1 Supplemental Information

2

3 **Profilin1 delivery tunes cytoskeleton dynamics towards CNS axon**

4 regeneration

5

Rita Pinto-Costa,^{1,3} Sara C. Sousa,^{1,3} Sérgio C. Leite,¹ Joana Nogueira-Rodrigues,^{1,3} Tiago
Ferreira da Silva,² Diana Machado,¹ Joana Marques,¹ Ana Catarina Costa,¹ Márcia A. Liz,¹
Francesca Bartolini,⁴ Pedro Brites,² Mercedes Costell,⁵ Reinhard Fässler,⁶ and Mónica M.
Sousa¹

10

¹Nerve Regeneration Group and ²NeuroLipid Biology Group, Program in Neurobiology and

12 Neurologic Disorders, Instituto de Biologia Molecular e Celular – IBMC and Instituto de

13 Inovação e Investigação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.

¹⁴ ³Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel

15 Salazar- ICBAS, University of Porto, 4050-313 Porto, Portugal.

⁴Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.

⁵Department of Biochemistry and Molecular Biology and Estructura de Reserca

18 Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, 46100 Burjassot,

19 Spain.

⁶Max Plank Institute of Biochemistry, Department of Molecular Medicine, Max Plank Institute

of Biochemistry, 82152 Martinsried, Germany.

1 Supplemental Figures and Legends

Supplemental Figure 1. Analysis of cre⁺Pfn^{wt/wt} and cre⁺Pfn^{fl/fl} mice. (A) Representative
image of a sciatic nerve cross section collected from a cre⁺Pfn1^{wt/wt} mouse expressing YFP in
myelinated axons. Scale bar: 50 μm. (B) Western blot and respective quantification by
densitometry showing (C) Pfn1 and (D) Pfn2 levels in brains of cre⁺Pfn1^{wt/wt} and cre⁺Pfn1^{fl/fl}
mice. β-actin signal was used as a loading control. Data represent mean ± SEM (*P < 0.05,
ns: not significant, t-test, *n* = 5-6 animals/condition). (E) Western blot analysis of Pfn2
knockdown in CAD cells 48 hr after transfection with a plasmid expressing shRNA Pfn2. β-

- actin signal was used as a loading control. (F) Quantification of (E). Data represent mean ± 1
- 2 SEM (***P < 0.001, t-test). (G) βIII-tubulin (cyan) and actin (red) in growth cones of
- hippocampal neurons co-nucleofected with a GFP and either/both Pfn1 shRNA and Pfn2 3
- shRNA expressing plasmids. Scale bar: 4 µm. (H) Quantification of growth cone area related 4
- to (G). Only GFP⁺ neurons were chosen for quantification. Data represent mean \pm SEM (*P < 0.05, **P < 0.01, ****P < 0.0001, ns: not significant, one-way ANOVA Tukey's posttest, *n* = 5
- 6
- 7 30-31 neurons/condition).

1 Supplemental Figure 2. Pfn1 levels regulate actin and MT dynamics. (A) Quantification of growth length and (B) duration in cre⁺Pfn1 DRG neurons. Data represent mean ± SEM (*P 2 < 0.05, **P < 0.01, ns: not significant, one-way ANOVA Tukey's posttest, n = 2-6 growth 3 4 cones/condition). (C) LifeAct-GFP imaging in hippocampal neurons expressing empty (CTR) 5 or shRNA Pfn1 plasmids. Middle panels (shRNA Pfn1) show representative stage 3 (left) and 6 stage 1 (right) growth cones; Scale bar: 4 µm. (D) Kymographs and (E) actin flow quantification related to (C). (F) EB3-GFP imaging related to (C). Scale bar: 3 µm. (G) 7 8 Kymographs and (H) quantification of EB3 comet speed and (I) growth length, related to (F). Data in (E), (H) and (I) represent mean ± SEM (*P < 0.05, ***P < 0.001, ****P < 0.0001, one-9 way ANOVA Tukey's posttest, n = 6-18 growth cones/condition). (J) Western blot and (K) 10 densitometry of CAD cells expressing WT or S138A hPfn1. Vinculin was used as control. 11 Data represent mean \pm SEM (**P < 0.01, ***P < 0.001, ns: not significant, one-way ANOVA Tukey's posttest). (L) β III-tubulin staining of WT and S138A hPfn1 expressing hippocampal 12 13 neurons. Scale bar: 30 µm. (M) Quantification of axon length related to (L). Data represent 14 mean ± SEM (****P < 0.0001, one-way ANOVA Tukey's posttest, n = 117-126 15 neurons/condition). (N) Quantification of actin retrograde flow, (O) EB3 comet speed and (P) 16 growth length related to (L). Data represent mean ± SEM (**P < 0.01, ***P < 0.001, ****P < 17 0.0001, one-way ANOVA Tukey's posttest, n = 4-7 growth cones/condition). (Q) LifeAct-GFP 18 19 imaging in hippocampal neurons expressing empty (CTR) or G118V hPfn1 plasmids. (R) 20 Kymographs and (S) actin flow quantification related to (Q). Data represent mean ± SEM (**P

- 21 < 0.01, t-test, n = 6-8 growth cones/condition).</p>
- 22

1 Supplemental Figure 3. Validation of pAAV.GFP.P2A.S138A hPfn1 and

2 pAAV.GFP.P2A.H134S/S138A hPfn1 expression in vitro, and in vivo after systemic

3 viral delivery. (A) Western blot analysis of Pfn1 expression in CAD 48 hr after transfection

4 with either pAAV-GFP, pAAV-GFP.P2A.S138A hPfn1 or pAAV-GFP.P2A.H134S/S138A

- 5 hPfn1plasmids. (**B**) Quantification of (A). Data represent mean ± SEM (**P < 0.01, ns: not
- 6 significant, one-way ANOVA Tukey's posttest). (C) GFP expression in brain and spinal cord,
- 7 2 weeks after systemic delivery of AAV-PHP.eB viral particles. Scale bars -brain: 800 $\mu m;$ -
- spinal cord: 200 μm; *d*:dorsal, *v*:ventral. (**D**) Zoom-ins of (C). Scale bar: 50 μm. (**E**) GFP
- 9 expression in DRG, 2 weeks after systemic delivery of AAV-PHP.eB viral particles. Scale
- 10 bar: 100 μm. (**F**) Low-magnification images of injured spinal cords shown in Figure 6K. Scale
- 11 bar: 300 µm.