Supporting Information

Table of contents:

General Information.	5
Table S1. MIC values of PTM and selected variants against selected pathogens	6
Figure S1. Structures of the ADHBA variants of platensimycin	
Figure S2. Paper Disc Method	9
Figure S3. Analysis of the stability of 8 from LB agar	11
Experimental procedure and physical data	12
References	37
NMR spectra data of products	
Figure S4. ¹ H NMR (400 MHz) and 13 C NMR (101 MHz) for 7a in CDCl ₃	
Figure S5. ¹ H NMR (500 MHz) and ¹³ C NMR (126 MHz) for 7b in DMSO- d_6	40
Figure S6. ¹ H $-$ ¹³ C HSQC spectrum of 7b in DMSO- d_6	41
Figure S7. ¹ H NMR (500 MHz) and ¹³ C NMR (126 MHz) for 8 in DMSO- d_6	42
Figure S8. ¹ H $-$ ¹³ C HSQC spectrum of 8 in DMSO- d_6	43
Figure S9. ¹ H NMR (500 MHz) and ¹³ C NMR (126 MHz) for 9 in MeOD	44
Figure S10. ¹ H NMR (400 MHz) and ¹³ C NMR (101 MHz) for 10a in DMSO- d_6	45
Figure S11. ¹ H $-$ ¹³ C HSQC spectrum of 10a in DMSO- d_6	46
Figure S12. ¹ H NMR (400 MHz) and ¹³ C NMR (101 MHz) for 10b in DMSO- d_6	47
Figure S13. ¹ H $-$ ¹³ C HSQC spectrum of 10b in DMSO- d_6	48
Figure S14. ¹ H NMR (400 MHz) and ¹³ C NMR (101 MHz) for 25a in CDCl ₃	49
Figure S15. ¹ H NMR (400 MHz) and ¹³ C NMR (101 MHz) for 26a in CDCl ₃	
Figure S16. ¹ H NMR (400 MHz) and ¹³ C NMR (101 MHz) for 26b in MeOD	51
Figure S17. ¹ H NMR (400 MHz) and ¹³ C NMR (101 MHz) for 27a in CDCl ₃	52
Figure S18. ¹ H NMR (500 MHz) and ¹³ C NMR (126 MHz) for 27b in CDCl ₃	53
Figure S19. ¹ H NMR (500 MHz) and ¹³ C NMR (126 MHz) for 28 in DMSO- d_6	54
Figure S20. ¹ H NMR (400 MHz) and ¹³ C NMR (101 MHz) for 29a in CDCl ₃	55
Figure S21. ¹ H NMR (500 MHz) and ${}^{13}C$ NMR (126 MHz) for 29b in CDCl ₃	56
Figure S22. ¹ H NMR (400 MHz) and ¹³ C NMR (101 MHz) for 30 in CDCl ₃	57
Figure S23. ¹ H NMR (500 MHz) and ¹³ C NMR (126 MHz) for 25b in DMSO- d_6	58
Figure S24. ¹ H NMR (500 MHz) and ${}^{13}C$ NMR (126 MHz) for 27c in DMSO- d_6	

Figure S25.1H NMR (400 MHz) and	¹³ C NMR (101 MHz) for 29c in MeOD	60
Figure S26.1H NMR (400 MHz) and	¹³ C NMR (101 MHz) for 4 in CDCl ₃	61
Figure S27. ¹ H NMR (400 MHz) and	¹³ C NMR (101 MHz) for 5 in CDCl ₃	62
Figure S28. ¹ H NMR (400 MHz) and	¹³ C NMR (101 MHz) for S9 in DMSO- d_6	63
Figure S29.1H NMR (400 MHz) and	¹³ C NMR (101 MHz) for 6 in CDCl ₃	64
Figure S30. ¹ H NMR (400 MHz) and	¹³ C NMR (101 MHz) for 13 in CDCl ₃	65
Figure S31. ¹ H NMR (400 MHz) and	¹³ C NMR (101 MHz) for 15a in CDCl ₃	66
Figure S32. ¹ H NMR (500 MHz) and	¹³ C NMR (126 MHz) for 15b in DMSO- d_6	67
Figure S33. ¹ H NMR (400 MHz) and	¹³ C NMR (101 MHz) for 17a in CDCl ₃	68
Figure S34. ¹ H NMR (400 MHz) and	¹³ C NMR (101 MHz) for 17b in CDCl ₃	69
Figure S35. ¹ H NMR (400 MHz) and	¹³ C NMR (101 MHz) for 19 in CDCl ₃	70
Figure S36. ¹ H NMR (400 MHz) and	¹³ C NMR (101 MHz) for 21b in CDCl ₃	71
C	¹³ C NMR (101 MHz) for 24 in CDCl ₃	
e ,	¹³ C NMR (101 MHz) for 12 in CDCl ₃	
-	¹³ C NMR (101 MHz) for 14 in CDCl ₃	
-	¹³ C NMR (126 MHz) for 23 in CDCl ₃	
Figure S41. ¹ H NMR (400 MHz) and	¹³ C NMR (101 MHz) for S8 in CDCl ₃	76
•	¹³ C NMR (101 MHz) for S10 in CDCl ₃	
e ,	¹³ C NMR (101 MHz) for S11 in CDCl ₃	
	¹³ C NMR (101 MHz) for 18 in MeOD	
•	¹³ C NMR (101 MHz) for S13 in DMSO- d_6	
e v	¹³ C NMR (101 MHz) for S15 in DMSO- d_6	
•	¹³ C NMR (101 MHz) for S18 in CDCl ₃	
6	13 C NMR (101 MHz) for s-4f in MeOD	
-	of s-4f in MeOD	
Figure S50. ¹ H NMR (400 MHz) and	¹³ C NMR (101 MHz) for s-4h in MeOD	85
Figure S51. ¹ H– ¹³ C HSQC spectrum of	of s-4h in MeOD	86
Figure S52. HRMS spectrum of 7a		87
Figure S53. HRMS spectrum of 7b		87
Figure S54. HRMS spectrum of 8		88
Figure S55. HRMS spectrum of 9		88
Figure S56. HRMS spectrum of 10a		89
Figure S57. HRMS spectrum of 10b		89
Figure S58. HRMS spectrum of 25a		90
Figure S59. HRMS spectrum of 26a		90
e 1		
č		
<u>^</u>		

Figure S	S68.	HRMS spectrum	of 27c		.95
Figure S	S69.	HRMS spectrum	of 29c		.95
Figure S	S70.	HRMS spectrum	of 5		.96
Figure S	S71.	HRMS spectrum	of 6		.96
Figure S	S72.	HRMS spectrum	of 13		.97
Figure S	S73.	HRMS spectrum	of 15a		.97
Figure S	S74.	HRMS spectrum	of 15b		.98
Figure S	S75.	HRMS spectrum	of 17a		.98
Figure S	S76.	HRMS spectrum	of 17b		.99
Figure S	S77.	HRMS spectrum	of 19		.99
Figure S	S78.	HRMS spectrum	of 21a		.00
Figure S	S79.	HRMS spectrum	of 21b		.00
Figure S	S80.	HRMS spectrum	of 24		.01
Figure S	S81.	HRMS spectrum	of s-4f	1	.01
Figure S	S82.	HRMS spectrum	of s-4h		.02

General Information

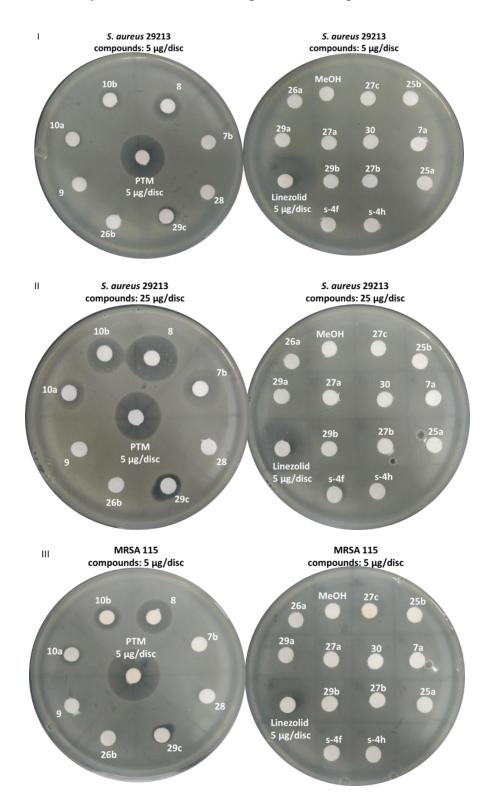
All commercially available reagents were directly used as received from vendors, unless otherwise stated. Anhydrous THF (tetrahydrofuran) and DMF (*N*, *N*-dimethylformamide) freshly distilled over metal sodium, prior to use. NMR spectra were recorded on either Brucker 400 MHz or 500 MHz spectrometer. All NMR spectra were measured in CDCl₃, MeOD or DMSO-*d*₆ solutions and referenced to the residual CHCl₃ signal (¹H, d= 7.26 ppm; ¹³C, d=77.16 ppm), MeOH signal (¹H, d=3.31 ppm; ¹³C, d=49.00 ppm) or DMSO-*d*₆ signal (¹H, d= 2.50 ppm; ¹³C, d= 39.52 ppm). All ¹H and ¹³C shifts are given in ppm (s=singlet; d=doublet; t=triplet; q=quadruplet; m=multiplet; b=broad signal). High resolution mass spectra (HRMS) were performed with a Bruker ULTRAFLEX III TOF/TOF 200 instrument.

Antibacterial activity assay^[1]

The antibacterial activities of the five compounds were tested against *S. aureus* strains. MIC values of tested compounds were determined using agar dilution assay. In brief, the *S. aureus* strains were cultivated on LB broth overnight and diluted. Approximate 10^4 colony forming units (CFU) of each strain was spotted (2 µL) onto LB agar plates containing different concentration of the tested compounds, ranging from 0.5 - 64 µg/mL LB agar. Then the plates were incubated in 37 °C for 16 hours and monitored. The *S. aureus* strains were cultivated on LB broth overnight and diluted to an OD₆₀₀ = 0.25 ± 0.05, then diluted 10⁴ with LB broth, and approximate 10⁴ CFU of each strain was spotted (2 µL) onto LB agar plates.

Table S1. MIC values (μ g/ml) of PTM (1) and selected variants against selected Gram-positive pathogens. (i) black: isolated from wild-type; (ii) purple: isolated from engineered strains; (iii) blue: from semisynthesis; (iv) red: from total synthesis; (v) green: from mutasynthesis.

Compound	MS S A ^a	MRS A ^b	VRE ^c	Reference
1	0.5	0.5-1	0.1	[2]
s-2a	>64	37-58	>58-64	[3]
s-2b	>64	_d	-	[3]
s-2c	>64	-	>64	[3]
s-2d	>64	-	>64	[3]
s-2e	100	-	-	[4]
s-2f	>64	-	-	[4]
s-2g	>64	-	-	[5]
s-2h	>64	-	-	[5]
s-2i	>64	-	>64	[6]
s-2j	>64	-	-	[4]
s-2k	>250	-	-	[7]
s-21	>250	-	-	[7]
s-2m	>64	-	-	[3]
s-3a	-	>85	>85	[8]
s-3b	-	>85	>85	[8]
s-3c	-	>82	>82	[8-9]
s-3d	-	>85	>85	[8]
s-4a	ND ^e	-	-	[10]
s-4b	ND	-	-	[10]
s-4c	>64	>64	-	[10]
s-4d	>64	>64	-	[10]
s-4e	>64	>64	-	[10]
s-4f	ND	-	-	[10]
s-4g	ND	-	-	[10]
s-4h	ND	-	-	[10]
s-4i	ND	-	-	[10]
s-4j	>64	>64	-	[9, 11]
s-4k	>64	>64	-	[9]
s-41	>64	>64	-	[9]
s-4m	>64	>64	-	[9]
s-4n	>64	>64	-	[9]
s-40	>64	>64	-	[9]
s-4p	>64	>64	-	[9]
s-4q	>64	>64	-	[9]
s-4r	>64	>64	-	[9]
s-4s	>64	>64	-	[9]
s-4t	>64	>64		[9]


	C automatica	bmathiaillin registant	C automatica	C
s-6b	ND	ND	ND	[12]
s-6a	ND	ND	ND	[12]
s-5j	NA	-	-	[11]
s-5i	NA	-	-	[11]
s-5h	NA	-	-	[11]
s-5g	NA	-	-	[11]
s-5f	NA	-	-	[11]
s-5e	NA	-	-	[11]
s-5d	NA	-	-	[11]
s-5c	NA	-	-	[11]
s-5b	NA	-	-	[11]
s-5a	$\mathbf{N}\mathbf{A}^{\mathrm{f}}$	-	-	[11]
s-4u'	>64	>64	-	[3]
s-4t'	>64	>64	-	[3]
s-4s'	>64	>64	-	[7]
s-4r'	>64	>64	-	[7]
s-4q'	>64	>64	-	[3]
s-4p'	>64	>64	-	[9]
s-40'	>64	>64	-	[9]
s-4n'	>64	>64	-	[9]
s-4m'	>64	>64	-	[9]
s-41'	>64	>64	-	[9]
s-4k'	>64	>64	-	[9]
s-4j'	>64	>64	-	[9]
s-4i'	>64	>64	-	[9]
s-4h'	>64	>64	-	[9]
s-4g'	>64	>64	-	[9]
s-4f'	>64	>64	-	[9]
s-4e'	>64	>64	-	[9]
s-4d'	>64	>64	-	[9]
s-4c'	>64	>64	-	[9]
s-4b'	>64	>64	-	[9]
s-4a'	>64	>64	-	[9]
s-4z	>64	>64	-	[9]
s-4y	>64	>64	-	[9]
s-4x	>64	>64	-	[9]
s-4w	>64	>64	-	[9]
s-4v	>64	>64	-	[9]
s-4u	>64	>64	-	[9]

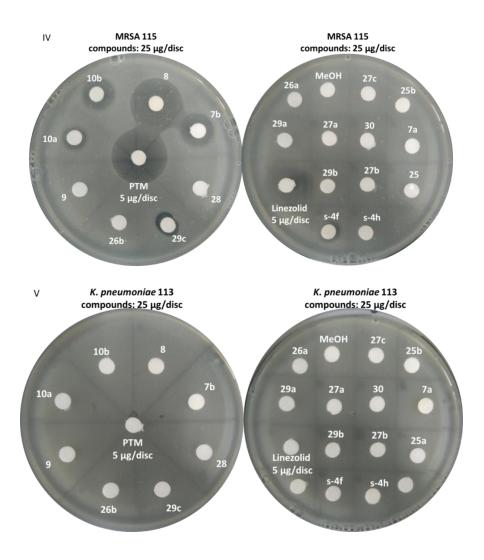
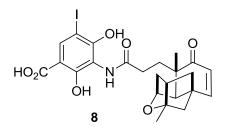

^amethicillin-sensitive *S.aureus*. ^bmethicillin-resistant *S. aureus*. ^cvancomycin-resistant *Entercocci*. ^d–, not tested against this pathogen. ^eND, not determined (in some cases, compounds were reported as "less than that of PTM" without an MIC value). ^fNA, no activity without specifying the upper limit concentrations tested.

Figure S1. Summarize of platensimycin ADHBA variants. (i) black: isolated from wild-type; (ii) purple: isolated from engineered strains; (iii) blue: from semisynthesis; (iv) red: from total synthesis; (v) green: from mutasynthesis.



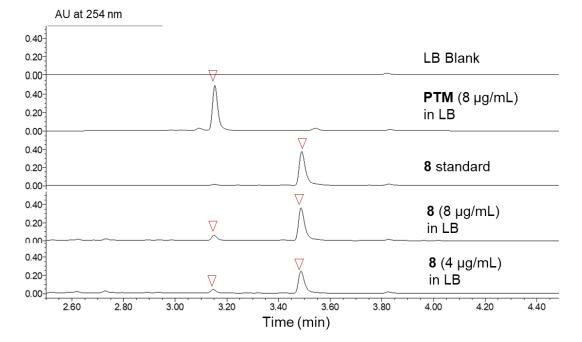
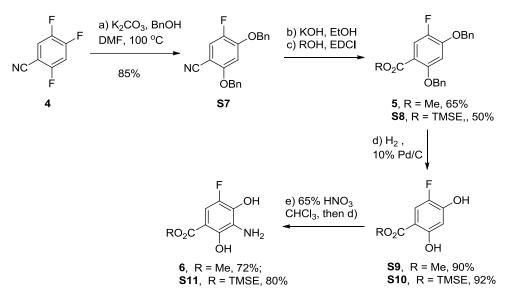
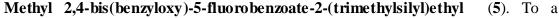

Figure S2. Paper Disc Method. Five PTM analogues 7b, 8, 10a, 10b, 29c showed clear zone of inhibition against *S. aureus* 29213 and one MRSA strain, when tested in 25 μ g/disk, using PTM and Linezolid (5 μ g/disk) as a positive control and MeOH as a negative control. The 5'-Cl-platensimycin s-4f and 5'-Br-platensimycin s-4h were prepared based on a previous work.^[10] The experiments were repeated at least for three times and only the results from one experiment were presented.

Figure S3. The stability analysis of **8** in LB agar. The compounds **8** (0.1 mg mL⁻¹) were diluted in 5 mL LB agar to 0.004 or 0.008 mg mL⁻¹, and the resulting LB agar plates were incubated at 37 °C for 16 h. PTM was used as control. The LB agar with the tested compounds were then extracted by CH₂Cl₂ (3 × 10 mL), dried by anhydrous Na₂SO₄, concentrated *in vacuum* and analyzed by HPLC.



Experimental procedure and physical data


Arylamines 6,^[13] 13,^[14] 15a,^[15] 15b,^[15] 17a,^[16] 17b,^[16] 19,^[16b] 21a,^[17] 21b,^[17] 24,^[14a] S11^[13] were prepared by following the procedures based on the methods in the references. Others were purchased from commercial suppliers and used without further purification.

Supporting Scheme S1. Synthesis of anilines 6 and S11.

^a Reagents and conditions: (a) K_2CO_3 (5 equiv.), BnOH (2.5 equiv.), DMF, 105 °C , 16 h, 85%; (b) 6 N KOH, EtOH, 140 °C, 1.5 h, 95%; (c) MeOH, DMAP (0.1 equiv.), EDCI (1.2 equiv.), Et₃N (2.5 equiv.) 10 h, 65% (for **5**), 50% (for **S8**); (d) H₂ (1.1 atm.),10% Pd/C (0.2 equiv.), MeOH, 25 °C, 3 h, 90% (for **S9**), 92% (for **S10**); (e) 65% HNO₃, CHCl₃, 15 min, 72% (for **6**), 80% (for **S11**).

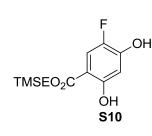
2,4-bis(benzyloxy)-5-fluorobenzonitrile (S7). To a solution of 4 (1.57 g, 10 mmol) in DMF (5 mL) was added benzyl alcohol (5 mL, 50 mmol) and OBn potassium carbonate (6.9 g, 50 mmol). The vessel was heated to 105 °C for 16 h, subsequently placed under high vacuum for 2 h to NC remove DMF, followed by purification using column ÓBn chromatography on silica gel (eluent: petroleum ether/ethyl acetate **S**7 (10:1)) to afford S7 (2.83 g, 85%) as a yellow solid. ¹H NMR (400 MHz, CDC₃) δ 7.38 (dd, J = 4.2, 2.2 Hz, 10H), 7.25 (d, J = 4.9 Hz, 1H), 6.57 (d, J =6.8 Hz, 1H), 5.11 (d, J = 2.7 Hz, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 157.95 (s), 151.40 (d, J = 11.6 Hz), 147.62 (s), 145.21 (s), 135.28 (s), 135.03 (s), 128.93 - 128.51 (m), 128.37 (s), 127.31 (s), 126.98 (s), 119.92 (s), 119.70 (s), 115.70 (s), 101.18 (s), 93.30 (d, J = 4.9 Hz), 77.31 (s), 76.99 (s), 76.68 (s), 71.42 (d, J = 3.9 Hz). MS (ESI): m/z calcd for C₂₁H₁₇FNO₂ [M+H]⁺: 334.1243; found: 334.0918.

OBn MeO₂C ÓBn 5

TMSEO₂C

suspension of benzonitrile S7 (1.17 g, 3.5 mmol) in EtOH (6 mL) was added KOH (1.22 g, 21.8 mmol) in H₂O (6 mL). The mixture was heated in a sealed tube at 140 $\,^{\circ}$ C in an oil bath for 1.5 hours and then concentrated under reduced pressure at 45 °C. The resulting slurry was acidified with 2 N HC1(12 mL) and filtered. The filter cake was washed with H_2O (3×10 mL)

and dried in vacuo at ambient temperature to give 2,4-bis(benzyloxy)-5-fluorobenzoic (1.07)acid off-white solid 87%). mixture as an g. А of 2,4-bis(benzyloxy)-5-fluorobenzoic acid (704 mg, 2.0 mmol), alcohol methanol (160 µL, 4.0 mmol), DMAP (24.4 mg, 0.2 mmol), and EDCI (1.15 g, 6.0 mmol) in CH₂Cl₂ (25 mL) was stirred at room temperature overnight. The reaction mixture was washed with saturated NaCl. The CH₂Cl₂ solution was separated, dried over Na₂SO₄, and removed by rotary evaporation. The residue was purified by chromatography using 10 : 1 petroleum ether/ethyl acetate to obtain 5 (0.83 g ,65%). ¹H NMR (400 MHz, CDCb) δ 7.66 (d, J = 11.8 Hz, 1H), 7.45 (d, J = 7.3 Hz, 2H), 7.42 – 7.29 (m, 8H), 6.60 (d, J = 6.9 Hz, 1H), 5.10 (d, J = 15.6 Hz, 4H), 3.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.11 (s), 154.87 (s), 149.56 (d, J = 11.9 Hz), 146.67 (s), 144.28 (s), 135.40 (s), 134.57 (s), 127.73 (s), 127.58 (s), 127.40 (s), 126.93 (s), 126.38 (s), 125.93 (s), 118.15 (s), 117.94 (s), 111.39 (s), 111.33 (s), 101.71 (s), 70.84 (s), 70.28 (s), 50.93 (s); HRMS (ESI): m/z calcd for $C_{22}H_{20}FO_4$ [M+H]⁺: 367.1346; found:367.1339.

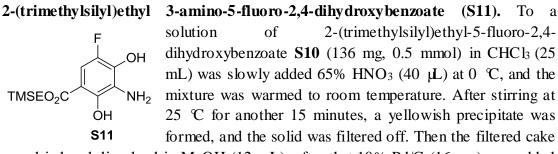

2,4-bis(benzyloxy)-5-fluorobenzoate (S8). To a suspension of benzonitrile S7 (1.17 g, 3.5 mmol) in EtOH (6 mL) was added KOH (1.22 g, 21.8 mmol) in H₂O (6 mL). The mixture was heated in a sealed OBn tube at 140 $^{\circ}$ C in an oil bath for 1.5 hours and then concentrated under reduced pressure at 45 $\,^{\circ}$ C. The resulting slurry was acidified with 2 N HCl (12 mL) and filtered. The ÒBn filter cake was washed with H2O (3×10 mL) and dried in **S**8 vacuo at ambient temperature to give 2,4-bis(benzyloxy)-5-

fluorobenzoic acid as an off-white solid (1.07 g, 87%). A mixture of 2,4-bis(benzyloxy)-5-fluorobenzoic acid (704 mg, 2.0 mmol), 2-(trimethylsilyl) ethanol (236 mg, 2.0 mmol), DMAP (30 mg, 0.2 mmol), and EDCI (1.16 g, 6.0 mmol) in CH₂Cl₂ (25 mL) was stirred at room temperature overnight. The reaction mixture was washed with saturated NaCl. The CH₂Cl₂ solution was separated, dried over Na₂SO₄, and removed by rotary evaporation. The residue was purified by chromatography using 10:1 petroleum ether/ethyl acetate to obtain S8 (0.79 g, 50%); ¹H NMR (400 MHz, CDC₃) δ 7.68 (d, J = 11.8 Hz, 1H), 7.48 (d, J = 7.2 Hz, 2H), 7.45 – 7.30 (m, 8H), 6.62 (d, J = 6.9 Hz, 1H), 5.11 (d, J = 18.4 Hz, 4H), 4.48 - 4.27 (m, 3H), 1.15 - 1.06 (m, 2H), 0.09 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 164.95 (s), 155.78 (d, J = 1.9 Hz), 150.38 (d, J = 12.0 Hz), 147.74 (s), 145.35 (s), 136.51 (s), 135.71 (s), 128.76 (s), 128.56 (s), 128.42 (s), 127.97 (s), 127.43 (s), 127.13 (s), 119.12 (s), 118.91 (s), 113.09 (d, J = 5.5 Hz), 102.78 (s), 77.34 (d, J = 11.6 Hz), 77.08 (s), 76.76 (s), 71.88

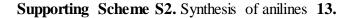
(s), 71.35 (s), 66.09 (s), 65.81 (s), 63.12 (s), 44.25 (s), 28.87 (s), 25.75 (s), 17.46 (s), 17.23 (s), -1.51 (d, J = 7.1 Hz). MS (ESI): m/z calcd for C₂₆H₂₈FO₄Si [M+H]⁻: 451.1741; found: 451.4084.

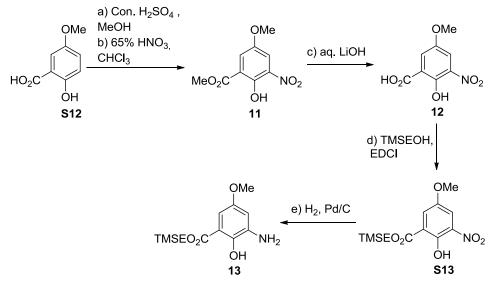
Methyl 5-fluoro-2,4-dihydroxybenzoate (S9). To a solution of 5 (431 mg, 1.18 mmol) in MeOH (12 mL) was added 10% Pd/C (43 mg) and the suspension was stirred for 3 h under an atmosphere of hydrogen. OH After filtration, the solvent was removed under vacuum to give MeO₂C crude product. Purification by column chromatography on silica ÒΗ gel (ethyl acetate/petroleum ether = 1:10) to afford pure product **S**9 **S9** (197 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 10.74 (s, 1H), 7.52 (d, J = 10.8 Hz, 1H), 6.57 (d, J = 7.4 Hz, 1H), 5.89 (s, 1H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.75 (s), 159.63 (s), 150.38 (d, J = 16.2 Hz), 145.53 (s), 143.23 (s), 115.47 (s), 115.26 (s), 104.98 (s), 104.25 (d, J = 6.3 Hz), 77.35 (s), 77.03 (s), 76.71 (s), 52.32 (s). MS (ESI): m/z calcd for C₈H₆FO₄ [M+H]⁻: 185.0250; found: 185.1074.

2-(trimethylsilyl)ethyl 5-fluoro-2,4-dihydroxybenzoate (S10). To a solution of S8


(533mg, 1.18 mmol) in MeOH (12 mL) was added 10% Pd/C (53 mg) and the suspension was stirred for 3 h under an atmosphere of hydrogen. After filtration, the solvent was removed under vacuum to give crude product. Purification by column chromatography on silica gel (ethyl acetate/petroleum ether = 1:10) to afford pure product **S10** (296 g, 92%).¹H NMR (400 MHz, CDCl₃) δ 10.89 (s, 1H),

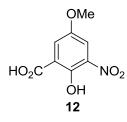
7.51 (d, J = 10.8 Hz, 1H), 6.56 (d, J = 7.4 Hz, 1H), 5.95 (s, 1H), 4.52 – 4.29 (m, 2H), 1.20 – 1.05 (m, 2H), 0.08 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 169.55 (s), 159.66 (s), 150.21 (d, J = 16.0 Hz), 145.50 (s), 143.20 (s), 115.42 (s), 115.22 (s), 104.95 (s), 104.65 (d, J = 6.0 Hz), 77.29 (d, J = 11.6 Hz), 77.03 (s), 76.71 (s), 63.92 (s), 29.71 (s), 17.40 (s), -1.48 (s). MS (ESI): m/z calcd for C₁₂H₁₆FO₄Si [M+H]⁻: 271.0802; found: 271.1101.


Methyl 3-amino-5-fluoro-2,4-dihydroxybenzoate (6). To a solution of Methyl 5-fluoro-2,4-dihydroxybenzoate S9 (100 mg, 0.5 mmol) in CHCl₃ (25 mL) was slowly added 65% HNO₃ (40 μ L) at 0 °C, and the mixture was warmed to room temperature. After stirring at 25 °C for another 15 minutes, a yellowish precipitate was formed, and the solid was filtered off. Then the filtered cake was dried and dissolved in MeOH (12 mL), after that 10%


Pd/C (12 mg) was added and the suspension was stirred for 3 h under an atmosphere of hydrogen. After filtration, the solvent was removed under vacuum to give product **6** (72 mg, 72%) without further purification. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.52 (s, 1H), 6.84 (d, J = 11.2 Hz, 1H), 3.86 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.27 (d, J = 3.1 Hz), 146.98 (s), 146.03 (s), 144.69 (s), 137.43 (d, J = 17.9 Hz),

102.42 (d, J = 8.6 Hz), 102.00 (s), 101.79 (s), 52.76 (s); HRMS (ESI): m/z calcd for C₈H₉FNO₄ [M+H]⁺: 202.0516; found: 202.0508.

was dried and dissolved in MeOH (12 mL), after that 10% Pd/C (16 mg) was added the suspension was stirred for 3 h under an atmosphere of hydrogen. After filtration, the solvent was removed under vacuum to give product **S11** (114 mg, 80%) without further purification. ¹H NMR (400 MHz, CDCl₃) δ 10.91 (s, 1H), 7.29 (s, 1H), 4.52 – 4.27 (m, 2H), 1.19 – 1.01 (m, 2H), 0.15 – 0.02 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 158.25 – 157.75 (m), 125.52 (s), 77.37 (s), 77.05 (s), 76.73 (s), 66.10 (s), 65.73 (d, *J* = 17.3 Hz), 44.22 (s), 31.93 (s), 30.32 (s), 29.54 (d, *J* = 33.7 Hz), 28.86 (s), 28.86 – 28.71 (m), 25.74 (s), 22.70 (s), 17.84 – 17.02 (m), 14.13 (s), 1.02 (s), -1.53 (d, *J* = 9.9 Hz). MS (ESI): m/z caked for C₁₂H₁₉FO4Si [M+H]⁺: 288.1067; found: 288.0727.



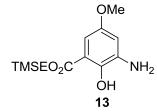
^aReagents and conditions: (a) Con. H_2SO_4 , MeOH, 80 °C, 24 h, 85%; (b) 65% HNO₃, CHCl₃, r.t, 2 h, 90%; (c) THF, aq. LiOH, 45 °C, 4 h, 95%; (d) TMSEOH (1.2 equiv.), EDCI (1.0 equiv.), NEt₃ (2.0 equiv.), CH₂Cl₂, 25 °C, 12 h, 89%; (e) H₂ (1.1 atm.), 10% Pd/C (0.2 equiv.), MeOH, 25 °C, 3 h, 95%.

Methyl 2-hydroxy-5-methoxy-3-nitrobenzoate (11). 2-hydroxy-5-methoxybenzoic acid (5.04 g, 30.0 mmol) was dissolved in MeOH (50 mL), to OMe which con. H₂SO₄ (3 mL) was added. The mixture was heated under reflux for 24 h. The solvent was then removed in vacuo MeO₂C NO_2 and the residue was dissolved in CH₂Cl₂ (100 mL), washed ÓΗ with water (3 \times 50 mL) and dried over anhydrous Na₂SO₄. 11 Removal of CH₂Cl₂ gave the pure product methyl 2-hydroxy-5-methoxybenzoate (4.64 g, 85%) as a light brown solid. To a solution of

2-hydroxy-5-methoxybenzoate (4.64 g, 85%) as a light brown solid. To a solution of methyl 2-hydroxy-5-methoxybenzoate (1.82 g, 10 mmol) in CHCl₃ (25 mL) was slowly added 65% HNO₃ (400 μ L) at 0 °C, and the mixture was warmed to room temperature. After stirring at 25 °C for 2h, a yellowish precipitate was formed, and the solid was filtered off to give the title product **11** (2.04 g, 90%). MS (ESI): m/z calcd for C₉H₈NO₆ [M+H]⁻: 226.0352; found: 226.1539.

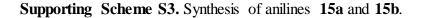
2-hydroxy-5-methoxy-3-nitrobenzoic acid (12). To a stirred solution of 11 (1.14 g,

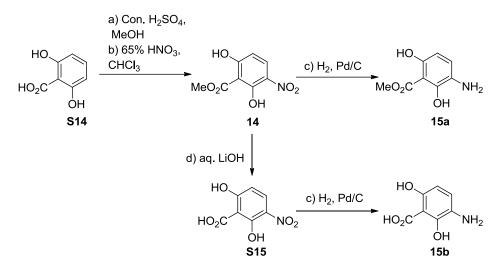
5 mmol) in THF (5 mL) was added an aqueous solution of LiOH (2 M, 5 mL). The resulting mixture was stirred at 45 °C for 4 h. The resulting mixture was then cooled to room temperature, acidified with an aqueous solution of HCl (2 M, 10 mL) and extracted with EtOAc (4 \times 20 mL). The combined organic phases were dried over Na₂SO₄, filtered and concentrated *in*


vacuo. The residue so obtained was purified by flash column chromatography (silica

gel, ethyl acetate/methanol = 6:1) to give title compound **12** (1.01 g, 95%) as a yellow solid. ¹H NMR (400 MHz, DMSO- d_6) δ 11.76 (s, 1H), 7.74 – 7.64 (m, 1H), 7.60 – 7.49 (m, 1H), 3.77 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 171.11 (s), 150.32 (s), 149.28 (s), 138.25 (s), 121.00 (s), 116.98 (s), 116.22 (s), 56.48 (s), 40.22 (s), 40.01 (s), 39.95 – 39.92 (m), 39.69 (d, J = 21.0 Hz), 39.38 (s). MS (ESI): m/z calcd for C₈H₆NO₆ [M+H]⁻: 212.0195; found: 212.1040.

2-(trimethylsilyl)ethyl 2-hydroxy-5-methoxy-3-nitrobenzoate (S13). A mixture of OMe 9(567 mg, 2.5 mmol), 2-(trimethylsilyl)ethanol (307 mg, 2.6 mmol), DMAP (12.2 mg, 0. 1 mmol), and EDCI (443 mg, 3.75 mmol) in CH₂Cl₂ (15 mL) was stirred at 25 °C overnight. The reaction mixture was washed with water and then with saturated NaHCO₃. The ethyl acetate solution was separated, dried over Na₂SO₄, and ethyl acetate removed by


rotary evaporation. The residue was purified by chromatography using ethyl acetate/petroleum ether = 1:10 to obtain **S13** (698 mg, 89%); ¹H NMR (400 MHz, CDCl₃) δ 11.68 (s, 1H), 7.71 (d, J = 3.2 Hz, 1H), 7.68 (d, J = 3.3 Hz, 1H), 4.55 – 4.46 (m, 2H), 3.85 (s, 3H), 1.21 – 1.16 (m, 2H), 0.11 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.64 (s), 150.56 (s), 150.00 (s), 137.67 (s), 121.45 (s), 116.41 (d, J = 4.8 Hz), 77.40 (s), 77.09 (s), 76.77 (s), 65.26 (s), 56.24 (s), 29.71 (s), 17.34 (s), -1.48 (s). MS (ESI): m/z calcd for C₁₃H₁₈NO₆Si[M+H]⁻: 312.0903; found: 312.1224.


2-(trimethylsilyl)ethyl 3-amino-2-hydroxy-5-methoxybenzoate (13). To a solution of **65** (100 mg, 0.32 mmol) in MeOH (12 mL) was added 10% Pd/C (10 mg) and the

suspension was stirred for 3 h under an atmosphere of hydrogen. After filtration, the solvent was removed under vacuum to give product **13** (70 mg, 95%) without further purification. ¹H NMR (400 MHz, CDCl₃) δ 10.72 (s, 1H), 6.71 (d, J = 2.9 Hz, 1H), 6.52 (d, J = 2.8 Hz, 1H), 4.49 – 4.43 (m, 2H), 3.76 (s, 3H), 1.17 (s, 2H), 0.12 (s, 9H). ¹³C

NMR (101 MHz, CDCl₃) δ 170.71 (s), 152.03 (s), 144.99 (s), 136.84 (s), 111.33 (s), 108.07 (s), 99.91 (s), 77.38 (s), 77.06 (s), 76.74 (s), 63.78 (s), 55.59 (s), 29.73 (s), -1.40 (s); HRMS (ESI): m/z calcd for C₁₃H₂₂NO₄Si [M+H]⁺: 284.1318; found: 284.1312.

^aReagents and conditions: (a) Con. H₂SO₄, MeOH, 80 °C, 24 h, 72%; (b) 65% HNO₃, CHCl₃, r.t, 10 min, 95%; (d) THF, aq. LiOH, 45 °C, 91%; (c) H₂ (1.1 atm.), 10% Pd/C (0.2 equiv.), MeOH, 25 °C, 3 h, 91% (for **15a**), 89% (for **15b**).

Methyl 2,6-dihydroxy-3-nitrobenzoate (14). 2,6-dihydroxybenzoic acid S14 (4.62 g,

HO MeO₂C OH 14 30.0 mmol) was dissolved in MeOH (50 mL), to which con. H_2SO_4 (3 mL) was added. The mixture was heated under reflux for 24 h. The solvent was then removed in vacuo and the residue was dissolved in CH₂Cl₂ (100 mL), washed with water (3 × 50 mL) and dried over anhydrous Na₂SO₄. Removal of CH₂Cl₂

gave the pure product methyl 2,6-dihydroxy benzoate (3.63 g, 21.6 mmol) as a light brown solid. To a solution of methyl 2,6-dihydroxy benzoate (1.68 g,10 mmol) in CHCl₃ (25 mL) was slowly added 65% HNO₃ (400 µL) at 0 °C, and the mixture was warmed to room temperature. After stirring at 25 °C for 2h, a yellowish precipitate was formed, and the solid was filtered off to give the title product **14** (2.02 g, 95%). ¹H NMR (400 MHz, CDCl₃) δ 12.70 (s, 1H), 12.63 (s, 1H), 8.26 (d, J = 9.6 Hz, 1H), 6.63 (d, J = 9.6 Hz, 1H), 4.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.80 (s), 170.57 (s), 159.46 (s), 133.23 (s), 131.63 (s), 110.80 (s), 102.12 (s), 77.37 (s), 77.05 (s), 76.74 (s), 53.32 (s). MS (ESI): m/z calcd for C₈H₆NO₆ [M+H]⁻: 212.0195; found: 212.0540.

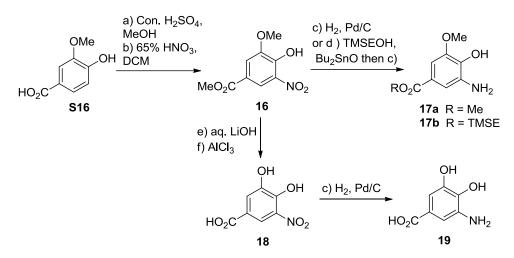
Methyl 3-amino-2,6-dihydroxybenzoate (15a). To a solution of 14 (106 mg, 0.5

HO MeO₂C OH 15a mmol) in MeOH (12 mL) was added 10% Pd/C (10 mg) and the suspension was stirred for 3 h under an atmosphere of hydrogen. After filtration, the solvent was removed under vacuum to give product **15a** (83 mg, 91%) without further purification. ¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 8.82 (s, 1H), 6.90 (d,

J = 8.6 Hz, 1H), 6.40 (d, J = 8.6 Hz, 1H), 4.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ

170.17 (s), 152.44 (s), 147.96 (s), 144.51 (s), 127.52 (s), 123.18 (s), 107.13 (s), 99.89 (s), 77.35 (s), 77.03 (s), 76.72 (s), 52.84 (s), 29.71 (s); HRMS (ESI): m/z calcd for $C_8H_{10}NO_4$ [M+H]⁺: 184.0610; found:184.0600.

2,6-dihydroxy-3-nitrobenzoic acid (S15). To a stirred solution of 14 (1.06 g, 5 mmol)


HO HO₂C OH **S15** in THF (5 mL) was added an aqueous solution of LiOH (2 M, 5 mL). The resulting mixture was stirred at 45 $^{\circ}$ C for 4 h. The resulting mixture was then cooled to room temperature, acidified with an aqueous solution of HC1 (2 M, 10 mL) and extracted with EtOAc (4 \times 20 mL). The combined organic phases were dried over Na₂SO₄, filtered and concentrated in vacuo. The

residue so obtained was purified by flash column chromatography (silica gel, ethyl acetate/methanol = 6:1) to give title compound **S15** (905 mg, 91%) as a yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.90 (s, 3H), 7.95 (d, *J* = 9.4 Hz, 1H), 6.26 (d, *J* = 9.4 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 174.59 (s), 168.43 (s), 161.00 (s), 130.41 (s), 128.16 (s), 106.71 (s), 104.55 (s), 40.37 (d, *J* = 20.9 Hz), 40.08 (s), 40.11 – 39.62 (m), 39.43 (s), 39.43 (s), 39.33 (d, *J* = 20.8 Hz). MS (ESI): m/z calcd for C₇H₄NO₆ [M+H]⁻: 198.0039; found: 198.1052.

3-amino-2,6-dihydroxybenzoic acid (15b). To a solution of S15 (100 mg, 0.5 mmol)

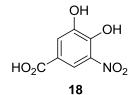
HO₂C NH₂ OH 15b in MeOH (12 mL) was added 10% Pd/C (10 mg) and the suspension was stirred for 3 h under an atmosphere of hydrogen. After filtration, the solvent was removed under vacuum to give product **15b** (75 mg, 89%) without further purification. ¹H NMR (500 MHz, DMSO- d_6) δ 7.90 (d, J = 9.1 Hz, 1H), 6.89 (d, J = 8.4

Hz, 1H), 6.04 (d, J = 8.3 Hz, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 175.39 (s), 168.00 (s), 165.61 (s), 128.28 (s), 124.22 (s), 106.21 (s), 103.60 (s), 41.80 – 39.91 (m), 39.80 (s), 39.67 (d, J = 21.0 Hz), 39.42 (s); HRMS (ESI): m/z calcd for C₇H₈NO₄ [M+H]⁺: 170.0453; found:170.0445.

Supporting Scheme S4. Synthesis of anilines 17a, 17b and 19.

^aReagents and conditions: (a) Con. H_2SO_4 , MeOH, 80 °C, 24 h, 95%; (b) 65% HNO₃, CHCl₃, r.t, 2 h, 91%; (c) H_2 (1.1 atm.), 10% Pd/C (0.2 equiv.), MeOH, 25 °C, 3 h, 93% (for **17a**), 82% (for **17b**), 89% (for **19**); (d) TMSEOH (1.5 equiv.), toluene, Bu₂SnO (1.0 equiv.), 150 °C, 8 h, 85%; (e) THF, aq. LiOH, 45 °C, 4 h, 95%; (f) AlCl₃ (3.0 equiv.), 1,2-DCE, 90 °C, 2 h, 85%;

Methyl 4-hydroxy-3-methoxy-5-nitrobenzoate (16). То of a solution 4-hydroxy-3-methoxybenzoic acid S16 (5.04 g, 30.0 mmol) in OMe MeOH (50 mL), to which con. H₂SO₄ (3 mL) was added. The .OH mixture was heated under reflux for 24 hrs. The solvent was then removed in vacuo and the residue was dissolved in CH₂Cl₂ MeO₂C NO₂ (100 mL), washed with water (3 \times 50 mL) and dried over 16 anhydrous Na₂SO₄. Removal of CH₂Cl₂ gave the pure product


methyl 4-hydroxy-5-methoxybenzoate (5.19 g, 95%) as a light brown solid. To a solution of methyl 4-hydroxy-5-methoxybenzoate (1.82 g, 10 mmol) in CHCl₃ (25 mL) was slowly added 65% HNO₃ (400 μ L) at 0 °C, and the mixture was warmed to room temperature. After stirring at 25 °C for 2 h, a yellowish precipitate was formed, and the solid was filtered off to give title compound **16** (2.06 g, 91%) as a yellow solid. MS (ESI): m/z calcd for C₉H₈NO₆ [M+H]⁻: 226.0352; found: 226.1539.

Methyl 3-amino-4-hydroxy-5-methoxybenzoate (17a). To a solution of 16 (113 mg, OMe OH OHO NMR (101 MHz, CDCl₃) δ 167.21 (s), 146.13 (s), 137.03 (s), 133.84 (s), 121.65 (s), 111.23 (s), 103.09 (s), 77.35 (s), 77.03 (s), 76.72 (s), 56.23 (s), 51.93 (s); HRMS (ESI): m/z calcd for C₉H₁₂NO₄ [M+H]⁺: 198.0766; found: 198.0759.

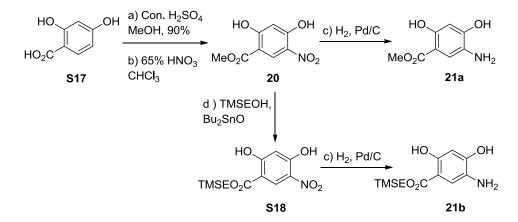
2-(trimethylsilyl)ethyl 3-amino-4-hydroxy-5-methoxybenzoate (17b). To a stirred solution of methyl 4-hydroxy-3-methoxy-5-nitrobenzoate 16 (340 mg, 1.5 mmol) in toluene (10 mL) was added 2-(trimethylsilyl)ethanol (236 mg, 2.0 mmol) and Bu₂SnO (375 mg, 1.5 mmol) respectively. The reaction mixture was heated in a sealed tube at 150 °C for 8 h before the solvent

was removed using vacuum distillation. The residue was dissolved in CH₂Cl₂ the solid was filtered. The filtrate was concentrated in vacuo. Then dissolved in MeOH (12 mL) and added Pd/C (10 mg) and the reaction mixture was stirred under H₂ for 3h. The reaction mixture was filtered through celite and the filtrate was concentrated in vacuo to afford aniline **17b** (349 mg, 82%), which was used for next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (s, 1H), 7.07 (s, 1H), 4.73 (s, 2H), 4.44 – 4.28 (m, 2H), 3.80 (s, 3H), 1.07 (s, 2H), 0.06 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 166.99 (s), 146.28 (s), 137.30 (s), 133.94 (s), 121.90 (s), 111.34 (s), 103.27 (s), 77.52 (s), 77.20 (s), 76.88 (s), 62.94 (s), 56.06 (s), 29.70 (s), 17.38 (s), -1.43 (s); HRMS (ESI): m/z calcd for C₁₃H₂₂NO4Si [M+H]⁺: 284.1318; found: 284.1314.

3,4-dihydroxy-5-nitrobenzoic acid (18). To a stirred solution of 16 (1.13 g, 5 mmol)

19

in THF (5 mL) was added an aqueous solution of LiO H (2 M, 5 mL). The resulting mixture was stirred at 45 $^{\circ}$ C for 4 h. The resulting mixture was then cooled to room temperature, acidified with an aqueous solution of HC1 (2 M, 10 mL) and extracted with EtOAc (4 × 20 mL). The combined organic phases were

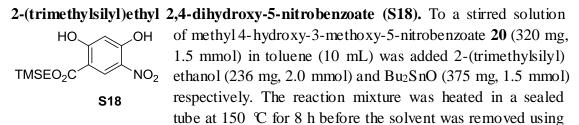

dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was suspended in 1,2-dichloroethane (50 mL) at 0 °C and treated with AlCl₃ (2.01 g, 15 mmol) followed by addition of pyridine (2.37 g, 30 mmol) dropwise under argon. The red reaction mixture was heated at reflux for 2 h, then was cooled to room temperature, and poured onto a mixture of ice and 2 N HCl. The resulting yellow precipitate was filtered off, washed with water, and dried under vacuum to give **18** as a yellow solid (847 mg, 85%).¹H NMR (400 MHz, MeOD) δ 8.19 (d, J = 2.0 Hz, 1H), 7.68 (d, J = 2.0 Hz, 1H). ¹³C NMR (126 MHz, MeOD) δ 166.47 (s), 147.65 (s), 146.75 (s), 134.52 (s), 121.42 (s), 120.41 (s), 117.04 (s), 48.23 – 47.21 (m), 47.12 (s); MS (ESI): m/z calcd for C₇H₄NO₆ [M+H]⁻: 198.0039; found: 198.1052.

3-amino-4,5-dihydroxybenzoic acid (19). To a stirred solution of **18** (100 mg, 0.5 OH mmol) in MeOH (12 mL) was added Pd/C (10 mg) and the reaction mixture was stirred under H₂ for 3 h. The reaction mixture was filtered through celite and the filtrate was concentrated in vacuo to afford **19** (75 mg, 89%), which was

used for next step without further purification. ¹H NMR (400

MHz, DMSO- d_6) δ 8.52 (d, J = 219.0 Hz, 2H), 6.83 (d, J = 2.0 Hz, 1H), 6.77 (d, J = 2.0 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 168.34 (s), 144.76 (s), 137.28 (s), 136.57 (s), 121.44 (s), 108.60 (s), 106.58 (s); HRMS (ESI): m/z calcd for C₇H₈NO₄ [M+H]⁺: 170.0453; found: 170.0448.

Supporting Scheme S5. Synthesis of anilines 21a and 21b.

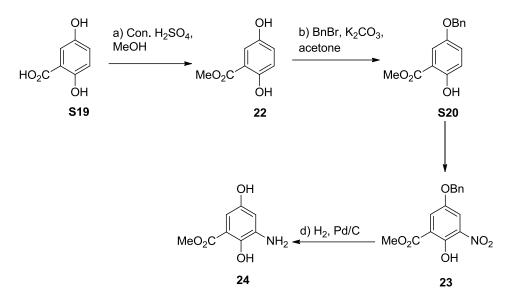


^aReagents and conditions: (a) Con. H₂SO₄, MeOH, 80 °C, 24 h, 90%; (b) 65% HNO₃, CHCl₃, r.t, 15 min, 42%; (c) H₂ (1.1 atm.), 10% Pd/C (0.2 equiv.), MeOH, 25 °C, 3 h, 84% (for **21a**); 92% (for **21b**); (d) TMSEOH (1.5 equiv.), toluene, Bu₂SnO (1.0 equiv.) ,150 °C, 8 h, 95%;

Methyl 2,4-dihydroxy-5-nitrobenzoate (20). To a stirred solution of 2,4-HO \rightarrow OH dihydroxybenzoic acid S17 (4.62 g, 30.0 mmol) in MeOH (60 mL) was added con. H₂SO₄ (3 mL). The mixture was heated under reflux for 24 h. The solvent was then removed in vacuo and the residue was dissolved in CH₂Cl₂ (100 mL), washed with water (3 × 50 mL) and dried over anhydrous Na₂SO₄.

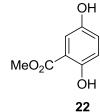
Removal of CH₂Cb gave the pure product methyl 2,4-dihydroxybenzoate as a light brown solid; To a solution of methyl 2,4-dihydroxybenzoate (1.68 g, 10 mmol) in CHCl₃ (25 mL) was slowly added 65% HNO₃ (400 μ L) at 0 °C, and the mixture was warmed to room temperature. After stirring at 25 °C for a further 15 min after which an ochre-colored suspension had formed. H₂O (130 mL) was added, where upon the mixture was aged for another 30 min without stirring. The precipitate was filtered, rinsed with small amounts of H₂O, and dried under vacuum to give crudeproduct, which was recrystallized (MTBE, 250 mL) to give pure **20** (2.68 g, 42%) as pale yellow cubes.

Methyl 5-amino-2,4-dihydroxybenzoate (21a). To a stirred solution of 20 (106 mg, HO, OH, OH, OS mmol) in MeOH (12 mL) was added Pd/C (10 mg) and the reaction mixture was stirred under H₂ for 3 h. The reaction mixture was filtered through celite and the filtrate was concentrated in vacuo to afford 21a (77 mg, 84%), which was used for next step without further purification. HRMS (ESI): m/z calcd for C₈H₁₀NO₄ [M+H]⁺: 184.0610; found: 184.0602.



vacuum distillation. The residue was dissolved in CH₂Cl₂ the solid was filtered. The filtrate was concentrated in vacuo. Flash chromatography on silica gel (ethyl acetate/ petroleum ether = 1:10) afforded **S18** (426 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 11.65 (s, 1H), 11.02 (s, 1H), 8.74 (s, 1H), 6.62 (s, 1H), 4.53 – 4.47 (m, 2H), 1.23 – 1.17 (m, 2H), 0.13 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.78 (s), 168.02 (s), 160.23 (s), 129.56 (s), 127.29 (s), 107.16 (s), 105.62 (s), 77.36 (s), 77.04 (s), 76.73 (s), 64.99 (s), 29.71 (s), 17.46 (s), -1.50 (s). MS (ESI): m/z calcd for C₁₂H₁₆NO₆Si [M+H]⁻: 298.0747; found: 298.0676.

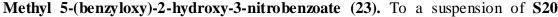
2-(trimethylsilyl)ethyl 5-amino-2,4-dihydroxybenzoate (21b). To a stirred solution of S18 (100 mg, 0.33 mmol) in MeOH (12 mL) was added Pd/C (10 mg) and the reaction mixture was stirred under H₂ for 3 h. The reaction mixture was filtered through celite and the filtrate was concentrated in vacuo to afford 21b (82 mg, 92%), which was used for next step without further

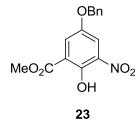

purification. ¹H NMR (400 MHz, CDCl₃) δ 11.15 (s, 1H), 7.78 (s, 1H), 6.88 (s, 1H), 4.50 – 4.42 (m, 2H), 1.18 – 1.13 (m, 2H), 0.11 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.92 (s), 158.10 (s), 154.09 (s), 136.31 (s), 115.51 (s), 108.48 (s), 97.90 (s), 77.37 (s), 77.05 (s), 76.73 (s), 63.73 (s), 37.76 (s), -1.40 (s); HRMS (ESI): m/z calcd for C₁₂H₂₀NO₄Si [M+H]⁺: 270.1162; found: 270.1147.

Supporting Scheme S6. Synthesis of aniline 24.

^a Reagents and conditions: (a) Con. H_2SO_4 , MeOH, 80 °C, 10 h, 80%; (b) BnBr, K_2CO_3 , acetone, 3 h, 87%; (c) Bi(NO₃)₃.5 H_2O (1.0 equiv.), MMT K10 (1.0 equiv.), THF, 25 °C, 2 h, 81%; (d) H_2 (1.1 atm.), 10% Pd/C (0.2 equiv.), MeOH, 25 °C, 3 h, 87%;

Methyl 2,5-dihydroxybenzoate (22). 2,5-dihydroxybenzoic acid S19 (4.62 g, 30.0



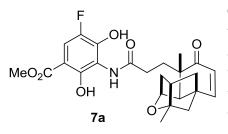

mmol) was dissolved in MeOH (60 mL), to which concentrated H_2SO_4 (5 mL) was added. The mixture was heated under reflux for 24 h. The solvent was then removed in vacuo and the residue was dissolved in CH₂Cl₂ (100 mL), washed with water (3 × 50 mL) and dried over anhydrous Na₂SO₄. Removal of CH₂Cl₂ and flash chromatography on silica gel (ethyl acetate/petroleum ether = 1:10)

afforded the pure product **22** as a light brown solid. Yield: 4.0 g, 80%. MS (ESI): m/z calcd for C₈H₇O₄ [M+H]⁻: 167.0344; found: 167.1126.

Methyl 5-(benzyloxy)-2-hydroxybenzoate (S20). A suspension of methyl 2,5-dihydroxybenzoate 22 (1.68 g, 10 mmol) and K₂CO₃ (2.06 g, 14.7 mmol) in acetone (50 mL) was stirred at rt for 5 min, then BnBr (2 mL, 2.55 g, 14.7 mmol) was added and the reaction mixture stirred at 60 °C for 3 h. After cooling to rt the suspension was diluted with EtOAc (250 mL), washed with 2 M K₂CO₃ (3 × 50 mL) and brine (100 mL), dried (Na₂SO₄), filtered and concentrated in vacuo. Purification via silica gel chromatography

(ethyl acetate/petroleum ether = 1:10) yielded **S20** (2.24 g, 87%) as a pale yellow oil. MS (ESI): m/z calcd for C₁₅H₁₅O₄[M+H]⁺: 259.0970; found: 259.0640.

(258 mg, 1.00 mmol) and Montmorillonite K10 (0.50 g) in THF (10 mL) was added bismuth nitrate (0.39 g, 1.00 mmol). The mixture was stirred at room temperature for 2 h and solid was filtered. Solvent was then removed *in vacuo* and the residue was dissolved in CH₂Cl₂. The filtrate was washed with 2 M HCl (2 ×10 mL), water (2 ×50 mL) and dried over anhydrous Na₂SO₄. Removal of CH₂Cl₂ gave the pure product

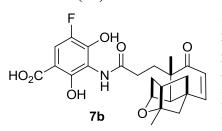

23 as a yellow solid. Yield: 245 mg, 81%. ¹H NMR (500 MHz, CDCl₃) δ 11.52 (s, 1H), 7.82 (d, J = 13.4 Hz, 2H), 7.44 (s, 4H), 7.39 (s, 1H), 5.10 (s, 2H), 4.02 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.57 (s), 150.13 (s), 149.72 (s), 137.57 (s), 135.55 (s), 128.80 (s), 128.53 (s), 127.63 (s), 127.03 (s), 123.00 (s), 117.56 (s), 116.43 (s), 99.99 (s), 77.29 (s), 77.03 (s), 76.78 (s), 71.27 (s), 53.19 (s). MS (ESI): m/z calcd for C₁₅H₁₂NO₆[M+H]⁻: 302.0665; found: 302.1690.

Methyl 3-amino-2,5-dihydroxybenzoate (24). To a stirred solution of 23 (100 mg, OH MeO_2C OH NH_2 OH NH_2 O

135.39 (s), 122.17 (s), 112.81 (s), 107.07 (s), 77.32 (s), 77.01 (s), 76.69 (s), 52.15 (s); HRMS (ESI): m/z calcd for C₈H₁₀NO₄ [M+H]⁺: 184.0610; found: 184.0605.

Methyl

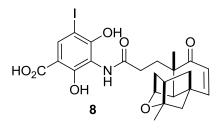
3-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahydro-5,8-ep oxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-5-fluoro-2,4-dihydroxybe nzoate (7a). To a solution of carboxylic acid PTMA (58.0 mg, 0.20 mmol) and aniline



6 (80.4 mg, 0.40 mmol) in DMF (2.0 mL) at room temperature were added Et₃N (84.0 μ L, 0.6 mmol) and HATU (152.2 mg, 0.40 mmol). The mixture was stirred for 12 h, after which brine (5.0 mL) was added. The resulting mixture was extracted with CH₂Cl₂ (3×5.0 mL), and the combined organic portions dried over anhydrous Na₂SO₄.

Concentration followed by flash column chromatography (eluent: EtOAc/light petroleum ether = 1:10~ 1:3) afforded the title compound **7a** (78.5 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 11.45 (s, 1H), 8.25 (s, 1H), 7.37 (d, *J* = 10.8 Hz, 1H), 6.53 (d, *J* = 10.1 Hz, 1H), 5.95 (d, *J* = 10.1 Hz, 1H), 4.46 (s, 1H), 3.94 (s, 3H), 2.59 - 2.50 (m, 1H), 2.44 (d, *J* = 5.0 Hz, 1H), 2.43 - 2.39 (m, 1H), 2.37 (dd, *J* = 6.5, 4.0 Hz, 2H), 2.13 (d, *J* = 5.3 Hz, 1H), 2.09 (d, *J* = 3.6 Hz, 1H), 2.05 (dd, *J* = 13.3, 7.4 Hz, 2H),

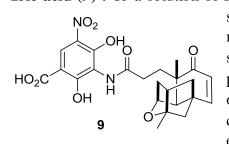
1.94 (d, J = 6.0 Hz, 1H), 1.93 – 1.89 (m, 1H), 1.88 (d, J = 3.4 Hz, 1H), 1.82 (d, J = 6.8 Hz, 1H), 1.65 (d, J = 11.2 Hz, 1H), 1.47 (s, 3H), 1.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.77 (s), 174.09 (s), 170.11 (s), 154.03 (s), 149.76 (s), 147.85 (s), 145.49 (s), 144.59 (d, J = 16.4 Hz), 127.10 (s), 115.87 (s), 111.75 (s), 111.54 (s), 102.00 (d, J = 7.7 Hz), 87.14 (s), 77.30 (d, J = 11.6 Hz), 77.04 (s), 76.73 (s), 76.42 (s), 54.86 (s), 52.48 (s), 46.73 (s), 46.14 (d, J = 5.9 Hz), 44.64 (s), 43.11 (s), 40.58 (s), 32.06 (s), 31.56 (s), 24.20 (s), 22.98 (s); HRMS (ESI): m/z calcd for C₂₅H₂₉FNO₇ [M+H]⁺: 474.1928; found: 474.1916.


3-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahydro-5,8-ep oxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-5-fluoro-2,4-dihydroxybe nzoic acid (7b). To a stirred solution of **7a** (47.4 mg, 0.1 mmol) in MeOH (2 mL) was

added aqueous solution of KOH (2 mL). The resulting mixture was stirred at 45 $^{\circ}$ C for 4 h. The resulting mixture was then cooled to room temperature, acidified with an aqueous solution of HC1 (2 M, 5 mL) and extracted with EtOAc (4 \times 20 mL). The combined organic phases were dried over

Na₂SO₄, filtered. Concentration followed by flash column chromatography (eluent: light petroleum ether/EtOAc/AcOH = 2: 3: 0.5) afforded the title compound **7b** (40.9 mg, 89%);¹H NMR (500 MHz, DMSO-*d*₆) δ 10.45 (s, 1H), 9.25 (d, *J* = 5.3 Hz, 1H), 7.41 (d, *J* = 9.9 Hz, 1H), 6.67 (d, *J* = 7.7 Hz, 1H), 5.84 (d, *J* = 8.8 Hz, 1H), 4.39 (s, 1H), 3.16 (d, *J* = 8.3 Hz, 1H), 2.43 – 2.31 (m, 3H), 2.27 (s, 2H), 2.09 (s, 3H), 2.01 – 1.86 (m, 5H), 1.80 (s, 2H), 1.69 (s, 4H), 1.36 (d, *J* = 6.7 Hz, 3H), 1.14 (s, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 203.37 (s), 172.69 (s), 171.97 (s), 155.57 (s), 155.26 (d, *J* = 78.6 Hz), 147.78 (s), 145.80 (s), 143.96 (s), 126.94 (s), 115.38 (s), 113.43 (s), 103.40 (s), 86.82 (s), 75.96 (s), 54.70 (s), 49.05 (s), 46.28 (s), 46.62 – 45.46 (m), 46.06 (s), 44.71 (s), 42.81 (s), 31.48 (s), 30.76 (s), 24.67 (s), 23.40 (s); HRMS (ESI): m/z calcd for C₂₄H₂₇FNO₇ [M+H]⁺: 460.1772; found: 460.1759.

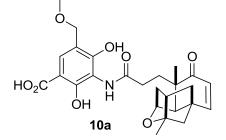
3-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahydro-5,8-ep oxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-2,4-dihydroxy-5-iodobenz oic acid (8). To a mixture of iodine (38.1 mg, 0.30 mmol), DMAP (24.4 mg, 0.20



mmol), in 25 mL (pyridine/CCl₄ = 4:1) was added PTM (44.1 mg, 0.10 mmol) at room temperature under nitrogen. The resultant mixture was stirred at 110 °C for 4 h under nitrogen. TLC showed the starting material disappeared. The mixture was poured into 50 mL saturated Na₂S₂O₃ at 0 °C and the solid was removed by filtration, the filtrate was

extracted with EtOAc (4 × 20 mL), then concentrated in vacuo and purified by flash chromatography (eluent: light petroleum ether/EtOAc/AcOH = 2: 3: 0.5) providing the title compound **8** (50 mg, 88%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.54 (s, 1H), 9.24 (s, 1H), 8.00 (s, 1H), 6.68 (d, *J* = 10.0 Hz, 1H), 5.84 (d, *J* = 10.0 Hz, 1H), 4.39 (s,

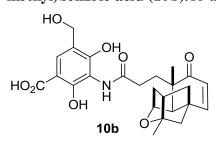
1H), 2.43 (t, J = 12.3 Hz, 1H), 2.35 (d, J = 5.8 Hz, 1H), 2.28 (s, 1H), 2.13 (d, J = 5.2 Hz, 1H), 2.12 (d, J = 8.3 Hz, 1H), 2.08 (s, 1H), 2.01 (s, 1H), 1.99 (s, 2H), 1.96 (s, 1H), 1.94 (s, 2H), 1.82 – 1.77 (m, 1H), 1.70 (s, 3H), 1.36 (s, 3H), 1.15 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 203.42 (s), 173.29 (s), 171.42 (s), 159.04 (s), 158.30 (s), 154.94 (s), 137.69 (s), 126.96 (s), 113.45 (s), 107.45 (s), 86.83 (s), 75.96 (s), 74.21 (s), 54.74 (s), 46.37 – 45.93 (m), 44.73 (s), 42.81 (s), 40.86 – 40.12 (m), 39.98 (s), 39.81 (s), 39.65 (s), 39.48 (s), 31.28 (s), 30.74 (s), 24.70 (s), 23.39 (s); HRMS (ESI): m/z calcd for C₂₄H₂₇INO₇ [M+H]⁺: 568.0832; found: 568.0829.


3-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahydro-5,8-ep oxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-2,4-dihydroxy-5-nitroben zoic acid (9). To a solution of PTM (44.1 mg, 0.10 mmol) in CHCl₃ (25 mL) was

slowly added 65% HNO₃ (20 μ L) at 0 °C, and the mixture was warmed to room temperature. After stirring at 25 °C for 5 minutes, a yellowish precipitate was formed, and the solid was filtered off, the residue so obtained was purified by flash column chromatography (eluent: light petroleum ether/EtOAc/AcOH = 2: 3: 0.5) to give the title

compound **9** (40.9 mg, 84%) as a yellow solid. ¹H NMR (500 MHz, MeOD) δ 8.72 (s, 1H), 6.68 (d, J = 9.6 Hz, 1H), 5.92 (d, J = 9.4 Hz, 1H), 4.55 (s, 1H), 2.46 (s, 1H), 2.44 (s, 1H), 2.33 (s, 1H), 2.31 (s, 1H), 2.13 (d, J = 11.5 Hz, 1H), 2.11 (s, 1H), 2.09 (s, 1H), 1.87 (d, J = 13.5 Hz, 2H), 1.83 (s, 1H), 1.76 (d, J = 10.9 Hz, 1H), 1.46 (s, 3H), 1.28 (s, 3H); ¹³C NMR (126 MHz, MeOD) δ 204.31 (s), 173.85 (s), 166.04 – 165.48 (m), 154.98 – 154.78 (m), 154.67 (s), 130.99 – 130.96 (m), 129.46 – 129.42 (m), 128.48 (s), 127.16 (s), 112.90 – 112.37 (m), 87.34 (s), 76.61 (s), 54.42 (s), 48.14 (s), 47.97 (s), 47.80 (s), 47.62 (s), 47.45 (s), 47.28 (s), 47.11 (s), 46.38 (s), 45.94 (d, J = 6.7 Hz), 44.72 (s), 42.51 (s), 40.09 (s), 31.47 (s), 30.63 (s), 23.76 (s), 21.83 (s); HRMS (ESI): m/z calcd for C₂₄H₂₇N2O₉ [M+H]⁺: 487.1717; found: 487.1710.

3-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahydro-5,8-ep oxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-2,4-dihydroxy-5-(methox ymethyl)benzoic acid (10a). To a mixture of formaldehyde (50 µL, 0.50 mmol),

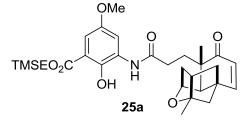


KOH (16.8 mg, 0.30 mmol) and CaCl₂ (34 mg, 0.30 mmol) in 2 mL MeOH was added PTM (44.1 mg, 0.10 mmol). The resultant mixture was stirred at room temperature for 4 h. TLC showed the starting material disappeared. The mixture was added 2 mL NH₃.H₂O then acidified with an aqueous solution of HCl (2 M, 5 mL) and extracted with EtOAc (4×20

mL), then concentrated in vacuo and purified by flash chromatography (eluent: light petroleum ether/EtOAc/AcOH = 2:3:0.5) providing the title compound **10a** (43.7 mg, 90%); ¹H NMR (400 MHz, DMSO- d_6) δ 9.42 (s, 1H), 7.48 (s, 1H), 6.69 (d, J = 10.0 Hz, 1H), 5.85 (d, J = 10.0 Hz, 1H), 4.43 (s, 1H), 4.28 (s, 2H), 3.23 (s, 3H), 2.36 (t, J = 10.0 Hz, 1H), 4.43 (s, 1H), 4.28 (s, 2H), 3.23 (s, 3H), 2.36 (t, J = 10.0 Hz, 1H), 4.43 (s, 1H), 4.28 (s, 2H), 3.23 (s, 3H), 2.36 (t, J = 10.0 Hz, 1H), 4.43 (s, 1H), 4.28 (s, 2H), 3.23 (s, 3H), 2.36 (t, J = 10.0 Hz, 1H), 4.43 (s, 1H), 4.28 (s, 2H), 3.23 (s, 3H), 2.36 (t, J = 10.0 Hz, 1H), 4.43 (s, 1H), 4.28 (s, 2H), 3.23 (s, 3H), 2.36 (t, J = 10.0 Hz, 1H), 4.43 (s, 1H), 4.28 (s, 2H), 3.23 (s, 3H), 2.36 (t, J = 10.0 Hz, 1H), 4.43 (s, 1H), 4.28 (s, 2H), 3.23 (s, 3H), 2.36 (t, J = 10.0 Hz, 1H), 4.43 (s, 1H), 4.28 (s, 2H), 3.23 (s, 3H), 2.36 (t, J = 10.0 Hz, 1H), 4.43 (s, 1H), 4.28 (s, 2H), 3.23 (s, 3H), 2.36 (t, J = 10.0 Hz, 1H), 4.43 (s, 1H), 4.43

6.4 Hz, 1H), 2.29 (s, 1H), 2.19 – 2.09 (m, 2H), 1.98 (dd, J = 15.8, 11.7 Hz, 3H), 1.81 (d, J = 8.6 Hz, 1H), 1.72 (d, J = 9.9 Hz, 3H), 1.68 – 1.60 (m, 1H), 1.37 (s, 3H), 1.15 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 203.31 (s), 173.48 (s), 172.36 (s), 159.74 (s), 154.98 (s), 152.08 – 151.92 (m), 132.01 (s), 132.01 (s), 129.13 (s), 128.82 – 128.66 (m), 126.93 (s), 114.01 (s), 110.43 (s), 100.07 – 99.90 (m), 86.80 (s), 75.97 (s), 69.67 (s), 65.50 (s), 57.43 (s), 54.65 (s), 46.41 (s), 46.06 (s), 44.71 (s), 42.81 (s), 40.64 (s), 40.54 (s), 40.37 (s), 40.21 (s), 40.04 (s), 31.85 (s), 31.07 (s), 30.46 (s), 24.63 (s), 23.42 (s), 19.12 (s); HRMS (ESI): m/z calcd for C₂₆H₃₂NO₈ [M+H]⁺: 486.2128; found: 486.2118.

3-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahydro-5,8-ep oxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-2,4-dihydroxy-5-(hydroxy methyl)benzoic acid (10b).To a mixture of formaldehyde (50 µL, 0.50 mmol), KOH

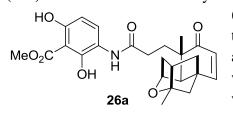


(16.8 mg, 0.30 mmol) and $CaCl_2$ (34 mg, 0.30 mmol) in 2 mL MeOH was added PTM (44.1 mg, 0.10 mmol). The resultant mixture was stirred at room temperature for 4 h. TLC showed the starting material disappeared. Without any post-processing, the mixture was immediately purified by flash chromatography (eluent: EtOAc/MeOH = 6: 1) and

providing the title compound **10b** (43.3 mg, 92%);¹H NMR (400 MHz, DMSO- d_6) δ 9.77 (d, J = 12.2 Hz, 1H), 9.30 (s, 1H), 7.66 (s, 1H), 6.68 (d, J = 10.0 Hz, 1H), 5.84 (d, J = 10.0 Hz, 1H), 4.43 (d, J = 12.1 Hz, 3H), 2.35 (t, J = 6.0 Hz, 1H), 2.28 (s, 1H), 2.13 (t, J = 11.6 Hz, 2H), 1.99 (d, J = 11.9 Hz, 1H), 1.95 (d, J = 11.6 Hz, 1H), 1.83 – 1.76 (m, 1H), 1.70 (s, 2H), 1.36 (s, 3H), 1.23 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 203.37 (s), 173.35 (s), 173.01 (s), 172.50 (s), 154.97 (s), 126.94 (s), 120.88 (s), 113.39 (s), 113.23 (s), 106.16 (s), 86.80 (s), 79.70 (s), 75.94 (s), 58.52 (s), 54.68 (s), 46.36 – 45.91 (m), 44.71 (s), 42.79 (s), 41.05 – 40.19 (m), 40.34 (s), 40.24 (d, J = 21.0 Hz), 39.95 (s), 39.82 (d, J = 21.0 Hz), 39.53 (s), 39.40 (d, J = 21.0 Hz), 31.56 (s), 30.86 (s), 29.46 (d, J = 13.0 Hz), 24.70 (s), 23.41 (s), 22.58 (s), 21.58 (s); HRMS (ESI): m/z calcd for C₂₅H₃₀NO8 [M+H]⁺: 472.1971; found: 472.1969.

2-(trimethylsilyl)ethyl

3-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahydro-5,8-ep oxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-2-hydroxy-5-methoxyben zoate (25a). To a solution of carboxylic acid PTMA (58.0 mg, 0.20 mmol) and aniline

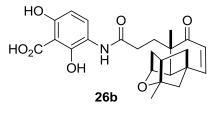

13 (113.2 mg, 0.40 mmol) in CH₂Cl₂ (2.0 mL) at room temperature were added Et₃N (84.0 μ L, 0.60 mmol) and HATU (152.2 mg, 0.40 mmol). The mixture was stirred for 12 h, after which brine (5.0 mL) was added. The resulting mixture was extracted with CH₂Cl₂ (3 × 5.0

mL), and the combined organic portions dried over anhydrous Na_2SO_4 . Concentration followed by flash column chromatography (eluent: EtOAc/light petroleum ether =

1:10~ 1:3) afforded the title compound **25a** (95.5 mg, 86%); ¹H NMR (400 MHz, CDCl₃) δ 10.97 (s, 1H), 8.32 (d, J = 2.8 Hz, 1H), 7.99 (s, 1H), 7.01 (d, J = 2.9 Hz, 1H), 6.50 (d, J = 10.1 Hz, 1H), 5.92 (d, J = 10.1 Hz, 1H), 4.46 (t, J = 8.3 Hz, 3H), 3.78 (s, 3H), 2.43 (d, J = 6.5 Hz, 1H), 2.40 (d, J = 9.4 Hz, 2H), 2.33 (dd, J = 12.4, 2.4 Hz, 1H), 2.27 (dd, J = 13.4, 2.0 Hz, 1H), 2.09 (dd, J = 8.6, 4.3 Hz, 1H), 2.03 (dd, J = 11.8, 7.6 Hz, 2H), 1.87 (dd, J = 11.2, 3.1 Hz, 2H), 1.82 – 1.75 (m, 1H), 1.63 (d, J = 11.1 Hz, 1H), 1.45 (s, 3H), 1.27 (s, 3H), 1.18 – 1.14 (m, 2H), 0.10 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 203.81 (s), 171.07 (s), 170.32 (s), 153.76 (s), 151.74 (s), 144.95 (s), 128.14 (s), 127.20 (s), 112.77 (s), 111.45 (s), 106.49 (s), 86.98 (s), 77.38 (s), 77.06 (s), 76.75 (s), 76.48 (s), 64.12 (s), 55.87 (s), 54.88 (s), 46.65 (s), 46.11 (d, J = 8.4 Hz), 44.67 (s), 43.12 (s), 40.56 (s), 32.94 (s), 31.30 (s), 29.70 (s), 24.33 (s), 23.02 (s), 17.31 (s), -1.43 (s); HRMS (ESI): m/z calcd for C₃₀H₄₂NO₇Si [M+H]⁺: 556.2731; found: 556.2726.

Methyl

3-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahydro-5,8-ep oxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-2,6-dihydroxybenzoate (26a). To a solution of carboxylic acid PTMA (29.0 mg, 0.10 mmol) and aniline 15a

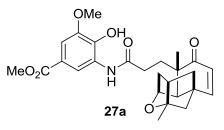


(36.6 mg, 0.20 mmol) in DMF (1.0 mL) at room temperature were added Et₃N (42.1 μ L, 0.30 mmol) and HATU (76.1 mg, 0.20 mmol). The mixture was stirred for 12 h, after which brine (5.0 mL) was added. The resulting mixture was extracted with EtOAc (3 × 5.0 mL), and the combined

organic portions dried over anhydrous Na₂SO₄. Concentration followed by flash column chromatography (eluent: EtOAc/light petroleum ether = 1:10~ 1:3) afforded the title compound **26a** (33.7 mg, 74%); ¹H NMR (400 MHz, CDCl₃) δ 10.32 (s, 1H), 9.06 (s, 1H), 8.38 (d, *J* = 9.1 Hz, 1H), 6.51 (d, *J* = 9.2 Hz, 2H), 5.93 (d, *J* = 10.1 Hz, 1H), 4.47 (s, 1H), 4.11 (s, 3H), 2.48 – 2.40 (m, 2H), 2.38 (d, *J* = 7.8 Hz, 2H), 2.34 (s, 1H), 2.23 (d, *J* = 13.2 Hz, 1H), 2.09 (d, *J* = 2.9 Hz, 1H), 2.04 (dd, *J* = 13.6, 7.5 Hz, 2H), 1.92 – 1.84 (m, 2H), 1.83 – 1.73 (m, 2H), 1.64 (d, *J* = 11.1 Hz, 1H), 1.46 (s, 3H), 1.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.07 (s), 170.88 (s), 169.94 (s), 155.68 (s), 153.89 (s), 149.60 (s), 128.46 (s), 127.20 (s), 119.54 (s), 107.51 (s), 99.43 (s), 86.98 (s), 77.30 (d, *J* = 11.6 Hz), 77.04 (s), 76.73 (s), 76.50 (s), 54.90 (s), 53.10 (s), 46.80 (s), 46.10 (d, *J* = 3.2 Hz), 44.67 (s), 43.12 (s), 40.57 (s), 32.89 (s), 31.56 (s), 29.71 (s), 24.33 (s), 23.03 (s); HRMS (ESI): m/z calcd for C₂₅H₃₀NO₇ [M+H]⁺: 456.2022; found: 456.2015.

3-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahydro-5,8-ep oxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-2,6-dihydroxybenzoic

acid (26b). To a solution of carboxylic acid PTMA (29.0 mg, 0.10 mmol) and PyBOP

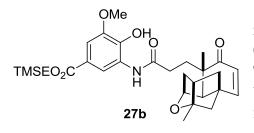


(52.0 mg, 0.10 mmol) in CH₂Cl₂(2.0 mL) at room temperature were added Et₃N (42.1 μ L, 0.30 mmol). The mixture was stirred for 5 minutes, after which aniline **15b** (33.8 mg, 0.20 mmol) in 0.5 mL DMF was added. The mixture was stirred for extra 20 minutes, after which brine (5.0 mL) was added. The

resulting mixture was extracted with EtOAc (3×5.0 mL), and the combined organic portions dried over anhydrous Na₂SO₄. Concentration followed by flash column chromatography (eluent: light petroleum ether/EtOAc/AcOH = 2: 3: 0.5) afforded the title compound **26b** (35.3 mg, 80%);¹H NMR (400 MHz, MeOD) δ 7.59 (d, *J* = 8.8 Hz, 1H), 6.67 (d, *J* = 10.1 Hz, 1H), 6.25 (d, *J* = 8.8 Hz, 1H), 5.91 (d, *J* = 10.1 Hz, 1H), 4.54 (s, 1H), 2.46 (s, 2H), 2.43 – 2.36 (m, 1H), 2.34 – 2.28 (m, 1H), 2.27 (d, *J* = 2.2 Hz, 2H), 2.10 (dd, *J* = 13.1, 4.9 Hz, 3H), 1.92 – 1.84 (m, 3H), 1.82 (d, *J* = 3.4 Hz, 1H), 1.77 (d, *J* = 2.1 Hz, 1H), 1.73 (d, *J* = 6.4 Hz, 1H), 1.46 (d, *J* = 4.8 Hz, 3H), 1.28 (s, 3H); ¹³C NMR (101 MHz, MeOD) δ 204.35 (s), 172.84 (s), 164.31 – 163.11 (m), 163.74 – 162.48 (m), 159.11 – 157.84 (m), 154.63 (s), 130.96 (s), 128.47 (s), 126.49 (s), 116.96 – 115.41 (m), 104.29 (s), 87.33 (s), 76.63 (s), 65.26 (s), 54.42 (s), 46.47 (s), 45.88 (s), 45.83 (s), 44.70 (s), 42.50 (s), 40.09 (s), 31.47 (s), 31.32 (s), 30.31 (s), 23.78 (s), 21.80 (s), 18.87 (s); HRMS (ESI): m/z calcd for C₂₄H₂₈NO₇ [M+H]⁺: 442.1866; found: 442.1856.

Methyl

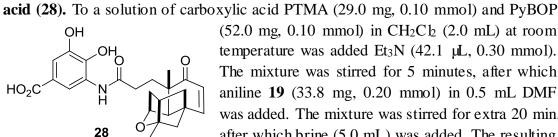
3-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahydro-5,8-ep oxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-4-hydroxy-5-methoxyben zoate (27a). To a solution of carboxylic acid PTMA (29.0 mg, 0.10 mmol) and aniline


17a (36.6 mg, 0.20 mmol) in DMF (1.0 mL) at room temperature were added Et₃N (42.1 μ L, 0.30 mmol) and HATU (76.1 mg, 0.20 mmol). The mixture was stirred for 12 h, after which brine (5.0 mL) was added. The resulting mixture was extracted with EtOAc (3 × 5.0 mL), and the combined organic portions dried over anhydrous

Na₂SO₄. Concentration followed by flash column chromatography (eluent: EtOAc/light petroleum ether = 1:10~ 1:3) afforded the title compound **27a** (32.9 mg, 70%);¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 1.6 Hz, 1H), 8.12 (s, 1H), 7.73 (s, 1H), 7.39 (d, J = 1.7 Hz, 1H), 6.53 (d, J = 10.1 Hz, 1H), 5.94 (d, J = 10.1 Hz, 1H), 4.47 (s, 1H), 3.95 (s, 3H), 3.89 (s, 3H), 2.44 (d, J = 6.3 Hz, 2H), 2.39 (s, 1H), 2.36 – 2.32 (m, 1H), 2.09 (d, J = 3.5 Hz, 1H), 2.07 – 2.02 (m, 2H), 1.90 (s, 1H), 1.87 (d, J = 3.4 Hz, 1H), 1.82 (s, 2H), 1.64 (d, J = 11.2 Hz, 1H), 1.46 (s, 2H), 1.43 (d, J = 7.3 Hz, 1H), 1.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.28 (s), 172.21 (s), 166.85 (s), 154.16 (s), 147.46 (s), 140.32 – 140.28 (m), 127.12 (s), 125.67 (s), 121.62 (s), 116.00

(s), 108.27 (s), 87.07 (s), 56.35 (s), 54.86 (s), 52.08 (s), 46.86 (s), 46.11 (s), 44.66 (s), 44.42 (s), 43.09 (s), 40.56 (s), 32.58 (s), 31.53 (s), 29.70 (s), 24.28 (s), 23.00 (s); HRMS (ESI): m/z calcd for C₂₆H₃₂NO₇ [M+H]⁺: 470.2179; found: 470.2173.

2-(trimethylsilyl)ethyl

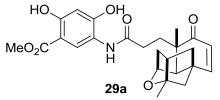

3-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahydro-5,8-ep oxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-4-hydroxy-5-methoxyben zoate (27b). To a solution of carboxylic acid PTMA (58.0 mg, 0.20 mmol) and aniline

17b (113.2 mg, 0.40 mmol) in DMF (2.0 mL) at room temperature were added Et₃N (84.0 µL, 0.60 mmol) and HATU (152.2 mg, 0.40 mmol). The mixture was stirred for 12 h, after which brine (5.0 mL) was added. The resulting mixture was extracted with EtOAc (3×5.0 mL), and the combined organic portions dried over

anhydrous Na₂SO₄. Concentration followed by flash column chromatography (eluent: EtOAc/light petroleum ether = $1:10 \sim 1:3$) afforded the title compound 27b (88.8 mg, 80%);¹H NMR (500 MHz, CDCl₃) δ 8.43 (s, 1H), 8.07 (s, 1H), 7.34 (s, 1H), 6.47 (d, J = 3.8 Hz, 1H), 5.87 (d, J = 5.2 Hz, 1H), 4.45 (s, 1H), 4.40 – 4.31 (m, 2H), 3.88 (s, 3H), 2.43 – 2.37 (m, 2H), 2.35 (s, 1H), 2.31 (s, 1H), 2.24 (d, J = 12.4 Hz, 1H), 2.07 (d, J = 5.0 Hz, 1H), 2.04 - 1.99 (m, 2H), 1.96 (d, J = 4.9 Hz, 1H), 1.85 (dd, J = 16.7, 8.8 Hz, 2H), 1.75 (d, J = 5.3 Hz, 1H), 1.60 (d, J = 10.4 Hz, 1H), 1.42 (s, 3H), 1.24 (s, 3H), 1.13 - 1.07 (m, 2H), 0.06 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 204.17 (s), 172.46 (s), 170.70 (s), 166.53 (s), 154.14 (s), 147.77 (s), 140.76 (s), 127.07 (s), 121.91 (s), 116.19 (s), 108.44 (s), 87.14 (s), 77.36 (s), 77.10 (s), 76.85 (s), 76.41 (s), 63.15 (s), 56.28 (s), 54.81 (s), 46.71 (s), 46.05 (s), 44.66 (s), 43.04 (s), 40.50 (s), 31.55 (s), 29.66 (s), 24.29 (s), 22.96 (d, J = 5.7 Hz), 17.45 (s), 14.10 (s), -1.44 (s); HRMS (ESI): m/z calcd for C₃₀H₄₂NO₇Si [M+H]⁺: 556.2731; found: 556.2733.

3-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahydro-5,8-ep oxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-4,5-dihydroxybenzoic

(52.0 mg, 0.10 mmol) in CH₂Cb (2.0 mL) at room temperature was added Et₃N (42.1 µL, 0.30 mmol). The mixture was stirred for 5 minutes, after which aniline 19 (33.8 mg, 0.20 mmol) in 0.5 mL DMF was added. The mixture was stirred for extra 20 min, after which brine (5.0 mL) was added. The resulting

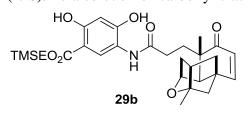

mixture was extracted with EtOAc (3×5.0 mL), and the combined organic portions dried over anhydrous Na₂SO₄. Concentration followed by flash column chromatography (eluent: light petroleum ether/EtOAc/AcOH = 2:3:0.5) afforded the title compound **28** (33.5 mg, 75%); ¹H NMR (500 MHz, DMSO- d_6) δ 9.43 (s, 1H), 7.80 (s, 1H), 7.18 (s, 1H), 6.67 (d, J = 9.9 Hz, 1H), 5.83 (d, J = 10.0 Hz, 1H), 4.39 (s, 1H), 2.89 (s, 1H), 2.73 (s, 1H), 2.41 (d, J = 12.5 Hz, 1H), 2.34 (t, J = 5.8 Hz, 1H),

2.28 (s, 1H), 2.11 (t, J = 11.0 Hz, 2H), 1.98 (d, J = 11.3 Hz, 1H), 1.94 (d, J = 11.4 Hz, 2H), 1.82 – 1.75 (m, 1H), 1.69 (s, 2H), 1.35 (s, 3H), 1.14 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 203.33 (s), 172.29 (s), 167.69 (s), 162.79 (s), 154.93 (s), 145.89 (s), 141.47 (s), 126.94 (s), 121.21 (s), 116.13 (s), 112.73 (s), 86.79 (s), 79.63 (s), 76.00 (s), 54.66 (s), 46.45 (s), 46.04 (s), 44.70 (s), 42.80 (s), 40.64 (s), 40.54 (s), 40.37 (s), 36.25 (s), 31.69 (s), 31.23 (s), 24.63 (s), 23.39 (s); HRMS (ESI): m/z calcd for C₂₄H₂₈NO₇ [M+H]⁺: 442.1866; found: 442.1848.

Methyl

5-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethy l-3-oxo-3,4,4a,5,6,7,8,9-octa hydro-5,8-epoxy-7,9a-metha no benzo [7] annulen-4-yl) propanamido)-2,4-dihydroxy benzo ate

(29a). To a solution of carboxylic acid PTMA (29.0 mg, 0.10 mmol) and aniline 21a

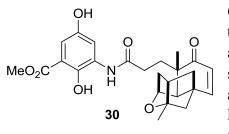


(36.6 mg, 0.20 mmol) in DMF (1.0 mL) at room temperature were added Et₃N (42.1 μ L, 0.30 mmol) and HATU (76.1 mg, 0.20 mmol). The mixture was stirred for 12 h, after which brine (5.0 mL) was added. The resulting mixture was extracted

with EtOAc (3×5.0 mL), and the combined organic portions dried over anhydrous Na₂SO₄. Concentration followed by flash column chromatography (eluent: EtOAc/light petroleum ether = 1:10~ 1:3) afforded the title compound **29a** (28.7 mg, 63%); ¹H NMR (400 MHz, CDCl₃) δ 10.67 (s, 1H), 8.25 (s, 1H), 7.67 (s, 1H), 6.55 (d, J = 10.4 Hz, 1H), 6.53 (s, 1H), 5.94 (d, J = 10.1 Hz, 1H), 4.48 (s, 1H), 3.90 (s, 3H), 3.22 (s, 1H), 2.47 (t, J = 6.4 Hz, 2H), 2.41 – 2.36 (m, 2H), 2.31 (d, J = 3.0 Hz, 1H), 2.88 (d, J = 2.4 Hz, 1H), 2.12 (dd, J = 14.5, 3.5 Hz, 2H), 2.07 (s, 1H), 2.04 (s, 1H), 1.95 (d, J = 4.3 Hz, 1H), 1.90 (d, J = 3.9 Hz, 1H), 1.87 (d, J = 3.4 Hz, 1H), 1.82 (d, J = 4.8 Hz, 1H), 1.68 (s, 1H), 1.65 (s, 1H), 1.48 (s, 3H), 1.44 (d, J = 2.0 Hz, 1H), 1.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.65 (s), 173.32 (s), 169.89 (s), 161.02 (s), 155.96 (s), 154.55 (s), 127.06 (s), 123.49 (s), 119.18 (s), 106.04 (s), 104.55 (s), 87.36 (s), 77.30 (d, J = 11.5 Hz), 77.04 (s), 76.72 (s), 76.48 (s), 54.84 (s), 52.07 (s), 47.04 (s), 46.09 (d, J = 9.9 Hz), 44.66 (s), 43.06 (s), 40.54 (s), 31.97 (d, J = 7.4 Hz), 31.62 (s), 29.71 (s), 24.25 (s), 22.96 (s), 22.70 (s); HRMS (ESI): m/z calcd for C₂₅H₃₀NO₇ [M+H]⁺: 456.2022; found: 456.2016.

2-(trimethylsilyl)ethyl

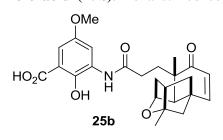
5-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahydro-5,8-ep oxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-2,4-dihydroxybenzoate (29b). To a solution of carboxylic acid PTMA (58.0 mg, 0.20 mmol) and aniline 21b


(107.6 mg, 0.40 mmol) in DMF (2.0 mL) at room temperature were added Et₃N (84.0 μ L, 0.60 mmol) and HATU (152.2 mg, 0.40 mmol). The mixture was stirred for 12 h, after which brine (5.0 mL) was added. The resulting mixture was extracted with EtOAc (3 × 5.0 mL),

and the combined organic portions dried over anhydrous Na₂SO₄. Concentration

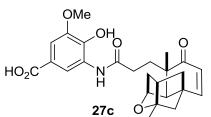
followed by flash column chromatography (eluent: EtOAc/light petroleum ether = 1:10~ 1:3) afforded the title compound **29b** (88.7 mg, 82%);¹H NMR (500 MHz, CDCl₃) δ 10.80 (s, 1H), 10.06 (s, 1H), 8.19 (s, 1H), 7.63 (s, 1H), 6.55 (d, J = 9.6 Hz, 2H), 5.94 (d, J = 10.0 Hz, 1H), 4.47 (s, 1H), 4.44 – 4.37 (m, 2H), 2.47 (d, J = 6.4 Hz, 1H), 2.44 (d, J = 6.6 Hz, 1H), 2.38 (s, 1H), 2.36 – 2.30 (m, 1H), 2.30 – 2.23 (m, 1H), 1.92 (s, 1H), 1.89 (d, J = 10.5 Hz, 1H), 1.82 (dd, J = 11.1, 6.7 Hz, 2H), 1.66 (d, J = 11.2 Hz, 1H), 1.48 (s, 3H), 1.28 (s, 3H), 1.17 – 1.13 (m, 2H), 0.10 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 204.56 (s), 173.44 (s), 169.65 (s), 161.20 (s), 155.96 (s), 154.50 (s), 127.07 (s), 123.51 (s), 119.08 (s), 106.35 (s), 105.07 (s), 87.24 (s), 77.28 (s), 77.03 (s), 76.74 (s), 63.58 (s), 54.87 (s), 47.03 (s), 46.12 (d, J = 6.5 Hz), 44.67 (s), 43.08 (s), 40.56 (s), 32.11 (s), 31.81 (s), 31.44 (s), 30.20 (s), 29.70 (s), 24.23 (s), 22.97 (s), 17.52 (s), -1.47 (s); HRMS (ESI): m/z calcd for C₂₉H₄₀NO₇Si [M+H]⁺: 542.2574; found: 542.2570.

Methyl


3-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahydro-5,8-ep oxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-2,5-dihydroxybenzoate (**30).** To a solution of carboxylic acid PTMA (29.0 mg, 0.10 mmol) and aniline **24**

(36.6 mg, 0.20 mmol) in DMF (1.0 mL) at room temperature were added Et₃N (42.1 μ L, 0.30 mmol) and HATU (76.1 mg, 0.20 mmol). The mixture was stirred for 12 h, after which brine (5.0 mL) was added. The resulting mixture was extracted with EtOAc (3 × 5.0 mL), and the combined organic portions dried over anhydrous Na₂SO₄.

Concentration followed by flash column chromatography (eluent: EtOAc/light petroleum ether = 1:10~ 1:3) afforded the title compound **30** (26.8 mg, 59%); ¹H NMR (400 MHz, CDCl₃) δ 10.69 (s, 1H), 8.44 (d, J = 2.9 Hz, 1H), 8.09 (s, 1H), 7.04 (d, J = 2.9 Hz, 1H), 6.51 (d, J = 10.1 Hz, 1H), 5.94 (d, J = 10.1 Hz, 1H), 4.62 (s, 1H), 3.95 (s, 3H), 2.45 (t, J = 6.6 Hz, 2H), 2.41 – 2.35 (m, 2H), 2.32 (dd, J = 12.4, 2.2 Hz, 1H), 2.25 (dd, J = 13.8, 2.8 Hz, 1H), 2.16 (d, J = 5.0 Hz, 1H), 2.10 (d, J = 3.4 Hz, 1H), 2.07 (d, J = 1.6 Hz, 2H), 1.93 (d, J = 3.5 Hz, 1H), 1.90 (d, J = 3.4 Hz, 1H), 1.83 – 1.79 (m, 1H), 1.64 (d, J = 11.2 Hz, 1H), 1.48 (s, 3H), 1.44 (d, J = 1.7 Hz, 1H), 1.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.03 (s), 172.26 (s), 170.63 (s), 153.93 (s), 148.91 (s), 143.90 (s), 127.26 (d, J = 12.1 Hz), 113.71 (s), 111.62 (s), 108.95 (s), 87.25 (s), 77.29 (d, J = 11.5 Hz), 77.03 (s), 76.63 (d, J = 17.3 Hz), 54.85 (s), 52.43 (s), 46.80 (s), 46.08 (s), 44.72 (s), 44.46 (s), 43.15 (s), 40.61 (s), 33.18 (s), 31.93 (s), 31.37 (d, J = 14.3 Hz), 30.25 (d, J = 11.9 Hz), 29.37 (s), 24.27 (s), 22.98 (s), 22.70 (s); HRMS (ESI): m/z calcd for C₂₅H₃₀NO₇ [M+H]⁺: 456.2022; found: 456.2008.


3-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahydro-5,8-ep oxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-2-hydroxy-5-methoxyben zoic acid (25b). To a stirred solution of TMSE-ester **25a** (55.5 mg, 0.1 mmol) in

CH₂Cb (2 mL) was added TBAF (52.2 mg, 0.2 mmol) at room temperature. The resulting reaction mixture was stirred at 40 °C for 12 h. Brine (5 mL) followed by water (5 mL) were added and the biphasic mixture was extracted first with CHCl3 (3 \times 5 mL). The combined organic phases were dried over Na₂SO₄, filtered and concentrated *in vacuo*.

The residue so obtained was purified by flash column chromatography (eluent: light petroleum ether/EtOAc/AcOH = 2: 3: 0.5) to give title compound **25b** (34.6 mg, 76%);¹H NMR (500 MHz, DMSO- d_6) δ 9.28 (s, 1H), 7.88 (s, 1H), 6.98 (s, 1H), 6.66 (d, J = 10.0 Hz, 1H), 5.83 (d, J = 10.0 Hz, 1H), 4.39 (s, 1H), 3.70 (s, 3H), 2.34 (t, J = 6.2 Hz, 1H), 2.28 (s, 1H), 2.11 (dd, J = 16.7, 8.0 Hz, 2H), 1.98 (d, J = 11.4 Hz, 1H), 1.92 (d, J = 7.9 Hz, 2H), 1.79 (d, J = 6.8 Hz, 1H), 1.69 (s, 2H), 1.35 (s, 3H), 1.31 – 1.20 (m, 2H), 1.13 (s, 3H);¹³C NMR (126 MHz, DMSO- d_6) δ 203.38 (s), 172.48 (s), 171.87 (s), 154.92 (s), 150.82 (s), 147.40 (s), 128.35 (s), 126.97 (s), 115.12 (s), 113.33 – 112.95 (m), 106.80 (s), 86.77 (s), 76.02 (s), 55.87 (s), 54.66 (s), 46.50 (s), 46.00 – 45.72 (m), 44.69 (s), 42.81 (s), 40.64 (s), 40.53 (s), 40.36 (s), 31.92 (s), 31.44 (s), 24.67 (s), 23.41 (s), 21.53 (s);HRMS (ESI): m/z calcd for C₂₅H₃₀NO₇ [M+H]⁺: 456.2022; found: 456.2013.

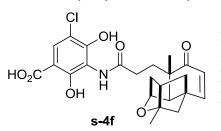
3-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahydro-5,8-ep oxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-4-hydroxy-5-methoxyben zoic acid (27c). To a stirred solution of TMSE-ester **27b** (54.1 mg, 0.1 mmol) in



CH₂Cl₂ (2 mL) was added TBAF (52.2 mg, 0.2 mmol) at room temperature. The resulting reaction mixture was stirred at 40 $^{\circ}$ C for 12 h. Brine (5 mL) followed by water (5 mL) were added and the biphasic mixture was extracted first with CHCl₃ (3 \times 5 mL). The combined organic phases were dried

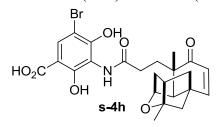
over Na₂SO₄, filtered and concentrated *in vacuo*. The residue so obtained was purified by flash column chromatography (eluent: light petroleum ether/EtOAc/AcOH = 2: 3: 0.5) to give title compound **27c** (34.6 mg, 76%); ¹H NMR (500 MHz, MeOD) δ 8.19 (d, *J* = 1.8 Hz, 1H), 7.43 (d, *J* = 1.7 Hz, 1H), 6.66 (d, *J* = 10.1 Hz, 1H), 5.91 (d, *J* = 10.1 Hz, 1H), 4.52 (s, 1H), 3.92 (s, 3H), 2.46 (s, 1H), 2.45 (s, 2H), 2.30 (td, *J* = 14.1, 4.5 Hz, 2H), 2.12 – 2.06 (m, 3H), 1.91 – 1.84 (m, 2H), 1.84 – 1.79 (m, 1H), 1.75 (d, *J* = 11.1 Hz, 1H), 1.45 (s, 3H), 1.27 (s, 3H); ¹³C NMR (126 MHz, MeOD) δ 204.31 (s), 172.99 (s), 168.41 (s), 154.62 (s), 147.45 (s), 142.22 (s), 126.47 (s), 125.37 (s), 120.69 (s), 117.77 (s), 108.59 (s), 87.36 (s), 76.63 (s), 55.25 (s), 54.41 (s), 46.42 (s), 45.89 (s), 45.86 (s), 44.69 (s), 42.49 (s), 40.09 (s), 31.43 (s), 31.22 (s), 23.73 (s), 21.80 (s); HRMS (ESI): m/z calcd for C₂₅H₃₀NO₇ [M+H]⁺: 456.2022; found: 456.2015.

5-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahydro-5,8-ep oxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-2,4-dihydroxybenzoic


acid (29c). To a stirred solution of TMSE-ester 29b (54.1 mg, 0.1 mmol) in CH₂Cl₂ (2

mL) was added TBAF (52.2 mg, 0.2 mmol) at room temperature. The resulting reaction mixture was stirred at 40 °C for 12 h. Brine (5 mL) followed by water (5 mL) were added and the biphasic mixture was extracted first with CHCl₃ (3 × 5 mL). The combined organic phases were dried over Na₂SO₄,

filtered and concentrated *in vacuo*. The residue so obtained was purified by flash column chromatography (eluent: light petroleum ether/EtOAc/AcOH = 2: 3: 0.5) to give title compound **29c** (37.5 mg, 85%); ¹H NMR (400 MHz, MeOD) δ 7.98 (s, 1H), 6.66 (d, *J* = 10.1 Hz, 1H), 6.31 (s, 1H), 5.91 (d, *J* = 10.1 Hz, 1H), 4.51 (s, 1H), 2.46 (d, *J* = 5.8 Hz, 1H), 2.43 (s, 1H), 2.30 (dd, *J* = 14.6, 3.2 Hz, 1H), 2.27 – 2.19 (m, 1H), 2.12 (d, *J* = 11.3 Hz, 2H), 2.07 (d, *J* = 3.4 Hz, 1H), 1.96 (s, 1H), 1.88 (d, *J* = 5.3 Hz, 1H), 1.85 (d, *J* = 5.7 Hz, 1H), 1.81 (d, *J* = 3.2 Hz, 1H), 1.75 (d, *J* = 10.9 Hz, 1H), 1.45 (s, 3H), 1.27 (d, *J* = 9.6 Hz, 3H); ¹³C NMR (101 MHz, MeOD) δ 204.38 (s), 173.18 (s), 160.40 (s), 154.59 (d, *J* = 21.2 Hz), 154.48 (s), 130.97 (s), 128.47 (s), 126.47 (s), 126.37 (s), 116.89 (s), 109.55 (s), 102.36 (s), 87.37 (s), 76.61 (s), 54.40 (s), 48.24 (s), 48.03 (s), 47.82 (s), 47.61 (s), 47.39 (s), 47.18 (s), 46.97 (s), 46.42 (s), 45.87 (d, *J* = 3.5 Hz), 44.69 (s), 42.49 (s), 40.09 (s), 31.41 (s), 31.14 (s), 23.74 (s), 21.81 (s); HRMS (ESI): m/z calcd for C₂₄H₂₈NO₇ [M+H]⁺: 442.1866; found: 442.1856.


5-chloro-3-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahyd ro-5,8-epoxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-2,4-dihydroxybe nzoic acid (s-4f). ¹H NMR (400 MHz, MeOD) δ 7.77 (s, 1H), 6.67 (d, *J* = 10.1 Hz,

1H), 5.92 (d, J = 10.1 Hz, 1H), 4.53 (s, 1H), 2.56 – 2.49 (m, 1H), 2.46 (t, J = 5.8 Hz, 2H), 2.41 – 2.36 (m, 1H), 2.34 (d, J = 3.1 Hz, 1H), 2.11 (d, J = 4.6Hz, 2H), 2.08 (d, J = 3.5 Hz, 1H), 2.02 (d, J = 8.7Hz, 1H), 1.90 (d, J = 5.9 Hz, 1H), 1.88 – 1.84 (m, 1H), 1.83 (d, J = 3.2 Hz, 1H), 1.76 (d, J = 11.2 Hz, 1H), 1.45 (d, J = 3.6 Hz, 3H), 1.28 (d, J = 3.2 Hz,

3H); ¹³C NMR (126 MHz, MeOD) δ 204.39 (s), 175.32 – 174.41 (m), 168.50 – 166.97 (m), 154.70 (s), 132.87 – 131.62 (m), 130.95 (s), 128.47 (s), 126.47 (s), 87.38 (s), 76.61 (s), 65.25 (s), 54.41 (s), 47.89 – 47.88 (m), 46.43 (s), 45.91 (s), 44.70 (s), 42.50 (s), 40.09 (s), 31.24 (s), 30.70 (s), 30.32 (s), 29.39 (s), 23.72 (s), 21.81 (s); HRMS (ESI): m/z calcd for C₂₄H₂₇CINO₇ [M+H]⁺: 476.1476; found: 476.1471.

5-bromo-3-(3-((4S,4aR,5S,7R,8S,9aS)-4,8-dimethyl-3-oxo-3,4,4a,5,6,7,8,9-octahyd ro-5,8-epoxy-7,9a-methanobenzo[7]annulen-4-yl)propanamido)-2,4-dihydroxybe nzoic acid (s-4h). ¹H NMR (400 MHz, MeOD) δ 7.94 (s, 1H), 6.67 (d, *J* = 10.1 Hz,

1H), 5.92 (d, J = 10.1 Hz, 1H), 4.53 (s, 1H), 2.53 (dd, J = 11.6, 5.5 Hz, 1H), 2.45 (d, J = 6.5 Hz, 2H), 2.42 – 2.35 (m, 1H), 2.33 (dd, J = 9.2, 4.5 Hz, 1H), 2.09 (dd, J = 12.6, 4.2 Hz, 3H), 2.03 (t, J = 5.9 Hz, 1H), 1.88 (dd, J = 12.6, 5.8 Hz, 2H), 1.83 (d, J = 3.0 Hz, 1H), 1.76 (d, J = 11.2 Hz, 1H), 1.45 (s, 3H),

1.28 (s, 3H). ¹³C NMR (101 MHz, MeOD) δ 204.41 (s), 174.86 (s), 156.29 (s), 154.72 (s), 131.55 (s), 126.47 (s), 113.84 (s), 100.48 (s), 87.39 (s), 76.62 (s), 62.86 (s), 54.43 (s), 48.47 (s), 46.43 (s), 45.93 (d, *J* = 3.2 Hz), 44.71 (s), 42.52 (s), 40.09 (s), 31.16 (s), 30.66 (s), 29.34 (s), 23.71 (s), 21.79 (s), 13.07 (s); HRMS (ESI): m/z calcd for C₂₄H₂₇BrNO₇ [M+H]⁺: 520.0971; found: 520.0966.

References

- [1] I. Wiegand, K. Hilpert, R. E. Hancock, Nat. Protoc. 2008, 3, 163-175.
- [2] J. Wang, S. M. Soisson, K. Young, W. Shoop, S. Kodali, A. Galgoci, R. Painter, G. Parthasarathy, Y. S. Tang, R. Cummings, S. Ha, K. Dorso, M. Motyl, H. Jayasuriya, J. Ondeyka, K. Herath, C. Zhang, L. Hernandez, J. Allocco, A. n. Basilio, J. R. Tormo, O. Genilloud, F. Vicente, F. Pelaez, L. Colwell, S. H. Lee, B. Michael, T. Felœtto, C. Gill, L. L. Silver, J. D. Hermes, K. Bartizal, J. Barrett, D. Schmatz, J. W. Becker, D. Cully, S. B. Singh, *Nature* 2006, 441, 358-361.
- [3] K. B. Herath, C. Zhang, H. Jayasuriya, J. G. Ondeyka, D. L. Zink, B. Burgess, J. Wang, S. B. Singh, Org. Lett. 2008, 10, 1769-1702.
- [4] C. Zhang, J. Ondeyka, D. L. Zink, B. Burgess, J. Wang, S. B. Singh, Chem Commun. 2008, 40, 5034-5036.
- [5] C. Zhang, J. Ondeyka, Z. Guan, L. Dietrich, B. Burgess, J. Wang, S. B. Singh, J. Antibiot 2009, 62, 699-702.
- [6] C. Zhang, J. Ondeyka, K. Herath, H. Jayasuriya, Z. Guan, D. L. Zink, L. Dietrich, B. Burgess, S. N. Ha, J. Wang, S. B. Singh, J. Nat. Prod. 2011, 74, 329-340.
- [7] H. Jayasuriya, K. B. Herath, J. G. Ondeyka, D. L. Zink, B. Burgess, J. Wang, S. B. Singh, *Tetrahedron Lett.* 2008, 49, 3648-3651.
- [8] K. C. Nicolaou, A. F. Stepan, T. Lister, A. Li, A. Montero, G. S. Tria, C. I. Turner, Y. Tang, J. Wang, R. M. Denton, D. J.
 Edmonds, J. Am Chem Soc. 2008, 130, 39, 13110-13119.
- [9] L. Qiu, K. Tian, J. Pan, L. Jiang, H. Yang, X. Zhu, B. Shen, Y. Duan, Y. Huang, Tetrahedron 2017, 73, 771-775.

- [10] S. B. Singh, K. B. Herath, J. Wang, N. Tsou, R. G. Ball, Tetrahedron Lett. 2007, 48, 5429-5433.
- [11] L.-B. Dong, J. D. Rudolf, B. Shen, Org. Lett. 2016, 18, 4606-4609.
- [12] L.-B. Dong, J. D. Rudolf, B. Shen, *Bioorg. Med. Chem* 2016, 24, 6348-6353.
- [13] a) Y. Gong, D. C. Hoerr, L. E. Weaner, R. Lin, J. Label Compd. Radiopharm 2008, 51, 268-272; b) M. M. Lee, B. R. Peterson, ACS Omega 2016, 1, 1266-1276; c) P. Lignier, J. Estager, N. Kardos, L. Gravouil, J. Gazza, E. Naffrechoux, M. Draye, Utrason. Sonochem 2011, 18, 28-31; d) G. Vaidyanathan, D. McDougald, J. Choi, M. Pruszynski, E. Koumatianou, Z. Zhou, M. R. Zalutsky, Org. Biomol. Chem 2016, 14, 1261-1271; e) K. Tiefenbacher, A. Gollner, J. Mulzer, Chem-Eur. J. 2010, 16, 9616-9622.
- [14] a) Y. Yan, B. Qin, C. Ren, X. Chen, Y. K. Yip, R. Ye, D. Zhang, H. Su, H. Zeng, J. Am Chem Soc. 2010, 132, 5869–5879; b) K. C. Nicolaou, A. F. Stepan, T. Lister, A. Li, A. Montero, G. S. Tria, C. I. Turner, Y. Tang, J. Wang, R. M. Denton, D. J. Edmonds, J. Am Chem Soc. 2008, 130, 13110–13119.
- [15] V. N. Sonar, M. Venkatraj, S. Parkin, P. A. Crooks, Acta Crystallogr., Sect. E: Struct. Rep. Online 2007, 63, 03227-03227.
- [16] a) L. Wang, J. Gong, L. Deng, Z. Xiang, Z. Chen, Y. Wang, J. Chen, Z. Yang, Org. lett. 2009, 11, 1809-1812; b) L. E.
 Kiss, H. S. Ferreira, L. Torrao, M. J. Bonifacio, P. N. Palma, P. Soares-da-Silva, D. A. Learmonth, J. Med. Chem 2010, 53, 3396-3411.
- [17] a) A. K. Ghosh, K. Xi, J. Org. Chem 2009, 74, 1163-1170; b) P. Heretsch, A. Giannis, Synthesis 2007, 2007, 2614-2616; c) K. C. Nicolaou, S. Natarajan, H. Li, N. F. Jain, R. Hughes, M. E. Solomon, J. M. Ramanjulu, C. N. C. Boddy, M. Takayanagi, Angew. Chem. Int. Ed. 1998, 37, 2708-2714.

NMR spectra Data of Products.

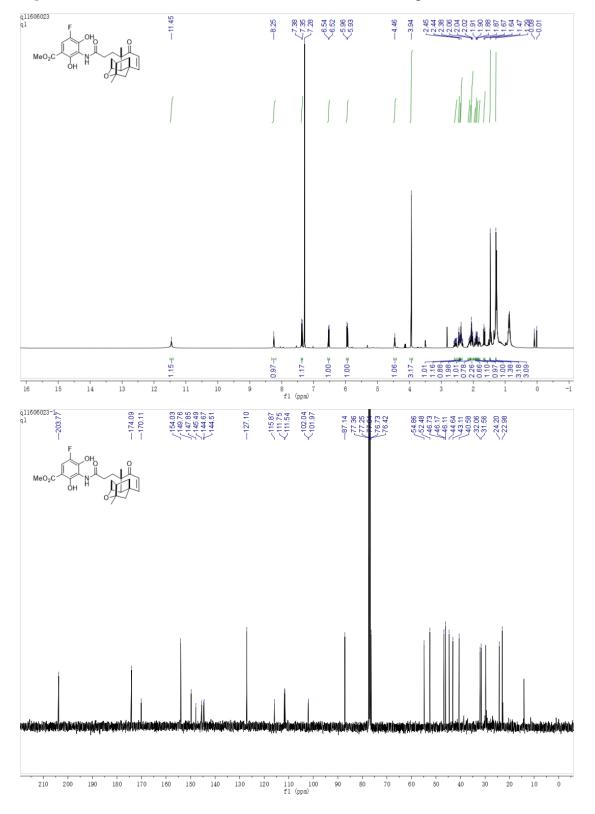
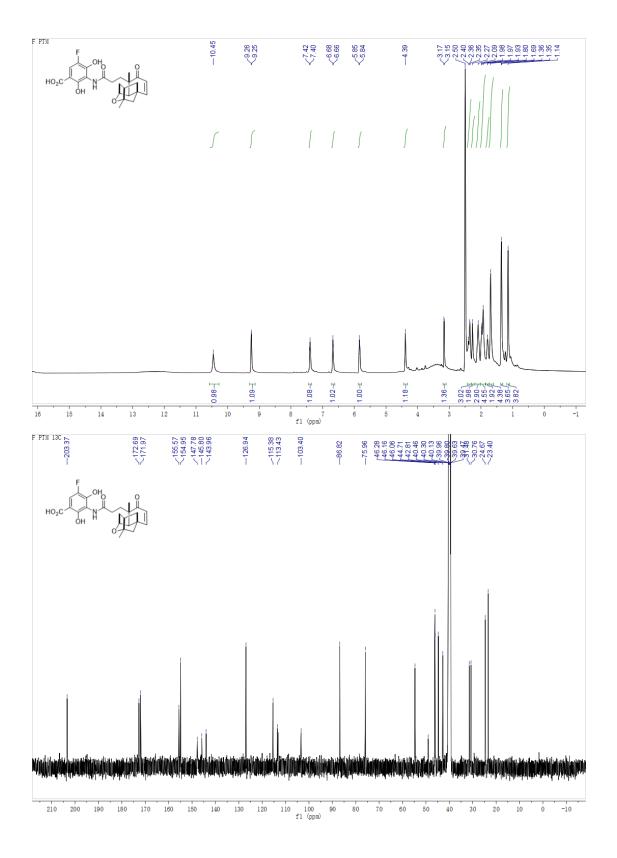
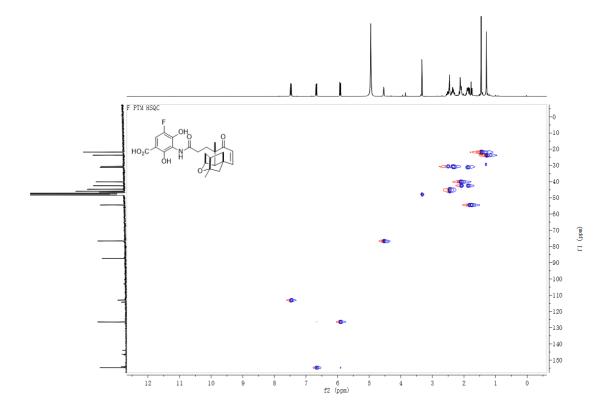




Figure S4. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 7a in CDCI₃

Figure S5. ¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectrum of 7b in DMSO- d_6

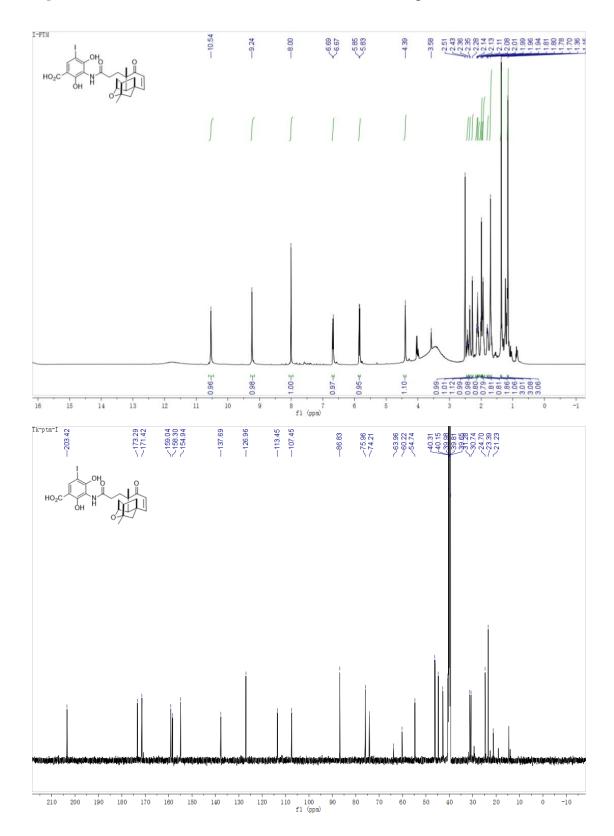


Figure S7. ¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectrum of 8 in DMSO- d_6

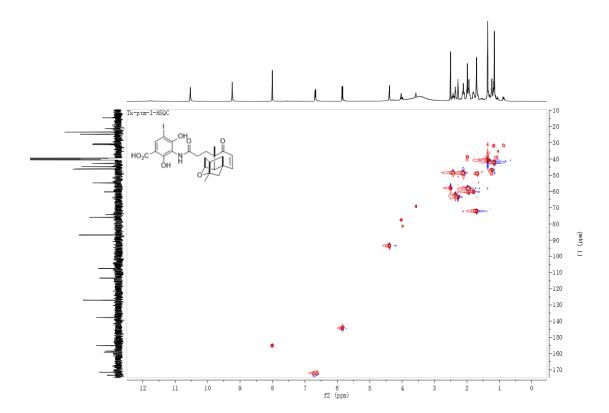


Figure S8. $^{1}H-^{13}C$ HSQC spectrum of 8 in DMSO- d_{6}

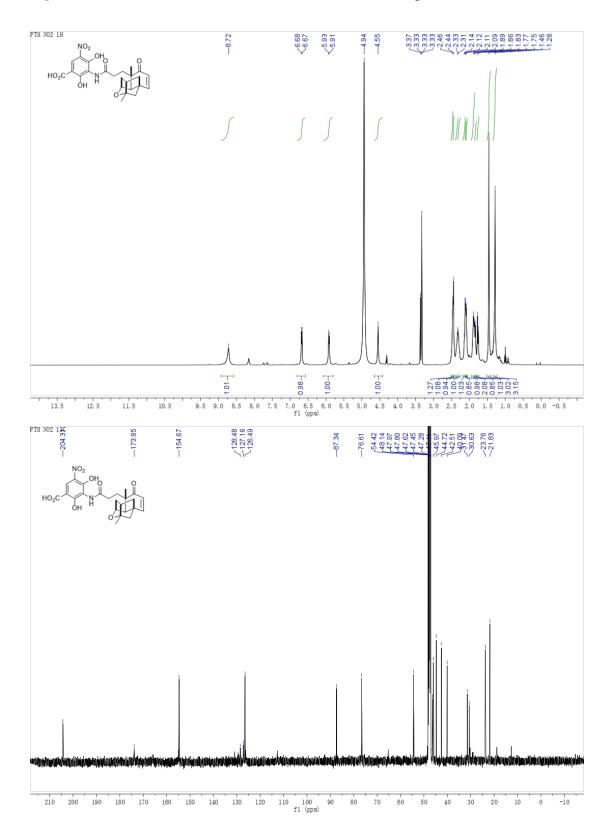


Figure S9. ¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectrum of 9 in MeOD

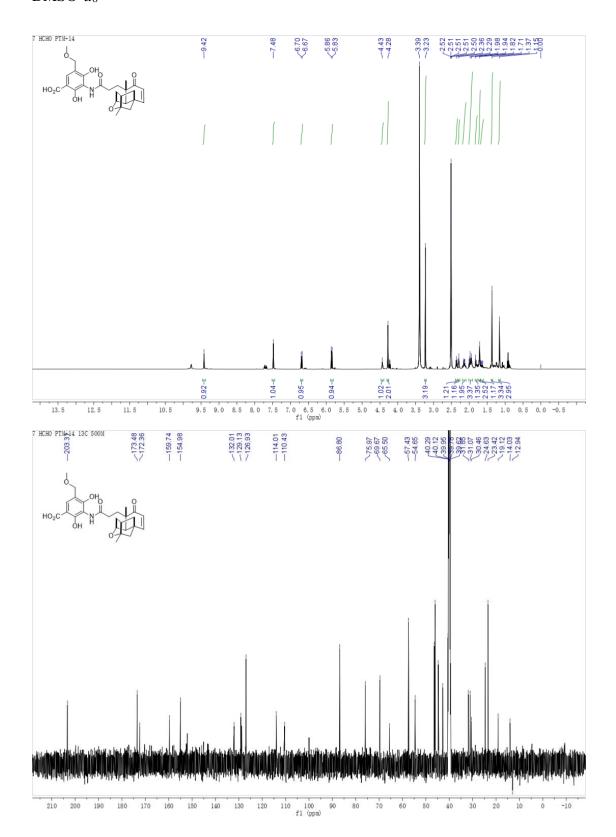


Figure S10. ¹H NMR (400 MHz) and ¹³C NMR (126 MHz) spectrum of 10a in DMSO- d_6

Figure S11. $^{1}H^{-13}C$ HSQC spectrum of 10a in DMSO- d_{6}

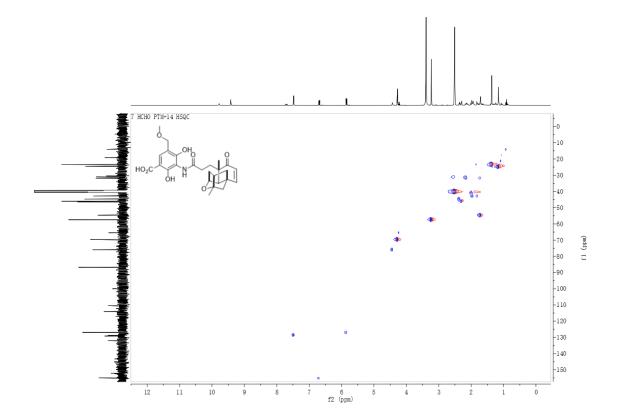
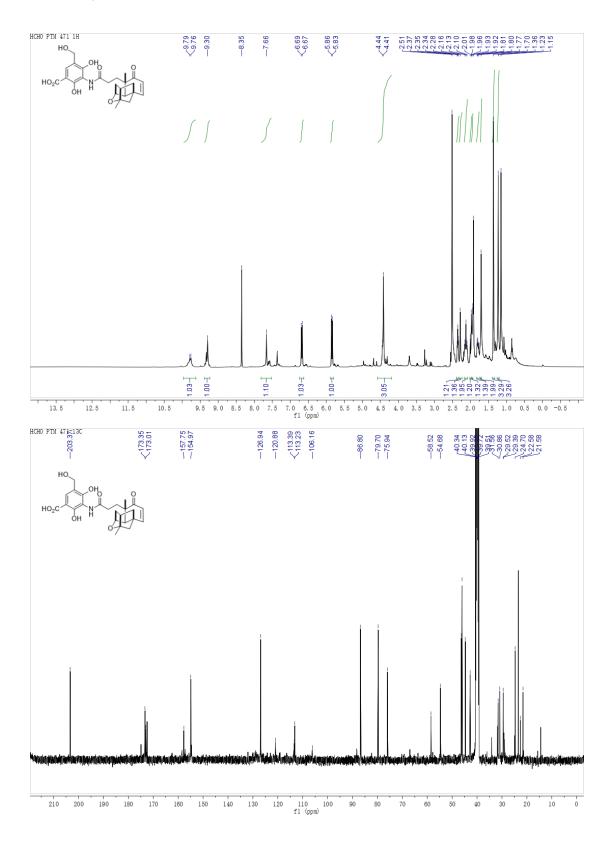



Figure S12. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 10b in DMSO- d_6

47

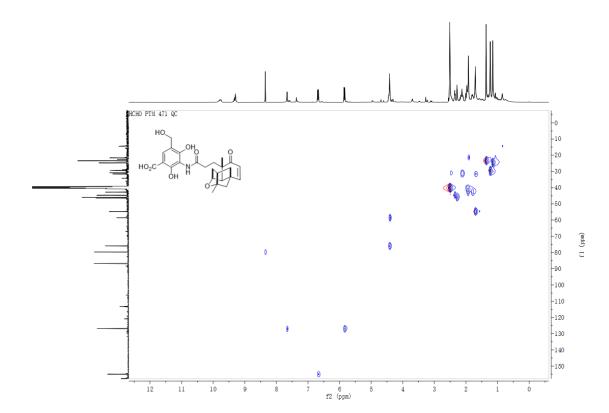


Figure S13. ¹H–¹³C HSQC spectrum of 10b in DMSO-*d*₆

K1 -10.97 -7.99 -7.99 ~7.28 ~7.01 ~6.51 ~6.54 ~6.54 4.4 8,4 4,4 4,4 4,4 TMSEO₂C 巅 tl (ppm) 1.00 ⊭ 1034 - 3.12-1.17 1.24 3.09 3.16 2.17 9.56 1.24 1.16 1.16 26.0 - 6 3.26 2.08 10 -1 12 14 13 16 15 9 2,5 OME PTM_TSE-13C <171.07 ~153.76 ~151.74 —144.95 <128.14 <127.20 ~112.77 ~111.45 ~106.49 -86.98 77.38 77.06 76.75 76.48 -64.12 55.87 54.88 6 TMSEO₂C 110 100 fl (ppm) -10 120 20 10 210 200 190 150 130 90 80 70 60 50 40 30 ò 180 170 160 . 140

Figure S14. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 25a in CDCl₃

Figure S15. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 26a in CDCl₃

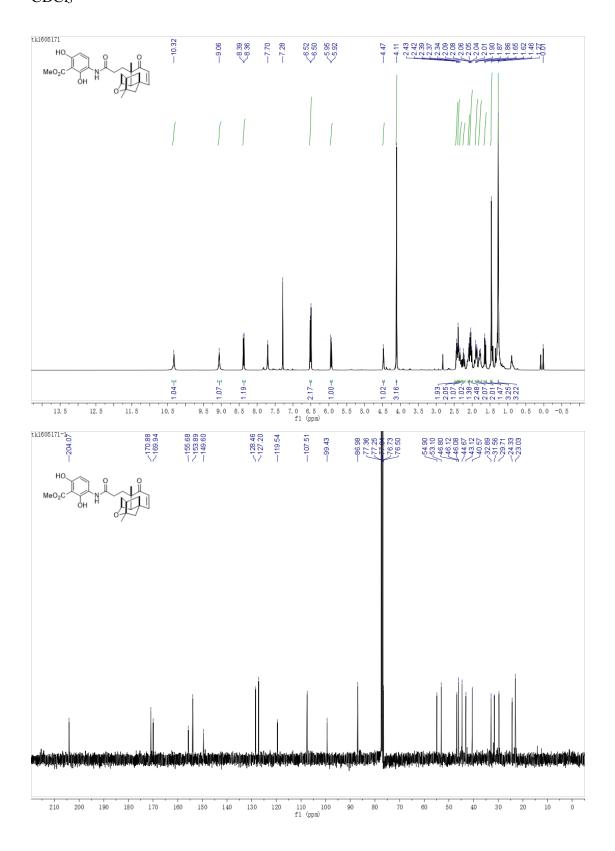
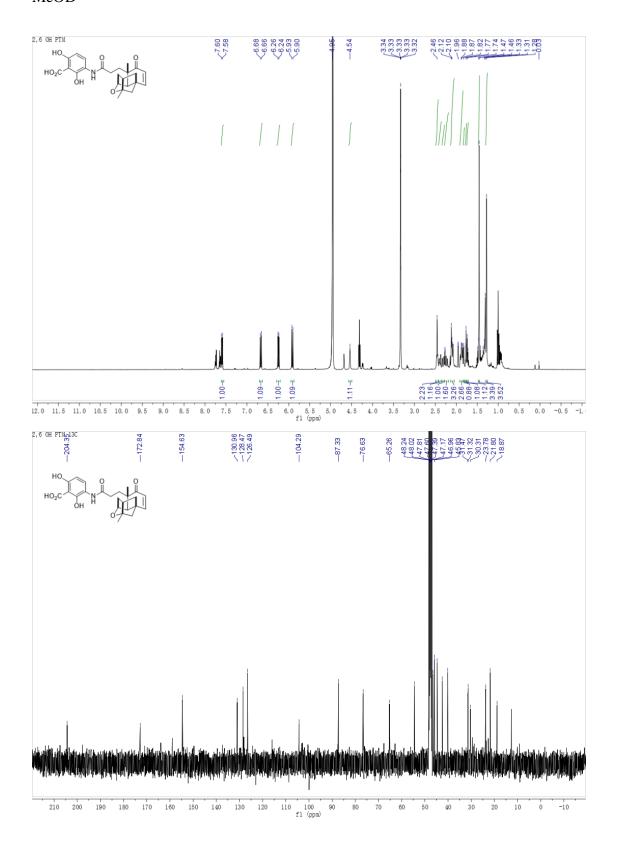



Figure S16. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 26b in MeOD

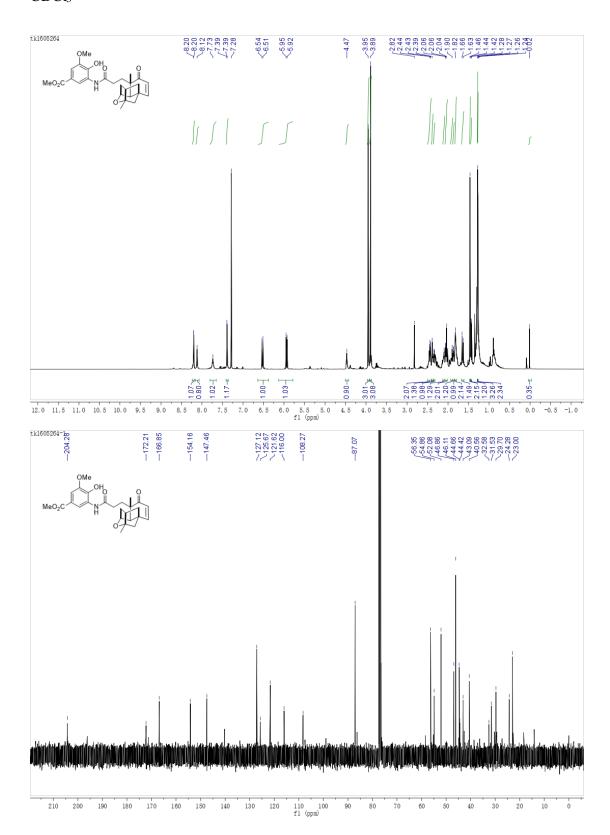


Figure S17. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 27a in CDCl₃

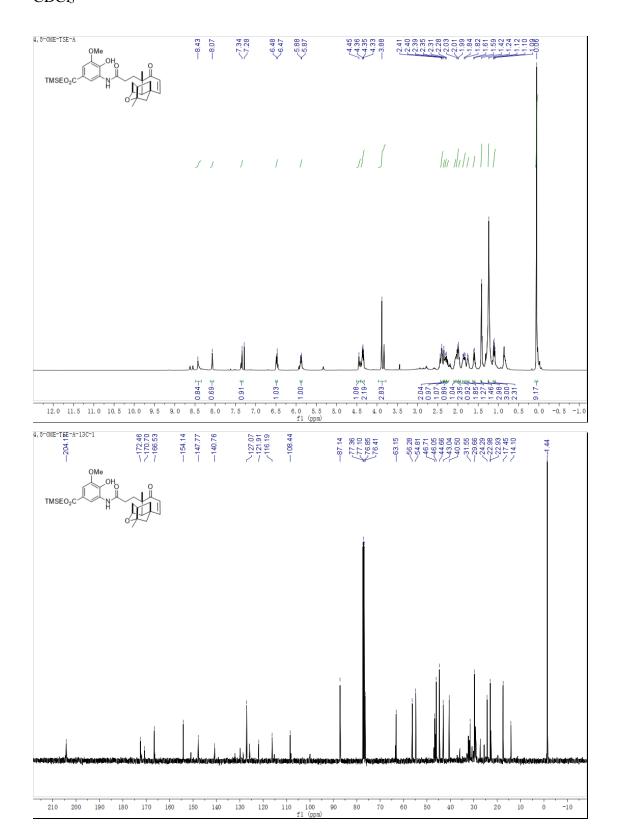
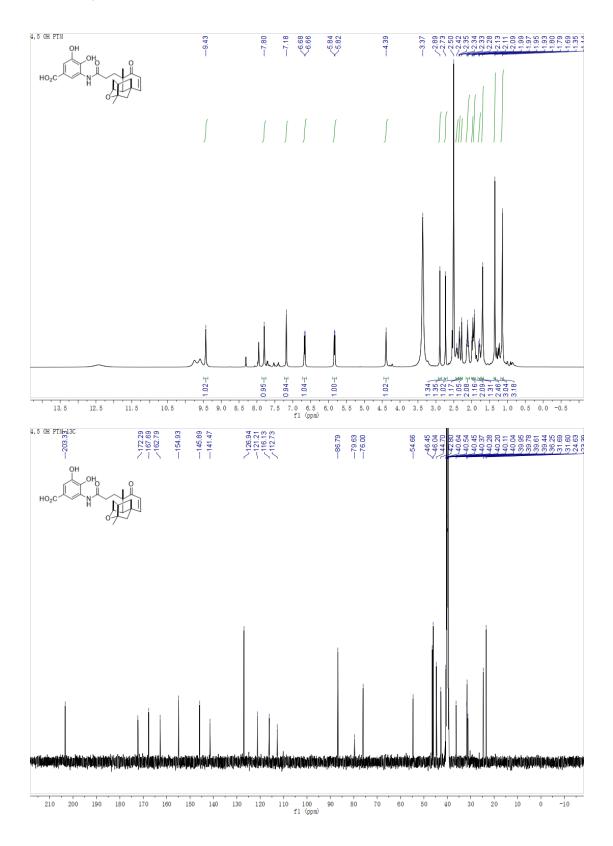



Figure S18. ¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectrum of 27b in CDCl₃

Figure S19. ¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectrum of 28 in DMSO- d_6

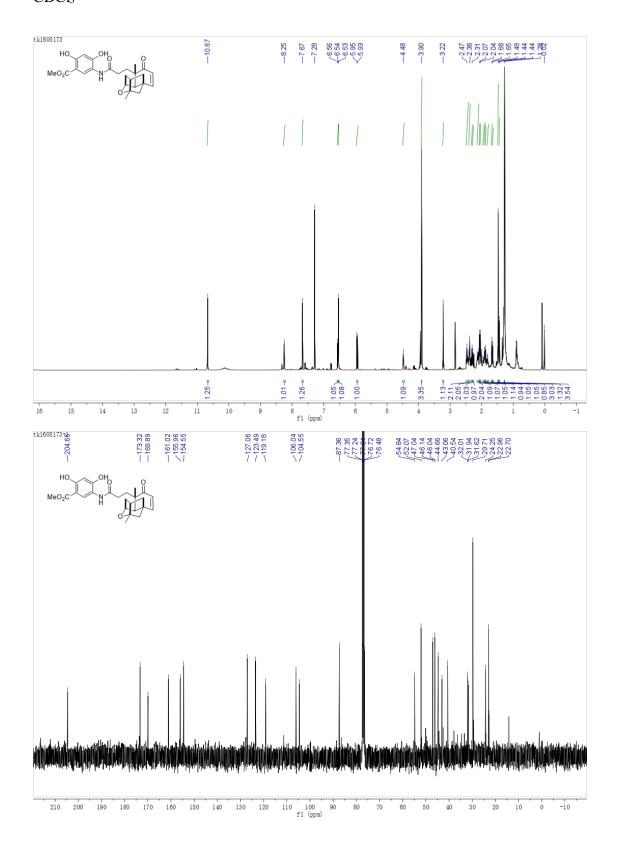


Figure S20. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 29a in CDCl₃

K4 ---8.19 ---7.63 --7.28 6.56 6.54 5.95 5.95 -4.47 -4.43 -4.41 HO. TMSEO2C F06:0 - 10 1-96.0 1.00 2.00 ⊭ 1.02 - ₹ 1.00 2.16 'n -1 16 15 13 14 12 8 fl (ppm) K4-13C -204.56 -161.20-155.96-154.50~106.35 ~105.07 ~127.07 ~123.51 ~119.08 -76.44 -87.24 /77.28 /77.03 -54.87 -63.58 HC TMSEO₂C **iniër**iki**n**iiki 110 100 fl (ppm) -10 130 120 40 90 80 70 60 50 30 20 210 180 170 160 150 140 10 ò 200 190

Figure S21. ¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectrum of 29b in CDCl₃

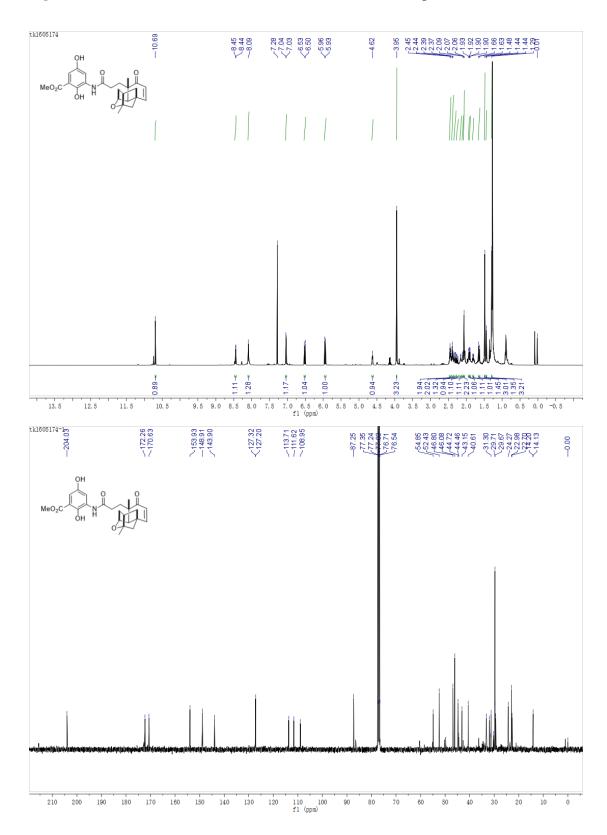
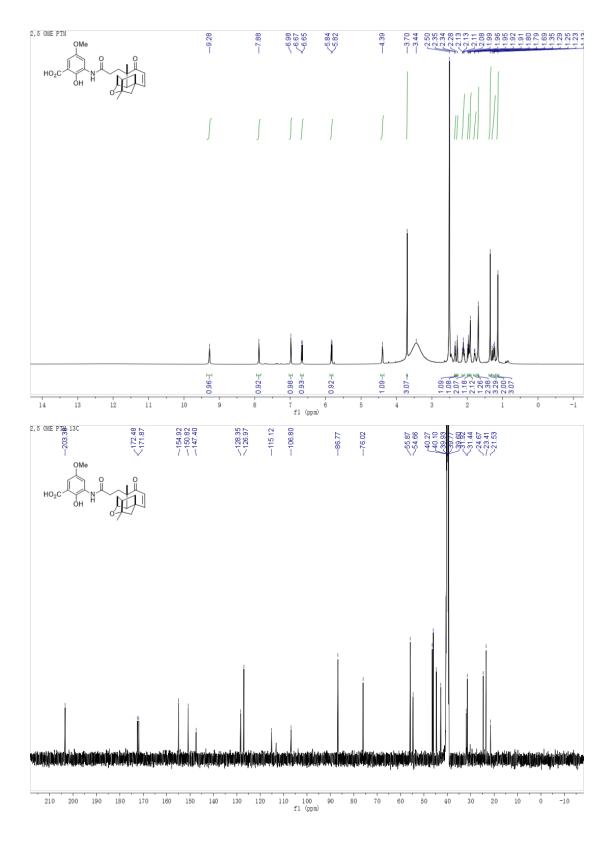



Figure S22. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 30 in CDCl₃

Figure S23. ¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectrum of 25b in DMSO- d_6

58

Figure S24. ¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectrum of 27c in MeOD

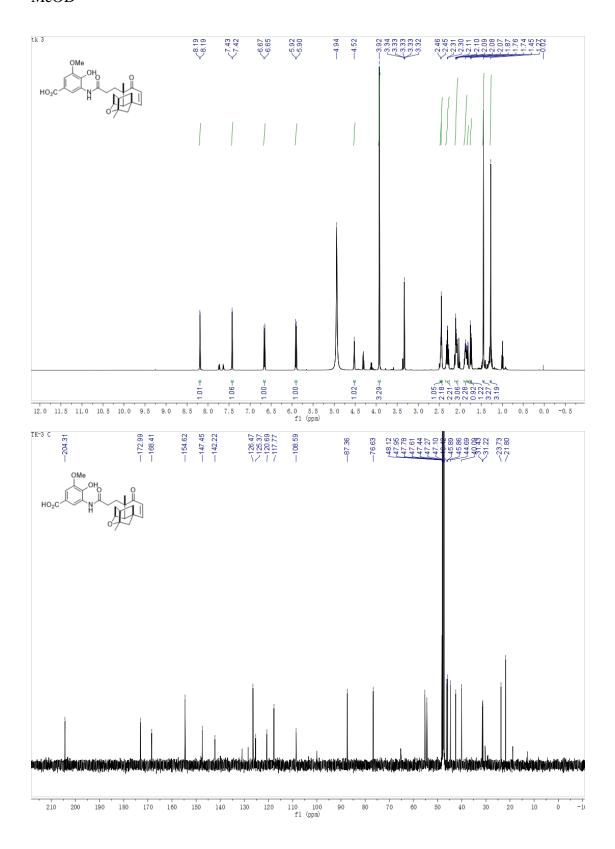
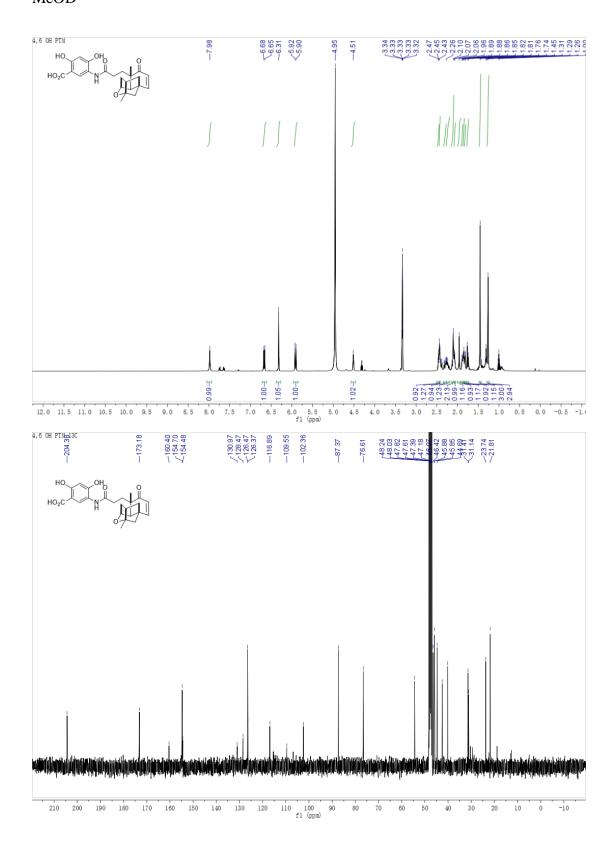



Figure S25. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 29c in MeOD

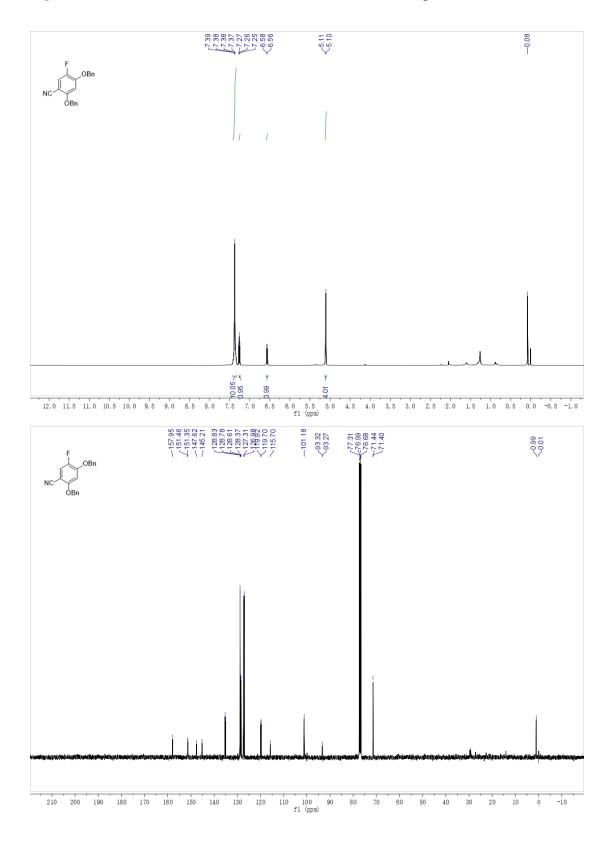


Figure S26. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 4 in CDCl₃

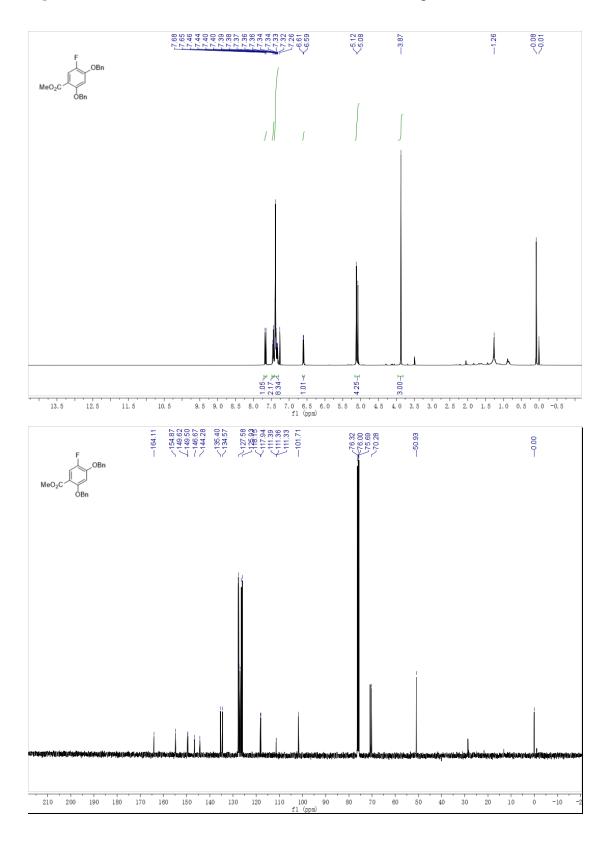


Figure S27. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 5 in CDCl₃

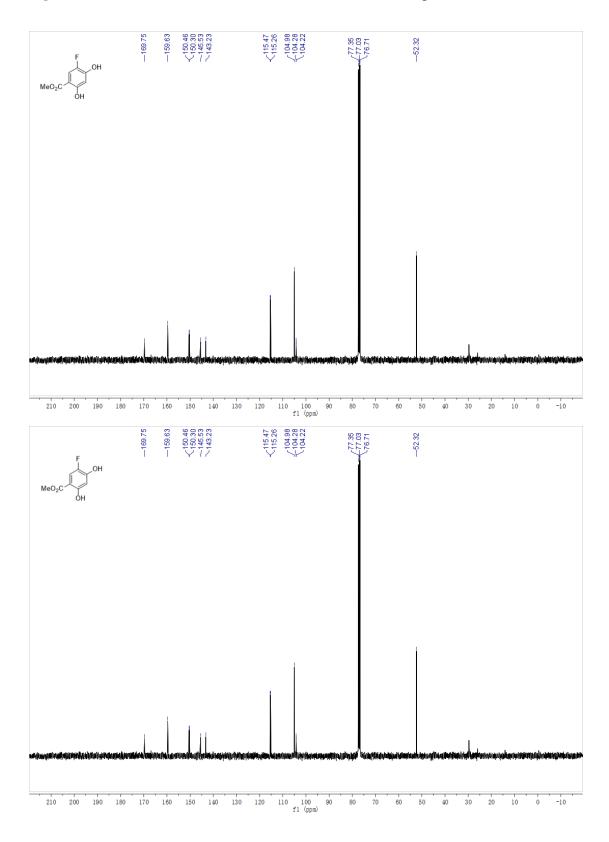
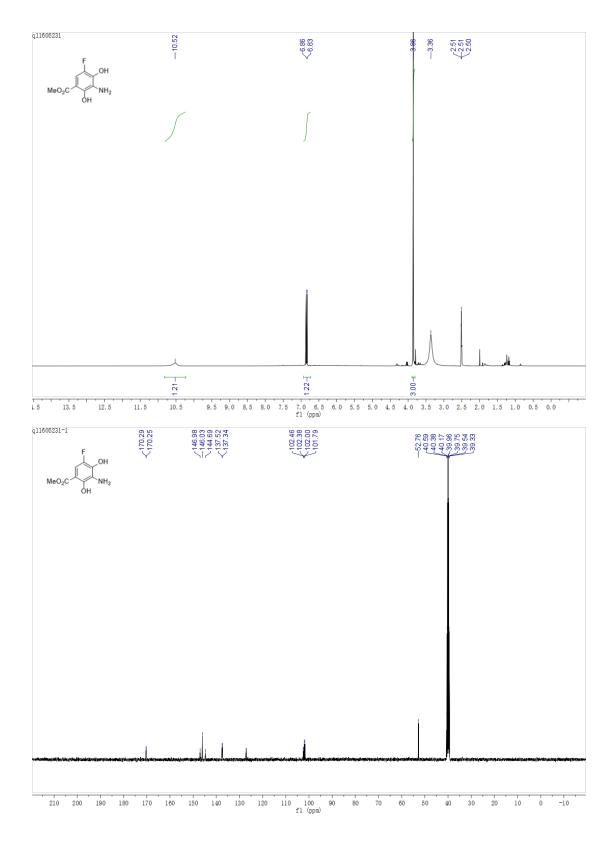



Figure S28. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of S9 in CDCl₃

Figure S29. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 6 in DMSO- d_6

64

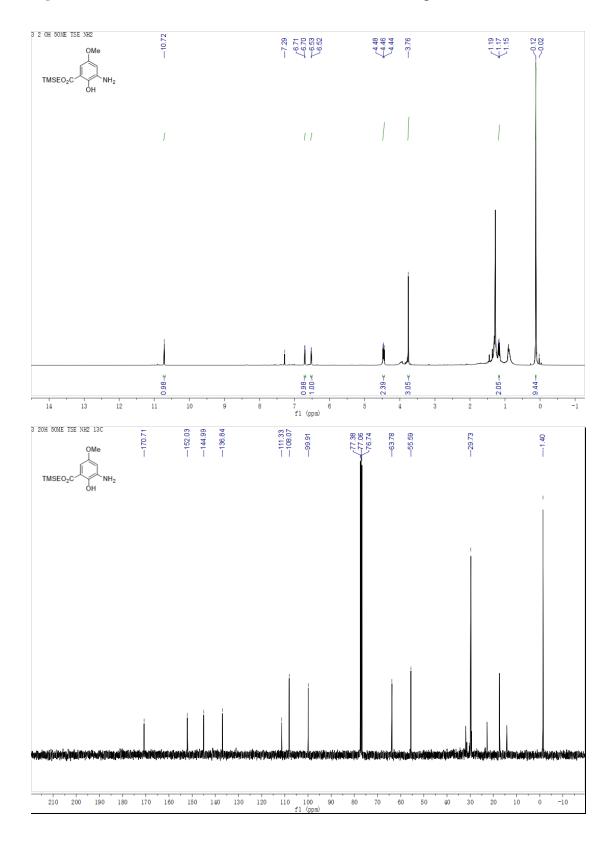


Figure S30. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 13 in CDCl₃.

Figure S31. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 15a in CDCl₃.

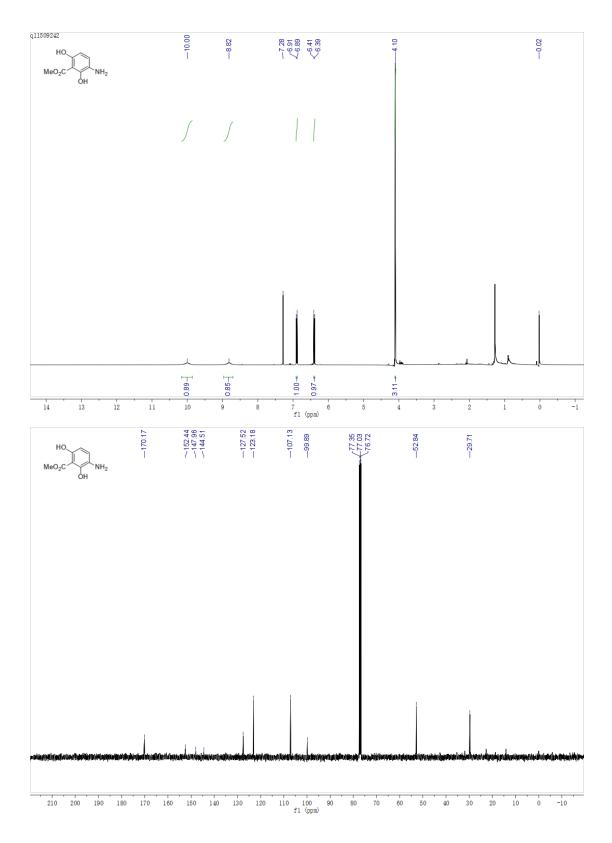


Figure S32. ¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectrum of 15b in DMSO- d_6

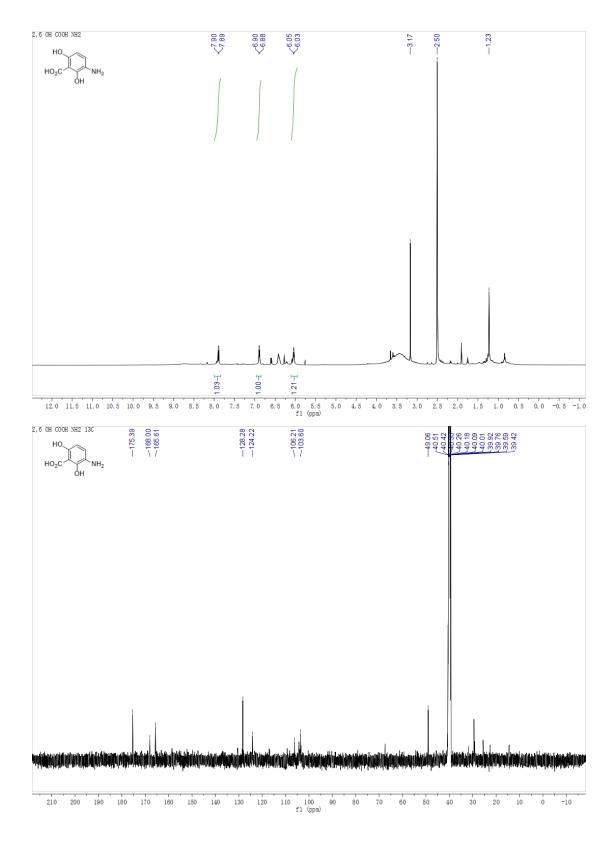
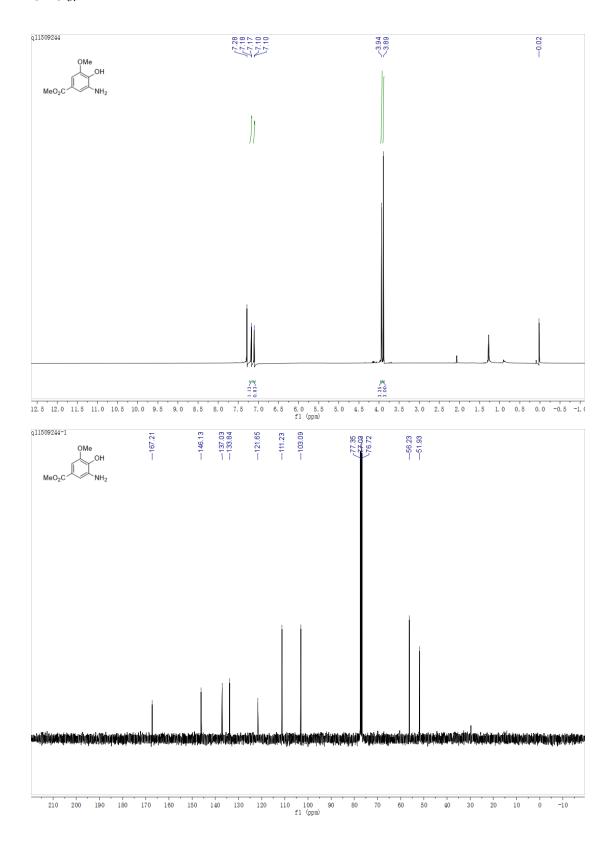



Figure S33. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of **17a** in CDCl₃.

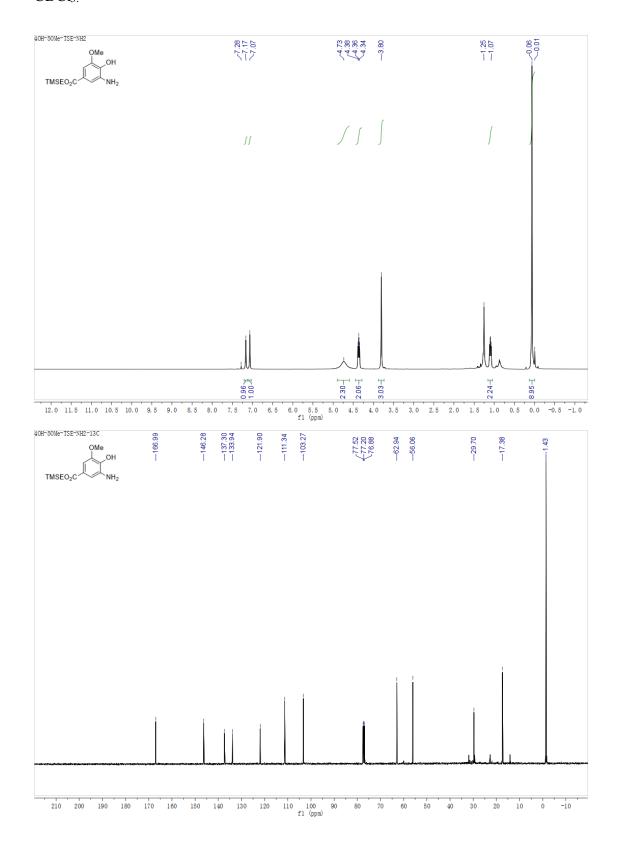
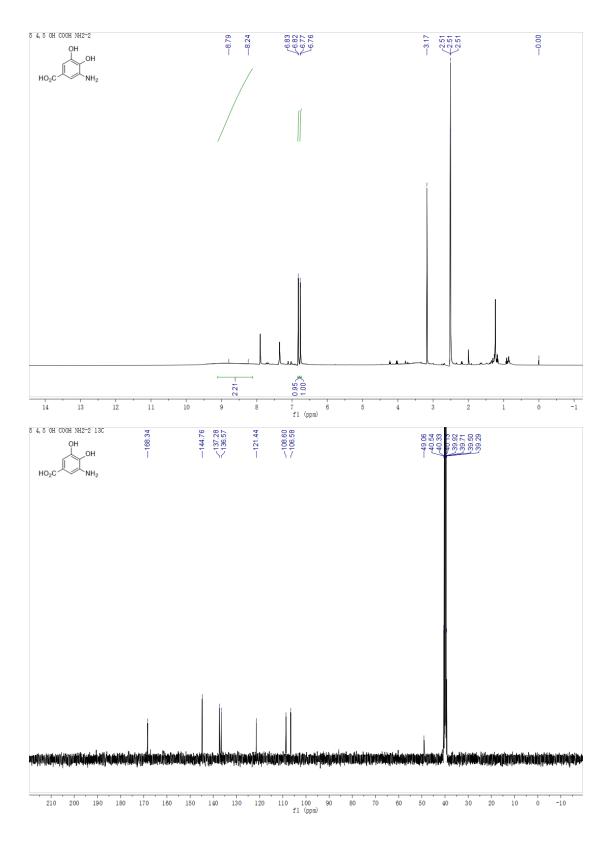



Figure S34. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of **17b** in CDC₁₃.

Figure S35. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 19 in DMSO- d_6

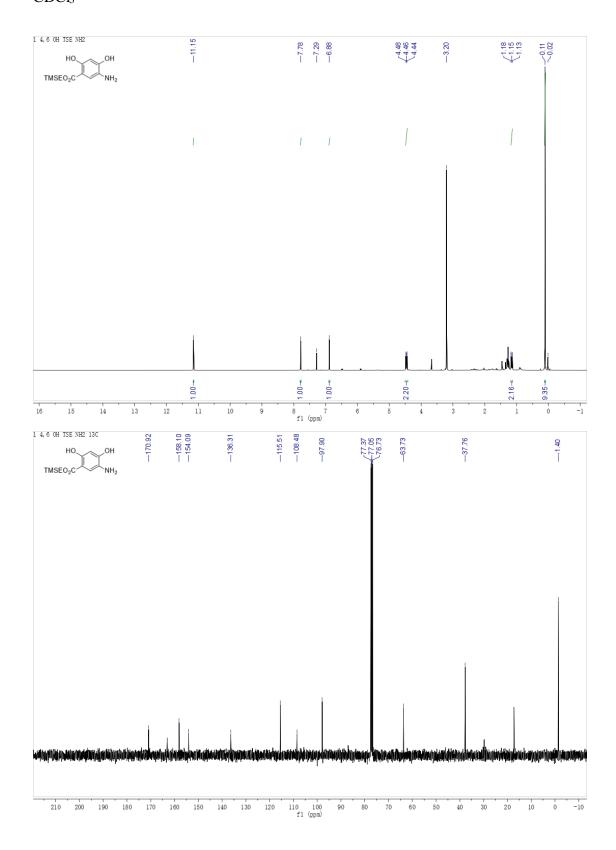


Figure S36. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 21b in CDCl₃

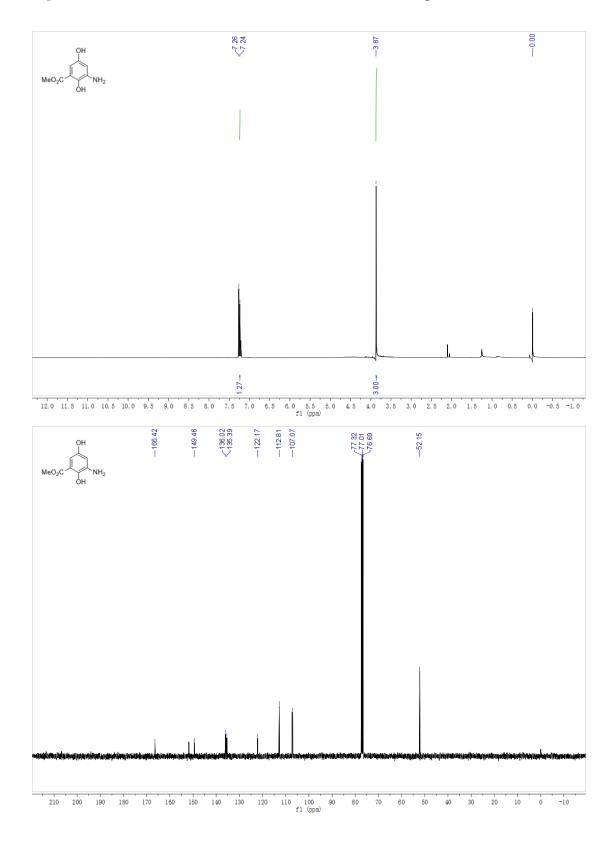


Figure S37. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 24 in CDCl₃

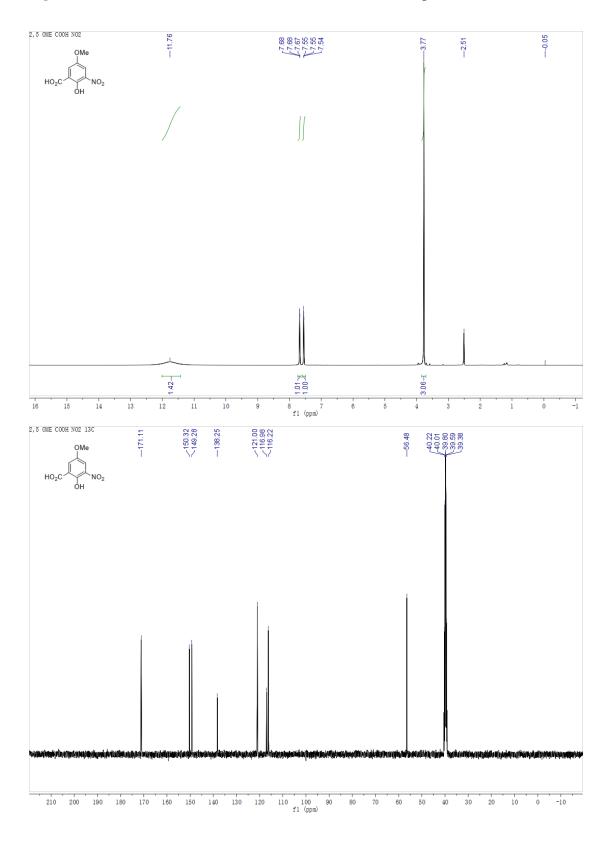


Figure S38. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 12 in CDCl₃.

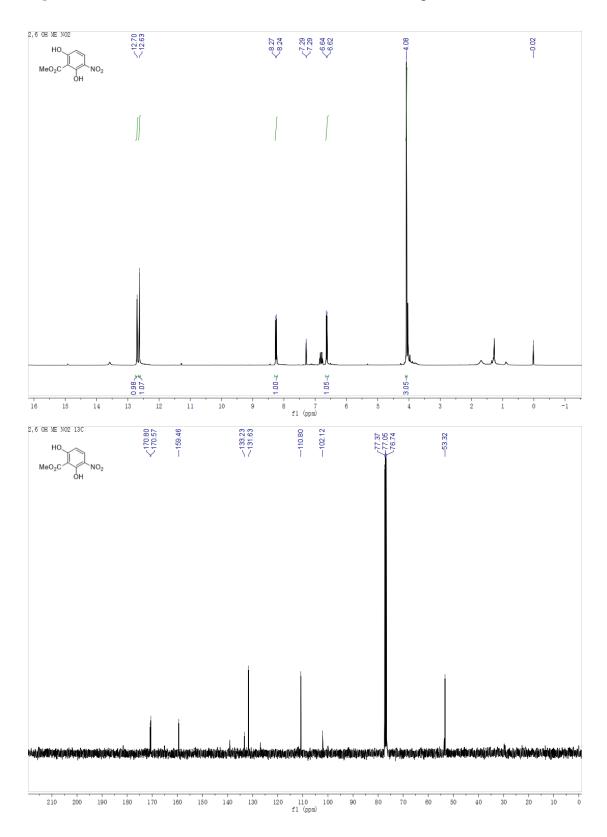


Figure S39. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of 14 in CDCl₃.

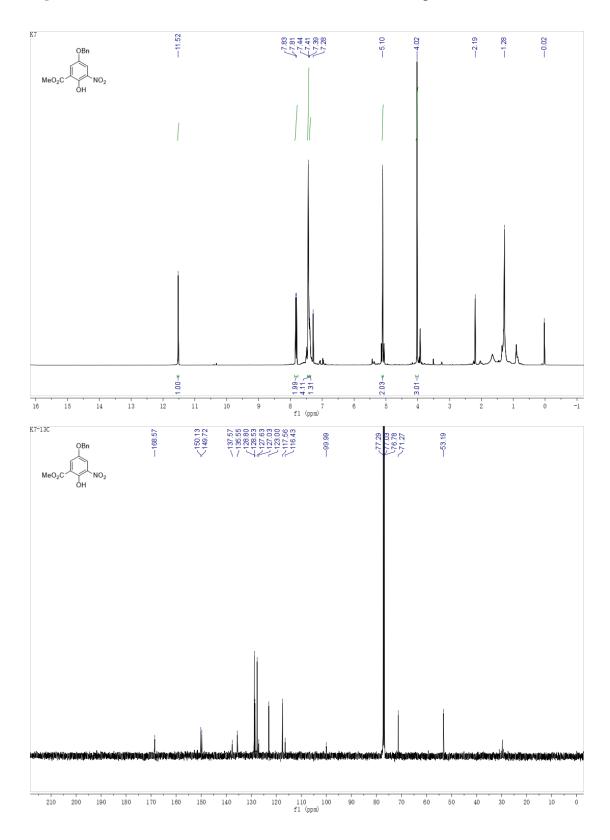


Figure S40. ¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectrum of 23 in CDCl₃.

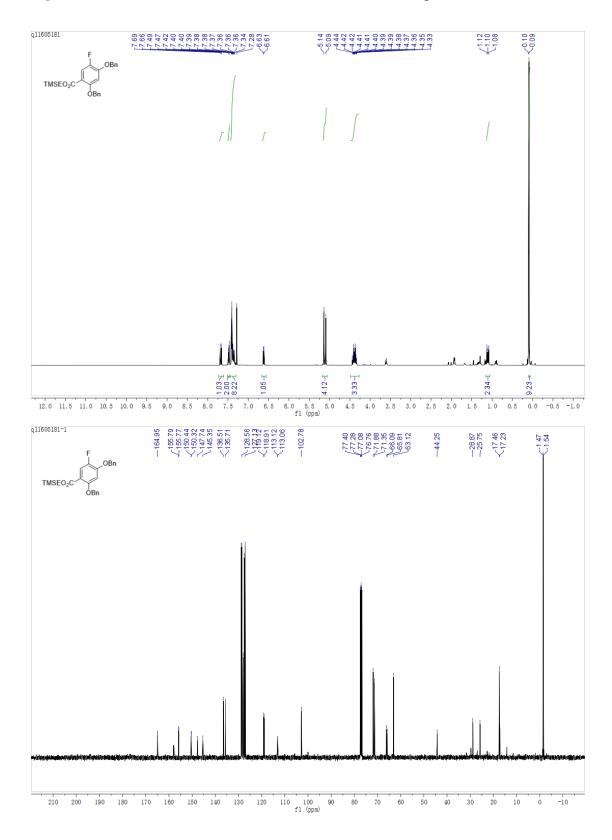


Figure S41. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of S8 in CDCl₃.

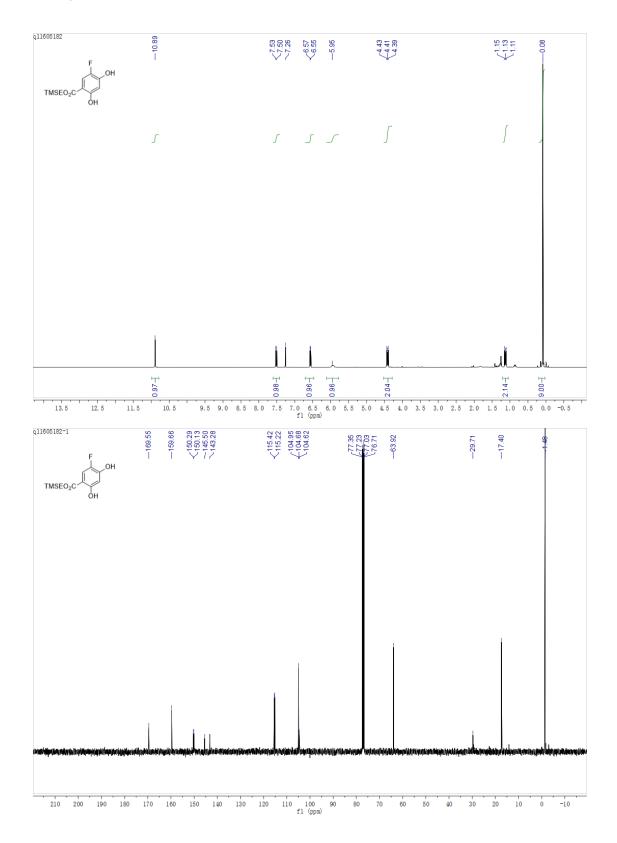


Figure S42. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of S10 in CDCl₃.

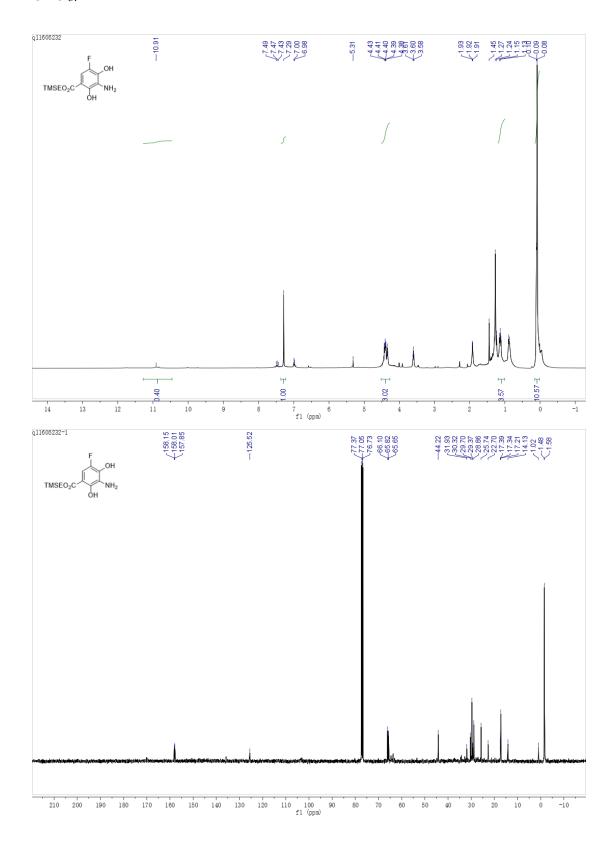


Figure S43. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of S11 in CDCl₃.

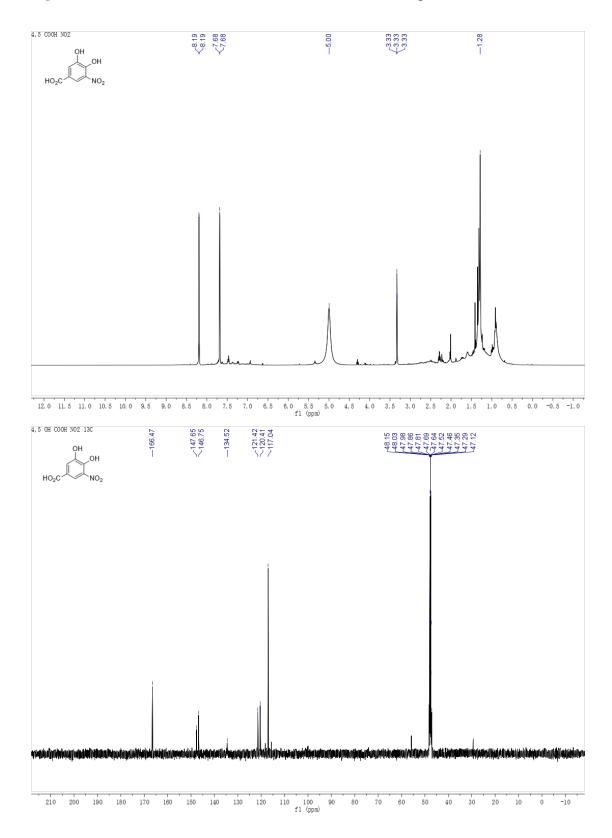


Figure S44. ¹H NMR (400 MHz) and ¹³C NMR (126 MHz)spectrum of 18 in MeOD.

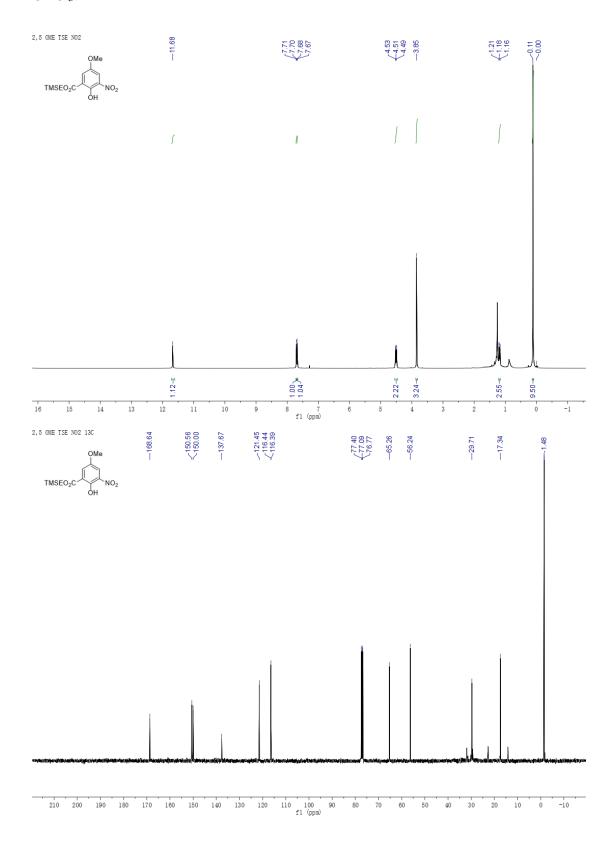
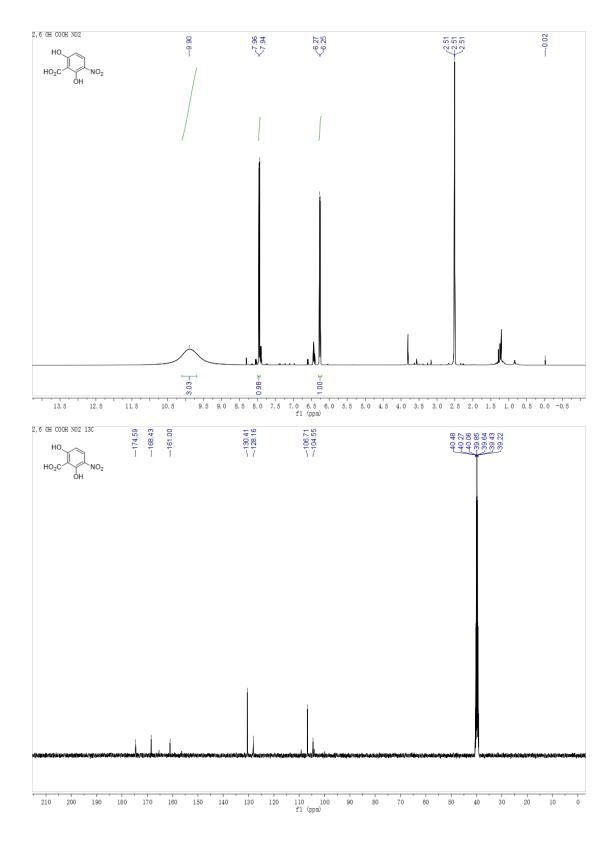



Figure S45. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of S13 in CDCl₃.

Figure S46. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of S15 in DMSO- d_6

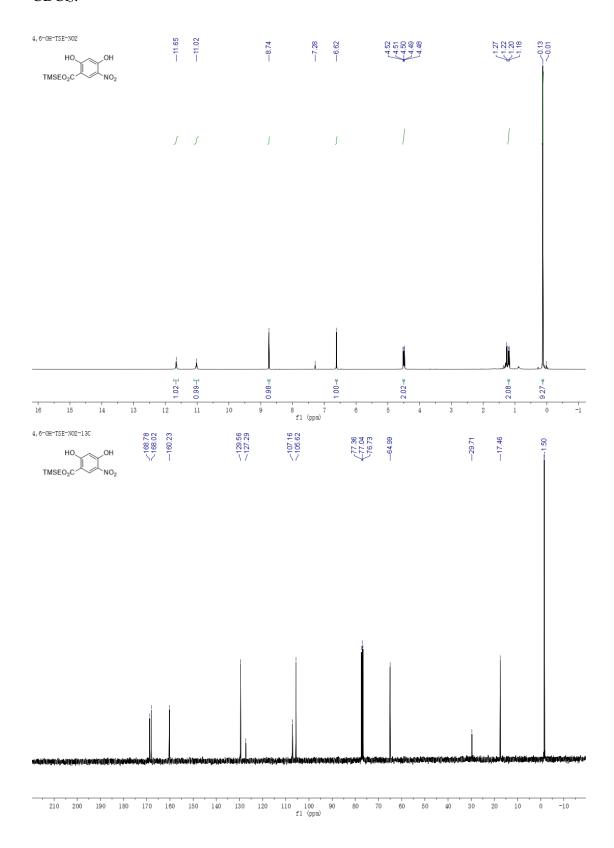


Figure S47. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of S18 in CDC₃.

Figure S48. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of s-4f in MeOD.

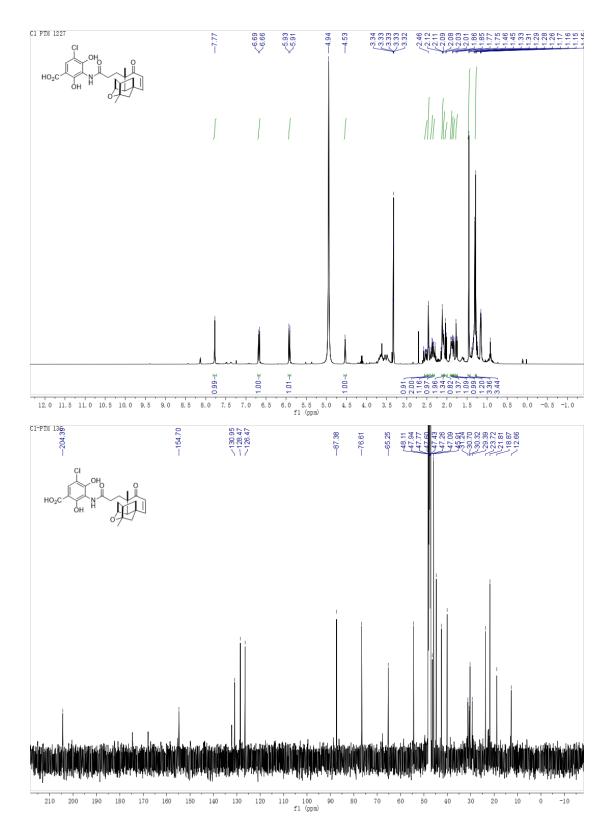
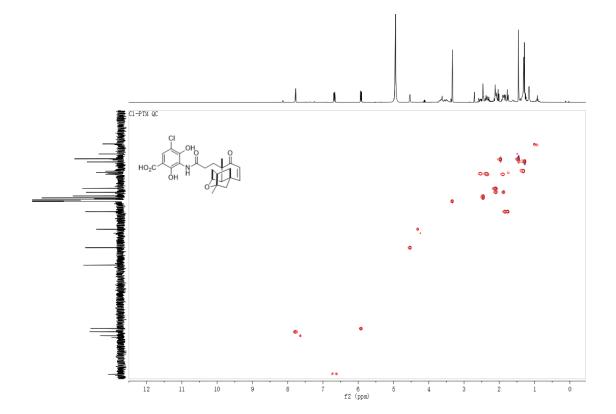



Figure S49. ¹H–¹³C HSQC spectrum of s-4f in MeOD

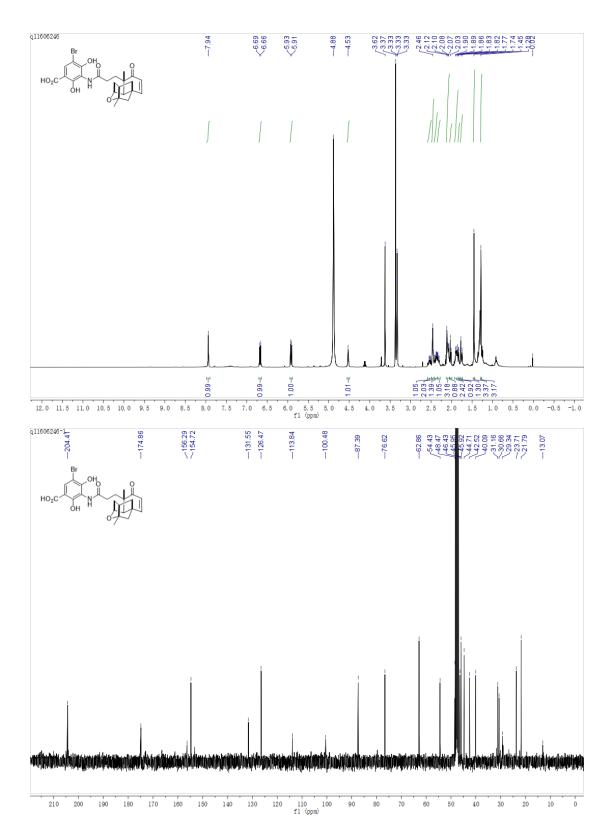
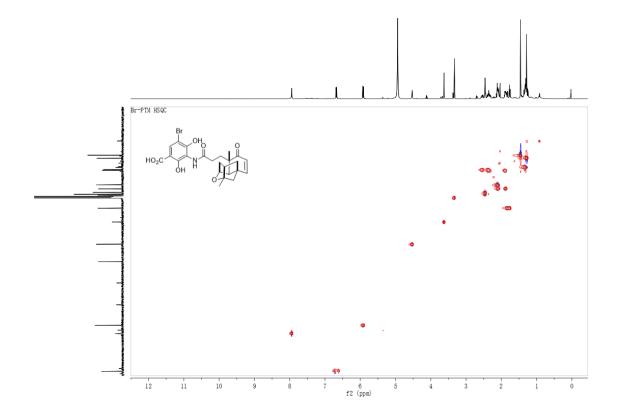



Figure S50. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectrum of s-4h in MeOD.

Figure S51. ¹H–¹³C HSQC spectrum of s-4h in MeOD

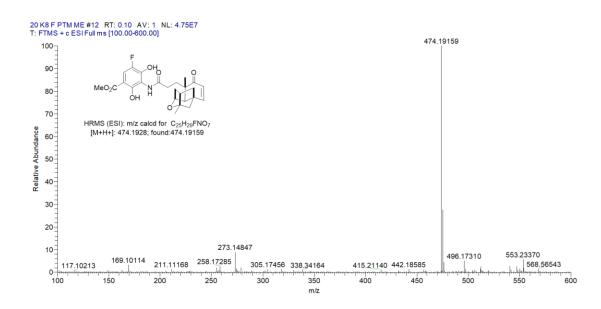
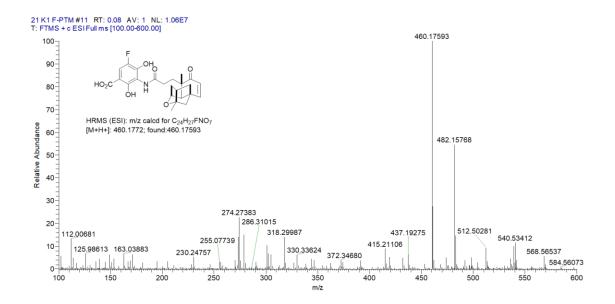



Figure S52. HRMS spectrum of 7a

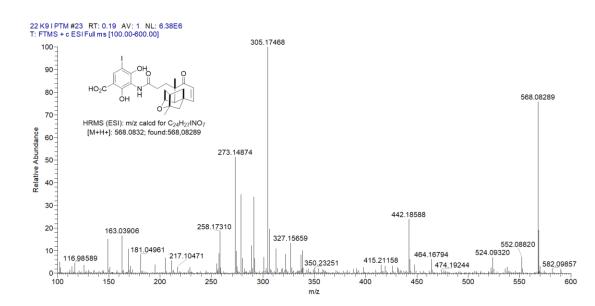
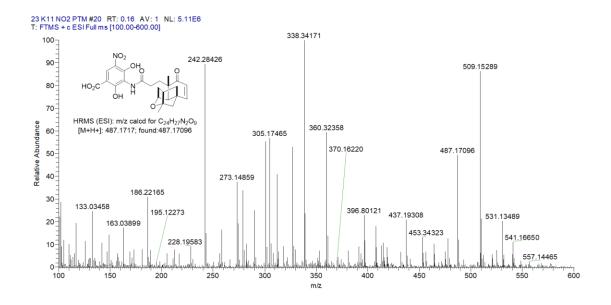



Figure S54. HRMS spectrum of 8

Figure S55. HRMS spectrum of 9

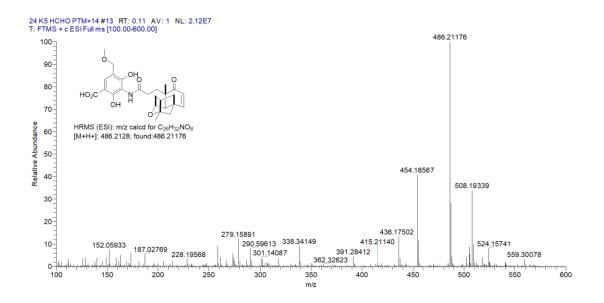
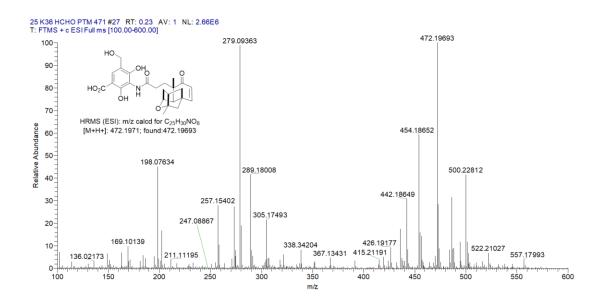




Figure S57. HRMS spectrum of 10b

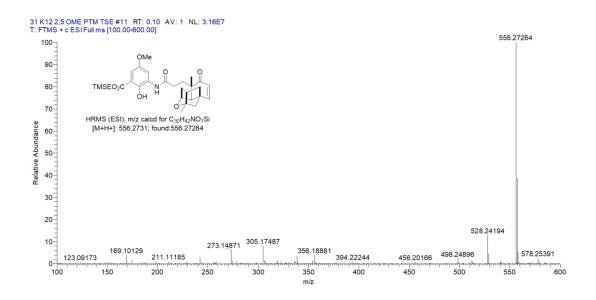
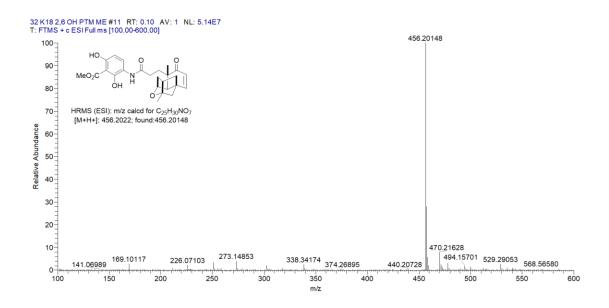
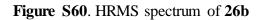




Figure S59. HRMS spectrum of 26a

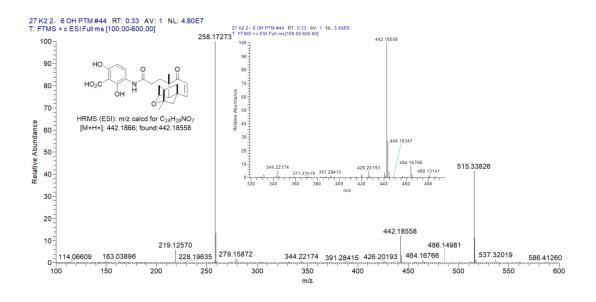
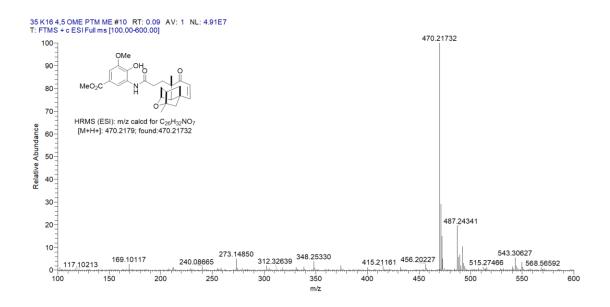



Figure S61. HRMS spectrum of 27a

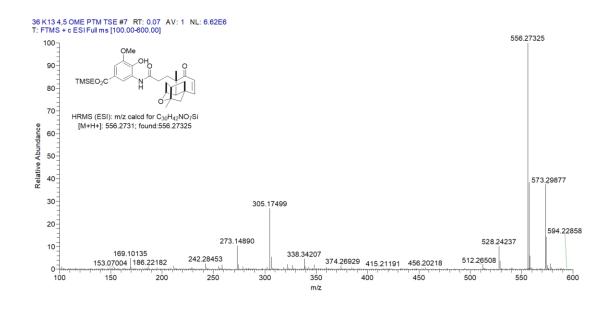
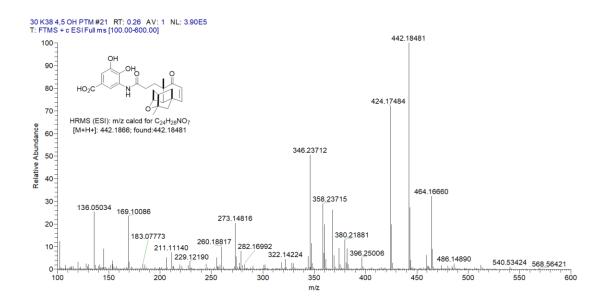



Figure S62. HRMS spectrum of 27b

Figure S63. HRMS spectrum of 28

Figure S64. HRMS spectrum of 29a

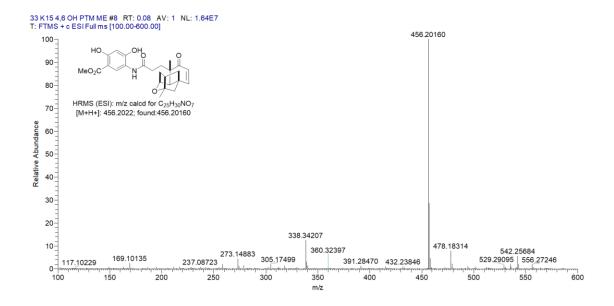
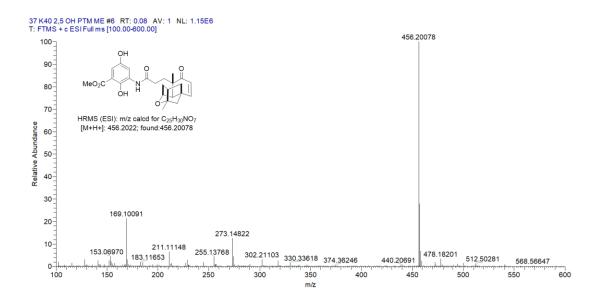
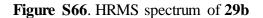




Figure S65. HRMS spectrum of 30

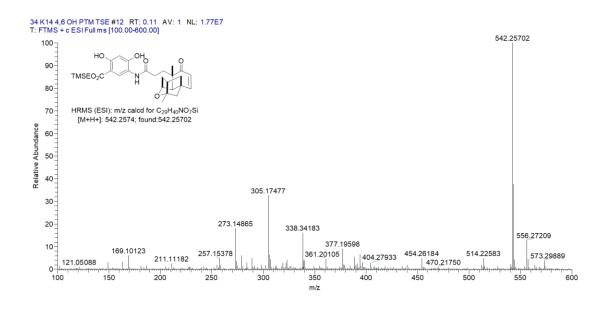
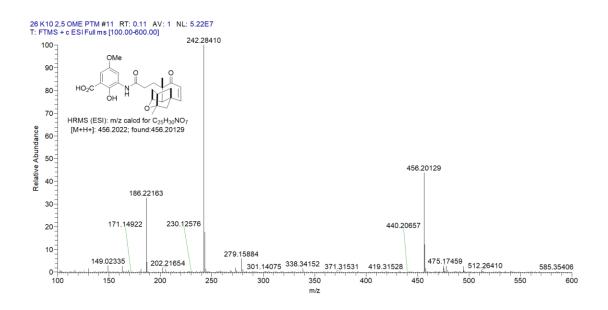



Figure S67. HRMS spectrum of 25b

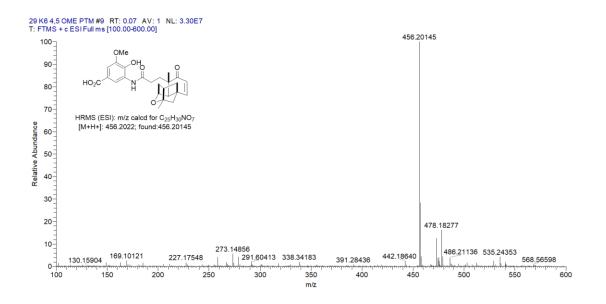
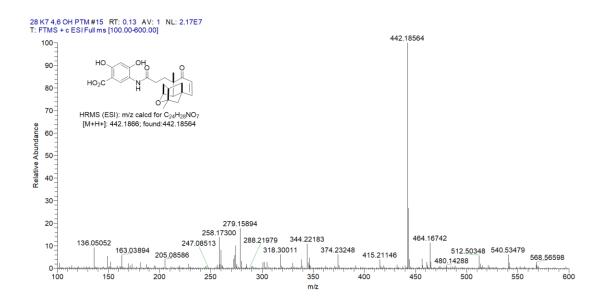



Figure S69. HRMS spectrum of 29c

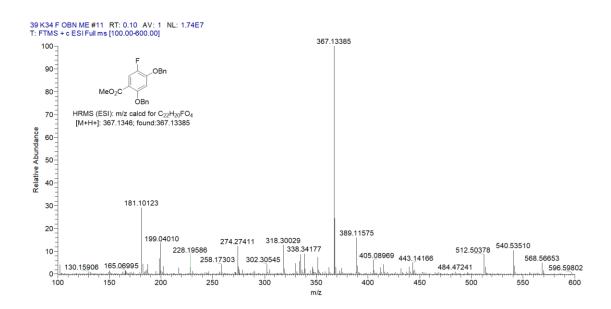
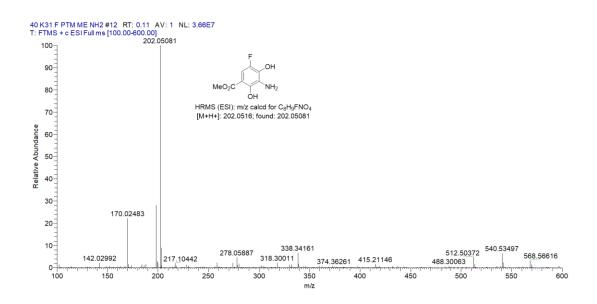
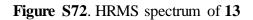




Figure S70. HRMS spectrum of 5

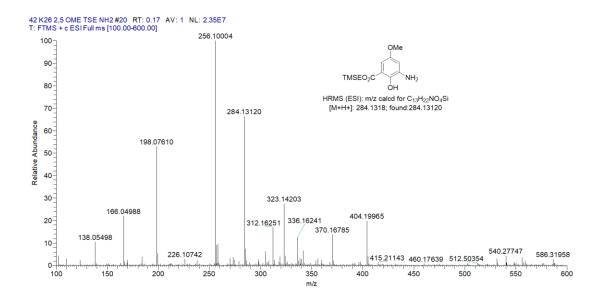
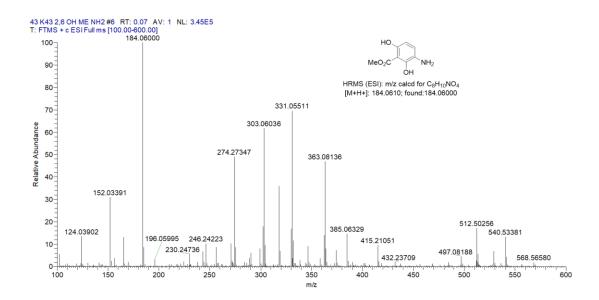



Figure S73. HRMS spectrum of 15a

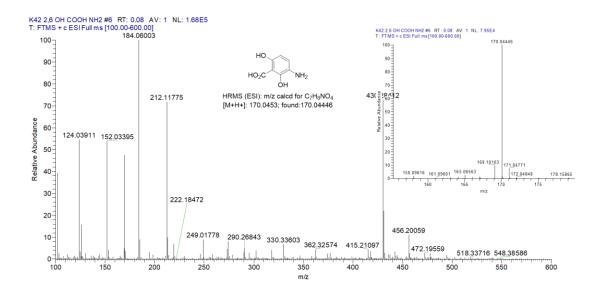
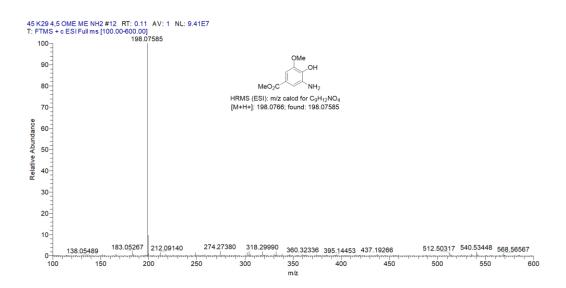



Figure S74. HRMS spectrum of 15b

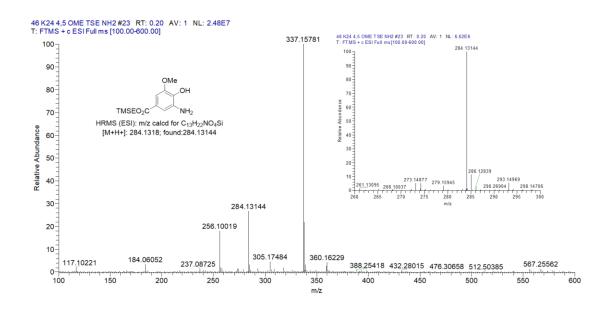
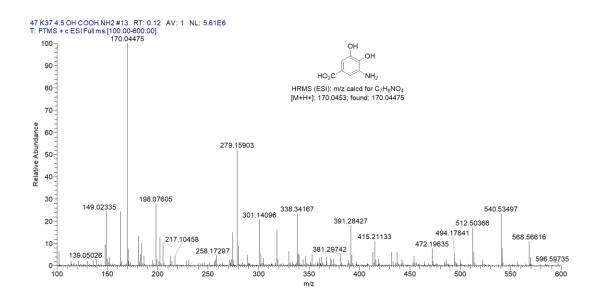



Figure S76. HRMS spectrum of 17b

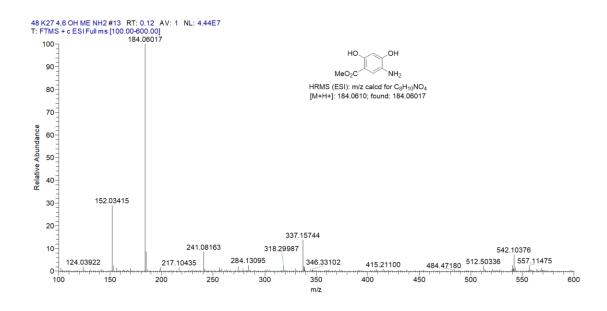
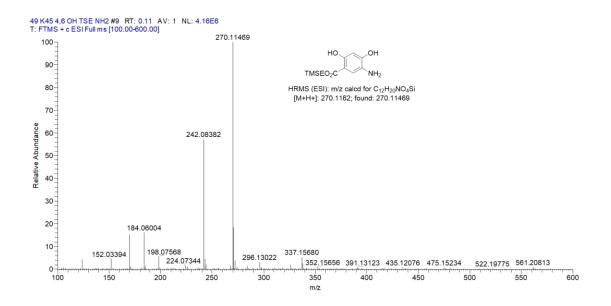



Figure S78. HRMS spectrum of 21a

Figure S79. HRMS spectrum of 21b

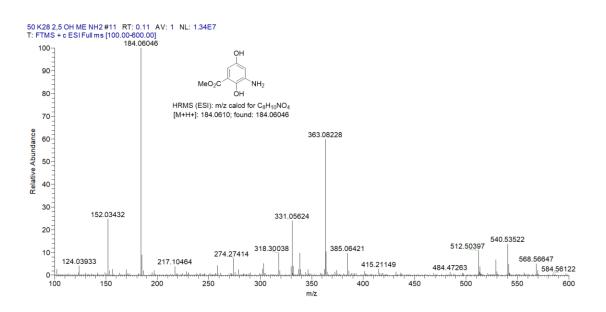
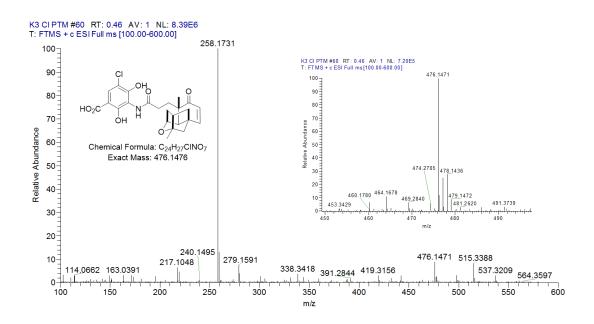
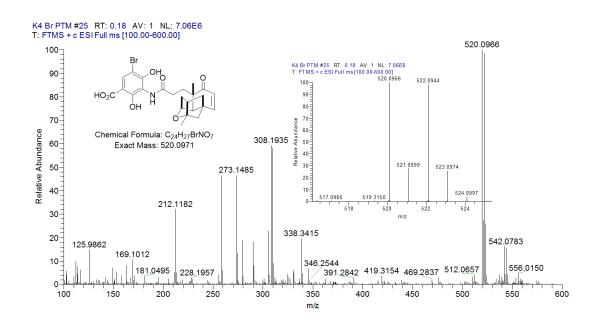




Figure S80. HRMS spectrum of 24

Figure S82. HRMS spectrum of s-4h