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Model Performance Scaling
To demonstrate HAL’s performance scaling as model size increases, we used a slightly
modified version of the Competitive Release model example from the main text. In this
version, the model is initiated with a completely filled lattice of resistant cells, and drug
application is constant (DRUG_DURATION is set equal to DRUG_PERIOD). Under
these conditions, we look at how two functions; a DiffusionStep function and a
StepAllCells function; scale in performance as the domain size is increased. The
implementation of these functions is shown below. See the main text for explanations of
the functions and variables being used.

1 p u b l i c vo i d D i f f u s i o n S t e p ( i n t t i c k ) {
2 i f ( t i c k > DRUG_START && ( t i c k − DRUG_START) % DRUG_PERIOD <

DRUG_DURATION) {
3 drug . Diffus ionADI (DRUG_DIFF_RATE, DRUG_BOUNDARY_VAL) ;
4 } e l s e {
5 drug . Diffus ionADI (DRUG_DIFF_RATE) ;
6 }
7 drug . Update ( ) ;
8 }
9 p u b l i c vo i d S t e p A l l C e l l s ( i n t t i c k ) {

10 Shuf f leAgents ( rn ) ;
11 f o r ( Examp leCe l l c e l l : t h i s ) {
12 c e l l . C e l l S t e p ( ) ;
13 }
14 }

These functions were profiled for 100,000 time-steps using the VisualVM sampler to
calculate the average of 3 runs at domain sizes 60×60, 90×90, 120×120, 150×150, and
180×180. The domains model areas of 1.44 mm2, 3.24 mm2, 9 mm2, and 12.96 mm2 of
cells with a radius of 10 µm. At the largest domain size, the model takes around 2.4 ms
to run per timestep, around 25000 timesteps per minute. If we assume that each
timestep represents 2 hours, as in the main paper model, then we can simulate roughly
5.8 years of real time in 1 minute. These results are plotted in Fig B and show an
approximately linear O(n) scaling for diffusion and cell step calculations.
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Figure A. The runtime in nanoseconds for 100,000 timesteps of the DiffusionStep and
StepAllCells functions on a 2017 MacBook Pro (Version 10.14.4, 2.9GHz Intel i7, 16GB
2133 MHz LPDDR3) are shown for different numbers of lattice positions. The Area on
the x axis refers to the approximate number of cells and the number of PDE lattice
positions to be updated at every time-step. The means and 95% confidence intervals are
plotted from 3 runs at each domain size.

We also profiled the same model sizes for 100,000 time-steps using a modified
off-lattice spherical agent version of the same model at domain sizes 60×60, 90×90,
120×120, 150×150, and 180×180. The domain model areas represent 1.44 mm2, 3.24
mm2, 9 mm2, and 12.96 mm2 for cells with a radius of 10µm. At the largest domain
size, the model takes around 12.7 ms to run per timestep, around 4700 timesteps per
minute. If we assume that each timestep represents 2 hours as in the main paper model,
then we can model roughly 1 year in 1 minute. This model uses spherical agents that
push off each other using a Hooke’s law force calculation function. Cells will only divide
in this version if the pressure on the cells is below a threshold as imposed as part of the
cell division if-statement. Both models can be found in the
Testing/PerformanceTestModels folder of the HAL codebase.
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1 p u b l i c vo i d S t e p A l l C e l l s ( i n t t i c k ) {
2 f o r ( Examp leCe l l c e l l : t h i s ) {
3 c e l l . B i r thDeath ( ) ;
4 }
5 f o r ( Examp leCe l l c e l l : t h i s ) {
6 c e l l . Movement ( ) ;
7 }
8 }
9

10 c l a s s Examp leCe l l e x t end s SphericalAgent2D<ExampleCe l l , ExampleModel> {
11 p u b l i c i n t type ;
12
13 p u b l i c vo i d B i r thDeath ( ) {
14 //Consumption o f Drug
15 G . drug . Mul ( Xpt ( ) , Ypt ( ) , G .DRUG_UPTAKE) ;
16 //Chance o f Death , depends on r e s i s t a n c e and drug c o n c e n t r a t i o n
17 i f (G . rn . Double ( ) < G .DEATH_PROB + ( type == RESISTANT ? 0 :

G . drug . Get ( Xpt ( ) , Ypt ( ) ) ∗ G .DRUG_DEATH) ) {
18 Dispose ( ) ;
19 r e t u r n ;
20 }
21 doub l e p r e s s u r e=SumForces ( 1 , ( o v e r l ap , o t h e r ) −>

ov e r l a p ∗G . FORCE_SCALER) ;
22 // con ta c t i n h i b i t i o n and d i v i s i o n p r o b a b i l i t y i n f l u e n c e d i v i s i o n

even t
23 i f (G . rn . Double ( ) ∗ p r e s s u r e ∗1000 < ( type == RESISTANT ?

G .DIV_PROB_RES : G .DIV_PROB_SEN) ) {
24 Examp leCe l l c=Div ide ( r ad i u s ∗1 .0/3 ,G . s c r a t ch ,G . rn ) ;
25 c . r ad i u s=r ad i u s ;
26 c . xVel=0;
27 c . yVel=0;
28 }
29
30 }
31 p u b l i c vo i d Movement ( ) {
32 ForceMove ( ) ;
33 App lyF r i c t i on (0 ) ;
34 }
35 }

February 26, 2020 3/75



Figure B. The average runtime in nanoseconds per timestep from 100,000 timesteps of
the StepAllCells functions on a 2017 MacBook Pro (Version 10.14.4, 2.9GHz Intel i7,
16GB 2133 MHz LPDDR3) are shown for different average population sizes. The means
and 95% confidence intervals are plotted from 3 runs at each population size.

To test how HAL’s performance scales to very large domains, we present the same
data at log scale with average timestep durations from two additional model runs with 1
million agents and diffusible positions running for 1000 timesteps and 10 million agents
running for 100 timesteps. These models represent areas of 400 mm2 and 40000 mm2

for cells with a radius of 10µm). At the largest domain size, the on lattice version and
off lattice version take around 3.5 and 18 seconds to run one timestep (representing 2
hours) respectively. At 100 million agents, the laptop memory was insufficient to store
all of the agents causing the model run to terminate. For this reason we recommend
running models with more agents on specialized hardware with expanded RAM if
available. HAL’s design is currently tailored toward single threaded modeling.
Multi-threading becomes necessary for fast performance at the scale of millions of
agents. We may expand the multi-threading capabilities of HAL in the future to
support high performance at this scale.
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Figure C. The log(base 10) average runtime in nanoseconds per timestep from 1,000
timesteps of the StepAllCells functions with a million agents and diffusion points on a
2017 MacBook Pro (Version 10.14.4, 2.9GHz Intel i7, 16GB 2133 MHz LPDDR3) are
shown for different average population sizes. The means and 95% confidence intervals
are plotted from 3 runs at each population size. Previous performance test results are
also shown.
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Type Hierarchy

Figure D. A visual representation of the type extension hierarchy behind the hybrid
modeling Agent and Grid types currently available in HAL. Blue arrows show an
extension relationship, with extended classes able to utilize all the methods and
variables of the types that they extend. Orange arrows show an interface
implementation relationship, meaning that all classes implement methods defined by the
base interface, and have any default functions defined in the interface. Blue boxes are
abstract types or interfaces, which cannot be directly instantiated. Green boxes are
concrete types that can be instantiated and are directly used in model building. Grey
boxes are abstract types whose concrete type extension classes are not shown, but are
similar to the 2D concrete type extensions shown.

Agent Implementation Differences
Here we will discuss the differences in implementation between the base agent types.
The functional differences between the agent types are entirely defined in Table 2 of the
main text. There are some small differences in implementation between types, primarily
to make small performance gains when the type restrictions allow for this. PT agents
use floating point numbers (Java doubles) to represent their position, since they need to
move continuously. SQ agents use integers to represent their position for a small
performance benefit (integer computation is faster than double computation on most
computer architectures). The "stackable" SQ and PT agents have built-in links to allow
multiple agents to occupy the same position; agents in the same position link to each
other in a linked list, with agents serving as the links. Unstackable SQ agents are
exactly like the stackable SQ agents in implementation, but do not contain these links
or maintain them when they change lattice position, which saves on computation time
and their size in memory. When choosing which type of agent to use, it is important to
keep in mind that the different types exist mostly because they restrict the spatial
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representation of agents in ways that are commonly useful, rather than for performance
benefits, so we recommend choosing agent types based on the spatial constraints you
want to impose in your model design.

Working Across Agent Types
The extension hierarchy allows for tools to be developed that target multiple agent types
by working with the base types that all of the extended types are derived from. Another
way for cross-type compatibility is through the use of interfaces that ensure that any
agents that work with a given tool can provide the information that the tool needs to
function. Both of these design patterns can be found in the source code, for example the
AgentGrid1D/2D/3D code works with the abstract AgentBaseSpatial agent type, rather
than any of the more specific agent types mentioned, allowing for all of the spatial agent
types to be compatible. As an example of the use of interfaces, the VarSetManager class,
which allows modular adding of additional state variables to agents, requires agents to
implement the VarSet interface so that the variables can be assigned to each agent by
the VarSetManager. The VarSetManager can be found in Framework/Tools/Modularity.

Interactions in HAL between different agent types are typically facilitated using
spatial queries across separate grids that house these different agent types, so arbitrary
interactions are possible from a decoupled perspective. However a single AgentGrid
cannot house multiple agent types directly. The shared API across agent types should
make migrating between them relatively painless, as most built-in agent functions are
shared across types.

AgentGrid/PDEGrid Implementation Differences
The AgentGrids/PDEGrids use the same underlying structure; each uses an array to
maintain spatial arrangements, with different access functions for different numbers of
dimensions. HAL does not currently provide built-in support for arbitrary spatial graph
structures, supporting only 1D 2D and 3D square lattices for Diffusion and ABMs. It is
worth noting, however that the neighborhood generation utility functions include
triangular and hexagonal neighborhoods, since these can be mapped to a square lattice
with different connections linking positions. Using these neighborhoods a modeler can
increase the number of graph connections between agents. In the future it would be
sensible to extend the AgentGrid1D to facilitate arbitrary graphs, as the AgentGrid1D
has the most straightforward access functions to map an arbitrary graph on top of.

PDE Convergence
In order to assess the right implementation of the different PDE schemes, we calculated
orders of convergence in space and time for the numerical schemes implemented in HAL.
In order to compute orders of convergence in space, we compared successive numerical
solutions with increasing grid sizes, where the difference between two solutions was
determined regarding a certain norm. In order to compute orders of convergence in
time, we compared successive numerical solutions with increasing the number of time
steps, for a fixed grid size, where the difference between two solutions was determined
regarding a certain norm. We considered the norms L1, L2 and L∞ to define
convergence here. In one, two and three dimensions, we performed test cases for
diffusion (Dirichlet, Neumann and periodic boundary conditions) and for advection
(Dirichlet, and periodic boundary conditions). For the sake of simplicity we established
the following convention: we cartesian coordinates defined on [0, 1] along each dimension.
For the spatial convergence the successive grid sizes were set as follows for 1D:
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• 100 points

• 300 points

• 900 points

• 2700 points

• 8100 points

Similarly for 2D:

• 10× 10 points

• 30× 30 points

• 90× 90 points

• 270× 270 points

Similarly for 3D:

• 10× 10× 10 points

• 30× 30× 30 points

• 90× 90× 90 points

• 270× 270× 270 points

For all the time convergence tests, the grid size was fixed at 10 points per dimension.
Initial adimensionalized constants Da and va were set to 0.1 for diffusion and advection
respectively. The number of time steps was set to 100 initially and was iteratively
multiplied by a factor of 2.

We then plotted the successive errors between grid sizes as a function of the grid size,
for L1, L2 and L∞ norms, all in log scale. The slope of the straight line corresponds to
the order of convergence of the implemented scheme. For spatial convergence, When the
grids were refined, the time step size was adapted accordingly (for FTCS and Upwind
schemes only, not for Crank-Nicolson and ADI), in order to ensure the stability of the
scheme. For FTCS diffusion scheme, this stability condition is of the form:

D∆t

∆x2
< c, (1)

where c = 0.5 in 1D and c = 0.25 in 2D, and c = 0.166 in 3D. For Upwind advection
scheme, the time step size was set accordingly, in order to ensure the CFL stability
condition:

v∆t

∆x
< c, (2)

where c = 1 in 1D, c = 0.5 in 2D, and c = 0.33 in 3D, and v = max(v3, vy, vz)

Diffusion
As theoretically expected, for all dimensions and boundary conditions types, FTCS,
Crank-Nicolson and ADI schemes converged at the order 2 in space for all tests. As
expected as well, FTCS scheme converged at the order 1 in time, whereas
Crank-Nicolson and ADI schemes converged at the order 2 in time.
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1D

In this set of test cases, we are solving the following equation:

∂C

∂t
−D ∂C

∂x2
= 0 (3)

We tested the forward-time centered space scheme (FTCS), for which the normalized
adimensionalized diffusion constant Da = D∆t

∆x2 was set to be equal to 0.1 during spatial
convergence, and then Crank-Nicolson scheme, that is unconditionally stable in L2 norm,
for which we assessed the order of convergence in space without adapting the time step.

Dirichlet boundary conditions 1-0 In this test case, the initial density is 0
everywhere on the domain. Dirichlet conditions are imposed at the boundary as follows:

• C(0,t)=1

• C(1,t)=0

The following figures show the error plots in log scale:

February 26, 2020 9/75



Figure E. Spatial convergence: L1, L2, and L∞ errors of convergence plotted against
the grid size in log10 scale obtained with the FTCS scheme for 1D diffusion for Dirichlet
boundary conditions (1 at left, 0 at right). Da = 0.1. Initial (for the coarsest grid) time
step number: 500. Grid sizes: 100, 300 and 900,2700 points
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Figure F. Time convergence: L1, L2, and L∞ errors of convergence plotted against the
number of time steps in log10 scale obtained with the FTCS scheme for 1D diffusion for
Dirichlet boundary conditions (1 at left, 0 at right). Da = 0.1. Initial time step number:
100. Fixed grid size: 10 points
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Figure G. Spatial convergence: L1, L2, and L∞ errors of convergence plotted against
the grid size in log10 scale obtained with the Crank-Nicolson scheme for 1D diffusion for
Dirichlet boundary conditions (1 at left, 0 at right). Initial Da = 0.1. Fixed time step
number: 500. Grid sizes: 100, 300 and 900,2700 points
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Figure H. Time convergence: L1, L2, and L∞ errors of convergence plotted against
the number of time steps in log10 scale obtained with the Crank-Nicolson scheme for 1D
diffusion for Dirichlet boundary conditions (1 at left, 0 at right). Da = 0.1. Initial time
step number: 100. Fixed grid size: 10 points

Dirichlet boundary conditions 0-0 In this test case, the initial density follows a
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Normal distribution centered on the middle of the domain:

C(0, x) = exp

(
−(x− 0.5)2

1000

)
(4)

We imposed the value of the field to be 0 at the boundaries.
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Figure I. Spatial convergence: L1, L2, and L∞ errors of convergence plotted against
the grid size in log10 scale obtained with the FTCS scheme for 1D diffusion for Dirichlet
boundary conditions (0 at both sides). Da = 0.1. Initial (for the coarsest grid) time
step number: 50. Grid sizes: 100, 300, 900, 2700 and 8100 points

February 26, 2020 15/75



2.4 2.6 2.8 3.0 3.2
log10 number of timesteps

−3.0

−2.8

−2.6

−2.4

−2.2

lo
g1

0 
L1

 e
rro

r

slope= − 1.003
R2 = 1.000

Diff 1D Dirichlet 0 L1 convergence

2.4 2.6 2.8 3.0 3.2
log10 number of timesteps

−3.6

−3.4

−3.2

−3.0

−2.8

lo
g1

0 
L2

 e
rro

r

slope= − 1.003
R2 = 1.000

Diff 1D Dirichlet 0 L2 convergence

2.4 2.6 2.8 3.0 3.2
log10 number of timesteps

−4.0

−3.8

−3.6

−3.4

−3.2

−3.0

lo
g1

0 
Lin

f e
rro

r

slope= − 1.003
R2 = 1.000

Diff 1D Dirichlet 0 Linf convergence

Figure J. Time convergence: L1, L2, and L∞ errors of convergence plotted against the
number of time steps in log10 scale obtained with the FTCS scheme for 1D diffusion for
Dirichlet boundary conditions (0 at both sides). Da = 0.1. Initial time step number:
100. Fixed grid size: 10 points
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Figure K. Spatial convergence: L1, L2, and L∞ errors of convergence plotted against
the grid size in log10 scale obtained with the Crank-Nicolson scheme for 1D diffusion for
Dirichlet boundary conditions (0 at both sides). Initial Da = 0.1 Fixed time step
number: 50. Grid sizes: 100, 300, 900, 2700 and 8100 points
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Figure L. Time convergence: L1, L2, and L∞ errors of convergence plotted against
number of time steps in log10 scale obtained with the Crank-Nicolson scheme for 1D
diffusion for Dirichlet boundary conditions (0 at both sides). Da = 0.1. Initial time step
number: 100. Fixed grid size: 10 points

Neumann boundary conditions In this test case, the initial density follows a
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Normal distribution centered on the middle of the domain:

C(0, x) = exp

(
−(x− 0.5)2

1000

)
(5)
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Figure M. Spatial convergence: L1, L2, and L∞ errors of convergence plotted against
the grid size in log10 scale obtained with the FTCS scheme for 1D diffusion for
Neumann boundary conditions (0 flux at both sides). Da = 0.1. Initial (for the coarsest
grid) time step number: 50. Grid sizes: 100, 300, 900, 2700 and 8100 points
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Figure N. Time convergence: L1, L2, and L∞ errors of convergence plotted against
the number of time steps in log10 scale obtained with the FTCS scheme for 1D diffusion
for Neumann boundary conditions (0 flux at both sides). Da = 0.1. Initial time step
number: 100. Fixed grid size: 10 points
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Figure O. Spatial convergence: L1, L2, and L∞ errors of convergence plotted against
the grid size in log10 scale obtained with the Crank-Nicolson scheme for 1D diffusion for
Neumann boundary conditions (0 flux at both sides). Initial Da = 0.1 Fixed time step
number: 50. Grid sizes: 100, 300, 900, 2700 and 8100 points
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Figure P. Time convergence: L1, L2, and L∞ errors of convergence plotted against
the number of time steps in log10 scale obtained with the Crank-Nicolson scheme for 1D
diffusion for Neumann boundary conditions (0 flux at both sides). Da = 0.1. Initial
time step number: 100. Fixed grid size: 10 points

Periodic boundary conditions In this test case, we consider the regular
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symmetrical initial condition defined as follows:

C(0, x) = exp

(
− (x− 0.5)2

1000

)
(6)

and simulate the diffusion equation with periodic boundary conditions.
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Figure Q. Spatial convergence: L1, L2, and L∞ errors of convergence plotted against
the grid size in log10 scale obtained with the FTCS scheme for 1D diffusion for periodic
boundary conditions. Da = 0.1. Initial (for the coarsest grid) time step number: 50.
Grid sizes: 100, 300, 900, 2700 and 8100 points
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Figure R. Time convergence: L1, L2, and L∞ errors of convergence plotted against
the number of time steps in log10 scale obtained with the FTCS scheme for 1D diffusion
for periodic boundary conditions. Da = 0.1. Initial time step number: 100. Fixed grid
size: 10 points

February 26, 2020 26/75



Figure S. Spatial convergence: L1, L2, and L∞ errors of convergence plotted against
the grid size in log10 scale obtained with the Crank-Nicolson scheme for 1D diffusion for
periodic boundary conditions. Initial Da = 0.1 Fixed time step number: 50. Grid sizes:
100, 300, 900, 2700 and 8100 points
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Figure T. Time convergence: L1, L2, and L∞ errors of convergence plotted against
the number of time steps in log10 scale obtained with the Crank-Nicolson scheme for 1D
diffusion for periodic boundary conditions. Da = 0.1. Initial time step number: 100.
Fixed grid size: 10 points
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2D

In this set of test cases, we are solving the following equation:

∂C

∂t
−D(

∂C

∂x2
+
∂C

∂y2
) = 0 (7)

We first tested the forward-time centered space scheme (FTCS), for which the
adimensionalized diffusion constant Da = D∆t

∆x2 was set to be equal to 0.1, and then the
alternating direction implicit (ADI) method scheme, that is unconditionally L2 stable,
for which we assessed the order of convergence in space without adapting the time step.

Dirichlet boundary conditions We considered a Gaussian centered in the middle
of the domain as an initial condition:

C(0, x, y) = exp

(
−(x− 0.5)2 + (y − 0.5)2

10

)
(8)

and imposed the value of the field to be 0 at the boundaries. The following pictures
show the error plots in log scale for both schemes.
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Figure U. Spatial convergence: L1, L2, and L∞ errors of convergence plotted against
the grid size in log10 scale obtained with FTCS scheme for 2D diffusion with Dirichlet
(0 at the boundaries) boundary conditions. Initial (for the coarsest grid) time step
number: 50. Da = 0.05 Grid sizes: 10× 10, 30× 30, 90× 90, 270× 270 points
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Figure V. Time convergence: L1, L2, and L∞ errors of convergence plotted against
the number of time steps in log10 scale obtained with the FTCS scheme for 2D diffusion
with Dirichlet (0 at the boundaries) boundary conditions. Da = 0.1. Initial time step
number: 100. Fixed grid size: 10 points
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Figure W. Spatial convergence: L1, L2, and L∞ errors of convergence plotted against
the grid size in log10 scale obtained with ADI scheme for 2D diffusion with Dirichlet (0
at the boundaries) boundary conditions. Fixed time step number: 50. Grid sizes:
10× 10, 30× 30, 90× 90, 270× 270 points
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Figure X. Time convergence: L1, L2, and L∞ errors of convergence plotted against
the number of time steps in log10 scale obtained with the ADI scheme for 2D diffusion
with Dirichlet (0 at the boundaries) boundary conditions. Initial Da = 0.1. Initial time
step number: 100. Fixed grid size: 10 points

Neumann boundary conditions. We considered a Gaussian centered in the
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middle of the domain as an initial condition and imposed no flux at the boundaries.
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Figure Y. Spatial convergence: L1, L2, and L∞ errors of convergence plotted against
the grid size in log10 scale obtained with FTCS scheme for 2D diffusion with no flux
boundary conditions. Initial (for the coarsest grid) time step number: 50. Da = 0.05
Grid sizes: 10× 10, 30× 30, 90× 90, 270× 270 points
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Figure Z. Time convergence: L1, L2, and L∞ errors of convergence plotted against the
number of time steps in log10 scale obtained with the FTCS scheme for 2D diffusion
with Von-Neumann boundary conditions. Da = 0.1. Initial time step number: 100.
Fixed grid size: 10 points
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Figure AA. Spatial convergence: L1, L2, and L∞ errors of convergence plotted
against the grid size in log10 scale obtained with ADI scheme for 2D diffusion with no
flux boundary conditions. Fixed time step number: 50. Initial Da = 0.05 Grid sizes:
10× 10, 30× 30, 90× 90, 270× 270 points
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Figure AB. Time convergence: L1, L2, and L∞ errors of convergence plotted against
the number of time steps in log10 scale obtained with the ADI scheme for 2D diffusion
with Von-Neumann boundary conditions. Da = 0.1. Initial time step number: 100.
Fixed grid size: 10 points

Periodic boundary conditions. In this test case, we consider the regular
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symmetrical initial condition defined as follows:

C(0, x) = exp

(
− (x− 0.5)2

1000

)
(9)

We then solved the diffusion equation with periodic boundary conditions.
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Figure AC. Spatial convergence: L1, L2, and L∞ errors of convergence plotted against
the grid size in log10 scale obtained with FTCS scheme for 2D diffusion with periodic
boundary conditions. Initial (for the coarsest grid) time step number: 20. Da = 0.05
Grid sizes: 10× 10, 30× 30, 90× 90, 270× 270 points
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Figure AD. Time convergence: L1, L2, and L∞ errors of convergence plotted against
the number of time steps in log10 scale obtained with the FTCS scheme for 2D diffusion
with periodic boundary conditions. Da = 0.1. Initial time step number: 100. Fixed grid
size: 10 points
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Figure AE. Spatial convergence: L1, L2, and L∞ errors of convergence plotted against
the grid size in log10 scale obtained with ADI scheme for 2D diffusion with periodic
boundary conditions. Fixed time step number: 20. Initial Da = 0.05 Grid sizes: 10× 10,
30× 30, 90× 90, 270× 270 points
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Figure AF. Time convergence: L1, L2, and L∞ errors of convergence plotted against
the number of time steps in log10 scale obtained with the ADI scheme for 2D diffusion
with periodic boundary conditions. Da = 0.1. Initial time step number: 100. Fixed grid
size: 10 points

The following figures show the initial and final distributions for both schemes:
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Figure AG. Initial distribution before running diffusion solver

Figure AH. Final distribution after simulation using FTCS scheme for 2D diffusion
under periodic boundary conditions
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3D

In this set of test cases, we are solving the following equation:

∂C

∂t
−D(

∂C

∂x2
+
∂C

∂y2
+
∂C

∂z2
) = 0 (10)

We tested the forward-time centered space scheme (FTCS), for which the
adimensionalized diffusion constant Da = D∆t

∆x2 was set to be equal to 0.05.

Dirichlet boundary conditions We considered a Gaussian centered in the middle
of the domain as an initial condition:

C(0, x, y, z) = exp

(
−(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2

10

)
(11)

and imposed the value of the field to be 0 at the boundaries.
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Figure AI. Spatial convergence: L1, L2, and L∞ errors of convergence plotted against
the grid size in log10 scale obtained with FTCS scheme for 3D diffusion with Dirichlet
(0 on the boundaries) boundary conditions. Initial (for the coarsest grid) time step
number: 100. Da = 0.05 Grid sizes: 10× 10× 10, 30× 30× 30, 90× 90× 90,
270× 270× 270 points
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Neumann boundary conditions. We considered a Gaussian centered in the
middle of the domain as an initial condition and imposed no flux at the boundaries.
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Figure AJ. Time convergence: L1, L2, and L∞ errors of convergence plotted against
the number of time steps in log10 scale obtained with the FTCS scheme for 3D diffusion
with periodic boundary conditions. Da = 0.1. Initial time step number: 100. Fixed grid
size: 10 points
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Figure AK. Spatial convergence: L1, L2, and L∞ errors of convergence plotted
against the grid size in log10 scale obtained with FTCS scheme for 3D diffusion with no
flux boundary conditions. Initial (for the coarsest grid) time step number: 100.
Da = 0.05 Grid sizes: 10× 10× 10, 30× 30× 30, 90× 90× 90, 270× 270× 270 points
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Figure AL. Time convergence: L1, L2, and L∞ errors of convergence plotted against
the number of time steps in log10 scale obtained with the FTCS scheme for 3D diffusion
with Von-Neumann boundary conditions. Da = 0.1. Initial time step number: 100.
Fixed grid size: 10 points
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Advection
As theoretically expected, for all dimensions, the estimated order of convergence in
space and time was one for the Upwind scheme.

1D

In this set of test cases, we are numerically solving the linear advection equation:

∂C

∂t
+ v

∂C

∂x
= 0 (12)

We tested the first order Upwind scheme for convergence in space and time. For the
convergence in space, the normalized adimensionalized velocity va = v∆t

∆x was set to be
equal to 0.1 for the Dirichlet test case and 0.5 for the periodic boundary condition test
case. For the convergence in time, it was set to 0.1 for the initial time resolution.

Dirichlet boundary condition on the left, no boundary condition on the
right. In this test case, the velocity field is homogeneous and unidirectional, from left
to right. The initial density profile follows a regular function whose value is one at the
left boundary and 0 at the right boundary. The reason for this is that imposing a
discontinuity through the boundary conditions would lead to conservation of this
discontinuous front through advection and no hope to get at least order 1 convergence
(since the numerical scheme assumes a differentiable field everywhere on the domain).
For the density profile, we chose a Gaussian function defined as follows:

C(0, x) = exp

(
−x

2

2

)
(13)
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Figure AM. Spatial convergence: L1, L2, and L∞ errors of convergence plotted
against the grid size in log10 scale obtained with the Upwind scheme for 1D advection
with Dirichlet boundary condition on the left, no boundary condition on the right.
va = 0.1. Initial (for the coarsest grid) time step number: 600. Grid sizes: 100, 300, 900,
2700 and 8100 points
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Figure AN. Time convergence: L1, L2, and L∞ errors of convergence plotted against
the number of time steps in log10 scale obtained with the Upwind scheme for 3D
advection with Dirichlet boundary conditions on the left, no boundary condition on the
right. va = 0.1. Initial time step number: 100. Fixed grid size: 10 points

Periodic boundary conditions In this test case, we consider the regular
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symmetrical initial condition defined as follows:

C(0, x) = exp

(
− (x− 0.5)2

1000

)
(14)

The velocity field is still uniform and unidirectional from left to right.
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Figure AO. Spatial convergence: L1, L2, and L∞ errors of convergence plotted
against the grid size in log10 scale obtained with the Upwind scheme for 1D advection
with periodic boundary condition on the left, no boundary condition on the right.
va = 0.5. Initial (for the coarsest grid) time step number: 900. Grid sizes: 900, 2700, 00,
8100 and 24300 points
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Figure AP. Time convergence: L1, L2, and L∞ errors of convergence plotted against
the number of time steps in log10 scale obtained with the Upwind scheme for 1D
advection with periodic boundary conditions on the left, no boundary condition on the
right. va = 0.1. Initial time step number: 100. Fixed grid size: 10 points
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2D

In this set of test cases, we are numerically solving the linear advection equation:

∂C

∂t
+ vx

∂C

∂x
+ vy

∂C

∂y
= 0 (15)

We tested the first order Upwind scheme for convergence in space and time. For the
convergence in space, the normalized adimensionalized velocity va = v∆t

∆x was set to be
equal to 0.45 for the periodic boundary condition test case. For the convergence in time,
it was set to 0.1 for the initial time resolution.

Periodic boundary conditions Here, we consider the regular symmetrical initial
condition defined as follows:

C(0, x, y) = exp

(
− (x− 0.5)2 + (y − 0.5)2

10

)
(16)

The velocity field is still uniform and unidirectional from left to right.
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Figure AQ. Spatial convergence: L1, L2, and L∞ errors of convergence plotted
against the grid size in log10 scale obtained with the Upwind scheme for 2D advection
with periodic boundary condition on the left, no boundary condition on the right.
va = 0.45. Initial (for the coarsest grid) time step number: 20. Grid sizes: 90× 90,
270× 270, 810× 810 and 2430× 2430 points
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Figure AR. Time convergence: L1, L2, and L∞ errors of convergence plotted against
the number of time steps in log10 scale obtained with the Upwind scheme for 2D
advection with periodic boundary conditions on the left, no boundary condition on the
right. va = 0.1. Initial time step number: 100. Fixed grid size: 10 points

The following pictures show the initial and final distributions, showing how the
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initial distribution is transported on almost an entire period (from left to right).

Figure AS. Initial distribution before running advection solver
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Figure AT. Final distribution after simulation using 2D Upwind advection scheme
under periodic boundary conditions. The velocity field is uniform under x axis only. A
whole period was almost simulated, transporting the distribution from left to right.

PopulationGrid Convergence Tests
To test that the behavior of the PopulationGrid approximates that of a partial
differential equation when the population sizes are sufficiently large, and to ensure
proper operation of the PopulationGrid and Multinomial Calculator, we tested the
global L1,L2, and L∞ convergence of the error between models with sizes 5, 15, 45, and
135 lattice points per spatial dimension. For the starting condition we used the
probability density of a normal distribution with standard deviation 0.2 * dimension
length, centered at the middle of the domain. This distribution was scaled such that the
central position had probability 1, and the binomial was used to stochastically generate
starting populations at each lattice position based on this probability distribution and a
population size of 1e9.

We adjusted the time-step to compensate for the space step increments, simulating
10, 90, 810, and 7290 time-steps respectively. We used a constant "diffusion" rate of
0.01dx

2

dt and a zero flux boundary. Diffusion was modeled as Brownian motion of
discrete agents, using the Multinomial Calculator to generate the numbers of agents
that would move between lattice positions. The results for 1D, 2D, and 3D
PopulationGrids are plotted below.
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Figure AU. Space Convergence tests for the 1D Population Grid scheme with
Von-Neumann boundary conditions and a centered gaussian initial condition.
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Figure AV. Space Convergence tests for the 2D Population Grid scheme with
Von-Neumann boundary conditions and a centered gaussian initial condition.
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Figure AW. Space Convergence tests for the 3D Population Grid scheme with
Von-Neumann boundary conditions and a centered gaussian initial condition.
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Time Convergence Tests

PopulationGrid Convergence Tests
The PopulationGrid convergence tests assess the convergence of the PopulationGrid
diffusion function. They are designed very consistently, with 10 lattice points per
dimension for each model run, 100 timesteps, and consistent diffusion coefficient values
of 0.01. The number of timesteps was scaled up consistently by a factor of 2 for the
collection of each subsequent data point. The agents are initially arranged using a
centered gaussian to calculate the probability of placement, with a maximum number of
agents per lattice position of 2000000000 The results are shown below.
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Figure AX. Time Convergence tests for the 1D Population Grid scheme with
Von-Neumann boundary conditions and a centered gaussian initial condition.
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Figure AY. Time Convergence tests for the 2D Population Grid scheme with
Von-Neumann boundary conditions and a centered gaussian initial condition.
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Figure AZ. Time Convergence tests for the 3D Population Grid scheme with
Von-Neumann boundary conditions and a centered gaussian initial condition.

Unit Tests
One way in which we have ensured that HAL’s algorithms perform properly is with unit
testing. These tests are classified into 3 domains: Math Tests, PDE Tests, and Agent
Tests. In all cases HAL’s components have been corrected when necessary such that
they pass all tests. Random number generations was done using a slightly modified
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version of the Java 8 SplittableRandom class located in Tools/SplittableRN.

Math Tests
ProbScale Function

algorithm: For a probabilistic event with probability p per unit time, the probability
that the event never occurs in some dt ≤ 1 is (1− p)dt so the probability that the event
occurs in timestep dt is 1− (1− p)dt.

arguments: p, dt
sets tried: All combinations of p, dt from sp = {0.5, 0.01, 0.0001} and

sdt = {1.0, 0.5, 0.25, 0.1, 0.01}
success criteria: Mean and Standard deviation of the successful outcomes of 1000

trials must be within σ
4 of predicted mean and standard deviation value, calculated by

x̄ = 1000p and σ =
√

1000p(1− p). A trial is considered successful if over the duration
of unit time, the probabilistic event occurs at least once.

Binomial Sampler

algorithm: Primarily uses code from the Colt Binomial class, and uses code from the
numpy.random.binomial function when the Colt Binomial class was inaccurate.

arguments: n, p
sets tried: All combinations of n, p from sn = {0.0001, 0.01, 0.5, 0.9, 0.9999} and

sp = {1, 10, 1000, 1000000}
success criteria: Mean and Standard deviation of 100000 trials must be within σ

4
of predicted mean and standard deviation value, calculated by x̄ = np and
σ =

√
np(1− p).

Multinomial Sampler

algorithm: the "conditional" method
arguments: n, ps
sets tried: 3 cases: n = 1000, ps = {0.1, 0.1, 0.1, 0.2}, n = 10, ps = {0.1, 0.1, 0.1},

and n = 10, ps = {0.01, 0.2, 0.5}
success criteria: means and standard deviations of n with each pi must be within

σ
4 of predicted mean and standard deviation value, calculated by x̄ = npi and
σ =

√
np(1− pi).

Gaussian Sampler

algorithm: Ziggaraut Algorithm
arguments: mean, std
sets tried: All combinations of m and s from sm = (0, 100000,−100000) and

ss = (0.0, 0.0001, 1, 100, 10000)
success criteria: Mean and Standard deviation of 100000 trials must be within σ

4
of m and s arguments.

Runge Kutta 4

algorithm: 4th order Runge Kutta
arguments: DerivativeFunction, SolutionFunction, x0, dt tf ,
sets tried: DerivativeFunction:dydt = y, SolutionFunction:y(t) = et,x0 = 1, dt = 0.01

tf = 100
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DerivativeFunction:dydt = y(1− y), SolutionFunction:y(t) = et

999+et , x0 = 0.001,
dt = 0.01, tf = 100

success criteria: Relative Error at all steps must be < 0.01

Runge Kutta Fehlberg 4,5

algorithm: Runge–Kutta–Fehlberg method 4(5)
arguments: DerivativeFunction, SolutionFunction, x0, dt tf ,
sets tried: DerivativeFunction:dydt = y, SolutionFunction:y(t) = et, x0 = 1, dt = 0.01

tf = 10

DerivativeFunction:dydt = y(1− y), SolutionFunction:y(t) = et

999+et , x0 = 0.001,
dt = 0.01, tf = 10

success criteria: Relative Error at all steps must be < 0.01

PDE Tests
1D Diffusion

algorithm:Forward difference in time and second order central difference in space
(FTCS)

model: boundary conditions: C(0) = 0, C(5) = 1, domain: ∈ [0, 5], diffusion
constant = 0.1

exact solution: At steady state, C(x) = x/5
success criteria: after the model reaches steady state (‖Cn+1

∆x − Cn∆x‖∞ < 0.0001)
the difference between the exact solution and the model lattice at all points must be less
than 0.01 (‖C − Cn∆x‖∞ < 0.01)

2D Diffusion

algorithm:Forward difference in time and second order central difference in space
(FTCS)

model: boundary conditions: C(0, y) = 0, C(5, y) = 1, domain:
∈ x = [0, 5], y = [0, 6], diffusion constant = 0.1

exact solution: At steady state, C(x, y) = x/5
success criteria: after the model reaches steady state (‖Cn+1

∆x − Cn∆x‖∞ < 0.0001)
the difference between the exact solution and the model lattice at all points must be less
than 0.01 (‖C − Cn∆x‖∞ < 0.01)

3D Diffusion

algorithm:forward difference in time and second order central difference in space
(FTCS)

model: boundary conditions: C(0, y, z) = 0, C(5, y, z) = 1, domain:
∈ x = [0, 5], y = [0, 6], z = [0, 7], diffusion constant = 0.1

exact solution: At steady state, C(x, y, z) = x/5
success criteria: after the model reaches steady state (‖Cn+1

∆x − Cn∆x‖∞ < 0.0001)
the difference between the exact solution and the model lattice at all points must be less
than 0.01 (‖C − Cn∆x‖∞ < 0.01)

1D Advection

algorithm:First order upwind scheme
model: boundary conditions: C(0) = 1, domain: ∈ [0, 5], advection velocity:

∆x = 0.1
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exact solution: At steady state, C(x) = x/5
success criteria: after the model reaches steady state (‖Cn+1

∆x − Cn∆x‖∞ < 0.0001)
the difference between the exact solution and the model lattice at all points must be less
than 0.01 (‖C − Cn∆x‖∞ < 0.01)

2D Advection

algorithm:First order upwind scheme
model: boundary conditions: C(0, y) = 1, domain: ∈ x = [0, 5], y = [0, 6], advection

velocity: ∆x = 0.1
exact solution: At steady state, C(x) = x/5
success criteria: after the model reaches steady state (‖Cn+1

∆x − Cn∆x‖∞ < 0.0001)
the difference between the exact solution and the model lattice at all points must be less
than 0.01 (‖C − Cn∆x‖∞ < 0.01)

3D Advection

algorithm:First order upwind scheme
model: boundary conditions: C(0, y, z) = 1, domain:

∈ x = [0, 5], y = [0, 6], z = [0, 7], advection velocity: ∆x = 0.1
exact solution: At steady state, C(x) = x/5
success criteria: after the model reaches steady state (‖Cn+1

∆x − Cn∆x‖∞ < 0.0001)
the difference between the exact solution and the model lattice at all points must be less
than 0.01 (‖C − Cn∆x‖∞ < 0.01)

Agent Tests
1D Movement On Lattice No Wraparound

grid type: AgentGrid1D, no wraparound, 100 lattice
agent initial condition; 100 AgentSQ1D agents at position (0)
step function: all Agents move ∆x = 1, stopping at the boundary (using the

MoveSafeSQ function), shuffle agent iteration
step number: 1000
success criteria: there should be 100 agents at position (99), and no agents

anywhere else

1D Movement On Lattice With Wraparound

grid type: AgentGrid1D, with wraparound, 100 lattice
agent initial condition:100 AgentSQ1D agents at position (0)
step function: all Agents move ∆x = 1, wrapping around the boundary (using the

MoveSafeSQ function), shuffle agent iteration.
step number: 1050
success criteria: there should be 100 agents at position (50), and no agents

anywhere else

1D BirthDeath On Lattice

grid type: AgentGrid1D, no wraparound, 100 lattice
agent initial condition:100 AgentSQ1D agents at position (0)
step function: all Agents move, choosing randomly from ∆x = {−1, 0, 1}. the first

50 agents to be iterated over are disposed, a new agent is created at the positions of the
last 50, agent iteration is shuffled
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step number: 100
success criteria: the total agent population on the grid should be 100

1D Movement Off Lattice No Wraparound

grid type: AgentGrid1D, no wraparound, 100 lattice
agent initial condition:100 AgentPT1D agents at position (0)
step function: all Agents move ∆x = 0.25, stopping at the boundary (using the

MoveSafePT function), shuffle agent iteration
step number: 1000
success criteria: there should be 100 agents at position (99), and no agents

anywhere else

1D Movement Off Lattice With Wraparound

grid type: AgentGrid1D, with wraparound, 100 lattice
agent initial condition:100 AgentPT1D agents at position (0)
step function: all Agents move ∆x = 0.25, wrapping around the boundary (using

the MoveSafePT function), shuffle agent iteration
step number: 1000
success criteria: there should be 100 agents at position (50), and no agents

anywhere else

1D BirthDeath Off Lattice

grid type: AgentGrid1D, no wraparound, 100 lattice
agent initial condition:100 AgentPT1D agents at position (0)
step function: all Agents move within the range ∆x = [−0.5, 0.5]. The first 50

agents to be iterated over are disposed, a new agent is created at the positions of the
last 50, agent iteration is shuffled

step number: 100
success criteria: the total agent population on the grid should be 100

2D Movement On Lattice No Wraparound

grid type: AgentGrid2D, no wraparound, 100x100 lattice
agent initial condition; 100 AgentSQ2D agents at position (0,0)
step function: all Agents move ∆x = 1,∆y = 1, stopping at the boundary (using

the MoveSafeSQ function), shuffle agent iteration
step number: 1000
success criteria: there should be 100 agents at position (99,99), and no agents

anywhere else

2D Movement On Lattice With Wraparound

grid type: AgentGrid1D, with wraparound, 100x100 lattice
agent initial condition:100 AgentSQ2D agents at position (0,0)
step function: all Agents move ∆x = 1,∆y = 1, wrapping around the boundary

(using the MoveSafeSQ function), shuffle agent iteration
step number: 1050
success criteria: there should be 100 agents at position (50,50), and no agents

anywhere else
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2D BirthDeath On Lattice

grid type: AgentGrid2D, no wraparound, 100x100 lattice
agent initial condition:100 AgentSQ2D agents at position (0,0)
step function: all Agents move, choosing randomly from

∆x = {−1, 0, 1},∆y = {−1, 0, 1}. the first 50 agents to be iterated over are disposed, a
new agent is created at the positions of the last 50, agent iteration is shuffled

step number: 100
success criteria: the total agent population on the grid should be 100

2D Movement Off Lattice No Wraparound

grid type: AgentGrid2D, no wraparound, 100x100 lattice
agent initial condition:100 AgentPT2D agents at position (0,0)
step function: all Agents move ∆x = 0.25,∆y = 0.25, stopping at the boundary

(using the MoveSafePT function), shuffle agent iteration
step number: 1000
success criteria: there should be 100 agents at position (99,99), and no agents

anywhere else

2D Movement Off Lattice With Wraparound

grid type: AgentGrid2D, with wraparound, 100x100 lattice
agent initial condition:100 AgentPT2D agents at position (0,0)
step function: all Agents move ∆x = 0.25,∆y = 0.25, wrapping around the

boundary (using the MoveSafePT function), shuffle agent iteration
step number: 1000
success criteria: there should be 100 agents at position (50,50), and no agents

anywhere else

2D BirthDeath Off Lattice

grid type: AgentGrid2D, no wraparound, 100x100 lattice
agent initial condition:100 AgentPT2D agents at position (0,0)
step function: all Agents move within the range ∆x = [−0.5, 0.5]∆y = [−0.5, 0.5].

The first 50 agents to be iterated over are disposed, a new agent is created at the
positions of the last 50, agent iteration is shuffled

step number: 100
success criteria: the total agent population on the grid should be 100

3D Movement On Lattice No Wraparound

grid type: AgentGrid3D, no wraparound, 100x100x100 lattice
agent initial condition; 100 AgentSQ3D agents at position (0,0,0)
step function: all Agents move ∆x = 1,∆y = 1,∆z = 1, stopping at the boundary

(using the MoveSafeSQ function), shuffle agent iteration
step number: 1000
success criteria: there should be 100 agents at position (99,99,99), and no agents

anywhere else

3D Movement On Lattice With Wraparound

grid type: AgentGrid3D, with wraparound, 100x100x100 lattice
agent initial condition:100 AgentSQ3D agents at position (0,0,0)
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step function: all Agents move ∆x = 1,∆y = 1,∆z = 1, wrapping around the
boundary (using the MoveSafeSQ function), shuffle agent iteration

step number: 1050
success criteria: there should be 100 agents at position (50,50,50), and no agents

anywhere else

3D BirthDeath On Lattice

grid type: AgentGrid3D, no wraparound, 100x100x100 lattice
agent initial condition:100 AgentSQ2D agents at position (0,0)
step function: all Agents move, choosing randomly from

∆x = {−1, 0, 1},∆y = {−1, 0, 1},∆z = {−1, 0, 1}. the first 50 agents to be iterated over
are disposed, a new agent is created at the positions of the last 50, agent iteration is
shuffled

step number: 100
success criteria: the total agent population on the grid should be 100

3D Movement Off Lattice No Wraparound

grid type: AgentGrid3D, no wraparound, 100x100x100 lattice
agent initial condition:100 AgentPT2D agents at position (0,0,0)
step function: all Agents move ∆x = 0.25,∆y = 0.25,∆z = 0.25, stopping at the

boundary (using the MoveSafePT function), shuffle agent iteration
step number: 1000
success criteria: there should be 100 agents at position (99,99), and no agents

anywhere else

3D Movement Off Lattice With Wraparound

grid type: AgentGrid3D, with wraparound, 100x100x100 lattice
agent initial condition:100 AgentPT2D agents at position (0,0,0)
step function: all Agents move ∆x = 0.25,∆y = 0.25,∆z = 0.25, wrapping around

the boundary (using the MoveSafePT function), shuffle agent iteration
step number: 1000
success criteria: there should be 100 agents at position (50,50,50), and no agents

anywhere else

3D BirthDeath Off Lattice

grid type: AgentGrid3D, no wraparound, 100x100x100 lattice
agent initial condition:100 AgentPT1D agents at position (0,0,0)
step function: all Agents move within the range

∆x = [−0.5, 0.5],∆y = [−0.5, 0.5],∆z = [−0.5, 0.5]. The first 50 agents to be iterated
over are disposed, a new agent is created at the positions of the last 50, agent iteration
is shuffled

step number: 100
success criteria: the total agent population on the grid should be 100

PopulationGrid Tests
1D PopulationGrid Diffusion

grid type: PopulationGrid1D, 100 lattice, PDEGrid1D, 100 lattice, zero flux boundary
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initial condition:10000 population position (50), 0 elsewhere, PDE 10000
concentration at position (50), 0 elsewhere

step function: population diffusion with movement probability 0.1 via multinomial
probability sampling, PDE diffusion with rate constant 0.1 using FCTS

step number: 1000
success criteria: The difference between the population number at each lattice

position and the PDE concentration at each lattice position should be less than 100

2D PopulationGrid Diffusion

grid type: PopulationGrid2D, 20x20 lattice, PDEGrid2D, 20x20 lattice, zero flux
boundary

initial condition:10000 population position (10,10), 0 elsewhere, PDE 10000
concentration at position (10,10), 0 elsewhere

step function: population diffusion with movement probability 0.1 via multinomial
probability sampling, PDE diffusion with rate constant 0.1 using FCTS

step number: 200
success criteria: The difference between the population number at each lattice

position and the PDE concentration at each lattice position should be less than 100

3D PopulationGrid Diffusion

grid type: PopulationGrid3D, 10x10x10 lattice, PDEGrid3D, 10x10x10 lattice, zero
flux boundary

initial condition:10000 population position (10), 0 elsewhere, PDE 10000
concentration at position (10), 0 elsewhere

step function: population diffusion with movement probability 0.1 via multinomial
probability sampling, PDE diffusion with rate constant 0.1 using FCTS

step number: 100
success criteria: The difference between the population number at each lattice

position and the PDE concentration at each lattice position should be less than 100
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