to the public.
52	PROSPERO registration number CRD42018092690
53	
54	Strengths and limitations of this study
55	1. In this study, we performed an updated comprehensive quantitative analysis
56	focusing on the dietary effect of magnesium intake.
57	2. The study identified an inverse association between magnesium intake and T2D

58 and stroke.

3. A quite number of prospective cohort studies were employed to guarantee therobust evidence.

4. There was imperfect of not including randomized controlled trails to prove thecausality.

5. Cases ascertainments are limited by FFQ or self-reports.

64

Keywords: Magnesium Intake; Type 2 Diabetes; Stroke; Meta-Analysis.

66 Introduction

Diabetes is a global burden with an alarming increasing rate throughout the world^{1,2}. Stroke is an independent disorder and a typical macrovascular complication of type 2 diabetes (T2D), and it is regarded as the second leading cause of death after ischemic heart disease^{3,4}. These pandemic health problems necessitate better primary prevention strategies.

Magnesium, a common cellular ion, acts as a critical cofactor for hundreds of enzymes involved in glucose metabolism, protein production, and nucleic acid synthesis^{5,6}. Low levels of magnesium have been associated with many chronic and inflammatory diseases, such as Alzheimer's disease, asthma, attention deficit hyperactivity disorder, insulin resistance, T2D, hypertension, cardiovascular disease (e.g., stroke), migraine headaches, osteoporosis and cancer^{1,5,7,8}.

Notably, many adults in developed countries do not consume the recommended daily amount of magnesium-rich foods such as whole grains, nuts, and green leafy vegetables, and magnesium is less mentioned in dietary guidelines and in studies on T2D or stroke prevention^{9,10}. Thus, we chose T2D and stroke as our outcome of interest (cardiovascular disease (CVD) was not evaluated because there is already a wealth of research relating to CVD, and the definitions of CVD vary greatly among studies, which would increase the heterogeneity in the pooled process and impair our interpretation of the final conclusions). Emerging studies¹¹⁻⁵¹ on this topic are limited, and the results remain mixed. For example, most studies have indicated that magnesium intake has an inverse association with T2D or total stroke incidence;

however, several others have revealed that there is an inverse trend but not a significant association, which is possibly due to limitations related to small sample sizes and differences in the intervention duration, study design, and participant characteristics. Moreover, consecutive meta-analyses^{52,53} have used less rigorous inclusion; the results were not comprehensive, and they did not completely address the influence of other confounders (i.e., body mass index (BMI), cereal fiber, calcium, potassium) on the relationship. Accordingly, we performed a meta-analysis to (1) establish a comprehensive estimate and update the epidemiological evidence for clinical practice; (2) discuss the results of stroke subtype and the impact of several statistical and epidemiology confounders on the investigated association; and (3) highlight the details of the dose-response pattern observed among the participants Ziez analyzed in the studies.

Methods

This study was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Table S1) and the Meta-analysis of Observational Studies in Epidemiology (MOOSE) Guidelines Checklist (Table S2) (Registration information: PROSPERO CRD42018092690).

Search Strategy

PubMed, EMBASE, Cochrane Library, Web of Science and ClinicalTrials.gov were systematically reviewed through inception to March 15, 2019, for studies on

BMJ Open

magnesium intake and T2D or stroke without language restrictions. The following key words were used: "Magnesium", "Type 2 Diabetes Mellitus", "Type 2 Diabetes", "Stroke", "Cerebrovascular Stroke", "Cohort Studies", and "Prospective Studies". We also manually searched the reference lists of the retrieved literature (including meta-analyses and brief reports), bibliographies and gray literature (including presentations and unpublished literature) for further eligible articles. The search strategy can be found in **Table S3**.

Selection Criteria

(1) Eligible populations must be composed of individuals with plausible dietary/energy intake who had no history of diabetes and/or insulin treatment for T2D analysis and no current stroke for stroke analysis. (2) Their apparent life expectancy was long enough for proper follow-up. (3) We included only prospective cohort studies that reported magnesium intake and T2D and/or various types of stroke. (4) The follow-up duration of eligible studies was at least one year if they provided follow-up data. Notably, magnesium intake consisted of both dietary magnesium intake and total magnesium intake (dietary and supplementary magnesium).

Only studies containing the most comprehensive information on the population or endpoints were included to avoid duplication. We excluded reviews, basic science studies, meta-analyses, studies on gestational diabetes mellitus (GDM) and studies that focused only on magnesium supplementation.

132 Data Extraction and Quality Assessments

Two researchers independently extracted the following information: the first author, publication year, period of cohort studies, duration of persistent exposure, basic characteristics of the enrolled participants (weight, age, region, BMI, drinking and smoking habits (previous plus current), etc.), median magnesium intake for each quantile (tertile, quartile, or quintile), diabetes and total stroke cases, subtypes of total stroke, dietary and case assessments, adjusted confounding covariates. Importantly, total stroke is classified as clinical ischemic stroke (87%), hemorrhagic stroke (13%) and undetermined stroke⁵⁴. Hemorrhagic stroke is classified as subarachnoid hemorrhage and intracerebral hemorrhage according to anatomical site or presumed etiology⁵⁵. In cases of continuing disagreement, a final decision was reached after discussion with a third member of the panel.

Methodological quality was described by the Newcastle-Ottawa Scale (NOS), which was validated for assessment of the quality of nonrandomized controlled trials in meta-analyses⁵⁶. For the 0-10 scale, each study was categorized as low (0-5), medium (6-7), or high (8-10) quality.

149 Statistical Analysis

Articles providing data separately for men and women or black and white or different types of disease within an article were treated as independent studies. Multivariate relative risk (RR) and corresponding 95% confidence intervals (CI) as well as absolute risk (AR) for measuring the quantitative associations between exposure and Page 9 of 74

BMJ Open

T2D, total stroke and other wanted outcomes, particularly for the highest vs. the lowest categories of magnesium intake, were estimated by the DerSimonian-Laird random effects model because the assumptions involved account for the presence of within-study and between-study variability. Statistical heterogeneity was determined with the Cochran Q chi-square test and the I^2 . An $I^2 > 50\%$ or a *P*-value for the Q test < 0.1 was considered to indicate significant heterogeneity⁵⁷. We performed sensitivity analyses to test the robustness and post-subgroup analyses to detect the source of heterogeneity. In addition, a random effects meta-regression analysis on BMI, sex, participant region, and dietary assessments with RR for each trial was performed to obtain an understanding of the reasons for heterogeneity. RR and 95% CI might begin to significantly change as publication years increased in T2D and total stroke, etc., which would be validated by cumulative meta-analyses.

The dose-response analyses for all outcomes were proposed by Greenland and Longnecker⁵⁸ and Orsini⁵⁹ et al. The categories of magnesium intake, distributions of cases and person-year, RR and 95 CI were extracted. If the number of cases and/or person-years was not available, variance-weighted least squares regression was used to pool the risk estimate. For most studies, the median intake for each quantile (tertile, quartile or quintile) of magnesium intake was assigned as the representative dose. For continuous intake, which was reported as categorical data (range) in some studies, we assigned the midpoint category of the lower and upper bounds to the RR in these studies; when the highest category was open ended, we assumed the length of the open-ended interval to be 1.5 times the adjacent interval; when the lowest category

was open, we assigned the adjacent interval of the category to be 1.5 times the length of the open-ended interval. We employed generalized least squares regression models to calculate study-specific RR estimates per 50 mg/day, 100 mg/day, and 150 mg/day magnesium intake increment if there was evidence of a linear relationship. Nonlinear relationships between magnesium intake and all outcomes were evaluated using restricted cubic splines with four knots located at the 5th, 35th, 65th, and 95th percentiles of the distribution. The *P-value* for curve linearity or nonlinearity was calculated by testing the null hypothesis that the coefficient of the second spline is equal to zero. All results were presented using two-stage dose-response model plots (including linear and nonlinear relationships). Some results were demonstrated as forest plots for intake increments of $< 50 \text{ mg/day}, \ge 50 \text{ and} < 100 \text{ mg/day}, \ge 100 \text{ and}$ $< 150 \text{ mg/day}, \text{ and } \ge 150 \text{ mg/day}.$

Publication bias was assessed graphically by Begg's adjusted rank correlation funnel plots⁶⁰ and Egger's linear regression tests⁶¹. All analyses were performed using Stata version 14.0 (StataCorp, College Station, TX, USA); two-sided P < 0.05 was considered statistically significant except where otherwise specified.

Patient and Public Involvement

No patients were involved in developing the research question or the outcome measures, and no patients were involved in planning the design or implementation of the study. Furthermore, no patients were asked to advise on the interpretation or writeup of the results. Since this study used aggregated data from previous

BMJ Open

198 publications, it is not easy to disseminate the results of the research to study 199 participants directly.

Results

202 Study Characteristics and Quality Assessment

Of the 8713 studies, 107 studies were considered for eligibility after screening the titles and abstracts (Figure 1). A total of 41¹¹⁻⁵¹ prospective cohort studies comprising 53 cohorts, 1 912 634 participants and 76 678 cases were eligible for inclusion in the systematic review and meta-analysis (Table S4). Hodge et al¹⁸ recorded only 500 mg/day increments of magnesium for further pooled analyses; 2 studies^{33,51} failed to clearly distinguish the diabetes type, but the vast majority of cases had T2D. We computed the subtype data in three studies^{14,27,36} after the extraction of total stroke, and we regarded ischemic stroke in three other studies^{28,30,42} as total stroke given that ischemic stroke accounted for nearly 87% of total stroke. Participants were predominately middle-aged at baseline, with a mean magnesium intake of 370 mg/day for the highest category and 232 mg/day for the lowest category. The mean duration of all eligible studies was 10.7 years. Nineteen studies were conducted in North America (America); 5 studies were conducted in Europe (Sweden, the Netherlands and Britain); 13 studies were conducted in Asia (China and Japan and Taipei); and 4 studies enrolled individuals in multiple nations. Most of the included studies used food frequency questionnaires (FFQs) or semiquantitative FFQs (SFFQs) to assess individual dietary intake. Eighteen studies used dietary magnesium intake, and 21

220	studies recorded total magnesium intake (dietary and supplementary magnesium
221	intake). Of note, supplementary magnesium intake was assessed by the use of
222	magnesium or multivitamin supplements; nevertheless, dietary magnesium accounted
223	for the majority of magnesium intake. Adjusted confounders were mostly similar;
224	however, adjusted dietary confounders such as cereal fiber, potassium, and calcium
225	still varied across individual studies. It was unclear whether the included studies had
226	adjusted for sodium because they did not provide this information. All the studies
227	were written in English.
228	After the quality assessments of the studies according to NOS, the average score
229	was 8.85 (Table S5), and all studies were of high quality (NOS score 8-10).
230	
231	Magnesium Intake and T2D Incidence
231 232	Magnesium Intake and T2D Incidence Thirty-five cohorts from 26 publications ^{11,12,15,20,22-26,29,31-35,37,39,41,43,48,49,51} (1 219 636
232	Thirty-five cohorts from 26 publications ^{11,12,15,20,22-26,29,31-35,37,39,41,43,48,49,51} (1 219 636
232 233	Thirty-five cohorts from 26 publications ^{11,12,15,20,22-26,29,31-35,37,39,41,43,48,49,51} (1 219 636 participants and 56 540 T2D cases) reported that the magnitude of T2D risk was
232 233 234	Thirty-five cohorts from 26 publications ^{11,12,15,20,22-26,29,31-35,37,39,41,43,48,49,51} (1 219 636 participants and 56 540 T2D cases) reported that the magnitude of T2D risk was reduced by 22% (RR, 0.78 [95% CI, 0.75-0.81]; $P < 0.001$; AR reduction, 0.120%),
232 233 234 235	Thirty-five cohorts from 26 publications ^{11,12,15,20,22-26,29,31-35,37,39,41,43,48,49,51} (1 219 636 participants and 56 540 T2D cases) reported that the magnitude of T2D risk was reduced by 22% (RR, 0.78 [95% CI, 0.75-0.81]; $P < 0.001$; AR reduction, 0.120%), comparing the highest category of magnesium intake to the lowest, with little
232 233 234 235 236	Thirty-five cohorts from 26 publications ^{11,12,15,20,22-26,29,31-35,37,39,41,43,48,49,51} (1 219 636 participants and 56 540 T2D cases) reported that the magnitude of T2D risk was reduced by 22% (RR, 0.78 [95% CI, 0.75-0.81]; $P < 0.001$; AR reduction, 0.120%), comparing the highest category of magnesium intake to the lowest, with little evidence of heterogeneity ($I^2 = 35.6\%$; $P = 0.021$). The dose category-specific
232 233 234 235 236 237	Thirty-five cohorts from 26 publications ^{11,12,15,20,22-26,29,31-35,37,39,41,43,48,49,51} (1 219 636 participants and 56 540 T2D cases) reported that the magnitude of T2D risk was reduced by 22% (RR, 0.78 [95% CI, 0.75-0.81]; $P < 0.001$; AR reduction, 0.120%), comparing the highest category of magnesium intake to the lowest, with little evidence of heterogeneity ($I^2 = 35.6\%$; $P = 0.021$). The dose category-specific analysis suggested that for the < 50 mg/day magnesium increment, the risk of T2D
232 233 234 235 236 237 238	Thirty-five cohorts from 26 publications ^{11,12,15,20,22-26,29,31-35,37,39,41,43,48,49,51} (1 219 636 participants and 56 540 T2D cases) reported that the magnitude of T2D risk was reduced by 22% (RR, 0.78 [95% CI, 0.75-0.81]; $P < 0.001$; AR reduction, 0.120%), comparing the highest category of magnesium intake to the lowest, with little evidence of heterogeneity ($I^2 = 35.6\%$; $P = 0.021$). The dose category-specific analysis suggested that for the < 50 mg/day magnesium increment, the risk of T2D was reduced by 10% (RR, 0.90 [95% CI, 0.88-0.93]; $P < 0.001$; for the \ge 50 and $<$

BMJ Open

2 3	
3 4	
4 5	
5 6	
7	
, 8	
9	
9 10	
11	
13 14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

increment, the risk was reduced by 21% (RR, 0.79 [95% CI, 0.74-0.84]; P < 0.001) (Figure 2). Little evidence of publication bias was found (Egger's test: P = 0.088) (Figure S1A).

245

246 Magnesium Intake and Stroke Incidence

Eighteen cohorts from 15 publications^{13,14,21,27,28,30,36,38,40,42,44-47,50} (692 998 247 participants and 20 138 total stroke cases) reported that the magnitude of the risk of 248 total stroke was decreased by 11% (RR, 0.89 [95% CI, 0.83-0.94]; P < 0.001; AR 249 250 reduction, 0.281%), comparing the highest category of magnesium intake with the lowest, with no heterogeneity ($I^2 = 0\%$; P = 0.529). The dose category-specific 251 analysis revealed no significant association with the $< 50 \text{ mg/day}, \ge 50 \text{ and } < 100$ 252 253 mg/day increments or the ≥ 100 and < 150 mg/day increments. For the ≥ 150 mg/day increment, the risk of total stroke was decreased by 15% (RR, 0.85 [95% CI, 254 0.79-0.91]; P< 0.001) (Figure S2). Publication bias was evaluated for stroke 255 subtypes. 256

Fifteen cohorts from 12 publications^{14,21,27,28,30,36,38,40,42,45,46,50} reported ischemic stroke. The magnitude of the risk of ischemic stroke was reduced by 12% (RR, 0.88 [95% CI, 0.81-0.95]; P = 0.001; AR reduction, 0.246%) with no significant heterogeneity ($I^2 = 16.9\%$; P = 0.265). The dose category-specific analysis identified no significant association with the < 50 mg/day, \ge 50 and < 100 mg/day, or \ge 100 and < 150 mg/day increments. A decreasing trend existed but remained nonsignificant. The original risk was reduced by 16% in the analysis of the \ge 150 mg/day increment

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 25	
35 26	
36 37	
37 38	
39 40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

1

264	(RR, 0.84 [95% CI, 0.78-0.91]; P< 0.001) (Figure S3). No publication bias was
265	observed in terms of ischemic stroke (Egger's test: $P = 0.937$) (Figure S1B).
266	Ten cohorts from 8 studies ^{14,21,27,36,38,45,46,50} reported that hemorrhagic stroke was
267	not significantly associated with magnesium intake (RR, 0.93 [95% CI, 0.82-1.06]; P
268	= 0.282). The dose category-specific analysis identified no significant association
269	(Figure S4). No significant heterogeneity or publication bias was observed in terms of
270	hemorrhagic stroke (Egger's test: $P = 0.809$) (Figure S1C).
271	Three publications involving 3 cohorts ^{14,27,36} showed that high magnesium intake
272	had no significant effect on reducing the risk of subarachnoid hemorrhage (RR, 0.99
273	[95% CI, 0.71-1.39]; $P = 0.963$). The dose category-specific analysis revealed no
274	significant association (Figure S5).
275	With respect to intracerebral hemorrhage, the pooled results from 3 cohorts ^{14,27,36}
276	in 3 publications revealed no significant advantages of intracerebral hemorrhage (RR,
277	0.92 [95% CI, 0.71-1.20]; $P = 0.540$). The dose category-specific analysis revealed no
278	significant association (Figure S6).
279	
280	Meta-Regression and Cumulative Meta-Analysis

According to the meta-regression results, there was no evidence of BMI, sex, participant region or dietary assessment for each individual trial bias in terms of T2D (Figure S7), total stroke (Figure S8), ischemic stroke (Figure S9) and hemorrhagic stroke events (Figure S10). The male subgroup (P = 0.041) in the sex category might lead to slight heterogeneity in terms of total stroke; however, sex (P = 0.112) showed

BMJ Open

286 no association with total stroke incidence.

Analyses of T2D (Figure S11), total stroke (Figure S12) and ischemic stroke demonstrated that the RRs of the final results became robust within a narrow range and remained significant as publication years increased and more recent high-quality studies were included. After inclusion of the Iso et al¹⁴ study, the RR and 95% CI for ischemic stroke decreased to less than 1 and then became stable (Figure S13). Although there was no significant reduction in the risk of hemorrhagic stroke, the evidence clearly showed that the confidence interval was becoming narrow, which trended toward significance (Figure S14). Thus, the risk for hemorrhagic stroke might be reduced; additional studies are warranted.

297 Sensitivity Analysis

When three²⁴⁻²⁶ studies were excluded from the T2D analysis, the summary RR changed from 0.78 ([95% CI, 0.75-0.81]) to 0.78 ([95% CI, 0.75-0.82]), with the heterogeneity declining from $(I^2 = 35.6\%; P = 0.021)$ to $(I^2 = 24.0\%; P = 0.112)$. Among T2D analyses, eight studies^{19,22,23,26,33,39,48,49} adjusted for cereal fiber intake vielded an RR of 0.79 ([95% CI, 0.73-0.85]; P < 0.001), and two studies^{15,35} adjusted for calcium yielded an RR of 0.87 ([95% CI, 0.73-1.04]; P = 0.128). Among the total stroke analysis, the summary RR was 0.92 ([95% CI, 0.82-1.02]; P = 0.097) in five studies^{13,44-46,50} adjusted for potassium intake and was 0.89 ([95% CI, 0.80-0.99]; P =0.040) in five studies^{14,44-46,50} adjusted for calcium. Only one study¹⁵ adjusted for potassium intake in T2D, and one study³⁶ adjusted for cereal fiber in total stroke.

Subgroup Analysis

Stratified analyses by characteristics of the population and study design were conducted on T2D (Table 1), total stroke, ischemic stroke and hemorrhagic stroke (Table 2). The inverse association with T2D remained robust across all subgroups with little evidence of heterogeneity. For stroke incidence, a decreased risk of total stroke and ischemic stroke was found in female participants (RR, 0.91 [95% CI, 0.83-0.99] for total stroke; 0.89 [95% CI, 0.79-1.00] for ischemic stroke) and individuals with ≥ 25 kg/m² mean BMI (RR, 0.89 [95% CI, 0.82-0.96] for total stroke; 0.88 [95% CI, 0.81-0.96] for ischemic stroke). When restricted to $a \ge 12$ y follow-up, the risk of total stroke and ischemic stroke was significantly reduced (RR, 0.89 [95% CI, 0.83-0.95] for total stroke; 0.88 [95% CI, 0.81-0.95] for ischemic stroke). These risks were more reduced in North American and European individuals than in Asians. Cardiovascular events (CV events, coronary heart disease, heart failure, atrial fibrillation, self-reported heart disease, etc. other than stroke), hypercholesterolemia and diabetes would blunt the effect of magnesium on total and ischemic stroke. However, magnesium intake could still, or at least, demonstrate the trend to decrease total and ischemic stroke in individuals even with those risk factors. Similarly, CV events, hypercholesterolemia and family diabetes history had no substantial impact on the inverse association between T2D incidence and magnesium intake. We did not find a significantly reduced risk of hemorrhagic stroke in the subgroup analyses.

2	
3	
3 4 5 6 7 8 9 10	
5	
2	
6	
7	
R	
0	
9	
10	
11	
1 2	
12	
13	
14	
15	
15	
16	
17	
18	
15 16 17 18 19 20	
19	
20	
21	
~ I ~~	
22	
21 22 23 24 25 26 27 28	
24	
25	
25	
26	
27	
າວ	
20	
29 30	
30	
31	
21	
32	
33	
34	
34 35 36 37	
35	
36	
37	
38	
50	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
59	

60

330 **Dose-Response Analysis**

In this part, both linear and nonlinear relationships were found in T2D (**Figure 3A**), in total stroke (**Figure 3B**), and in ischemic stroke (**Figure 3C**). However, no linear or nonlinear dose-response relationship was observed in hemorrhagic stroke (**Figure 3D**) along with the subtypes including subarachnoid hemorrhage and intracerebral hemorrhage (**Figure S15**).

Specifically, we calculated the RR for the magnesium increments if a linear 336 relationship was found. The calculated RR was 0.94 ([95% CI, 0.93-0.95]) for the 100 337 338 mg/day increment for T2D. For total stroke, the summary RR was 0.98 ([95% CI, 0.97-0.99]) related to a 100 mg/day increment in magnesium intake, and the RR for 339 ischemic stroke was 0.98 ([95% CI, 0.97-0.99]) related to a 100 mg/day increment in 340 341 magnesium intake. There was no RR cut-off point at which the decreasing trend reversed, but the RR decreased slightly rapidly with any slight decreases at 342 approximately 260 mg/day for T2D and 350 mg/day for total/ischemic stroke. 343 However, there was substantial uncertainty in the lower range of this distribution 344 (Figure 3A, 3B, 3C). 345

346

347 Discussion

348 Main findings

This paper used a general and up-to-date search strategy to identify additional studies that were missed in prior meta-analyses under real-world conditions. Our results support a significant inverse association between magnesium consumption and T2D,

total stroke and ischemic stroke at the highest level vs. the lowest. No significant association for hemorrhagic stroke, subarachnoid hemorrhage or intracerebral hemorrhage was detected. Female obese participants (mean BMI ≥ 25 kg/m²) with a longer follow-up period (> 12 y) might obtain greater benefit from magnesium intake with a lower risk of total and ischemic stroke incidence. In subgroup analyses, the RR of stroke risk was highly decreased among North American and European individuals. Significant risk was reduced by 6%, 2%, and 2% for T2D, total stroke and ischemic stroke, respectively, per 100 mg/day increment in magnesium intake level. Overall, our study supports the guidelines to address the role of magnesium intake in early prevention strategies to combat T2D and stroke. However, additional randomized controlled trials (RCTs) are needed in the future to validate the causality.

364 Clinical implications

Dietary nutrients are popular topics for current clinical medicine; folic acid, vitamin D, and ω -3 fatty acids have been specifically recommended to pregnant women, infants and children, and the elderly^{62,63}. However, magnesium has been less extensively discussed. This is a noteworthy study for the following reasons. First, the current study reinforces the possible role of magnesium in the prevention and management of two chronic illnesses and invites new considerations regarding the potential avoidance of other chronic diseases through dietary strategies. Second, this comprehensive study including nearly two million individuals and possessing abundant statistical power provides confirmatory evidence for medical practitioners,

Z.C

Page 19 of 74

BMJ Open

health educators and policymakers. Third, to date, no related paper has discussed such detailed stratified analyses; thus, this work helps physicians amplify dietary benefits through individualized strategies. Interestingly, North American and European participants seemed to receive more benefits from magnesium intake than Asians. Fourth, to the best of our knowledge, this is the first study in which a cumulative meta-analysis was performed to predict changes in the tendency of main risk estimates. Based on past and current cutting edge evidence about nutrition and T2D prevention, the US Diabetes Prevention Program (DPP) conducted a study and demonstrated that proper lifestyle modification (exercise and Mediterranean diet) significantly reduced T2D risk irrespective of population baselines, and this benefit was enhanced with increased follow-up⁶⁴. The UK National Health Service (UK NHS) will launch an intervention program including weight loss, nutrition, monitoring and peer support targeting up to 10 000 people prone to develop $T2D^{65}$. The 2018 American Diabetes Association (ADA) guidelines⁶⁶ recommend that

the intake of nuts, berries, yogurt, coffee and tea be increased in individuals who are at high risk of diabetes. The latest guidelines by the American Heart Association (AHA)/American Stroke Association (ASA)⁹ also validate the considerable status of early management of stroke (ischemic stroke). In fact, magnesium is a cofactor in enzyme systems that regulate diverse biomedical reactions, including protein synthesis, muscle and nerve transmission, neuromuscular conduction, signal transduction blood glucose control and blood pressure management⁶⁷. Magnesium also plays a role in transporting calcium and potassium ions across the cell membrane

> and is crucial for the structural function of proteins, nucleic acids or mitochondria⁶⁸. In diabetes, magnesium is involved in glucose and insulin metabolism by regulating the tyrosine kinase activity of the insulin receptor. Magnesium also influences phosphorylase B kinase activity by releasing glucose-1-phosphate from glycogen and regulates glucose translocation into the cell⁶⁹. In stroke, higher magnesium levels lead to the deregulation of glutamate and calcium cation influx by reducing NMDA receptor activity and blocking voltage-gated calcium channels, eliminating calcium cation cytotoxicity. Additionally, the vasodilatory effects of magnesium may benefit ischemic stroke patients⁷⁰. Indeed, a poor outcome of hemorrhagic stroke was observed in an RCT; however, high serum magnesium might be better for the prognosis of intracerebral hemorrhage⁷¹.

> Most specific nutrients, especially macronutrients, are correlated with total energy intake. In the included free-living human studies, the variation in total energy intake originated from differences in physical activity levels, body size, and energy efficiency⁷². Thus, total energy intake can weaken the investigated association with considerable nutrient intake if this covariable is not properly removed. Epidemiologists should assess the reproducibility and validity of energy-adjusted nutrients as well as absolute nutrient intake. For micronutrients such as magnesium, an inverse association with T2D, total stroke and ischemic stroke outcomes could be still found after total energy intake adjustment. In terms of other nutrients, potassium intake is proposed to lower blood pressure (BP) and improve vascular outcomes (including stroke); dietary potassium may also be influential in glucose control and

BMJ Open

limiting the risk of diabetes⁷³. Vitamin D and calcium may negatively influence glycemia, but the evidence is limited and mostly based on cross-sectional observational studies⁷⁴. Calcium may be inversely associated with stroke in populations with low to moderate calcium intakes, but no significant association was found between calcium and CVD⁷⁵. Altogether, the results indicate that magnesium-rich food such as nuts (151-567 mg/100 g edibles), fruits (132-448 mg/100 g edibles), vegetables (132-1257 mg/100 g edibles), legumes (138-243 mg/100 g edibles), fish (143-303 mg/100 g edibles) and total grain (134-306 mg/100 g edibles) should be recommended to populations with insufficient magnesium intake.

428 Comparisons with other similar studies

This analysis has several differences from previous studies. Dong et al⁵² found that magnesium intake had an inverse association with T2D incidence (RR, 0.78 [95% CI, 0.73-0.84]), and with an intake of 100 mg/day magnesium, the risk was reduced by 14%. However, they failed to include adequate studies, and standard quality assessments of eligible studies were absent. Individuals from multiple nations were included in some studies^{18,25,26,32} but were incorrectly assigned to Asia or the U.S. in the subgroups; other minor issues also existed in the selection criteria, making it unclear whether they excluded participants with subclinical diabetes. BMI was not a potential modifier for T2D in our study due to the inclusion of more evidence with a longer follow-up period. Fang et al⁷⁶ revealed that dietary magnesium was significantly associated with a reduced risk of T2D (RR, 0.74 [95% CI, 0.69-0.80])

2
3
4 5
6
7
8
9
10 11
12
13
14
15 16
17
18
19
20 21
21 22
23
24
25
26 27
28
29
30
31 32
33
34
35
36 37
38
39
40
41 42
43
44
45
46 47
48
49
50
51 52
52 53
54
55
56 57
58
59
60

440	and stroke (RR, 0.88 [95% CI, 0.82-0.95]). The results were comparable, but they
441	focused only on dietary magnesium intake rather than overall magnesium intake (total
442	or dietary), and subtypes of total stroke were missing. To the best of our knowledge,
443	BMI, follow-up, family diabetes history, etc. are crucial confounders for evaluating
444	the association, and these factors were not addressed in their study. Moreover, other
445	researchers have better investigated the likelihood of a linear association in the
446	dose-response pattern (using methods by Greenland and Orsini et al.). For example,
447	Fang et al ⁷⁷ found that the 100 mg/day intake of dietary magnesium was associated
448	with an 8-13% reduction in T2D risk, and while a nonlinear relationship did not exist,
449	a minor publication bias was present. Twenty-five studies were eligible; however,
450	some of them focused not on dietary intake but rather on total magnesium intake.
451	Moreover, there were two included studies focusing on red meat intake instead of
452	magnesium intake. After excluding ineligible studies, we found no evidence of
453	publication bias. Additionally, both linear and nonlinear relationships existed for T2D
454	because the RRs of the highest category of magnesium intake vs. the lowest in our
455	pooled study were still used. A study by Larsson et al ⁵³ including 7 studies supported
456	a modest but statistically significant inverse association between dietary magnesium
457	intake and stroke. However, the sample size was quite small, and there was no useful
458	information on stroke subtypes (e.g., ischemic stroke, hemorrhagic stroke) in the main
459	analysis. In our opinion, a well-designed subgroup analysis is compulsory, and a
460	pooled stroke result restricted by potassium and calcium adjustment is recommended.
461	

Directions for future research

BMJ Open

Future studies are needed to address some remaining questions. At first, no significant

association was found for hemorrhagic stroke; however, a beneficial trend was

observed in the cumulative meta-analysis, which highlights the need for more updated

total stroke and ischemic stroke, which still existed in the dose-response pattern.

prospective studies and RCTs. Second, there is a key question regarding the optimal

time to start prevention and methods to screen severe complications. Cardiovascular events occur in more than 50% of patients with diabetes, and diabetic kidney disease occurs in 20-40%. Additionally, cardiovascular events increase the risk of death three-to fourfold compared with patients without such complications. A sustained period of intensive glucose control early in T2D has been confirmed to reduce complication rates⁷⁸. Most importantly, for the public, educators and policymakers, promoting magnesium-rich food consumption can translate into considerable benefit in preventing T2D and total stroke, especially for high-risk populations.

478 Limitations

This work has several limitations that deserve further discussion. First, this group-level meta-analysis is insufficient. Although strong inverse associations for T2D and total stroke were reported, individual-level studies having more detection power are required. Second, several variations cannot be totally understood; for example, we cannot exclude the possibility that other nutrients and/or dietary

components correlated with dietary magnesium may have been responsible, either partially or entirely, for the observed associations. Based on eligible studies, we could not quantify the impact of supplementary magnesium (not combined with dietary intake) on T2D and stroke incidence. The real effect of some dietary supplements on T2D or cardiovascular disease has proven very interesting to a number of medical experts, clinicians and nutrition educators. Third, FFQs/validated FFQs mostly used in primary studies could not characterize all the nutrients, which misclarified plausible associations. It was suggested that magnesium-specific food questionnaires and/or food records should be reasonably used for accurate magnesium intake estimation. Finally, additional RCT are needed, as observational studies might only reach one conclusion (i.e., magnesium intake is inversely associated with T2D incidence) and Ziez cannot prove causality.

Conclusion

Magnesium intake has a substantial inverse association with T2D and total stroke. Among these populations, magnesium consumption can be recommended as an optimization for T2D, total stroke and ischemic stroke primary prevention or early management. In particular, the greater the magnesium intake is, the greater the reduction in risk. As patients, physicians, policy makers and legislators debate these issues, such a cost-effective alternative is needed to inform policy decisions and aid in reforming nutritional health care worldwide.

3 4 5	506	Acknowledgements: The authors thank professor Yanhua Tang, MD (The second
6 7 8	507	affiliated hospital of Nanchang University) for her advice and professor Xiaoshu
9 10	508	Cheng, MD, PhD (The second affiliated hospital of Nanchang University) for his data
11 12 13	509	collection.
14 15 16	510	
17 18	511	Competing interests
19 20 21	512	None declared
22 23 24	513	
25 26	514	Provenance and peer review
27 28 29	515	Not commissioned; externally peer reviewed.
30 31	516	
32 33 34	517	Data availability statement
35 36 37	518	All data relevant to the study are included in the article or uploaded as supplementary
38 39	519	information.
40 41 42	520	
43 44	521	Patient consent for publication
45 46 47	522	Not required.
48 49 50	523	
51 52	524	Funding Sources
53 54 55	525	This study was supported by National Natural Science Foundation of China (NSFC),
56 57	526	number of grants (81560345), Natural Science Foundation of Jiangxi Province (Grant
58 59 60	527	number: 20161BAB215237).

528	
529	Author Contribution: Binghao Zhao had full access to all of the data in the
530	manuscript and takes responsibility for the integrity of the data and the accuracy of
531	the data analysis.
532	Concept and design: All authors.
533	Acquisition, analysis, or interpretation of data: All authors.
534	Drafting of the manuscript: Binghao Zhao and Wenxiong Zhang.
535	Critical revision of the manuscript for important intellectual content: Binghao Zhao,
536	Lianli Zeng, Jiani Zhao, Qian Wu, Fang Zou, Li Gan and Yifei Dong.
537	Statistical analysis: Binghao Zhao.
538	Supervision: Wenxiong Zhang and Yiping Wei
539	
540	Reference
541	1. Centers for Disease Control and Prevention. National Diabetes Statistics Report,
542	2017. Atlanta, GA: Centers for Disease Control and Prevention, US Department of
543	Health and Human Services; 2017.
544	2. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since
545	1980: a pooled analysis of 751 population-based studies with 4.4 million participants.
546	Lancet. 2016;387(10027):1513-1530.
547	3. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart
548	Disease and Stroke Statistics-2017 Update: A Report From the American Heart
549	Association. Circulation. 2017;135(10):e146-e603.
550	4. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett
551	DA, et al. Global and regional burden of stroke during 1990-2010: findings from the
552	Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245-254.

Page 27 of 74

1

BMJ Open

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57 58	
59	
60	

5. Barbagallo M, Dominguez LJ. Magnesium metabolism in type 2 diabetes 553 mellitus, metabolic syndrome and insulin resistance. Arch Biochem Biophys. 554 2007;458(1):40-47. 555 6. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria 556 selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 557 2018;359(6380):1151-1156. 558 Reffelmann T, Ittermann T, Dörr M, Völzke H, Reinthaler M, Petersmann A, et 559 7. al. Low serum magnesium concentrations predict cardiovascular and all-cause 560 mortality. Atherosclerosis. 2011;219(1):280-284. 561

562 8. Fadelu T, Zhang S, Niedzwiecki D, Ye X, Saltz LB, Mayer RJ, et al. Nut
563 Consumption and Survival in Patients With Stage III Colon Cancer: Results From
564 CALGB 89803 (Alliance). J Clin Oncol. 2018;36(11):1112-1120.

9. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker
K, et al. 2018 Guidelines for the Early Management of Patients With Acute Ischemic
Stroke: A Guideline for Healthcare Professionals From the American Heart
Association/American Stroke Association. Stroke. 2018;49(3):e46-e110.

569 10. Brignole M, Moya A, de Lange FJ, Deharo JC, Elliott PM, Fanciulli A, et al.
570 2018 ESC Guidelines for the diagnosis and management of syncope. Eur Heart J.
571 2018:ehy037.

572 11. Salmerón J, Ascherio A, Rimm EB, Colditz GA, Spiegelman D, Jenkins DJ, et al.
573 Dietary Fiber, Glycemic Load, and Risk of NIDDM in Men. Diabetes care.
574 1997;20(4):545-550.

Page 28 of 74

12. Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA. 1997;277(6):472-477. 13. Ascherio A, Rimm EB, Hernán MA, Giovannucci EL, Kawachi I, Stampfer MJ, et al. Intake of potassium, magnesium, calcium, and fiber and risk of stroke among US men. Circulation. 1998;98(12):1198-1204. 14. Iso H, Stampfer MJ, Manson JE, Rexrode K, Hennekens CH, Colditz GA, et al. Prospective study of calcium, potassium, and magnesium intake and risk of stroke in women. Stroke. 1999;30(9):1772-1779. 15. Kao WH, Folsom AR, Nieto FJ, Mo JP, Watson RL, Brancati FL. Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. Arch Intern Med. 1999;159(18):2151-2159. 16. Liu S, Manson JE, Stampfer MJ, Hu FB, Giovannucci E, Colditz GA, et al. A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. Am J Public Health. 2000;90(9):1409-1415. 17. Meyer KA, Kushi LH, Jacobs DR, Jr., Slavin J, Sellers TA, Folsom AR. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J ClinNutr. 2000;71(4):921-930. 18. Hodge AM, English DR, O'Dea K, Giles GG. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes care. 2004;27(11):2701-2706. 19. Lopez-Ridaura R, Willett WC, Rimm EB, Liu S, Stampfer MJ, Manson JE, et al. Magnesium intake and risk of type 2 diabetes in men and women. Diabetes care.

2	
3	
4	
5	
6	
7	
8 9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19 20	
20	
21	
21 22 23	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

597 2004;27(1):134-140.

Song Y, Manson JE, Buring JE, Liu S. Dietary magnesium intake in relation to
plasma insulin levels and risk of type 2 diabetes in women. Diabetes care.
2004;27(1):59-65.

601 21. Song Y, Manson JE, Cook NR, Albert CM, Buring JE, Liu S. Dietary magnesium
602 intake and risk of cardiovascular disease among women. Am J Cardiol.
603 2005;96(8):1135-1141.

604 22. Liu S, Choi HK, Ford E, Song Y, Klevak A, Buring JE, et al. A prospective study
605 of dairy intake and the risk of type 2 diabetes in women. Diabetes care.
606 2006;29(7):1579-1584.

- 607 23. Pereira MA, Parker ED, Folsom AR. Coffee consumption and risk of type 2
 608 diabetes mellitus: an 11-year prospective study of 28812 postmenopausal women.
 609 Arch Intern Med. 2006;166(12):1311-1316.
- 610 24. Pittas AG, Dawson-Hughes B, Li T, Van Dam RM, Willett WC, Manson JE, et
 - al. Vitamin D and calcium intake in relation to type 2 diabetes in women. Diabetescare. 2006;29(3):650-656.
 - 613 25. Van Dam RM, Hu FB, Rosenberg L, Krishnan S, Palmer JR. Dietary calcium and
 - 614 magnesium, major food sources, and risk of type 2 diabetes in U.S. black women.
 - 615 Diabetes care. 2006;29(10):2238-2243.
 - 616 26. Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H.
 - 617 Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and
- 618 meta-analysis. Arch Intern Med. 2007;167(9):956-965.

619 27. Larsson SC, Virtanen MJ, Mars M, Männistö S, Pietinen P, Albanes D, et al.
620 Magnesium, calcium, potassium, and sodium intakes and risk of stroke in male
621 smokers. Arch Intern Med. 2008;168(5):459-465.

622 28. Weng LC, Yeh WT, Bai CH, Chen HJ, Chuang SY, Chang HY, et al. Is ischemic
623 stroke risk related to folate status or other nutrients correlated with folate intake?
624 Stroke. 2008;39(12):3152-3158.

625 29. Kirii K, Mizoue T, Iso H, Takahashi Y, Kato M, Inoue M, et al. Calcium, vitamin
626 D and dairy intake in relation to type 2 diabetes risk in a Japanese cohort.
627 Diabetologia. 2009;52(12):2542-2550.

30. Ohira T, Peacock JM, Iso H, Chambless LE, Rosamond WD, Folsom AR. Serum
and Dietary Magnesium and Risk of Ischemic Stroke: The Atherosclerosis Risk in
Communities Study. Am J Epidemiol. 2009;169(12):1437-1444.

631 31. Villegas R, Gao YT, Dai Q, Yang G, Cai H, Li H, et al. Dietary calcium and
632 magnesium intakes and the risk of type 2 diabetes: the Shanghai Women's Health
633 Study. Am J ClinNutr. 2009;89(4):1059-1067.

634 32. Hopping BN, Erber E, Grandinetti A, Verheus M, Kolonel LN, Maskarinec G.
635 Dietary fiber, magnesium, and glycemic load alter risk of type 2 diabetes in a

637 33. Kim DJ, Xun P, Liu K, Loria C, Yokota K, Jacobs DR Jr, et al. Magnesium
638 Intake in Relation to Systemic Inflammation, Insulin Resistance, and the Incidence of

multiethnic cohort in hawaii. J Nutr. 2010;140(1):68-74.

639 Diabetes. Diabetes care. 2010;33(12):2604-2610.

640 34. Kirii K, Iso H, Date C, Fukui M, Tamakoshi A, JACC Study Group. Magnesium

Page 31 of 74

BMJ Open

	641	intake and risk of self-reported type 2 diabetes among Japanese. J Am Coll Nutr.
	642	2010;29(2):99-106.
I	643	35. Nanri A, Mizoue T, Noda M, Takahashi Y, Kirii K, Inoue M, et al. Magnesium
	644	intake and type II diabetes in Japanese men and women: the Japan Public Health
	645	Center-based Prospective Study. Eur J Clin Nutr. 2010;64(10):1244-1247.
	646	36. Larsson SC, Virtamo J, Wolk A. Potassium, calcium, and magnesium intakes and
1	647	risk of stroke in women. Am J Epidemiol. 2011;174(1):35-43.
	648	37. Weng LC, Lee NJ, Yeh WT, Ho LT, Pan WH. Lower intake of magnesium and
	649	dietary fiber increases the incidence of type 2 diabetes in Taiwanese. J Formos Med
	650	Assoc. 2012;111(11):651-659.
1	651	38. Zhang W, Iso H, Ohira T, Date C, Tamakoshi A, JACC Study Group.
	652	Associations of dietary magnesium intake with mortality from cardiovascular disease:
	653	the JACC study. Atherosclerosis. 2012;221(2):587-595.
	654	39. Hata A, Doi Y, NinomiyaT, Mukai N, Hirakawa Y, Hata J, et al. Magnesium
I	655	intake decreases Type 2 diabetes risk through the improvement of insulin resistance
	656	and inflammation: the Hisayama Study. Diabet Med. 2013;30(12):1487-1494.
1	657	40. Lin PH, Yeh WT, Svetkey LP, Chuang SY, Chang YC, Wang C, et al. Dietary
1	658	intakes consistent with the DASH dietary pattern reduce blood pressure increase with
	659	age and risk for stroke in a Chinese population. Asia Pac J Clin Nutr.
	660	2013;22(3):482-491.
1	661	41. Oba S, Nanri A, Kurotani K, Goto A, Kato M, Mizoue T, et al. Dietary glycemic
1	662	index, glycemic load and incidence of type 2 diabetes in Japanese men and women:

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

1 2

the Japan Public Health Center-based Prospective Study. Nutr J. 2013;12(1):165.

42. Sluijs I, Czernichow S, Beulens JWJ. Dietary electrolytes and risk of ischemic
stroke. Eur J Prev Cardiol. 2013;20(1):S76.

43. Hruby A, Meigs JB, O'Donnell CJ, Jacques PF, Mckeown NM. Higher
Magnesium Intake Reduces Risk of Impaired Glucose and Insulin Metabolism and
Progression From Prediabetes to Diabetes in Middle-Aged Americans. Am J Dis
Child. 2014;37(2):419-427.

44. Sluijs I, Czernichow S, Beulens JW, Boer JM, van der Schouw YT, Verschuren
WM, et al. Intakes of potassium, magnesium, and calcium and risk of stroke. Stroke.
2014;45(4):1148-1150.

45. Adebamowo SN, Spiegelman D, Flint AJ, Willett WC, Rexrode KM. Intakes of
magnesium, potassium, and calcium and the risk of stroke among men. Int J Stroke.
2015;10(7):1093-1100.

46. Adebamowo SN, Spiegelman D, Willett WC, Rexrode KM. Association between
intakes of magnesium, potassium, and calcium and risk of stroke: 2 cohorts of US
women and updated meta-analyses. Am J ClinNutr. 2015;101(6):1269-1277.

47. Bain LK, Myint PK, Jennings A, Lentjes MA, Luben RN, Khaw KT, et al. The
relationship between dietary magnesium intake, stroke and its major risk factors,
blood pressure and cholesterol, in the EPIC-Norfolk cohort. Int J Cardiol.
2015;196:108-114.

683 48. Huang Y-C, Wahlqvist ML, Kao M-D, Wang J-L, Lee M-S. Optimal Dietary and

684 Plasma Magnesium Statuses Depend on Dietary Quality for a Reduction in the Risk of

Page 33 of 74

1

BMJ Open

2	
3	
4	
5	
ر ح	
3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 25 26 27 28 9 30 23 24 25 26 27 28 9 30 23 23 33 33 33 35 36 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
31	
24	
35	
36	
37	
38	
39	
40	
40 41	
41	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

685	All-Cause Mortality in Older Adults. Nutrients. 2015;7(7):5664-5683.
686	49. Hruby A, Guasch-Ferré M, Bhupathiraju SN, Manson JE, Willett WC, McKeown
687	NM, et al. Magnesium Intake, Quality of Carbohydrates, and Risk of Type 2 Diabetes:
688	Results From Three U.S. Cohorts. Diabetes care. 2017;40(12):1695-1702.
689	50. Kokubo Y, Saito I, Iso H, Yamagishi K, Yatsuya H, Ishihara J, et al. Dietary
690	magnesium intake and risk of incident coronary heart disease in men: A prospective
691	cohort study. Clin Nutr. 2018;37(5):1602-1608.
692	51. Konishi K, Wada K, Tamura T, Tsuji M, Kawachi T, Nagata C. Dietary
693	magnesium intake and the risk of diabetes in the Japanese community: results from
694	the Takayama study. Eur J Nutr. 2017;56(2):767-774.
695	52. Dong JY, Xun P, He K, Qin LQ. Magnesium intake and risk of type 2 diabetes:
696	meta-analysis of prospective cohort studies. Diabetes care. 2011;34(9):2116-2122.
697	53. Larsson SC, Orsini N, Wolk A. Dietary magnesium intake and risk of stroke: a
698	meta-analysis of prospective studies. Am J Clin Nutr. 2012;95(2):362-366.
699	54. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al.
700	Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter
701	clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke.
702	1993;24(1):35-41.
703	55. Rannikmäe K, Woodfield R, Anderson CS, Charidimou A, Chiewvit P,
704	Greenberg SM, et al. Reliability of intracerebral hemorrhage classification systems: A
705	systematic review. Int J Stroke. 2016;11(6):626-636.

56. GA Wells, B Shea, D O'Connell, J Peterson, V Welch, M Losos. The Newcastle-

3
4
5
6
0
/
8
9
10
11
12
13
14
15
10
16
17
18
19
20
21
22
23
24
24
25
26
27
28
29
30
31
32
33 24
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
52

60

1 2

707 Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in
708 Meta-Analysis. Appl Eng Agric. 2014;18(6): 727-734.

57. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in
meta-analyses. BMJ. 2003;327(7414):557-560.

58. Greenland S, Longnecker MP. Methods for trend estimation from summarized
dose-response data, with applications to meta-analysis. Am J Epidemiol.
1992;135(11):1301-1309.

59. Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation
of summarized dose–response data. Stata J. 2006;6(6):40-57.

60. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for
publication bias. Biometrics. 1994;50(4):1088-1101.

61. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected

719 by a simple, graphical test. BMJ. 1997;315(7109):629-634.

62. Manson JE, Bassuk SS. Vitamin and mineral supplements: What clinicians need

721 to know. JAMA. 2018;319(9):859-860.

63. Papanicolas I, Woskie LR, Jha AK. Health Care Spending in the United States and
Other High-Income Countries. JAMA. 2018;319(10):1024-1039.

724 64. Group DPP, Temprosa M. Long-term effects of lifestyle intervention or

725 metformin on diabetes development and microvascular complications over 15-year

726 follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes

727 Endocrinol. 2015;3(11):866-875.

728 65. Maruthappu M, Sood H, Keogh B. Radically upgrading diabetes prevention in

Page 35 of 74

BMJ Open

2		
3	720	Encland Longer Dishetes Enderring 2015,2(5),212,212
4 5	729	England. Lancet Diabetes Endocrinol. 2015;3(5):312-313.
6		
7	730	66. American Diabetes Association. Prevention or Delay of Type 2 Diabetes:
8		
9	731	Standards of Medical Care in Diabetes-2018. Diabetes care. 2018;41(1):S51-S54.
10 11		
12	732	67. Guerrero-Romero F, Simental-Mendía LE, Hernández-Ronquillo G,
13	-	
14	733	Rodriguez-Morán M. Oral magnesium supplementation improves glycaemic status in
15	/33	Rounguez-woran w. Oran magnesium supprementation improves grycaenne status in
16		
17 18	734	subjects with prediabetes and hypomagnesaemia: A double-blind placebo-controlled
18		
20	735	randomized trial. Diabetes Metab. 2015;41(3):202-207.
21		
22	736	68. Ramadass S, Basu S, Srinivasan AR. SERUM magnesium levels as an indicator
23		, , , , , , , , , , , , , , , , , , ,
24	737	of status of Diabetes Mellitus type 2. Diabetes Metab Syndr. 2015;9(1):42-45.
25 26	131	of status of Diabetes Mentus type 2. Diabetes Metab Synar. 2015,7(1):42-45.
27		
28	738	69. Eimerl S, Schramm M. The Quantity of Calcium that Appears to Induce Neuronal
29		
30	739	Death. J Neurochem. 2010;62(3):1223-1226.
31		
32 33	740	70. Wm VDB, Algra A, Van KF, et al. Magnesium sulfate in aneurysmal
34		
35	741	subarachnoid hemorrhage: a randomized controlled trial. Stroke.
36	/ 41	suburuelinoita hemorriage. a fundomized controlled that. Stroke.
37	740	2005-2((5)-1011-1015
38	742	2005;36(5):1011-1015.
39 40		
41	743	71. Goyal N, Tsivgoulis G, Malhotra K, Houck AL, Khorchid YM, Pandhi A, et al.
42		
43	744	Serum Magnesium Levels and Outcomes in Patients With Acute Spontaneous
44		
45	745	Intracerebral Hemorrhage. J Am Heart Assoc. 2018;7(8): e008698.
46 47	, 10	
48	740	72. Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in
49	746	72. Which we, nowe or, Kushi LH. Aujustinent for total energy intake in
50		
51	747	epidemiologic studies. Am J ClinNutr. 1997;65(4):1220S-1228S; discussion
52		
53 54	748	1229S-1231S.
55		
56	749	73. Stone MS, Martyn L, Weaver CM. Potassium Intake, Bioavailability,
57		
58	750	Hypertension, and Glucose Control. Nutrients. 2016;8(7): E444.
59 60	/ 50	$1 \mathbf{y} \mathbf{p} \mathbf{r} \mathbf{c} \mathbf{n} \mathbf{s} \mathbf{r} \mathbf{n} \mathbf{n} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{n} \mathbf{n} \mathbf{c} \mathbf{n} \mathbf{n} \mathbf{c} \mathbf{n} \mathbf{n} \mathbf{c} \mathbf{n}$

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22 23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32 33	
34 35	
36	
37	
38	
39	
40	
41	
42	
43	
43 44	
44	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

751 74. Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium

in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab.

753 2007;92(6): 2017-2029.

754 75. Larsson SC, Orsini N, Wolk A. Dietary calcium intake and risk of stroke: a
755 dose-response meta-analysis. Am J Clin Nutr.2013;97(5): 951-957.

756 76. Fang X, Wang K, Han D, He X, Wei J, Zhao L, et al. Dietary magnesium intake
757 and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: a
758 dose-response meta-analysis of prospective cohort studies. BMC Med.
759 2016;14(1):210.

760 77. Fang X, Han H, Li M, Liang C, Fan Z, Aaseth J, et al. Dose-Response
761 Relationship between Dietary Magnesium Intake and Risk of Type 2 Diabetes
762 Mellitus: A Systematic Review and Meta-Regression Analysis of Prospective Cohort
763 Studies. Nutrients. 2016;8(11):739.

764 78. Riddle MC, Ambrosius WT, Brillon DJ, Buse JB, Byington RP, Cohen RM, et al.
765 Epidemiologic Relationships Between A1C and All-Cause Mortality During a Median
766 3.4-Year Follow-up of Glycemic Treatment in the ACCORD Trial. Diabetes care.
767 2010;33(5):983-990.

768	Table 1 Subgroup Analysis relating to Magnesium Intake and Type 2Diabetes (T2D)
-----	---

769

7 <u>6</u> 9 3 Crosse			T2D			
Group	No. of studies	RR (95% CI)	P_{ES}	$P_{heterogeneity}$	I ² (%)	P interaction
Total	26	0.78 (0.75-0.81)	< 0.001	0.021	35.6	NA
Participants region	26					0.905
8 North America	13	0.77 (0.73-0.82)	< 0.001	0.048	39.5	
10Europe	0	NA	NA	NA	NA	
11Asia	9	0.78 (0.71-0.87)	< 0.001	0.165	21.7	
¹² Multiple nations 13	4	0.79 (0.71-0.88)	< 0.001	0.048	58.3	
Sex ^a	34					0.284
15Male	9	0.81(0.76-0.87)	< 0.001	0.337	11.7	
16 _{Female}	17	0.77 (0.73-0.81)	< 0.001	0.055	37.5	
17 B8th ^b	8	0.70 (0.57-0.85)	< 0.001	0.067	45.3	
B3 /II (kg/m ²)	26					0.716
20 ≥ 25	12	0.75 (0.69-0.81)	< 0.001	0.135	31	
21 ₂₅ 22	11	0.78 (0.74-0.83)	< 0.001	0.022	45.4	
22 23Unknown	3	0.81 (0.76-0.86)	< 0.001	0.586	0	
£ 4 llow-up duration (y)	26					0.150
$25 \ge 10$	12	0.80 (0.76-0.84)	< 0.001	0.047	38.8	
$25 \ge 10$ $26 \le 270$	14	0.74 (0.68-0.80)	< 0.001	0.164	25.2	
D setary assessment	26					0.281
²⁹ FFQ/validated FFQ	15	0.77 (0.73-0.82)	< 0.001	0.159	23.7	
30 31SFFQ/validated SFFQ	9	0.79 (0.74-0.84)	< 0.001	0.017	52.5	
31 ^{orr} 4, and and orr 4	2	0.55 (0.36-0.83)	0.005	0.826	0	
Magnesium intake type ^c	28				-	0.335
³⁴ Total magnesium intake ^d	15	0.79 (0.75-0.84)	< 0.001	0.035	39.8	0.000
35 36Dietary magnesium intake	13	0.77 (0.72-0.82)	< 0.001	0.166	25.0	
Total energy adjustment	26	0.77 (0.72 0.02)	.0.001	0.100	23.0	0.396
38 1 ^{es}	17	0.79 (0.74-0.84)	< 0.001	0.027	40.4	0.570
39 20	9	0.76 (0.72-0.81)	< 0.001	0.225	21.6	
40' Difference between top and	,	0.70 (0.72-0.01)	× 0.001	0.225	21.0	
Bottom intake (mg/day) ^e	27					0.671
$\begin{array}{c} 43\\ 44 \\ 44 \\ \end{array} \ge 140 \end{array}$	13	0.78 (0.74-0.83)	< 0.001	0.020	45.3	0.071
	13	0.77 (0.72-0.82)	< 0.001	0.209	43.3 21.0	
শ্ব5 ¹⁴⁰ Eurrent CV events status ^f	26	0.77 (0.72-0.82)	< 0.001	0.209	21.0	0.536
		0.70 (0.74.0.92)	< 0.001	0.040	27.0	0.330
47 _{Yes} 48	13	0.79 (0.74-0.83)	< 0.001	0.049	37.9	
49 ^{Unknown}	13	0.77 (0.71-0.82)	< 0.001	0.082	35.1	0.625
Bl ypercholesterolemia status ^g 51 _{Yes}	26	0.70 (0.72, 0.95)	< 0.001	0.021	575	0.625
51 Yes 52 53 ^{Unknown}	5	0.79 (0.73-0.85)	< 0.001	0.021	57.5	
	21	0.77 (0.73-0.82)	< 0.001	0.096	27.3	0.1(0)
F4 mily diabetes history	26		. 0. 001	0.001	41.0	0.168
55 _{Yes} 56 _{L Interneum}	17	0.76 (0.72-0.80)	< 0.001	0.021	41.8	
50 57 750 Abbreviation: T2D, type 2	9	0.81 (0.76-0.87)	< 0.001	0.258	14.3	

 750
 Abbreviation: T2D, type 2 diabetes; BMI, body mass index; FFQ, food frequencyquestionnaire; SFFQ, semi-quantitative food

752 frequent questionnaire; RR, relative risk; ES, effect size; CV events, cardiovascular events.

⁶⁰/₇₇₂ ^a, Male and female of T2D outcome were treated as independent cohorts within eight studies;

^b, Male and female participants were in independent cohorts;

1 7<u>7</u>5 ^c, Two studies reported total magnesium and dietary magnesium intake outcome;

^d, Total magnesium intake (milligrams per day) included the total amount of magnesium from both food (diet) and supplement;

36 ^e, Subtract the lowest category intake from the highest. Oba el al (M) was in < 140 group, while Oba el al (F) was in \geq 140 group;

47 5 778 7**7**9 f, Grouped by whether participants with or without CV events. CV events in this part include coronary heart disease, heart failure, stroke, atrial fibrillation, and self-reported heart disease etc;

tor peer teriew only

^g, Grouped by whether participants with or without hypercholesterolemia. Hypercholesterolemia in this part means cholesterol concentration $\geq 240 \text{ mg/dL}$.

Table 2. Subgroup Analyses Relating to Magnesium Intake and Total Stroke, Ischemic Stroke, Hemorrhagic stroke.

		Total Stro	oke			Ischemic S	Stroke			Hemorrhagi	c stroke	
Group	No.of studies	RR (95% CI)	I ² (%)	Pinteration	No.of studies	RR (95% CI)	I ² (%)	Pinteration	No.of studies	RR (95% CI)	I ² (%)	$P_{interation}$
Total	15	0.89 (0.83-0.94)	0.00	NA	12	0.88 (0.81-0.95)	16.90	NA	8	0.93 (0.82-1.06)	0.461	NA
Participants region	15			0.733	12			0.584	8			0.873
North America	6	0.87 (0.79-0.96)	0.00		5	0.85 (0.76-0.95)	0.00		4	0.90 (0.71-1.15)	0.00	
Europe	5	0.87 (0.77-0.98)	14.80		3	0.86 (0.78-0.95)	0.00		2	0.99 (0.79-1.25)	0.00	
Asia	4	0.90 (0.78-1.05)	32.80		4	0.93 (0.75-1.14)	45.50		2	0.89 (0.66-1.21)	53.40	
Multiple nations	0	NA	NA		0	NA	NA		0	NA	NA	
Sex ^a	18			0.031	14			0.134	10			0.425
Male	6	0.95(0.86-1.05)	0.00		4	0.99 (0.82-1.19)	52.80		4	0.97 (0.75-1.26)	35.50	
Female	7	0.91 (0.83-0.99)	0.00		6	0.89 (0.79-1.00)	0.00		6	0.88 (0.74-1.06)	0.00	
Both ^b	5	0.74 (0.64-0.85)	0.00		4	0.76 (0.65-0.88)	0.00		0	NA	NA	
Mean BMI (kg/m ²)	15	(0.001 0.000)		0.606	12			0.631	8			0.418
≥ 25	8	0.89 (0.82-0.96)	0.00		6	0.88 (0.81-0.96)	0.00		5	0.97 (0.81-1.17)	0.00	
< 25	5	0.89 (0.78-1.01)	30.00		5	0.87 (0.73-1.03)	44.00		3	0.88 (0.69-1.12)	39.30	
Unknown	2	0.80 (0.63-1.02)	0.00		1	0.76 (0.57-1.07)	NA		0	NA	NA	
Follow-up duration (y)	15			0.798	12			0.811	8			0.808
≥12	11	0.88 (0.82-0.94)	5.30		10	0.87 (0.80-0.95)	19.10		7	0.93 (0.81-1.08)	7.70	
< 12	4	0.90 (0.77-1.05)	0.00		2	0.86 (0.62-1.20)	48.40		1	0.88 (0.57-1.36)	NA	
Dietary assessment	15	(0117 0100)		0.578	12	(NA	8			NA
FFQ/validated FFQ	14	0.89 (0.83-0.95)	3.80		12	0.88 (0.81-0.95)	16.90		8	0.93 (0.82-1.06)	0.00	
SFFQ/validated SFFQ	0	NA	NA		0	NA	NA		0	NA	NA	
Other	1	0.81 (0.61-1.09)	0.00		0	NA	NA		0	NA	NA	
Magnesium intake type	15			0.865	12			0.831	8			0.831
Total magnesium intake ^c	8	0.89 (0.82-0.96)	0.00		6	0.87 (0.80-0.94)	0.00		5	0.94 (0.79-1.12)	0.00	
Dietary magnesium		0.88	0.44			0.89	35.40			0.91 (0.70-1.18)	39.40	
						38						

38

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

44 45 46

	intake Total energy adjustment	7 15	(0.81-0.96)		0.888	6 12	(0.77-1.03)		0.689	3 8			0.538
	Yes No Difference between top and bottom intake	5 10	0.87 (0.77-0.99) 0.89 (0.83-0.96)	27.00 0.00		2 10	0.86 (0.78-0.94) 0.88 (0.79-0.99)	0.00 26.60		2 6	0.93 (0.82-1.06) 0.90 (0.76-1.07)	0.00 11.40	
	(mg/day) ^d	15			0.107	12			0.180	8			0244
0	≥ 180	7	0.83 (0.76-0.91)	0.00		5	0.83 (0.76-0.91)	0.00		6	1.07 (0.83-1.37)	0.00	
1 2	< 180	8	0.93 (0.86-1.00)	0.00		7	0.92 (0.81-1.03)	26.20		2	0.89 (0.76-1.03)	0.00	
3	Current CV events status ^e	15	× ,		0.074	12			0.393	8			NA
4 5	Yes	12	0.90 (0.85-0.96)	0.00		11	0.88 (0.81-0.96)	18.20		8	0.93 (0.82-1.06)	0.00	
6 7	Unknown	3	0.75 (0.63-0.90)	0.00		1	0.76 (0.57-1.01)	NA		0	NA	NA	
8 9	Hypercholesterolemia status ^f	15			0.480	12			0.565	8			0.651
0	Yes	7	0.91 (0.83-0.99)	0.00		6	0.90 (0.80-1.01)	6.90		5	0.90 (0.76-1.08)	0.00	
1 2	Unknown	8	0.86 (0.79-0.95)	13.10		6	0.86 (0.77-0.97)	32.40		3	0.94 (0.72-1.22)	40.30	
3 4	Current diabetes status ^g	15	. ,		0.039	12			0.159	8			NA
5 6	Yes	10	0.91 (0.82-0.97)	0.00		10	0.89 (0.82-0.97)	13.50		8	0.93 (0.82-1.06)	0.00	0.00
7	Unknown	5	0.75 (0.64-0.88)	0.00		2	0.72 (0.56-0.92)	0.00	06	0	NA	NA	NA
8					: GEEO		6 1.6			1			

Abbreviation: BMI, body mass index; FFQ, food frequency questionnaire; SFFQ, semi-quantitative food frequency questionnaire; CV events, cardiovascular events; RR, relative risk; NA, not available.

^a, several studies reported stroke outcome of male and female participants in different cohorts;

^b, male and female participants were in the same cohort;

c, total magnesium intake (milligrams per day) included the total amount of magnesium from both food (diet) and supplements;

^d, subtract the lowest category intake from the highest;

 e, grouped by whether participants with or without CV events. CV events in this part include coronary heart disease, heart failure, atrial fibrillation, and self-reported heart disease etc., stroke is not included;

f, grouped by whether participants with or without hypercholesterolemia. Hypercholesterolemia in this part means cholesterol concentration \geq 240 mg/dL;

^g, grouped by whether participants with or without diabetes.

783 Figure Legends

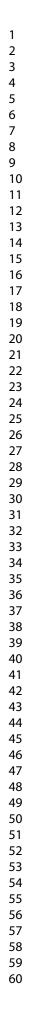
- 784 Figure 1. Flow Chart for the Literature Search and Screening Process
- **Figure 2.** Forest Plots for the Risk of Type 2 Diabetes (T2D) for Magnesium Intake
- 786 (A) and for < 50 mg/day (B), $\ge 50 \text{ and} < 100 \text{ mg/day}$ (C), $\ge 100 \text{ and} < 150 \text{ mg/day}$ (D)
- and \geq 150 mg/day Increments (E).
- **Figure 3.** Two-Stage Dose-Response Effect on the Relationships between Magnesium
- 789 Intake and Type 2 Diabetes (T2D) (A), Total Stroke (B), Ischemic Stroke (C) and

Topper terror of the second

790 Hemorrhagic Stroke (D).

791 Supplementary material online:

- 792 Table S1. PRISMA 2009 Checklist
- **Table S2**. MOOSE Checklist
- **Table S3**. Complete Search Terms for PubMed
- **Table S4.** Summary of Baseline Characteristics of the Included Studies


796 Table S5. Methodological Quality Assessments of the Included Studies with797 Newcastle-Ottawa Scales

- **Figure S1.** Funnel Plots for Magnesium Intake and Type 2 Diabetes (A), Ischemic
- 799 Stroke (B) and Hemorrhagic Stroke (C).
- **Figure S2.** Forest Plots for the Risk of Total Stroke for Magnesium Intake (A) and for
- 801 < 50 mg/day (B), ≥ 50 and < 100 mg/day (C), ≥100 and <150 mg/day (D) and ≥ 150
 802 mg/day Increments (E).
- - **Figure S3.** Forest Plots for the Risk of Ischemic Stroke for Magnesium Intake (A) and
 - for < 50 mg/day (B), $\ge 50 \text{ and} < 100 \text{ mg/day}$ (C), $\ge 100 \text{ and} < 150 \text{ mg/day}$ (D) and \ge
- 805 150 mg/day Increments (E).
- **Figure S4.** Forest Plots for the Risk of Hemorrhagic Stroke for Magnesium Intake (A)
- and for < 50 mg/day (B), $\ge 50 \text{ and} < 100 \text{ mg/day}$ (C), $\ge 100 \text{ and} < 150 \text{ mg/day}$ (D) and
- \geq 150 mg/day Increments (E).
 - 809 Figure S5. Forest Plots for the Risk of Subarachnoid Hemorrhage for Magnesium
- 810 Intake (A) and for < 50 mg/day (B), $\ge 50 \text{ and} < 100 \text{ mg/day}$ (C), $\ge 100 \text{ and} < 150 \text{ mg/day}$
- 811 mg/day (D) and ≥ 150 mg/day Increments (E)
- 812 Figure S6. Forest Plots for the Risk of Intracerebral Hemorrhage for Magnesium
- 813 Intake (A) and for < 50 mg/day (B), $\ge 50 \text{ and} < 100 \text{ mg/day}$ (C), $\ge 100 \text{ and} < 150$
- 814 mg/day (D) and ≥ 150 mg/day Increments (E)
 - **Figure S7.** Meta-Regression of the Relative Risk for Type 2 Diabetes According to

Page 43 of 74

BMJ Open

1 2		
2 3 4	816	Body Mass Index (A, $P = 0.716$), Sex (B, $P = 0.284$), Participant Region (C, $P =$
5 6	817	0.904) and Dietary Assessment (D, $P = 0.521$).
7 8 9	818	Figure S8. Meta-Regression of the Relative Risk for Total Stroke According to Body
9 10 11	819	Mass Index (A, $P = 0.606$), Sex (B, $P = 0.112$), Participant region (C, $P = 0.891$) and
12 13	820	Dietary Assessment (D, $P = 0.891$).
14 15	821	Figure S9. Meta-Regression of the Relative Risk for Ischemic Stroke According to
16 17 18	822	Body Mass Index (A, $P = 0.631$), Sex (B, $P = 0.134$), Participant Region (C, $P =$
19 20	823	0.584) and Dietary Assessment (D, no regression <i>P</i> -value due to limited data).
21 22	824	Figure S10. Meta-Regression of the Relative Risk for Hemorrhagic Stroke According
23 24 25	825	to Body Mass Index (A, $P = 0.418$), Sex (B, $P = 0.872$), Participant Region (C, $P =$
26 27	826	0.872) and Dietary Assessment (D, no regression P-value due to limited data).
28 29	827	Figure S11. Cumulative Meta-Analysis Related to Magnesium Intake and Type 2
30 31 32	828	Diabetes (T2D)
33 34	829	Figure S12. Cumulative Meta-Analysis Related to Magnesium Intake and Total
35 36	830	Stroke
37 38	831	Figure S13. Cumulative Meta-Analysis Related to Magnesium Intake and Ischemic
39 40 41	832	Stroke
42 43	833	Figure S14. Cumulative Meta-Analysis Related to Magnesium Intake and
44 45	834	Hemorrhagic Stroke
46 47 48	835	Figure S15. Dose-Response Effect on the Relationships between Magnesium Intake
49 50	836	and Subarachnoid Hemorrhage (A) and Intracerebral Hemorrhage (B).
51 52		
53 54 55		
55 56 57		
57 58 59		
60		

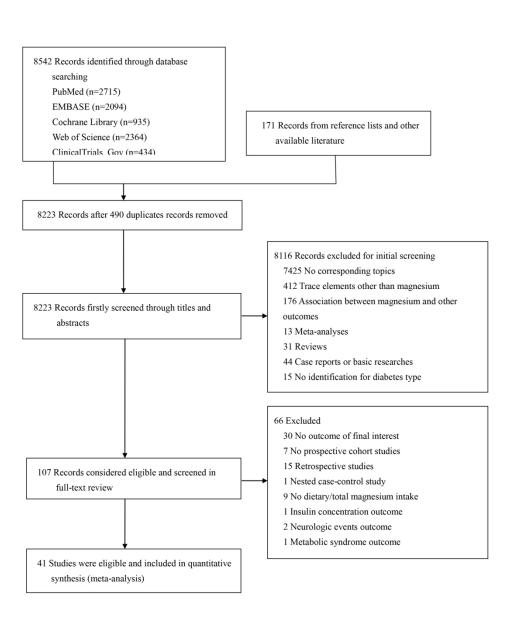


Figure 1. Flow Chart for the Literature Search and Screening Process

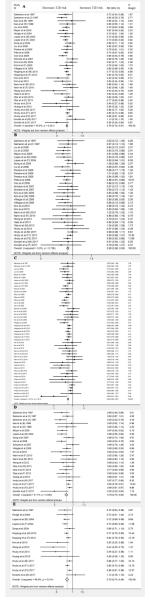


Figure 2. Forest Plots for the Risk of Type 2 Diabetes (T2D) for Magnesium Intake (A) and for < 50 mg/day (B), \geq 50 and < 100 mg/day (C), \geq 100 and <150 mg/day (D) and \geq 150 mg/day Increments (E).

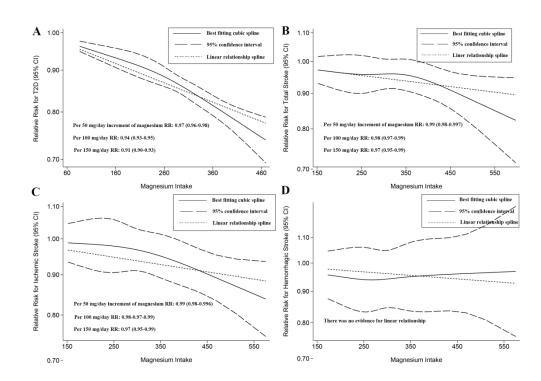


Figure 3. Two-Stage Dose-Response Effect on the Relationships between Magnesium Intake and Type 2 Diabetes (T2D) (A), Total Stroke (B), Ischemic Stroke (C) and Hemorrhagic Stroke (D).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table S1 PRISMA 2009 Checklist

Section/topic	#	Checklist item	Repor on pag #	
TITLE	•			1
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1	
ABSTRACT	•			2-3
2 Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3	
INTRODUCTION				4-5
'Rationale	3	Describe the rationale for the review in the context of what is already known.	4	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4-5	
METHODS				5-9
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5-6	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5-6	
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5-6	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-6	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6	
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6	
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each metavanalysis- http://bmjopen.bmj.com/site/about/guidelines.xhtml	6-10	

- 47

Table S1 PRISMA 2009 Checklist

Page 1 of 2

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	8-9
RESULTS	•		9-16
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	9
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	9-10
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	9-10
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10-16
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	10-16
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	10-16
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	10-16
DISCUSSION			16-22
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	16-22
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	21-22
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	22
FUNDING	<u> </u>		23
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	23

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. 42 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

Page 2 of 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table S2. MOOSE Checklist

MOOSE Checklist for Meta-analyses of Observational Studies

Item No	Recommendation	Reported on Page No
Reporting	of background should include	L
1	Problem definition	4
2	Hypothesis statement	4
3	Description of study outcome(s)	5
4	Type of exposure or intervention used	5
5	Type of study designs used	5
6	Study population	4-5
Reporting	of search strategy should include	I
7	Qualifications of searchers (eg, librarians and investigators)	6-7
8	Search strategy, including time period included in the synthesis and key words	5-6
9	Effort to include all available studies, including contact with authors	5-6
10	Databases and registries searched	5-6
11	Search software used, name and version, including special features used (eg, explosion)	5-6
12	Use of hand searching (eg, reference lists of obtained articles)	5-6
13	List of citations located and those excluded, including justification	6
14	Method of addressing articles published in languages other than English	6
15	Method of handling abstracts and unpublished studies	6
16	Description of any contact with authors	6
Reporting	of methods should include	
17	Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	7-8
18	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	6-7
19	Documentation of how data were classified and coded (eg, multiple raters, blinding and interrater reliability)	6-7
20	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	7-9
21	Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results	7-9
22	Assessment of heterogeneity	7-9
23	Description of statistical methods (eg, complete description of fixed	7-9

or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated	
Provision of appropriate tables and graphics	9
of results should include	
Graphic summarizing individual study estimates and overall estimate	10-14
Table giving descriptive information for each study included	10-11, Table S4
Results of sensitivity testing (eg, subgroup analysis)	14
Indication of statistical uncertainty of findings	16
	account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated Provision of appropriate tables and graphics of results should include Graphic summarizing individual study estimates and overall estimate Table giving descriptive information for each study included Results of sensitivity testing (eg, subgroup analysis)

27Results of sensitivity testing (eg, subgroup analysis)1428Indication of statistical uncertainty of findings1610Reported on Page NoReported on Page NoReporting of discussion should include11-1429Quantitative assessment of bias (eg, publication bias)11-1430Justification for exclusion (eg, exclusion of non-English language citations)1031Assessment of quality of included studies11, Table S5Reporting of conclusions should include11, Table S532Consideration of alternative explanations for observed results16-2233Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)16, 23		BMJ Open							
account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated 24 Provision of appropriate tables and graphics 9 Reporting of results should include 10-14 25 Graphic summarizing individual study estimates and overall estimate 10-14 26 Table giving descriptive information for each study included 10-11, Table S4 27 Results of sensitivity testing (eg, subgroup analysis) 14 28 Indication of statistical uncertainty of findings 16 tem No Reported on Page No 29 Quantitative assessment of bias (eg, publication bias) 11-14 30 Justification for exclusion (eg, exclusion of non-English language citations) 10 31 Assessment of quality of included studies \$5 8 Consideration of alternative explanations for observed results 16-22 33 Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review) 16, 23 34 Guidelines for future research 17-20, 22 35 Disclosure of funding source None									
account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated 24 Provision of appropriate tables and graphics 9 Reporting of results should include 10-14 25 Graphic summarizing individual study estimates and overall estimate 10-14 26 Table giving descriptive information for each study included 10-11, Table S4 27 Results of sensitivity testing (eg, subgroup analysis) 14 28 Indication of statistical uncertainty of findings 16 tem No Reported on Page No 29 Quantitative assessment of bias (eg, publication bias) 11-14 30 Justification for exclusion (eg, exclusion of non-English language citations) 10 31 Assessment of quality of included studies \$5 8 Consideration of alternative explanations for observed results 16-22 33 Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review) 16, 23 34 Guidelines for future research 17-20, 22 35 Disclosure of funding source None									
account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated 24 Provision of appropriate tables and graphics 9 Reporting of results should include 10-14 25 Graphic summarizing individual study estimates and overall estimate 10-14 26 Table giving descriptive information for each study included 10-11, Table S4 27 Results of sensitivity testing (eg, subgroup analysis) 14 28 Indication of statistical uncertainty of findings 16 tem No Reported on Page No 29 Quantitative assessment of bias (eg, publication bias) 11-14 30 Justification for exclusion (eg, exclusion of non-English language citations) 10 31 Assessment of quality of included studies \$5 8 Consideration of alternative explanations for observed results 16-22 33 Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review) 16, 23 34 Guidelines for future research 17-20, 22 35 Disclosure of funding source None		or random effects models, justification of whether the chosen models							
cumulative meta-analysis) in sufficient detail to be replicated 24 Provision of appropriate tables and graphics 9 Reporting of results should include 10-14 25 Graphic summarizing individual study estimates and overall estimate 10-14 26 Table giving descriptive information for each study included 10-11, Table S4 27 Results of sensitivity testing (eg, subgroup analysis) 14 28 Indication of statistical uncertainty of findings 16 tem No Recommendation Reported on Page No 29 Quantitative assessment of bias (eg, publication bias) 11-14 30 Justification for exclusion (eg, exclusion of non-English language citations) 10 31 Assessment of quality of included studies \$5 Reporting of conclusions should include 22 Consideration of alternative explanations for observed results 16-22 33 Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review) 16, 23 34 Guidelines for future research 35 Disclosure of funding source None									
24 Provision of appropriate tables and graphics 9 Reporting of results should include 10-14 25 Graphic summarizing individual study estimates and overall estimate 10-14 26 Table giving descriptive information for each study included 10-11, Table S4 27 Results of sensitivity testing (eg, subgroup analysis) 14 28 Indication of statistical uncertainty of findings 16 Reported on Page No Reporting of discussion should include 29 Quantitative assessment of bias (eg, publication bias) 11-14 30 Justification for exclusion (eg, exclusion of non-English language citations) 10 31 Assessment of quality of included studies 55 Reporting of conclusions should include 22 Consideration of alternative explanations for observed results 16-22 33 Generalization of alternative explanations for observed results 16-22 33 Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review) 16, 23 34 Guidelines for future research 17-20, 22 35 35 Disclosure of funding source None <td></td> <td></td> <td></td>									
Reporting of results should include 25 Graphic summarizing individual study estimates and overall estimate 10-14 26 Table giving descriptive information for each study included 10-11, Table S4 27 Results of sensitivity testing (eg, subgroup analysis) 14 28 Indication of statistical uncertainty of findings 16 tem No Reported on Page No Reported on Page No 29 Quantitative assessment of bias (eg, publication bias) 11-14 30 Justification for exclusion (eg, exclusion of non-English language citations) 10 31 Assessment of quality of included studies 25 32 Consideration of alternative explanations for observed results 16-22 33 Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review) 16, 23 34 Guidelines for future research 17-20, 22 35 Disclosure of funding source None	24		9						
25 Graphic summarizing individual study estimates and overall estimate 10-14 26 Table giving descriptive information for each study included 10-11, Table S4 27 Results of sensitivity testing (eg, subgroup analysis) 14 28 Indication of statistical uncertainty of findings 16 tem No Reported on Page No Reported on Page No 29 Quantitative assessment of bias (eg, publication bias) 11-14 30 Justification for exclusion (eg, exclusion of non-English language citations) 10 31 Assessment of quality of included studies 11, Table S5 Reporting of conclusions should include 11, Table S5 32 Consideration of alternative explanations for observed results 16-22 33 Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review) 16, 23 34 Guidelines for future research 17-20, 22 35 Disclosure of funding source None									
26 Table giving descriptive information for each study included 10-11, Table S4 27 Results of sensitivity testing (eg, subgroup analysis) 14 28 Indication of statistical uncertainty of findings 16 Reported on Page No Reporting of discussion should include 29 Quantitative assessment of bias (eg, publication bias) 11-14 30 Justification for exclusion (eg, exclusion of non-English language citations) 10 31 Assessment of quality of included studies 15 Reporting of conclusions should include 32 Consideration of alternative explanations for observed results 16-22 33 Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review) 16, 23 34 Guidelines for future research 17-20, 22 35 Disclosure of funding source None			10-14						
26Table giving descriptive information for each study includedTable S427Results of sensitivity testing (eg, subgroup analysis)1428Indication of statistical uncertainty of findings16tem NoRecommendationReported on Page NoReporting of discussion should include11-1429Quantitative assessment of bias (eg, publication bias)11-1430Justification for exclusion (eg, exclusion of non-English language citations)1031Assessment of quality of included studies11, Table S5Reporting of conclusions should include11, Table S532Consideration of alternative explanations for observed results16-2233Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)16, 2334Guidelines for future research17-20, 2235Disclosure of funding sourceNone									
28 Indication of statistical uncertainty of findings 16 tem No Recommendation Reported on Page No Reporting of discussion should include 29 Quantitative assessment of bias (eg, publication bias) 11-14 30 Justification for exclusion (eg, exclusion of non-English language citations) 11 11 31 Assessment of quality of included studies 11 7able S5 Reporting of conclusions should include 29 11 11 32 Consideration of alternative explanations for observed results 16-22 33 Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review) 16, 23 34 Guidelines for future research 17-20, 22 17-20, 22 35 Disclosure of funding source None	26	Table giving descriptive information for each study included	Table S4						
tem NoRecommendationReported on Page No29Quantitative assessment of bias (eg, publication bias)11-1430Justification for exclusion (eg, exclusion of non-English language citations)1031Assessment of quality of included studies11, Table S5Reporting of conclusions should include11, Table S532Consideration of alternative explanations for observed results16-2233Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)16, 2334Guidelines for future research17-20, 2235Disclosure of funding sourceNone	27	Results of sensitivity testing (eg, subgroup analysis)	14						
tem NoRecommendationReported on Page No29Quantitative assessment of bias (eg, publication bias)11-1430Justification for exclusion (eg, exclusion of non-English language citations)1031Assessment of quality of included studies11, Table S5Reporting of conclusions should include11, Table S532Consideration of alternative explanations for observed results16-2233Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)16, 2334Guidelines for future research17-20, 2235Disclosure of funding sourceNone	28	Indication of statistical uncertainty of findings	16						
tem NoRecommendationon Page NoReporting of discussion should include29Quantitative assessment of bias (eg, publication bias)11-1430Justification for exclusion (eg, exclusion of non-English language citations)1031Assessment of quality of included studies11, Table S5Reporting of conclusions should include11, Table S532Consideration of alternative explanations for observed results16-2233Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)16, 2334Guidelines for future research17-20, 2235Disclosure of funding sourceNone									
Reporting of discussion should include29Quantitative assessment of bias (eg, publication bias)11-1430Justification for exclusion (eg, exclusion of non-English language citations)1031Assessment of quality of included studies11, Table S5Reporting of conclusions should include32Consideration of alternative explanations for observed results16-2233Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)17-20, 2234Guidelines for future research17-20, 2235Disclosure of funding sourceNone			Reported						
Reporting of discussion should include29Quantitative assessment of bias (eg, publication bias)11-1430Justification for exclusion (eg, exclusion of non-English language citations)1031Assessment of quality of included studies11, Table S5Reporting of conclusions should include221032Consideration of alternative explanations for observed results16-2233Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)16, 2334Guidelines for future research17-20, 2235Disclosure of funding sourceNone	Item No	Recommendation							
29Quantitative assessment of bias (eg, publication bias)11-1430Justification for exclusion (eg, exclusion of non-English language citations)1031Assessment of quality of included studies11, Table S5Reporting of conclusions should include32Consideration of alternative explanations for observed results16-2233Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)16, 2334Guidelines for future research17-20, 2235Disclosure of funding sourceNone			No						
30Justification for exclusion (eg, exclusion of non-English language citations)1031Assessment of quality of included studies11, Table S5Reporting of conclusions should include32Consideration of alternative explanations for observed results16-2233Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)16, 2334Guidelines for future research17-20, 2235Disclosure of funding sourceNone	Reporting	of discussion should include							
30citations)1031Assessment of quality of included studies11, Table S5Reporting of conclusions should include32Consideration of alternative explanations for observed results16-2232Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)16, 2334Guidelines for future research17-20, 2235Disclosure of funding sourceNone	29	Quantitative assessment of bias (eg, publication bias)	11-14						
citations)11, Table31Assessment of quality of included studies11, Table31Assessment of quality of included studies55Reporting of conclusions should include32Consideration of alternative explanations for observed results16-2233Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)16, 2334Guidelines for future research17-20, 2235Disclosure of funding sourceNone	30	Justification for exclusion (eg, exclusion of non-English language	10						
31Assessment of quality of included studiesS5Reporting of conclusions should include32Consideration of alternative explanations for observed results16-2233Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)16, 2334Guidelines for future research17-20, 2235Disclosure of funding sourceNone		citations)							
Reporting of conclusions should include32Consideration of alternative explanations for observed results16-2233Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)16, 2334Guidelines for future research17-20, 2235Disclosure of funding sourceNone	31	Assessment of quality of included studies							
32Consideration of alternative explanations for observed results16-2233Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)16, 2334Guidelines for future research17-20, 2235Disclosure of funding sourceNone	Reporting	of conclusions should include	00						
33Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)16, 2334Guidelines for future research17-20, 2235Disclosure of funding sourceNone			16-22						
33presented and within the domain of the literature review)16, 2334Guidelines for future research17-20, 2235Disclosure of funding sourceNone									
34 Guidelines for future research 17-20, 22 35 Disclosure of funding source None	33		16, 23						
	34	Guidelines for future research	17-20, 22						
	35	Disclosure of funding source	None						
		0.							

Table S3. Complete Search Terms for PubMed

A search example for Pubmed

The combined text and medical subject heading (MeSH) terms used were: "Magnesium" and "Magnesium Supplementation" "Diabetes Mellitus, Type 2", "Stroke", "Cerebrovascular Stroke", and "Cohort Studies". The complete search terms for PubMed included: (Magnesium [MeSH terms]) AND (Magnesium Supplementation [MeSH terms]) AND (Diabetes Mellitus, Type 2 [MeSH term] OR Diabetes Mellitus, Noninsulin-Dependent [Text Word] OR Diabetes Mellitus, Ketosis-Resistant [Text Word] OR Diabetes Mellitus, Non-Insulin-Dependent [Text Word] OR Non-Insulin-Dependent Diabetes Mellitus [Text Word] OR Diabetes Mellitus, Stable [Text Word] OR NIDDM [Text Word] OR Maturity-Onset Diabetes Mellitus [Text Word] OR Diabetes Mellitus, Slow-Onset [Text Word] OR Type 2 Diabetes [Text Word] OR Diabetes Mellitus, Adult-Onset [Text Word]) AND (Stroke [MeSH terms] OR Cerebrovascular Stroke [Text Word] OR Cerebrovascular Accident [Text Word] OR CVA (Cerebrovascular Accident) [Text Word] OR Vascular Accident, Brain [Text Word] OR Cerebrovascular Apoplexy [Text Word] OR Cerebral Stroke [Text Word] OR Stroke, Acute [Text Word] OR Cerebrovascular Accident, Acute [Text Word] OR Acute Cerebrovascular Accident [Text Word] OR Apoplexy, Cerebrovascular [Text Word]) AND (Cohort Studies [MeSH term] OR Cohort Study [Text Word] OR Studies, Cohort [Text Word] OR Study, Cohort [Text Word] OR Concurrent Studies [Text Word] OR Studies, Concurrent [Text Word] OR Closed Cohort Studies [Text Word] OR Closed Cohort Study [Text Word] OR Study, Closed Cohort [Text Word] OR Cohort Analysis [Text Word] OR Cohort Analysis [Text Word] OR Prospective Studies [Text Word] OR Prospective Study [Text Word] OR Studies, Prospective [Text Word])

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Source	Nation	Period	Population	BMI	Dietary Assessment	Case Ascertainment	Case (Cohort size)	Magnesium intake (mg/day) highest VS. the lowest [Adjusted RR (95% CI)]
Salmeron 1997 ¹¹	USA	1986-1992	М; 40-75 у	25.5	validated SFFQ	self-reported questionnaire	523 T2D (42759)	461 VS. 262 (0.72 (0.54-0.96))
Salmeron 1997(2) ¹²	USA	1986-1992	F; 40-65 y	25.1	validated SFFQ	self-reported questionnaire	915 T2D (65173)	338 VS. 222 (0.62 (0.50-0.78))
0 Ascherio 1998 ¹³	USA	1986-1994	М; 40-75 у	NA	validated FFQ	self-reported questionnaire	328 stroke (43738)	425 VS. 243 (0.92 (0.58-1.46))
1 Iso 1999 ¹⁴	USA	1980-1994	F; 34-59 y	22.7	FFQ	self-reported questionnaire	690 stroke (85764)	381 VS. 211 (0.80 (0.63-1.01))
2 - K 1000 ¹⁵	TIC A	N 7.4		27.2	FEO		black: 367 T2D (2622)	374 VS. 264 (0.95 (0.52-1.74))
3 Kao 1999 ¹⁵ 4	USA	NA	M/F; 45-64 y	27.2	FFQ	self-reported questionnaire	white: 739 T2D (9506)	418 VS. 308 (0.80 (0.56-1.14))
5 Liu 2000 ¹⁶	USA	1976-1984	F; 38-63 y	24.8	validated FFQ	self-reported questionnaire	1879 T2D (75521)	342 VS. 248 (0.75 (0.63-0.89))
б Meyer 2000 ¹⁷	USA	1986-1992	F; 55-69 y	26.8	validated FFQ	self-reported questionnaire	1141 T2D (35998)	362 VS. 220 (0,67 (0.55-0.82))
7 Hodge 2004 ^{18a}	multiple	1990-1994	M/F; 45-64 y	26.1	validated FFQ	self-reported questionnaire	365 T2D (31641)	500 increment per day
`	110.4	M: 1986-1998	М; 40-75 у	25.4			1333 T2D (42872)	457 VS. 314 (0.72 (0.58-0.89))
⁹ Lopez 2004 ¹⁹ 0	USA	W: 1980-1998	F; 30-35 y	24.3	validated SFFQ	self-reported questionnaire	4085 T2D (85060)	373 VS. 222 (0.73 (0.65-0.82))
Song 2004 ²⁰	USA	1993-2001	F; \geq 45 y ^c	26	SFFQ	self-reported questionnaire	918 T2D (38025)	433 VS. 255 (0.89 (0.71-1.10))
$\frac{2}{3}$ Song 2005 ²¹	USA	1993-2003	F; 39-89 y	26	FFQ	follow-up examination	368 stroke (39876)	433 VS. 255 (0.90 (0.65-1.26))
4 Liu 2006 ²²	USA	1996-2006	F; 47-63 y	25.8	validated SFFQ	self-reported questionnaire	1603 T2D (37183)	340 VS. 307 (0.80 (0.67-0.95))
Pereira 2006 ²³	USA	1986-1997	F; 56-66 y	26.7	validated FFQ	self-reported questionnaire	1418 T2D (28812)	334 VS. 281 (0.78(0.61-1.01))
⁶ Pittas 2006^{24}	USA	1980-2000	F; 30-55 y	24.1	validated SFFQ	self-reported questionnaire	4843 T2D (83779)	352 VS. 258 (0.74 (0.67-0.82))
3 Van 2006 ²⁵	multiple	1995-2003	F; 21-69 y	27.6	validated FFQ	self-reported questionnaire	1964 T2D (41186)	244 VS. 115 (0.65 (0.54-0.78))
Schulze2007 ²⁶	multiple	1994-2005	M/F; 35-65 y	26.1	validated SFFQ	self-reported questionnaire	844 T2D (25067)	377 VS. 268 (0.99 (0.78-1.26))
$\begin{array}{c} 0\\ 1 \end{array}$ Larsson 2008 ²⁷	Sweden	1985-2004	М; 50-69 у	26.4	validated FFQ	follow-up examination	3370 stroke (26556)	575 VS. 382 (0.91 (0.77-1.07))
$\frac{2}{3}$ Weng 2008 ²⁸	Taipei	1989-2002	M/F;≥40 y	24.5	validated FFQ	Self-reported and cross-checked questionnaire	132 ischemic stroke (1772)	423 VS. 162 (0.69 (0.45-1.06))
4	-	1000 1000	М; 40-69 у	23.6	550		634 T2D (25876)	331 VS. 245 (0.93 (0.71-1.22))
5 Kirii 2009 ²⁹ 5	Japan	1993-1998	F; 40-69 y	23.5	FFQ	self-reported questionnaire	480 T2D (33919)	314 VS. 248 (0.76 (0.56-1.03))
7 Ohira 2009 ³⁰	USA	1987-2004	M/F; 45-64 y	27.4	validated FFQ	follow-up examination	577 ischemic stroke (14221)	362 VS. 152 (0.80 (0.75-1.13))
Villegas 2009 ³¹	China	2000-2006	F; 40-70 y	23.8	validated FFQ	follow-up examination	2273 T2D (64191)	318 VS. 214 (0.80 (0.68-0.93))
9	1.1.1	1002 2007	М; 45-75 у	N T 4			4555 T2D (36256)	278 VS. 86 (0.77 (0.70-0.85))
^O Hopping 2010 ³²	multiple	1993-2007	F; 45-75 y	NA	validated FFQ	self-reported questionnaire	4032 T2D (39256)	300 VS. 93 (0.84 (0.76-0.93))
2 Kim 2010^{33}	USA	1985-2005	M/F; 18-30 y	24.5	validated DHQ	self-reported questionnaire	330 T2D (4497)	302 VS. 182 (0.53 (0.32-0.86))
3 4			For peer	review o	nly - http://bmjopen.bmj.	com/site/about/guidelines.xhtm	I	

1	Kirii 2010 ³⁴	Japan	NA	M/F; 40-65 y	22.9	validated FFQ	self-reported questionnaire	459 T2D (17592)	303 VS. 158 (0.64 (0.44-0.94))
2	Nanri 2010 ³⁵	Ionon	1990-1995	M; 40-65 y	NA	validated FFQ	self-reported questionnaire	634 T2D (25872)	348 VS. 213 (0.86 (0.63-1.16))
3	INaliii 2010	Japan	1990-1993	F; 40-65 y	NA	validated FFQ	sen-reported questionnaire	480 T2D (33919)	333 VS. 213 (0.92 (0.66-1.28))
4	Larsson 2011 ³⁶	Sweden	1998-2008	F; 49-83 y	25	validated FFQ	follow-up examination	1680 stroke (34670)	373 VS. 297 (1.02 (0.82-1.27))
5 6	Weng 2012 ³⁷	Taipei	1993-2002	M/F; ≥30 y	24	validated FFQ	follow-up examination or	141 T2D (1604)	406 VS. 212 (0.44 (0.25-0.75))
7	Weng 2012	Taiper	1775-2002	₩/T, <u>~</u> 50 y	24	vandated 11 Q	self-reported questionnaire	141 12D (1004)	400 V 3. 212 (0.44 (0.23-0.75))
8 9	Zhang 2012 ³⁸	Japan	1988-2006/	М; 40-79 у	22.7	validated FFQ	follow-up examination	634 stroke (23083)	294 VS. 173 (1.03 (0.79-1.35))
9 10		Japan	1988-2000/	F; 40-79 y	22.9	validated 11 Q	ionow-up examination	620 stroke (35533)	274 VS. 175 (0.90 (0.69-1.16))
11		Japan	1988-2009	M/F; 40-79 y	22.9	validated SFFQ	self-reported questionnaire	417 T2D (1999)	215 VS. 133 (0.63 (0.44-0.90))
12		Taipei	1989-2002	M/F; ≥ 18 y	23.3	validated FFQ	follow-up examination and	123 stroke (2061)	378 VS. 210 (0.62 (0.40-0.97))
13 14		Taiper	1989-2002	$101/1^{\circ}, \leq 10^{\circ}$ y	23.5	validated 11 Q	self-reported questionnaire	125 SHOKE (2001)	578 V.S. 210 (0.02 (0.40-0.97))
15		Japan	1990-2000	M; 40-69 y	23.6	validated FFQ	self-reported questionnaire	690 T2D (27769)	349 VS. 232 (0.84 (0.69-1.05))
16	000 2015	Japan	1770-2000	F; 40-69 y	23.5		sen-reported questionnane	500 T2D (36864)	356 VS. 211 (0.69 (0.54-0.88))
17 18	51u1j8 2015	Netherland	NA	M/F; 21-70 y	NA	FFQ	NA	361 ischemic stroke (36359)	435 VS. 253 (0.76 (0.57-1.01))
19	Hruby 2014 ⁴³	USA	1995-2001	M/F; 26-81 y	27	validated FFQ	self-reported questionnaire	179 T2D (2582)	395 VS. 235 (0.49 (0.27-0.88))
20	Sluijs 2014 ⁴⁴	Netherland	NA	M/F; 21-70 y	NA	FFQ	follow-up examination	631 stroke (36094)	597 VS. 190 (0.64 (0.44-0.94))
21		USA	1986-2010	M; 40-75 y	25.4	validated FFQ	self-reported questionnaire	1547 stroke (42669)	467 VS. 267 (0.89 (0.71-1.11))
22 23		USA	1976-2006	F; 30-55 y	26.4	validated FFQ	self-reported questionnaire	3237 stroke (86149)	411 VS. 233 (0.93 (0.79-1.08))
24		USA	1989-2011	F; 25-42 y	25.7	validated 11Q	sen-reported questionnaire	543 stroke (94715)	411 V.S. 235 (0.95 (0.79-1.06))
25	Bain 2015 ⁴⁷	Britain	2002-2008	M; 40-75 y	26.5	7-day diary recall	follow-up examination	364 stroke (2000)	456 VS. 266 (0.81 (0.53-1.22))
26 27		Dinam	2002-2008	F; 40-75 y	26.2	7-day diary recail	ionow-up examination	511 stroke (2445)	374 VS. 456 (0.82 (0.54-1.24))
28		Taipei	2000-2008	M/F; ≥65 y	NA	24 h dietary recall and SFFQ	follow-up examination	231 T2D (1400)	398 VS. 103 (0.59 (0.26-1.33))
29			1984-2012	F; 30-55 y	24.8			7620 T2D (69176)	390 VS. 229 (0.80 (0.73-0.88))
30 31	Hruby 2017 ⁴⁹	USA	1991-2013	F; 25-42 y	24.6	validated SFFQ	self-reported questionnaire	6080 T2D (91471)	424 VS. 249 (0.89 (0.81-0.99))
32			1986-2012	M; mean 53.5 y	24.8			3430 T2D (42096)	469 VS. 280 (0.88 (0.77-1.00))
33	K 1 1 201750b	Japan	1990-2009	М; 40-69 у	23.6	FFQ	follow-up examination	2576 stroke (39505)	348 VS. 213 (1.07 (0.86-1.33))
34		Japan	1993-2010	F; 40-69 y	23.6	112	ionow-up examination	1846 stroke (45788)	333 VS. 213 (0.88 (0.67-1.14))
35 36	Konishi 2017 ⁵¹	Japan	1992-2002	M; ≥35 y	22.6	validated FFQ	self-reported questionnaire	266 T2D (5885)	469 VS. 310 (1.13 (0.76-1.70))
37	Kom5m 2017	Japan	1772-2002	F; ≥35 y	22.1		sen-reported questionnane	172 T2D (7640)	432 VS. 285 (0.50 (0.30-0.84))
20									

38 Abbreviations: FFQ, food-frequency questionnaire; SFFQ, semi-quantitative food-frequency questionnaire; BMI, body mass index; T2D, type 2 diabetes; NA, not available.

 $\begin{array}{l} 39 \\ a \\ 10 \end{array}^{a}, different ethnicities of participants are in multiple nations cohort; \end{array}$

 41^{b} , the dose of magnesium intake which is not available in this study is retrieved from the same cohort reported in former publication;

 $\begin{array}{l} 42 \ ^{\rm c} \ {\rm the\ range\ of\ enrolled\ participants\ age\ is\ not\ mentioned.} \\ 43 \end{array}$

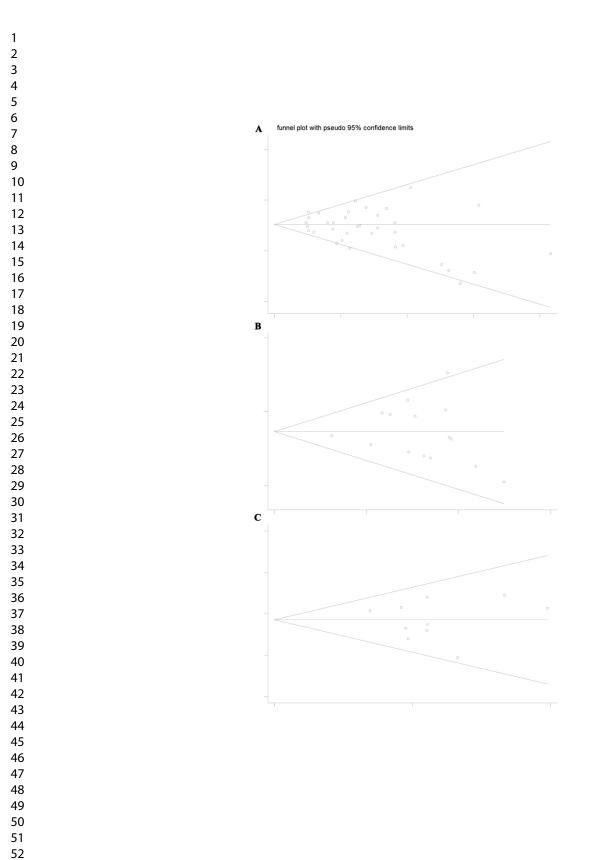
44

For peer review only

Page 55 of 74

1

BMJ Open


Table S5. Methodological Quality Assessments of the Included Studies with Newcastle-Ottawa Scales

	Study			Selection				Outcome		Total
		Exposed cohort	Nonexposed cohort	Ascertainment of exposure	Outcome of interest	Comparability	Assessment of outcome	Length of follow-up	Adequacy of follow-up	score
1997	Salmeron et al, ¹¹	*	*	*	*	**	*	*		9
1997	Salmeron et al (2) , ¹²	*	*	*	*	**	*	*	*	9
1998	Ascherio et al, ¹³	*	*	*	*	**	*	*	*	9
1999	Iso et al, ¹⁴	*	*	*	*	**	*	*	*	9
1999	Kao et al, ¹⁵	*	*	*	*	**	*	*	*	9
2000	Liu et al, ¹⁶	*	*	*	*	**	*	*	*	9
2000	Meyer et al, ¹⁷	*	*	*	*	**	*	*	*	9
2004	Hodge et al, ¹⁸	*	*	*	*	*	*	*		7
2004	Lopez et al, ¹⁹	*	*	*	*	**	*	*	*	9
2004	Song et al, ²⁰	*	*	*	*	**	*	*	*	9
2005	Song et al, ²¹	*	*	*	*	**	*	*	*	9
2006	Liu et al, ²²	*	*	*	*	**	*	*	*	9
2006	Pereira et al, ²³	*	*	*	*	**	*	*	*	9
2006	Pittas et al, ²⁴	*	*	*	*	**	*	*	*	9
2006	Van et al, ²⁵	*	*	*	*	**	*	*	*	9
2007	Schulze et al, ²⁶	*	*	*	*	**	*	*	*	9
2008	Larsson et al, ²⁷	*	*	*	*	**	*	*	*	9
2008	Weng et al, ²⁸	*	*	*	*	**	*	*	*	9
2009	Kirii et al, ²⁹	*	*	*	*	**	*	*	*	9
2009	Ohira et al, ³⁰	*	*	*	*	**	*	*	*	9
2009	Villegas et al, ³¹	*	*	*	*	**	*	*	*	9
2010	Hopping et al, ³²	*	*	*	*	**	*	*	*	9
2010	Kim et al, ³³	*	*	*		**	*	*	*	8
2010	Kirii et al, ³⁴	*	*	*	*	**	*	*	*	9
2010	Nanri et al, ³⁵	*	*	*	*	**	*	*	*	9
2011	Larsson et al, ³⁶	*	*	*	*	**	*	*	*	9
2012	Weng et al, ³⁷	*	*	*	*	**	*	*		8

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

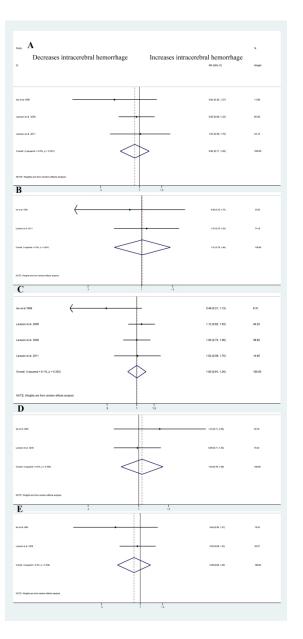
44 45 46

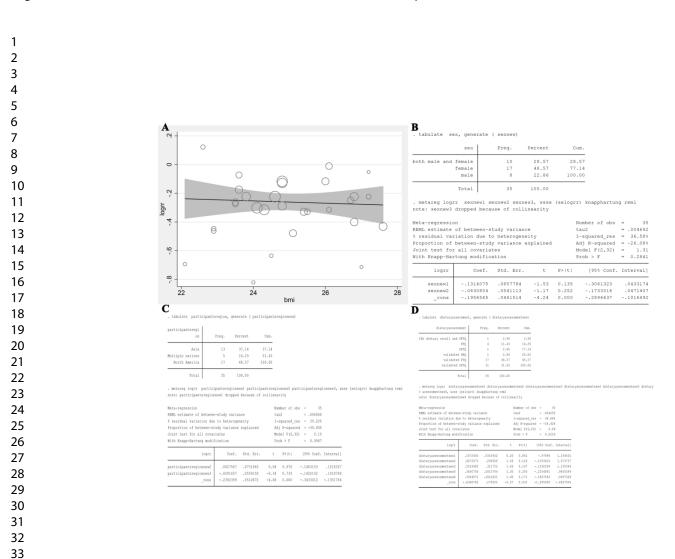
	2012	Zhang et al, ³⁸	*	*	*	*	**	*	*	*	9	
1 2	2013	Hata et al, ³⁹	*	*	*	*	**	*	*	*	9	
2 3	2013	Lin et al, ⁴⁰	*	*	*	*	**	*	*	*	9	
4	2013	Oba et al, ⁴¹	*	*	*	*	**	*	*	*	9	
5	2013	Sluijs et al, ⁴²	*	*	*	*	**		*	*	8	
6 7	2014	Hruby et al, ⁴³	*	*	*	*	**	*	*	*	9	
8	2014	Sluijs et al, ⁴⁴	*	*	*	*	**	*	*	*	9	
9	2015	Adebamowo et al, ⁴⁵	*	*	*	*	**	*	*	*	9	
10	2015	Adebamowo et al (2) , ⁴⁶	*	*	*	*	**	*	*	*	9	
11 12	2015	Bain et al, ⁴⁷	*	*	*	*	**	*	*	*	9	
13	2015	Huang et al, ⁴⁸	*	*	*		**	*	*	*	8	
14	2017	Hruby et al, ⁴⁹	*	*	*	*	**	*	*	*	9	
15 16	2017	Kokubo et al, ⁵⁰	*	*	*	*	**	*	*	*	9	
17	2017	Konishi et al, ⁵¹	*	*	*	*	*	*	*	*	9	
18						*						
19 20												
20 21												
22												
23												
24												
25												
26 27												
27 28												
28 29												
30												
31												
32												
33												

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	BMJ Open
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	
42 43 44 45 46 47	Control of the second s
48 49 50 51 52 53 54 55 56 57 58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtm

2	2	

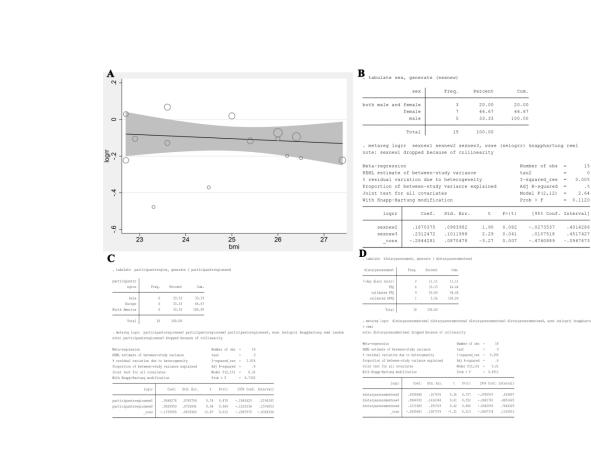

Page 59 of 74	BMJ Open
1 2 3 4 5	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	$\frac{\ln n}{n} \frac{\Lambda}{n}$ Decreases ischemis streke $\frac{\ln n}{n} \frac{\Lambda}{n}$ Decreases ischemis streke $\frac{\ln n}{n} \frac{\Lambda}{n}$ Decreases ischemis streke $\frac{\ln n}{n} \frac{\Lambda}{n} \frac{\Lambda}{n}$ Decreases ischemis streke $\frac{\ln n}{n} \frac{\Lambda}{n} \frac{\Lambda}{n$
24 25 26 27 28 29 30 31 32 33 34 35 36 37	Conv 1000
38 39 40 41 42 43 44 45 46 47 48 49 50	Under an office of the second
51 52 53 54 55 56 57 58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guic


57
58
59
60

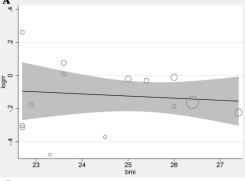
Decreases subara	cnnoid nemorrnage	Increases subara	PROPERTY OF CONTINUES OF CONTINUES OF CONTINUES CONTINUE	Weght
lsa et al 1960		•	0.82 (0.54, 1.97)	#12
Lansson-et.al 2008	_		1.28 (0.77, 2.12)	41.68
Lansson et al 2011 —			0.68 (0.33, 1.62)	20.90
Overall (1-squared = 3.6%, p = 0.354)	<	\rightarrow	0.89 (0.71, 1.00)	108-00
NOTE: Weights are from random effects analysis				
B		1 1		
he at d 100		·	0.76 (0.0, 1.26)	
Lansan and 2011	<	<u> </u>	BH (0.0, 121)	
Ownit (Huawed+82%, p+87%)	\langle	\geq	871(840,108)	100.00
NTTE Viligits and for modern effects analysis				
С				
lao et al 1989			0.86 (0.50, 1.49)	25.31
Lanson et al 2006			1.37 (0.84, 2.25)	26.06
Lanson et al 2008		•	1.64 (1.01, 2.64)	28.75
Lanson et al 2011 -	•		0.68 (0.33, 1.42)	17.86
Overall () equated = 45.8%, p = 0.131)	<	\bigcirc	1.13 (0.78, 1.65)	100.00
NOTE: Weights are from random effects analysis				
D	5	1 15		
ko el al 1989			0.88-(196, 1.89)	48.07
Lanaon el el 3008			1.82(1.95,2.80)	51.85
Overall () squared = 47.0%, p = 3.042)	<		1.38-(0.74, 2.50)	100.00
NOTE: Visights are from random effects analysis				
E	4	1.1		
ko et al 1996		•	0.02 (656, 1.57)	47.30
Leman et al 2008			1.00 (0.77, 2.55)	52.62
Cvenill (i-squared + 0.0%, p + 0.578)	<		189(876.139)	180.00
N21E: Viegits are from random effects analysis				

•
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
20
21

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml



[95% Conf. Interval]


-.0273537 .0107518 -.4740889

.4014286 .4517427 -.0947673

Page 65 of 74	
1 2 3 4 5 6 7 8 9 10 11 12 13	o o o o o c · · o o · · · · · · · · · ·
14 15 16 17 18 19 20 21 22	C tobulate participant participants parti
23 24 25 26 27 28 29 30 31	. setarg jour part note pretignation MEL-repression MEL-repression MEL respective reporting of heteme- doint test for all on NILE Respectations of heteme- doint test for all on net icipation preting and part icipating domain part icipating do
32 33 34 35 36 37 38 39	
40 41 42 43 44 45 46 47	

56 57 58

ticipantsr			
egion	Freq.	Percent	Cun.
Asia	6	40.00	40.00
Europe	3	20.00	60.00
th America	6	40.00	100.00
Total	15	100.00	

stareg logrr participantsregionnewl participantsregionnew2 participantsregion participantsregionnewl dropped because of collinearity -regression Number of obs = 15

REML estimate of between % residual variation due Proportion of hetween-at Joint test for all covar With Enapp-Hartung modif	to heteroge udy variance iates	neity	Ad Mo	u2 squared_res j R-squares del F(2,12) ob > F	-	.00114 21.76% .% 0.56 0.5842	
logrr	Coef.	Std. Err.	t	₽> t	[95]	Conf.	[sterval]
participantsregionnewl	.1089103	.1083661	1.01	0.335	12	1992	.3450197
participantsregionnew2	.0117202	.0911749	0.13	0.900	18	59328	.2103732
cons	1629514	.0653255	-2.49	0.028	305	2835	0206192

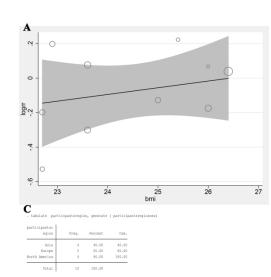
B tabulate sex, generate (sexnew)

sex	Freq.	Percent	Cum.
both male and female	4	26.67	26.67
female	7	46.67	73.33
male	4	26.67	100.00
Total	15	100.00	

. metareg logrr sexnewl sexnew2 sexnew3, wsse (selogrr) knapphartung reml note: sexnew3 dropped because of collinearity

	of between-st				tau2	-	.00478
	riation due to				I-squared_res	=	1.79
	between-study		xplained		Adj R-squared	-	
pint test fo	r all covaria	tes			Model F(2,12)	-	2.3
ith Knapp-Ha	rtung modifica	ation			Prob > F	-	0.133
ith Knapp-Ha	rtung modifica Coef.	std. Err.	t	₽> t	Prob > F [95% Conf.		
			t -2.17			In	terval
logrr	Coef.	Std. Err.		₽> t	[95% Conf.	In	

D_tabulate dietaryassessment, generate (dietaryassessmentnew)


40.00	40.00
60.00	100.00

. metareg logrr dietaryassessmentnew1 dietaryassessmentnew2, wsse (selogrr) knapphartung rem1 note: dietaryassessmentnew1 dropped because of collinearity

Meta-regression REML estimate of betwees % residual variation due Proportion of between-st With Knapp-Hartung modi:	to heterog udy varianc	eneity	t	umber of au2 -squared_ dj R-squa	res =		2 %
logrr	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]

60

metareg logrr participanteregionnewl participanteregionnew2 participanteregionnew3, wese (selogrr) knapphartung te: participanteregionnew3 dropped because of collinearity

Meta-regression			Nu	aber of ob-	5 -	10	
REML estimate of between	n-study varia	nce	ta	a2	-	.008035	
% residual variation du	to heteroge	neity	I = 1	squared_re.	- a	15.78%	
Proportion of between-s	ody variance	explained	Ad	j R-square	- 1	1	
Joint test for all cova	riates		Mo	del F(2,7)	-	0.14	
With Wnapp+Hartung modi	fication		Pr	ob > F	-	0.8726	
logrr	Coef.	Std. Err.	t	₽ t	[95	& Conf.	[Interval]
participantsregionnew1	0106555	.1797495	-0.06	0.954	43	56955	.4143845
participantsregionnew2	.0796745	.1944402	0.41	0.694	38	01024	.5394524

B . tabulate s	ex, generate	(sexnew)	
sex	Freq.	Percent	Cum.
female	6	60.00	60.00
male	4	40.00	100.00
Total	10	100.00	

. metareg logrr sexnewl sexnew2, wsse (selogrr) knapphartung reml note: sexnew2 dropped because of collinearity

Meta-regressi	on					Number of obs	-	10
REML estimate	of between-st	udy va	riance			tau2	-	
% residual va:	iation due to	heter	ogenei	ty		I-squared_res	-	0.42%
Proportion of	between-study	varia	ince ex	plained		Adj R-squared	=	. 1
With Knapp-Ha	tung modifica	tion						
logrr	Coef.	std.	Err.	t	Polti	[95% Conf.	Tn	tervall
TOGIT	0001.	~~u.			1.101	1000 00011		/u1;

	1120692				4196595	.1955211
_cons	0110753	.0978042	-0.11	0.913	2366123	.2144617

D

	tabulate	dietaryassessment,	generate	{	dietary
1	ietarvasse	aa			

Cun.	Percent	Freq.	dietaryassess ment
40.00	40.00	4	FFQ
100.00	60.00	6	validated FFQ
	100.00	10	Total

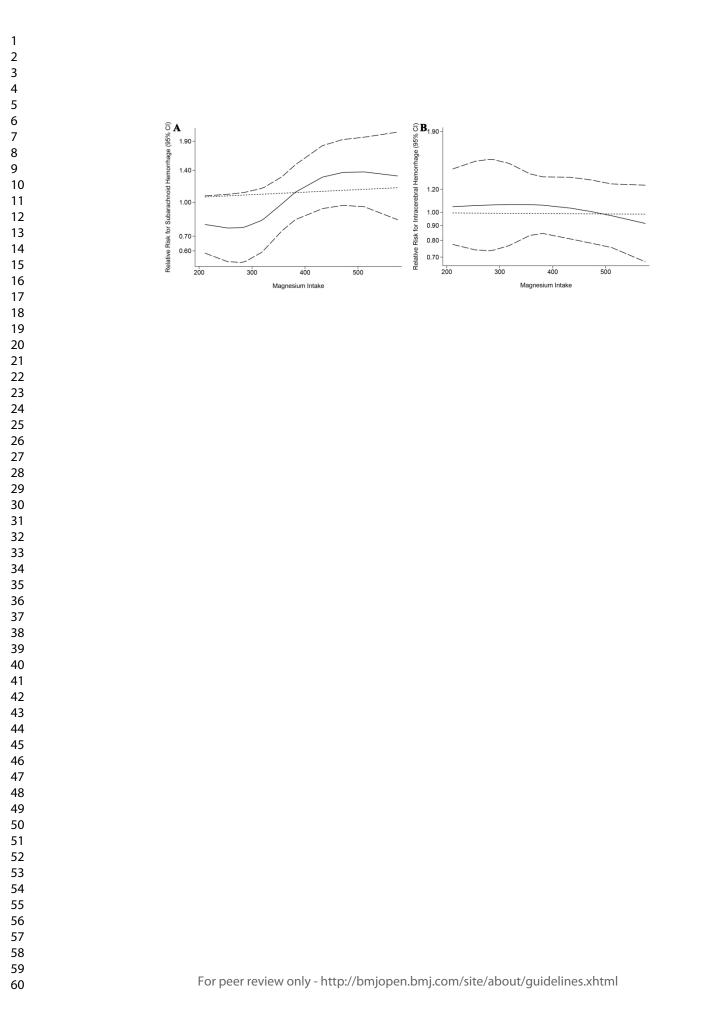
metareg logrr dietaryassessmentnew1 dietaryassessmentnew2, wase (selogrr) knapphartung reminote: dietaryassessmentnew1 dropped because of collinearity

Meta-regression REML estimate of between % residual variation due Proportion of between-st With Knapp-Hartung modif	to heteroge udy variance	eneity	t. I	umber of au2 -squared_ dj R-squa	res =		7
logrr	Coef.	Std. Err.	t	P> t	[958	Conf.	Interval]
dietaryassessmentnew2 cons	.0642559	.1426454	0.45	0.664	264		.3931968

study	year		RR (95% CI)
Salmeron et al	1997		0.72 (0.54, 0.96)
Salmeron et al (2)	1997		0.66 (0.55, 0.78)
Kao et al (B)	1999		0.67 (0.57, 0.80)
Kao et al (W)	1999		0.70 (0.60, 0.81)
Liu et al	2000	—	0.72 (0.64, 0.81)
Meyer et al	2000	—	0.71 (0.64, 0.78)
Hodge et al	2004	—	0.71 (0.64, 0.78)
Lopez et al (M)	2004	-	0.71 (0.65, 0.78)
Lopez et al (F)	2004	+	0.72 (0.67, 0.77)
Song et al	2004	-	0.73 (0.68, 0.78)
Liu et al	2006	+	0.74 (0.70, 0.79)
Pereira et al	2006	→	0.74 (0.70, 0.79)
Pitta et al	2006	+	0.74 (0.70, 0.78)
Van et al	2006	+	0.73 (0.70, 0.77)
Schulze et al	2007	+	0.74 (0.71, 0.79)
Kirii et al (M)	2009	+	0.75 (0.71, 0.80)
Kirii et al (W)	2009	+	0.75 (0.71, 0.79)
Villegas et al	2009	+	0.75 (0.72, 0.79)
Hopping et al (M)	2010	+	0.76 (0.72, 0.79)
Hopping et al (F)	2010	+ +	0.77 (0.73, 0.80)
Kim et al	2010	+	0.76 (0.73, 0.80)
Kirii et al	2010	+ +	0.76 (0.73, 0.80)
Nanri et al (M)	2010	+	0.76 (0.73, 0.80)
Nanri et al (F)	2010	+ + + +	0.77 (0.73, 0.80)
Weng et al	2012	+	0.76 (0.73, 0.80)
Hata et al	2013	+	0.76 (0.73, 0.80)
Oba et al (M)	2013	+ +	0.76 (0.73, 0.80)
Oba et al (F)	2013	+	0.76 (0.73, 0.80)
Hruby et al	2014	+	0.76 (0.73, 0.80)
Huang et al	2015	+	0.76 (0.73, 0.80)
Hruby et al (M)	2017	+	0.77 (0.74, 0.80)
Hruby et al (F1)	2017	+	0.77 (0.74, 0.80)
Hruby et al (F2)	2017	+	0.78 (0.75, 0.81)
Konishi et al (M)	2017	+	0.78 (0.75, 0.82)
Konishi et al (F)	2017	+	0.78 (0.75, 0.81)
	l .2	.6 1 1.2	1.6 2

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3 4	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
13 14 15 16 17	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23 24 25 26 27 28	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
50	


60

study	year		RR (95% CI)
Ascherio et al	1998		0.92 (0.58, 1.46)
lso et al	1999	-	0.82 (0.67, 1.02)
Song et al	2005	_ -	0.84 (0.71, 1.01)
Larsson et al	2008		0.88 (0.78, 0.99)
Weng et al	2008	—	0.86 (0.77, 0.97)
Ohira et al	2009	→	0.85 (0.77, 0.94)
Larsson et al	2011		0.88 (0.80, 0.96)
Zhang et al (M)	2012		0.89 (0.82, 0.97)
Zhang et al (F)	2012	-	0.89 (0.82, 0.97)
Lin et al	2013	-	0.88 (0.81, 0.96)
Sluijs et al	2013	- -	0.87 (0.81, 0.94)
Sluijs et al	2014	-	0.86 (0.79, 0.93)
Adebamowo et al	2015	-	0.86 (0.80, 0.93)
Adebamowo et al (2)	2015	→	0.87 (0.82, 0.93)
Bain et al (M)	2015	+	0.87 (0.82, 0.93)
Bain et al (F)	2015	~	0.87 (0.82, 0.93)
Kokubo et al (M)	2017	+	0.89 (0.83, 0.94)
Kokubo et al (F)	2017	+	0.89 (0.83, 0.94)

study	year		RR (95% CI)
lso et al	1999		0.74 (0.54, 1.02)
lso et al (2)	1999		0.74 (0.58, 0.92)
Song et al	2005		0.76 (0.62, 0.92)
Larsson et al	2008	→	0.82 (0.74, 0.91)
Weng et al	2008	→	0.82 (0.74, 0.90)
Ohira et al	2009	→	0.81 (0.74, 0.89)
Larsson et al	2011	~	0.83 (0.76, 0.90)
Zhang et al (M)	2012	→	0.85 (0.77, 0.94)
Zhang et al (F)	2012	→	0.85 (0.77, 0.93)
Lin et al	2013	→	0.84 (0.76, 0.92)
Sluijs et al	2013	→	0.83 (0.76, 0.91)
Adebamowo et al	2015	→	0.84 (0.78, 0.91)
Adebamowo et al (2)	2015	~	0.86 (0.79, 0.93)
Kokubo et al (M)	2017	—	0.87 (0.80, 0.94)
Kokubo et al (F)	2017	-	0.88 (0.81, 0.95)
	.2	I I .6 1 1.2	1 I 1.6 2

1	
2	
3	
4	
5	
6	
7	
8 9 10	
9	
10	
10	
11	
12	
12 13	
14 15	
15	
16	
10	
17	
16 17 18	
19	
20	
20 21	
יב רר	
22 23	
23	
24	
24 25	
26	
26 27	
27	
28	
29	
30	
31	
32	
33	
34 35 36 37	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
67	

study	year	RR (95% CI)	
lso et al	1999	• 0.82 (0.53, 1.26)	
Song et al	2005	• 0.87 (0.60, 1.27)	
Larsson et al	2008	0.98 (0.79, 1.22)	
Larsson et al	2011	0.96 (0.79, 1.17)	
Zhang et al (M)	2012	0.90 (0.75, 1.08)	
Zhang et al (F)	2012	0.94 (0.78, 1.13)	
Adebamowo et al	2015	0.96 (0.81, 1.14)	
Adebamowo et al (2)	2015	0.94 (0.81, 1.09)	
Kokubo et al (M)	2017	0.96 (0.84, 1.10)	
Kokubo et al (F)	2017	0.93 (0.82, 1.06)	
	l .2	I I I I .6 1 1.2 1.6 2	

Table S1 PRISMA 2009 Checklist

Section/topic	#	Checklist item	Repo on pa	
TITLE				·
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1	
ABSTRACT				2-3
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3	
INTRODUCTION				4-5
Rationale	3	Describe the rationale for the review in the context of what is already known.	4	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4-5	
METHODS				5-9
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5-6	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5-6	
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5-6	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5-6	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6	
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6	
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.	6-8	

ERIS MA

2

BMJ Open

Table S1 PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	8-9
RESULTS			9-16
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	9
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	9-10
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	9-10
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	10-16
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	10-16
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	10-16
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	10-16
DISCUSSION	1		16-22
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	16-21
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	21-22
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	22
FUNDING	<u> </u>		23
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	23
	f J, Altm	nan DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med	6(7): e1000097.
2		For more information, visit: <u>www.prisma-statement.org</u> .	
3		Page 2 of 2	
4 5 6 7		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

MOOSE Checklist for Meta-analyses of Observational Studies

Item No	Recommendation	Reported on Page No
Reporting	of background should include	
1	Problem definition	4
2	Hypothesis statement	4
3	Description of study outcome(s)	5
4	Type of exposure or intervention used	5
5	Type of study designs used	5
6	Study population	4-5
Reporting	of search strategy should include	
7	Qualifications of searchers (eg, librarians and investigators)	6-7
8	Search strategy, including time period included in the synthesis and key words	5-6
9	Effort to include all available studies, including contact with authors	5-6
10	Databases and registries searched	5-6
11	Search software used, name and version, including special features used (eg, explosion)	5-6
12	Use of hand searching (eg, reference lists of obtained articles)	5-6
13	List of citations located and those excluded, including justification	6
14	Method of addressing articles published in languages other than English	6
15	Method of handling abstracts and unpublished studies	6
16	Description of any contact with authors	6
Reporting	of methods should include	
17	Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	7-8
18	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	6-7
19	Documentation of how data were classified and coded (eg, multiple raters, blinding and interrater reliability)	6-7
20	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	7-9
21	Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results	7-9
22	Assessment of heterogeneity	7-9
23	Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or	7-9

	cumulative meta-analysis) in sufficient detail to be replicated	
24	Provision of appropriate tables and graphics	9
Reporting	of results should include	
25	Graphic summarizing individual study estimates and overall estimate	10-14
26	Table giving descriptive information for each study included	10-11,
20	Table giving descriptive information for each study included	Table S4
27	Results of sensitivity testing (eg, subgroup analysis)	14
28	Indication of statistical uncertainty of findings	16

24 F	cumulative meta-analysis) in sufficient detail to be replicated	
4	Provision of appropriate tables and graphics	9
Reporting of	results should include	
25 0	Graphic summarizing individual study estimates and overall estimate	10-14
26 T	Table giving descriptive information for each study included	10-11, Table S4
27 F	Results of sensitivity testing (eg, subgroup analysis)	14
28 Ir	ndication of statistical uncertainty of findings	16
item No	Recommendation	Reported on Page No
Reporting of	discussion should include	
29 C	Quantitative assessment of bias (eg, publication bias)	11-14
30	Justification for exclusion (eg, exclusion of non-English language citations)	10
31 A	Assessment of quality of included studies	11, Table S5
Reporting of	conclusions should include	
32 C	Consideration of alternative explanations for observed results	16-22
33	Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)	16, 23
34 G	Guidelines for future research	17-20, 22
35 C	Disclosure of funding source	None