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Detailed Supplemental Methods 

Detailed Data Analysis 

Unipolar electrograms were recorded with band-pass filters set at 0.05-500 Hz and were 

exported along with anatomical data for bespoke off-line analysis in Matlab (Mathwork), which 

included stringent criteria for selecting only beats showing very similar activation/repolarization 

patterns. Although mapping systems should automatically ensure that only beats showing very 

similar surface ECG are recorded, the selection of beats to be included into the analysis was 

further refined. Unipolar electrograms were re-aligned on the pacing spike and the signal-

averaged template of the surface ECG (12 leads in CARTO, 3 leads in Ensite Precision) of 

the recorded beat was generated. The unipolar electrograms recorded during a given beat 

were included only if the mean correlation coefficient between the surface ECG of that beat 

and the template was >0.85 for the entire signal, >0.90 within the QRS complex and >0.80 

within the T-wave. This ensured that only beats with very similar activation and repolarization 

sequences were included. 

As shown in Figure 2, AT was defined at the time of the minimum of the first derivative, dV/dtmin, 

and RT was defined at the maximum of the first derivative of the T-wave of the unipolar 

electrogram, dV/dtmax. This is the standard definition firstly proposed by Wyatt [1], which has 

become widely accepted and has been largely validated in animal [2]–[4], human [5] and 

theoretical [6]–[8] studies. 

Activation recovery interval, ARI=RT-AT, was used as a surrogate for action potential duration. 

Annotation of unipolar electrograms was performed automatically within windows of interest. 

The window of interest for AT measurement started before and ended after the QRS complex 

of the surface ECG. The window of interest for RT encompassed the entire T-wave of the 

surface ECG, going from the earliest T-wave onset to the latest T-wave end across all leads.     

Markers were revised using bespoke graphical user interfaces and corrected semi-

automatically if needed. Semi-automatic correction consisted in performing automatic 



annotation within manually adjusted windows of interest and it was limited to rare isolated 

outliers to ensure reproducibility. Furthermore, arbitrary annotation of AR and RT was 

prevented by the software.  

Although measurements of AT and RT can be challenging, our bespoke algorithms have been 

optimized using expertise developed during more than 10 years of work in the field [8], [9], 

[18]–[22], [10]–[17].  

Regarding validation of local repolarization time measurements, apart from the detailed and 

elegant studies mentioned before, we have recently demonstrated that repolarization time 

measured using our own algorithms provide an accurate estimation of the ventricular effective 

refractory period  in 11 patients undergoing electrophysiological studies [23]. 

    

Detailed Statistical Analysis 

Data are reported as median (1st quartile, 3rd quartile). The Wilcoxon signed-rank test, a non-

parametric test for matched samples, was used for comparing distances between VTSO and 

vulnerable sites identified by different markers. P<0.05 was considered as the threshold for 

significance. The spatial correlation between activation-repolarization markers, e.g. between 

RVI and AT, was quantified using the Spearman’s correlation coefficient. The overlap between 

vulnerable sites identified by different markers (e.g. RVIMIN and ATMAX) was measured as the 

number of sites simultaneously identified as vulnerable by both markers (e.g. sites for which 

RVI<5th percentile of RVI values and AT>95th of AT values), divided by the average number 

of vulnerable sites identified by the two markers.  
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Supplementary Figures 

 

Supplementary Figure 1: Distance between the VT site of origin (VT-SoO) and the nearest 

vulnerable sites identified by low RVI (RVIMIN), low RVI-modified (RVIMIN
A),  large gradient of 

activation time (GAT,MAX), large gradient of repolarization time (GRT,MAX), large gradient of 

activation recovery interval (GARI,MAX), long activation time (ATMAX), short repolarization time 

(RTMIN), long RT (RTMAX), short activation recovery interval (ARIMIN) and long ARI (ARIMAX). 

Markers indicate the median of minimum distances and bars span the 1st-3rd quartile interval 

(across VTs). A different symbol is used to show results obtained using different search radius 

to define neighbouring sites. At each cardiac site, RVI-modified was measured as the mean 

RTP-ATD interval instead of the minimum RTP-ATD interval.     



 

Supplementary Figure 2: Interactions between activation-repolarization metrics. A: 

Matrix showing the median correlation coefficient between all the markers included in the 

study: re-entry vulnerability index (RVI), activation time (AT), repolarization time (RT), 

activation recovery interval (ARI), local gradients of AT (GAT), local gradients of ARI (GARI), 

local gradients of RT (GRT). B: Matrix showing the median overlap between vulnerable regions 

identified by any pair of markers included in the study. The sub-index “MIN” and “MAX” indicate 



that the vulnerable sites have been identified as belonging to the (0th-5th) or (95th-100th) 

percentile interval, respectively. As an example, cell (1,3) shows that the median number of 

sites simultaneously identified as vulnerable to re-entry by low RVI and large GARI was 17% of 

the total number of sites identified as vulnerable by the two markers.   

 

 

 

 


