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To better understand the relative behavior of the three imputation methods, we evaluated the imputed
measurements for specific histone marks based on their enrichment in functional elements. In particular,
H3K4me3 is known to form peaks within transcription start sites (TSSs) and H3K36me3 is known to localize
within transcribed genes [1, 2]. We began by extracting the values of H3K4me3 from all TSSs and H3K36me3
from all gene bodies for each cell type. We note that the average H3K4me3 profile across TSSs forms a
distinctive bimodal peak (Additional file 4: Figure S1a). Previously, Ernst and Kellis showed that imputed
versions of these histone marks exhibit significantly less variation across cell types than the same signal from
ChIP-seq tracks, a trend that is also exhibited by PREDICTD and Avocado [3]. An open question is whether
this observed reduced variance corresponds to reduction in noise or reduction in true variation among cell
types.

To address this question, we first test whether the observed reduction in variation preserves cellular
variation by calculating the rank correlation across cell types between imputed signal and ChIP-seq signal
according to the area under each cell types’ average mark profile (Additional file 4: Fig S1a/b). This analysis
shows that Avocado preserves the ordering of cell types the best in both H3K4me3 and H3K36me3, while
still reducing the variation of the signal. In contrast, while ChromImpute reduces the variation across cell
types the most, there is almost no correlation of this measurement between the ChromImpute-imputed
H3K36me3 signal and the ChIP-seq measurements. We next test whether cellular variation is maintained by
re-implementing the PromRecov and GeneRecov performance measures proposed by Ernst and Kellis that
measure how well these two marks localize within their respective regions. All three imputation strategies
show similar localization of H3K36me3 in gene bodies (Additional file 4: Figure S1c), but Avocado shows
the highest localization of H3K4me3 in promoter regions in 23 cell types, and a higher localization than
ChromImpute in 87 cell types (Additional file 4: Figure S1d).

ChromImpute PREDICTD Avocado
H3K4me4 - H3K27me3 0.3566 0.3448 0.3219
H3K4me1 - H3K27me3 0.3664 0.3150 0.3059
H3K36me3 - RNAseq 0.2425 0.1531 0.1464

H3K4me3 - H3K36me3 0.2789 0.2887 0.2713
H3K27me3 - H3K36me3 0.3163 0.2838 0.2735

Table S1: Evaluation of ChromImpute, PREDICTD, and Avocado at reconstructing relationships between
different histone marks across the genome according to the mean absolute error. The best result is in boldface
for each comparison.
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Figure S1: Aggregate measures of H3K4me3 and H3K36me3 in ChIP-seq experiments and
across imputation methods. (a) H3K4me3 signal in TSSs. Each line displays the average H3K4me3
signal across all TSSs in chromosomes 1-22 for a single cell type after accounting for strand orientation of
the gene. The variance of the signal across all cell types at each position is calculated and then averaged (σ).
The area under each line is used to define a ranking, and the spearman correlation (ρ) is calculated between
each of the three imputation approaches and the ChIP-seq data. To show how the imputation methods
alter ordering, the three cell lines with the highest and lowest ChIP-seq signal using this method are colored
magenta and red, respectively. In the PREDICTD panels the three with the highest signal are colored cyan
and the three with the lowest signal are colored blue. (b) H3K36me3 signal in gene bodies, taking into
account the strand orientation of the gene. Measurements are calculated in the same manner as H3K4me3.
(c) The GeneRecov performance measure for each cell type. This performance measure quantifies how well
H3K36me3 localizes in gene bodies across cell types. It is the area under the ROC curve at 5% FPR when
using H3K36me3 to predict gene bodies across chromosomes 1 through 22. (d) The PromRecov performance
measure for each cell type. This performance measure quantifies how well H3K4me3 localizes in promoter
regions across cell types. It is the area under the ROC curve at 5% FPR when using H3K4me3 to predict
promoters across chromosomes 1 through 22.
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Figure S2: The relationships between pairs of histone modifications. These panels show, going from
left to right, the signal values in the Roadmap compendium, the imputed signal values from ChromImpute,
imputed signal values from PREDICTD, the imputed signal values from Avocado, and the distribution of the
absolute error in reconstructing the relationship. In the rightmost panels the legend denotes ChromImpute as
C, PREDICTD as P, and Avocado as A. Because each plot contains over 2 million samples, the contour plots
are generated on a randomly selected one thousandth of the data, though the error histogram is generated
from the full set of samples.
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To expand on this investigation, we then looked at each techniques’ ability to reconstruct relationships
among multiple histone marks at the same locus in the genome. We began by looking at the signal values
of repressive mark H3K27me3 and the activating mark H3K4me3 in promoter regions, because the two
marks tend not to co-localize in differentiated cells (Additional file 4: Figure S2). To quantitatively evaluate
this relationship, we calculate the difference between H3K4me3 and H3K27me3 across all 127 cell lines for
all promoter regions and calculate the mean absolute error (MAE) between the ChIP-seq signal and the
corresponding imputed tracks. This performance measure measures how well the imputation strategies are
able to preserve the difference between the two marks. We find that Avocado achieves a lower MAE at
reconstructing this relationship than either other method (Additional file 4: Table S1). We also verified
that Avocado does a better job than the other two imputation methods at capturing a lack of correlation
between unrelated marks (Additional file 4: Figure S2), such as the repressive mark H3K27me3 and enhancer-
associated mark H3K4me1 (Additional file 4: Table S1).

We then consider how well the methods can reconstruct the relationship between H3K36me3, a mark
typically associated with active gene transcription, and RNA-seq measurements in gene bodies. We restricted
our comparison to 47 cell types in which RNA-seq measurements were available from the Roadmap consor-
tium. In this analysis, Avocado captures the relationship the best, and ChromImpute the worst. (Additional
file 4: Figure S2).

We then considered relationships across both histone marks and genomic loci, focusing on the relationship
between marks in the promoter and the gene body. Specifically, we consider the relationship between
H3K4me3 in the promoter region with H3K36me3 in the gene body, because an enrichment of the activating
mark should lead to higher levels of the transcription-associated mark. Likewise, we would expect that
an enrichment in H3K27me3 in the promoter region should lead to a depletion of H3K36me3 in the gene
body. A priori, we expect that ChromImpute and Avocado would do particularly well at reconstructing
these interactions because they both take as input information from many nearby genomic loci, whereas
PREDICTD treats each genomic position independently. However, we find that while PREDICTD does
the worst at reconstructing the relationship between H3K4me3 and H3K36me3, ChromImpute performs
much worse at connecting H3K27me3 and H3k36me3 (Additional file 4: Table S1). Interestingly, despite
ChromImpute having an overall negative correlation between H3K27me3 and H3K36me3, as ChromImpute’s
imputed value of H3K27me3 increases so too does the minimum value of H3K36me3 (Additional file 4:
Figure S2). This trend exists to a much lesser extent in the Avocado model, but is not supported by the
ChIP-seq signal.
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